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ABSTRACT

This paper proposes a novel approach to multi-view object
class and viewpoint detection for the retrieval of images
showing one or several objects from a given viewpoint, a
viewpoint range or any viewpoint in image databases. All
detectors are trained exclusively on a few synthetic 3D mod-
els without any manual bounding-box, viewpoint or part
annotation, making object class and viewpoint detection a
scalable learning task. Previous work on this topic relies on
the detection of object parts for each individual viewpoint,
ignoring the responses of part detectors specific to other
viewpoints. Instead, we explicitly exploit appearance am-
biguities caused by spurious detections of parts under more
than one viewpoint by combining all detector responses in
a joint spatial pyramid encoding. We achieve state-of-the-
art results in multi-view object class detection and view-
point determination on current benchmarking data sets and
demonstrate increased robustness to partial occlusion.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models; 1.3.5 [Computational Geometry and Object
Modeling]: Curve, surface, solid, and object representa-
tions; 1.4.8 [Scene Analysis]: Object recognition

General Terms

Algorithms, Experimentation
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1. INTRODUCTION

There are various ways of representing the query in a
content-based image retrieval system. In many systems the
representation is done by one or more specific sample images
of the object(s) to be queried. However, such a representa-
tion is limited to the retrieval of specific object instances
in images with a sufficiently high similarity to the query in
terms of appearance and viewpoint. Instead, a more flexible
query formulation is desired where a user can choose either
to retrieve a class of objects from a specific viewpoint, a
range of viewpoints, or any viewpoint, or to retrieve a spe-
cific object from a specific viewpoint, a range of viewpoints,
or any viewpoint (e.g. in [9]). In order to enable such im-
age queries, a multi-view object class detection algorithm is
required that can (a) detect objects of a given object class
from multiple viewpoints and (b) recognize the approximate
viewpoint under which the object was recorded. Moreover,
the collection of data for the training of new object class de-
tectors should require little manual intervention. One such
source for training data could be 3D CAD models of ob-
jects, since 3D models allow for the automatic generation
of a suitable amount of training images. An arbitrary large
number of computer graphics renderings of the 3D models
can be generated from arbitrary viewpoints with varying
object backgrounds and lighting conditions. Knowing the
exact viewpoints during training enables the estimation of
the viewpoint during detection for queries such as ’car AND
front-view”. The utilization of 3D object models therefore
represents an attractive means for a flexible and informa-
tion rich training of multi-view object class and viewpoint
detectors for image retrieval.

In the present work we propose an approach to part-based
multi-view object class detection, which does not require
any bounding-box, viewpoint, or part annotation for train-
ing. The training process exclusively relies on synthetic 3D
object models with an automatic identification of suitable
part positions. Most part-based approaches to multi-view
object class detection make use of the spatial consistency of
the detections of specific parts typically visible from a given
viewpoint. These approaches predominantly learn individ-
ual detectors for each part under each viewpoint. However,
due to viewpoint symmetries, part similarities and ambigu-
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Figure 1: Overview of our approach. Training (left
side): viewpoint-specific part detectors are trained
by means of synthetic 3D models. The spatial lay-
out of all these part detectors is encoded in a spa-
tial pyramid and discriminatively trained. Detec-
tion (right side): Regions of interest, generated by a
part-based pre-detection step, are encoded and clas-
sified to obtain the final detection result.

