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ABSTRACT
We consider a task graph to be executed on a set of pro-
cessors. We assume that the mapping is given, say by an
ordered list of tasks to execute on each processor, and we
aim at optimizing the energy consumption while enforcing
a prescribed bound on the execution time. While it is not
possible to change the allocation of a task, it is possible to
change its speed. We study the complexity of the problem
for different models: continuous speeds, discrete modes, dis-
tributed either arbitrarily or regularly, and VDD-hopping.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling

General Terms
Performance, Theory, Algorithms.

Keywords
Energy models, complexity, bi-criteria optimization, algo-
rithms, scheduling.

1. INTRODUCTION
The energy consumption of computational platforms has

recently become a critical problem, both for economic and
environmental reasons. Their power consumption is the sum
of a static part (the cost for a processor to be turned on)
and a dynamic part, which is a strictly convex function of
the processor speed. More precisely, a processor running
at speed s dissipates s3 watts [4, 5] per time-unit, hence
consumes s3× t joules when operated during t units of time.

Energy-aware scheduling aims at minimizing the energy
consumed during the execution of the target application.
Obviously, it makes sense only if it is coupled with some
performance bound to achieve, otherwise, the optimal solu-
tion always is to run each processor at the slowest possible
speed. In this paper, we investigate energy-aware scheduling
strategies for executing a task graph on a set of processors.
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The main originality is that we assume that the mapping of
the task graph is given, say by an ordered list of tasks to ex-
ecute on each processor. There are many situations in which
this problem is important, such as optimizing for legacy ap-
plications, or accounting for affinities between tasks and re-
sources, or even when tasks are pre-allocated, for example
for security reasons.

Optimization problem. Consider an application task
graph G = (V, E), with n = |V | tasks, V = {T1, T2, . . . , Tn}:
E denotes the precedence edges between tasks. Task Ti has
a cost wi for 1 ≤ i ≤ n. We assume that the tasks in G have
been allocated onto a parallel platform made up of identical
processors. The execution graph generated by this allocation
is G = (V,E), with an augmented set of edges E: E ⊆ E,
and if T1 and T2 are executed successively, in this order,
on the same processor, then (T1, T2) ∈ E. The goal is to
minimize the energy consumed during the execution while
enforcing a deadline D on the execution time. We formalize
this MinEnergy(G,D) optimization problem in the simpler
case where each task is executed at constant speed (valid
for all models but the VDD-hopping one). Let di be the
duration of the execution of task Ti, ti its completion time,
and si the speed at which it is executed.

Minimize
∑n
i=1 s

3
i × di

subject to (i) wi = si × di for each Ti ∈ V
(ii) ti + dj ≤ tj for each (Ti, Tj) ∈ E
(iii) ti ≤ D for each Ti ∈ V

(1)

We have di = wi/si, hence a geometric problem in the non-
negative variables ti and 1/si, with linear constraints and
objective function rewritten as

∑n
i=1(1/si)

−2 × wi.
Energy models. In all models, when a processor oper-

ates at speed s during d time-units, the corresponding con-
sumed energy is s3 × d, which is the dynamic part of the
energy consumption [4, 5]. We do not take static energy
into account, because all processors are up and alive dur-
ing the whole execution. We now detail the possible speed
values in each energy model, which should be added as a
constraint in Equation (1).
Continuous: processors can have arbitrary speeds, from 0
to a maximum value smax , and a processor can change its
speed at any time during execution. This model is unrealis-
tic but theoretically appealing [2].
Discrete: processors have a set of possible speed values,
or modes, denoted as s1, ..., sm. There is no assumption on
the range and distribution of these modes. The speed of a
processor cannot change during the computation of a task,
but it can change from task to task [7].



Vdd-Hopping: a processor can run at different speeds as
in the previous model (s1, ..., sm), but it can also change its
speed during a computation. Any rational speed can be sim-
ulated [6]. The energy consumed during the execution of one
task is the sum, on each time interval with constant speed s,
of the energy consumed during this interval at speed s.