ities, the response behavior of such a specific detector on
other parts and viewpoints can contain potentially valuable
information which remains unused in previous approaches
as they discard these “hallucinated” detector responses as
nuisances. In this work we suggest combining all individ-
ual viewpoint detectors in a joint spatial pyramid encoding
to fully exploit the information contained in the available
set of detector responses. Initially, our approach uses syn-
thetic images of 3D object models to automatically select
the positions of relevant object parts from different views
and train their appearances into part detectors. In a second
step, the spatial layout of all detector responses is encoded
in a spatial pyramid and discriminatively trained with non-
linear SVMs on intersection kernels. As a result, we obtain a
multi-view object class representation incorporating knowl-
edge provided by all individual part detectors. The approach
is unsupervised in the sense that no tedious bounding-box,
viewpoint, or part annotations are required at training time.
While it is purely trained on synthetic 3D object models, we
show that our approach achieves state-of-the-art results in
multi-view object class detection and viewpoint determina-
tion on current benchmarking data-sets with high robustness
against partial occlusion. We use this multi-view object and
viewpoint detector to annotate our image database, thus al-
lowing us either retrieving objects of the desired viewpoint
set or pre-filtering the image database for a standard query-
by-image system.

The paper is structured as follows: Section 2 summarizes
previous work on part models and multi-view object class
detection. A system overview of the proposed approach is
given in Section 3. Details for the training and detection
procedure are presented in Section 4 and in Section 5. Ex-
perimental results and a comparison with state-of-the-art
are given in Section 6.
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Figure 2: Examples of 3D object models of the three
classes ”car”, ”bike”, and iron”.

2. RELATED WORK

The approach to content-based image retrieval described
in the present work relies on multi-view object class detec-
tion to identify the images relevant to the query. Most re-
cent work on multi-view object class detection focuses on
deriving geometric representations of an object class as a
set of two-dimensional constellations of object parts for a
few discrete viewpoints. The combination of 2D detectors
to cover an entire object over a multi-view sphere has been
the initial step towards a more comprehensive use of ge-
ometry for object class detection: Thomas et al. [21], for
example, suggest linking Implicit Shape Models for specific
viewpoints amongst each other, thereby achieving a detec-
tion over multiple viewpoints. In order to increase robust-
ness towards pose changes, additional probabilistic layout
models as well as local 2D geometric constraints have been
introduced. Originally described in [8], the idea is taken
up by [2] who introduce a simplified layout which assumes
a set of mutually independent branch parts which only de-
pend on a few root parts instead of modeling all pairwise
interactions. The approach is further extended in [7] with
discriminatively learnt part appearance, different heuristic
layout models for the main viewpoints and a root part per
viewpoint which covers the entire object, thereby increasing
robustness. In [12], the approach of [7] is applied to build-
ing viewpoint-specific discriminative detectors with varying
levels of supervision. Instead of modeling sparse sets of
parts, a fixed grid-based subdivision of object views has
been suggested in [10, 15] to detect regions of parts which
conform to the training part layout. Savarese and Li [18]
determine homographies of groups of local features in order
to map large 2D image regions onto a collection of near-
planar parts to form a viewpoint-independent 3D model;
more recently, [20] introduced a probabilistic approach to
learn affine constraints between sparse object patches. In [1],
sparsely annotated 2D feature positions are factorized to ob-
tain a 3D implicit shape model which extends the original
implicit shape model to 3D transformations and occlusion
issues.

More recently, the use of synthetic CAD models as train-
ing data source has been advocated to enable a more fine-
grained viewpoint subdivision: in [16], local features are
derived from synthetically rendered models to evaluate the
global consistency of a 2D detection with respect to a 3D ge-
ometry; in [19], CAD models with semantic part annotations
are used to learn a probabilistic spatial model of edge-based
features.

In combining individual detectors in a common representa-
tion, our approach is similar in spirit to [14] who classify
entire images into scene categories based on a set of object
detector responses.

3. SYSTEM OVERVIEW

Figure 1 gives an overview of the multi-view object class
detection approach presented in this paper. We rely on a
database of 3D object models as training data source for



each object class that should be detected (see Figure 2 for
some model examples of different classes). In contrast to
other work [19], semantic 3D part labels which CAD design-
ers sometimes assign to parts of the model geometry during
the creation process (i.e. "wheel” or "car door”) are not re-
quired in our approach, since we have frequently found these
manual labels to be inconsistent. The 3D object models are
used to generate two independent sets of training images by
means of computer graphics rendering, the part examples
and the viewpoint examples.

The part examples are used as training source for the dis-
criminative learning of viewpoint-specific part detectors. The
objective of this learning step is to automatically identify a
layout of object parts which describes the characteristic ap-
pearance of an object class under a given viewpoint. For
each viewpoint, individual part locations are automatically
chosen as those regions which consistently possess dominant
gradients across all object models of a class (c.f. Figure 3).
While the selected part regions do not necessarily have a
semantic meaning, this process ensures that the appearance
of parts is sufficiently structured for detection. The part
layout of our approach is then used in a second step to train
viewpoint-specific part detectors from patches of the part
examples at these chosen locations (c.f. Figure 4). More
details are given in 4.2. Spatial layout models (c.f. Sec-
tion 4.2.3), which are based on these part detectors, allow
to determine regions of interest in an image which have a
high likelihood of containing an object of the trained class.
However, due to the differences in layout and appearance
discriminativity of the different viewpoints, the scores of
the spatial layout models do not yet allow for a compar-
ison between viewpoints and classes which is necessary to
rank the detection results with respect to their relevance for
the query.

In order to establish a comparable ranking of the regions
detected by the above described spatial layout models, we
suggest here a joint spatial encoding of the responses of all
part detectors in a detected region which is subsequently
scored by a more powerful classifier, a nonlinear SVM with
an intersection kernel. The training examples for this clas-
sifier are determined by applying the above described part
detectors on a second set of example images, the viewpoint
examples (c.f. Figure 6). On each of the viewpoint exam-
ple images we apply all the part detectors resulting in a set
of detector responses that include real detections (e.g. re-
sponses of front view part detectors on an actual front view
example) as well as hallucinated detections (e.g. responses
of front-view part detectors on a side-view example). The
useful contribution of hallucinated detections for the overall
detection of objects is illustrated in Figure 5, where the con-
sistent response of a front-view detector (red) contributes to
the evidence of a side view detection (green). Details for the
spatial encoding are presented in 4.3.

During detection the spatial layout model generates on each
test image a set of detection hypotheses for the viewpoint
on which it was trained. The full set of the part detectors is
then applied to these object hypotheses. The resulting spa-
tial layouts, which encode all the individual part detector
responses into a single spatial descriptor, are then classified
by the nonlinear SVM. A non-maxima suppression discards
all those object hypotheses which overlap by more than 50%
with a higher-scoring object hypothesis. The remaining de-
tections form the ranked query response on the test image.

3D Models Part Examples

Spatial Part Layout
L=?1(L»th Part Level)

Mean
Gradient
Image
Figure 3: Concept of the object class representa-
tion: for a specific viewpoint (here side-view) part
examples are generated from renderings of 3D ob-
ject models. We use these training examples to ob-
tain a mean gradient image from which a spatial part
layout for L part levels is derived (see Section 4.2.1).

More details of the detection process are given in Section 5.

4. TRAINING

This section outlines the necessary training steps. It starts
with the use of 3D object models as training source, and
is followed by the unsupervised training approach for the
viewpoint-specific part detectors and the joint spatial en-
coding of these part detectors.

4.1 Training Examples

As shown in Figure 1, the approach presented in this pa-
per is purely trained on synthetic 3D object models. Fig-
ure 2 gives some examples of our 3D object model database.
The use of synthetic 3D object models as training source
allows to generate training images (i.e. part examples and
viewpoint examples) of an object from arbitrary viewpoints.
For each training example, the projection of the 3D object
model into the image allows to automatically determine the
actual 2D bounding box of the object within the image and
its viewpoint label. In addition, light conditions and back-
ground for each rendered image can be changed in order to
account for the imaging conditions in real images.