Incremental: we introduce a value δ that corresponds to
the minimum permissible speed (i.e., voltage) increment.
Possible speed values are obtained as s = smin + i×δ, where
i is an integer such that 0 ≤ i ≤ smax−smin

δ
. Admissible

speeds lie in the interval [smin , smax ]. The different modes
are spread regularly between s1 = smin and sm = smax , in-
stead of being arbitrarily chosen. This is intended as the
modern counterpart of a potentiometer knob!

2. RESULTS
All proofs, algorithms, and related work can be found in

the companion research report [1].

2.1 The Continuous model
Theorem 1. When G is a fork graph with n + 1 tasks

T0, T1, . . . , Tn, where T0 is the source, the optimal solution
to MinEnergy(G,D) is to execute T0 at speed

s0 =

(∑n
i=1 w

3
i

) 1
3 + w0

D
,

and Ti (for 1 ≤ i ≤ n) at speed

si = s0 ×
wi(∑n

i=1 w
3
i

) 1
3

, if s0 ≤ smax .

Otherwise, T0 should be executed at speed s0 = smax , and
the other speeds are si = wi

D′ , with D
′ = D− w0

smax
, if they do

not exceed smax , otherwise there is no solution.

Theorem 2. MinEnergy(G,D) can be solved in polyno-
mial time when G is a tree, or a series-parallel graph (in the
latter case, assuming smax = +∞).

For arbitrary execution graphs, we have a geometric pro-
gramming problem (see [3, Section 4.5]) for which efficient
numerical schemes exist. However, as illustrated on simple
fork graphs, the optimal speeds are not expected to be ra-
tional numbers but instead arbitrarily complex expressions
(we have the cubic root of the sum of cubes for forks, and
nested expressions of this form for trees). We do not know
how to encode such numbers in polynomial size of the input
(the rational task weights and the execution deadline). Still,
we can always solve the problem numerically and get fixed-
size numbers which are good approximations of the optimal
values.

2.2 Discrete models
Theorem 3. With the Vdd-Hopping model, MinEner-

gy(G,D) can be solved in polynomial time (via linear pro-
gramming).

Theorem 4. With the Incremental model (and hence
the Discrete model), MinEnergy(G,D) is NP-complete.

Theorem 5. With the Incremental model, for any in-
teger K > 0, the MinEnergy(G,D) problem can be approx-
imated within a factor (1 + δ

smin
)2 × (1 + 1

K
)2, in a time

polynomial in the size of the instance and in K.

Proposition 1.
• For any integer δ > 0, any instance of MinEner-

gy(G,D) with the Continuous model can be approxi-
mated within a factor (1+ δ

smin
)2 in the Incremental

model with speed increment δ.
• For any integer K > 0, any instance of MinEner-

gy(G,D) with the Discrete model can be approxi-
mated within a factor (1 + α

s1
)2 × (1 + 1

K
)2, with

α = max1≤i<m{si+1 − si}, in a time polynomial in
the size of the instance and in K.

3. CONCLUSION
We have assessed the tractability of a classical schedul-

ing problem, with task preallocation, under various energy
models. We have given several results related to Contin-
uous speeds. However, while these are of conceptual im-
portance, they cannot be achieved with physical devices,
and we have analyzed several models enforcing a bounded
number of achievable speeds, a.k.a. modes. In the classi-
cal Discrete model, admissible speeds can be irregularly
distributed, which motivates the Vdd-Hopping approach
that mixes two consecutive modes optimally. While com-
puting optimal speeds is NP-hard with discrete modes, it
has polynomial complexity when mixing speeds. Intuitively,
the Vdd-Hopping approach allows for smoothing out the
discrete nature of the modes. An alternate (and simpler
in practice) solution to Vdd-Hopping is the Incremental
model, where one sticks with unique speeds during task ex-
ecution as in the Discrete model, but where consecutive
modes are regularly spaced. Such a model can be made ar-
bitrarily efficient, according to our approximation results.
Altogether, this paper has laid the theoretical foundations
for a comparative study of energy models.
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