4.2 Part Detectors

Learning the appearance of an object class must take into
account large intra-class and viewpoint variations as well as
partial occlusions and background. In addition, when deal-
ing with part-based object class detection, object parts have
to be chosen such that they are suitable for the training of
discriminative classifiers. A manual annotation of these part
positions is time consuming; moreover, there is no guar-
antee that the selected parts are suitable, i.e. sufficiently
discriminative, for the training process. As a consequence,
some authors propose a fixed part layout [10, 15] or suggest
unsupervised approaches to localize suitable part positions.
For example, in [7] the object is decomposed into six object
parts, selecting the part positions such that the resulting
patches capture a maximum of the object structure. How-
ever, a multi-view object class detection approach requires
the choice of part positions on different viewpoints with dif-
ferent sizes, aspect ratios and appearance characteristics.
The method of [7] results in a spatial part layout where each
part has approximately the same size, and each viewpoint
is subdivided into the same number of parts. However, this
may not be a suitable approach for the multi-view repre-
sentation of all classes, since for those viewpoints where the
object covers a smaller area, the chosen patches could be too
small and therefore may not contain sufficient structure to



Figure 4: The normalized part positions of the spa-
tial part layouts and the corresponding part exam-
ples to train viewpoint-specific part detectors (here
D1 to D86).

be suitable for a discriminative classifier. The front-view of
the bicycle class is a good example of a viewpoint for which
a subdivision into one or two parts is adequate, whereas a
bicycle side-view may require a more fine-grained part sub-
division.

4.2.1 Spatial Part Layout

In this work we extend the idea of [7] in order to deter-

mine suitable part positions while circumventing the above
described problem of a spatial part layout with a fixed num-
ber of parts for different viewpoints. More specifically, we
propose a method to derive a spatial part layout which de-
composes the object model into L part levels.
The concept of this object decomposition is shown in Fig-
ure 3. Starting with our database of 3D object models, we
generate the training examples for the parts of a specific
viewpoint (e.g. side-view). We scale all rendered training
examples of a given viewpoint to their average size, apply a
Laplacian filter mask and average over the filtered examples
to obtain a mean gradient image for a specific viewpoint. On
each part level [, we define an area a for each part such that
the object is decomposed into 2!~! parts and a - 2/~ equals
about 70% of the area of the mean gradient image. For
each part location, we sequentially choose a rectangle with
area a that captures the highest gradient over all training
examples; the chosen area is masked out in the gradient im-
age and the procedure is repeated until the 2'~! parts are
selected. Decomposing an object under a given viewpoint fi-
nally leads to a spatial part layout with N viewpoint-specific
part positions on L part levels:

L
N=> 2"t=2t -1 (1)
=1

Since the above described procedure is repeated for each of
the V' viewpoints, we finally obtain V - N normalized part
positions.

4.2.2  Training of Part Detectors

Once the part layout for each viewpoint has been identi-
fied with the method described in 4.2.1 (see Figure 4), we
resort to the HOG descriptor of [3] to encode the appear-
ance of the parts. For each part position, a separate lin-
ear SVM classifier is learnt. The negative examples for the
training of the linear classifier are initially chosen randomly
from a background data set. After the initial training run,
the classifier is refined by a bootstrapping procedure on an
extended training set which has been augmented with the
false positives and false negatives of the initial SVM classi-
fier. Consequently, V' - N discriminatively learnt object part

Figure 5: The spatial encoding builds on the com-
bination of all viewpoint-specific trained part detec-
tors. For example, detector D4 (trained on front
view images) also provides a consistent response on
side view images; instead of discarding these re-
sponses, we exploit their information content in a
joint encoding.

detectors are obtained, each representing the appearance of
an object part under different viewpoints; for an example
see D1 to D6 in Figure 4.

4.2.3 Spatial Layout Model

For the pre-detection step we establish for each viewpoint
a spatial layout model as described in [6], based on the
trained part detectors of Section 4.2.2. To this purpose, we
reapply the part detectors to the part examples and model
the spatial uncertainty for each detector with a Gaussian
distribution. We follow the approach of [6] and use a tree
structure and dynamic programming to compute the best
locations for the parts within an image. We choose the tree
root to be the center of the bounding box of the part detec-
tor defined on level | = 1. Different scales are covered by
applying the method of [6] to an image pyramid representa-
tion.

4.3 Spatial Encoding

As described in Section 4.2, viewpoint-specific part detec-
tors are derived in an unsupervised way. In the following,
we introduce a spatial encoding to obtain a multi-view ob-
ject class representation which jointly captures the spatial
layout of all the responses of the individual part detectors
on the viewpoint examples and allows to consistently rank
detections for different viewpoints. Note that the scores of
the spatial layout models described in Section 4.2.3 alone do
not allow for such a ranking, mainly due to their differences
in layout and appearance discriminativity of the different
viewpoints.

Due to viewpoint symmetries, part co-occurrences and am-
biguities the trained part detectors sometimes locate object
parts at wrong positions or in viewpoints where these parts
are not actually visible. Still, these ”hallucinated” part de-
tections often appear consistently within the object class.
An example of such a hallucinated part detection is given in
Figure 5: as expected, a part detector, which was trained on
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Figure 6: We use all viewpoint-specific part detectors (D1 to D6) and encode the spatial layout of their
responses on the training examples into a spatial pyramid.

example images for cars from a side-view, provides consis-
tent ”true” responses on images showing the object from this
viewpoint (green); however, another part detector, which
was trained on example images for cars from a front-view,
also provides consistent ”hallucinated” (false positive) re-
sponses on these images (red). We suggest exploiting this
kind of readily available additional information with a spa-
tial encoding to combine the "true” as well as the "halluci-
nated” detector responses for a more discriminative multi-
view object class representation.

The idea of the spatial encoding concept is shown in Fig-
ure 6. For each training instance from the set of viewpoint
examples which show the object to be detected from dif-
ferent viewpoints, HOG features with the same layout as
in Section 4.2 are computed densely and classified by all
viewpoint-specific part detectors. Following the approach
of [13], we rely on a spatial pyramid to encode the responses
for each part detector within the area of a training instance.
The spatial pyramid consists of K levels of a fixed hierar-
chy of rectangular windows, each containing a histogram
of the number of positive responses of each part detector
in that window. We concatenate the resulting histograms
of all windows and pyramid levels and obtain a histogram
based object class representation with d dimensions for V- N
object part detectors:

K
d:VNZ4k =
k=0

Given the viewpoint examples and a set of negative exam-
ples, a nonlinear SVM classifier with an intersection ker-
nel [11] is trained. In order to compensate for the initially
random choice of negative training examples, a standard
bootstrapping procedure (as in Section 4.2) selects the most
difficult false positives and false negatives for the subsequent
training iterations.

%1/1\7(4K+1 —-1). (2)

5. DETECTION

This section describes the two detection steps, the pre-
detection based on a spatial layout model of part detectors
for each viewpoint to obtain object hypotheses and the spa-
tial encoding for a consistent and comparable reranking of
those hypotheses.

5.1 Pre-Detection

In order to identify regions of interest which potentially
contain an object of a given class, we rely on the viewpoint-
specific spatial layout models of Section 4.2.3 to provide re-
gions of interest. These models provide a detection score and
a viewpoint label alongside each generated object hypoth-

esis. However, since each spatial layout model for a given
viewpoint is trained independently of all other viewpoints
and relies on different layouts and appearance characteris-
tics, the scores of the spatial layout model alone do not allow
for a consistent ranking of the detections (see Section 6 for
experimental results). Consequently, in the following step
we build on the classification of the joint spatial encoding of
the part detectors over all viewpoints in order to obtain a
normalized and comparable detection score for each object
hypothesis.

5.2 Reranking based on Spatial Encoding

The final detection result consists of a consistent and com-

parable scoring of the obtained object hypotheses based on
the spatial encoding process in 4.3. Each object hypothesis
is scaled to the size of its corresponding tree root (c.f. Sec-
tion 4.2.3). The responses of all part detectors in the scaled
hypothesis area are encoded in a spatial pyramid representa-
tion as described in 4.3 which is then classified by the nonlin-
ear SVM to obtain the final detection score. Since the detec-
tion process can result in multiple overlapping hypotheses,
a non-maximum suppression retains high scoring bounding
boxes and discards those covered by a higher-scoring bound-
ing box with an overlap of more than 50%.
As a result, each final detection is assigned both a detec-
tion score based on the spatial encoding as well as an ap-
proximate pose label based on the viewpoint-specific pre-
detection with a part-based spatial layout model.

6. EXPERIMENTAL EVALUATION

This section outlines the experimental results we achieve
with our approach on publicly available benchmark data
sets.

6.1 Training Setup

For the part detectors and the spatial encoding the pro-
posed approach relies exclusively on training data rendered
from synthetic 3D models available from the distributors
turbosquid.com, doschdesign.com and 3dvia.com. We use
24 car, 8 bicycle and 2 iron models for the respective classes
(see Figure 2 for examples). We train viewpoint-specific
part detectors and spatial encodings for five different view-
points (i.e. V = 5), i.e. left, front-left, back-left, front and
back, where the respective symmetric views are covered by
applying the approach to the horizontally mirrored images.
In our experiments, our approach performs best with part
examples generated from a fixed azimuth angle for each dis-
crete viewpoint and an elevation angle of 0° for the object
classes car and bicycle and 40° for the object class iron,
whereas multiple viewpoint examples are generated for each
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art detectors.
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viewpoint by varying the azimuth angle by £9° and the ele-
vation angle by +9° for increased robustness towards small
viewpoint variations. In order to train the linear SVMs for
the part detectors as well as the nonlinear SVM classifiers for
the spatial encoding, negative training examples are drawn
from the PASCAL VOC 2006 training data set excluding
the training images for the positive object classes. The part
appearance is built on the HOG implementation of [7] with
a HOG layout of 4 pixels per cell; we choose a spatial part
layout consisting of L = 4 part levels, resulting in N = 15
part detectors per viewpoint. The spatial encoding is done
with a spatial pyramid of K = 2 levels, resulting in a 1575-
dimensional representation.

6.2 Evaluation Criteria and Data Sets

In order to evaluate the performance of our multi-view ob-

ject class detector with respect to 2D ground truth bounding
boxes, we use the detection quality criterion suggested by [5]:
A predicted bounding box is considered correct if the over-
lap between the predicted bounding box and a ground truth
bounding box exceeds 50%. If several bounding boxes are
predicted in the same image area, only the highest scoring
detection is considered as correct and the remaining detec-
tions are considered as false positives.
We evaluate our approach on the publicly available PAS-
CAL VOC 2006 [5] data set for cars and bicycles and on
the 3D Object Category [18] data set, the current state-of-
the-art benchmark for multi-view object detection, for the
classes car, bicycle and iron. The 3D Object Category data
set has been explicitly designed as a multi-view detection
benchmark, containing for each object class 10 different ob-
ject instances, each shown in front of a varying background
from 8 different 45°-spaced azimuth angles (left, front-left,
front, front-right, right, back-right, back and back-left), 2
different elevation angles and 3 different distances.

6.3 VOC 2006

The precision/recall curves obtained with our proposed
approach on the PASCAL VOC 2006 data sets for the classes
car and bicycle are given in Figure 7 (red curves). For both
data sets we provide the best performing approaches of the
PASCAL challenge 2006 [5] (blue curves), the best perform-
ing approaches of the PASCAL challenge 2007 on the 2006
test set [4] (cyan curves) and the most recent multi-view ap-
proaches of [20] (green curves) and [17] (magenta curves).
With 40.2% on the car data set and 47.0% on the bicy-
cle data set, our detection approach achieves a higher aver-
age precision than these two multi-view approaches and can
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Figure 8: The spatial encoding step increases the
detection precision (upper left). Precision/Recall
curves for the 3D Object Category data sets car
(upper right), bicycle (lower left) and iron (lower
right).

compete with the best performing approaches of the PAS-
CAL challenge 2007, despite being trained on a very different
(because synthetically generated) data set. We observe that
the viewpoint and appearance variations within the car test
set are more pronounced than those within the bicycle class,
which may be the reason for the observed performance dif-
ference of our approach: while the chosen synthetic bicycle
models and the viewpoint variation of the viewpoint exam-
ples are sufficient to represent these variations of the bicy-
cle test set, the synthetic car models and the corresponding
viewpoint examples seem to be not representative enough.

6.4 3D Object Category

On the 3D Object Category test set we evaluate our ap-
proach on three different tasks: 2D localization, robustness
to occlusions and 3D pose estimation.

6.4.1 2D Localization

The precision/recall curves we obtain with our approach
on the 3D Object Category data sets for the classes car, bi-
cycle and iron are shown in Figure 8. To demonstrate the
contribution of the proposed spatial encoding step (see Sec-
tion 4.3), we evaluate our approach exemplarily on the car
test set, once with and once without the encoding step as
part of the detection process. Without the encoding step
we exclusively rely on the detection score provided by the
viewpoint-specific part models (see Section 5.1). The re-
sults are given in Figure 8 (upper left). Omitting the spa-
tial pyramid encoding step (blue curve with 72.2%) results
in an average precision which is significantly below the pre-
cision obtained with the proposed spatial encoding step (red
curve with 82.0%). By including the spatial pyramid encod-
ing into the detection process, the detection precision can
thus be substantially increased. In Figure 8 (upper right),
we compare our result on the car data set to the most re-
cent approaches of [10, 15, 19, 20]. As can be seen, with
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82.0% our detection approach outperforms the approaches
of [10, 15, 20] and is comparable to the results achieved
by [19]. Note that the best result of [19] is based on a set
of 36 viewpoint-specific shape models; when using only a
comparable number of 8 viewpoint models, we outperform
their average precision (brown curve with 81.0%). The preci-
sion/recall curves obtained with our approach on the bicycle
(lower left) and iron data set (lower right) are given in Fig-
ure 8. On both data sets, we compare to the approach of [10],
showing that with 79.4% on the bicycle test set and 50.2%
on the iron test set, our approach achieves a higher average
precision than the multi-view approach of [10], despite being
trained on a different, i.e. synthetically generated, data set.
Some successful detection results of our approach on the 3D
Object Category test sets are shown in Figure 11.

6.4.2 Occlusion

In order to assess the quality of our approach in the pres-
ence of occlusion, we modify the 3D Object Category data
set for cars and generate a test set with artificial partial oc-
clusions. For this purpose, we replace 30% of the annotated
ground truth for all images by a white area. An example
for this modified test set is given in Figure 9. In this ex-
periment, the object class detector with the same settings
as in Section 6.4.1 is applied to the modified data set, i.e.
without any retraining or adaptation. In order to compare
the performance of our part-based approach to detection
methods which do not use parts, we implemented a baseline
approach based on [3]. This baseline approach is trained on
the viewpoint examples described in 6.1; it consists of one
HOG descriptor covering the entire object under each view-
point, which is classified by a linear SVM. We use a sliding
window approach and rely on the non-maximum suppres-
sion step of Section 5.2 to combine the viewpoint-specific
classifier responses.

As can be seen in Figure 9, with 57.2% compared to 20.0%,
our part-based approach (red curve) outperforms the base-
line approach which relies on a global description of the ob-
ject (green curve). Since our object representation is based
on several parts of different sizes due to the chosen spatial
part layout on L = 4 levels, the partial occlusions have less
effect on the overall description of the object than on the
baseline approach.

We also assess the influence of the chosen spatial part lay-
out. We exemplarily evaluate a part layout with three part
levels (I = 3) and a part layout with just two part levels
(L = 2). The results for these part layouts are shown in

3D Object Category, car, AP=62.6%

3D Object Category, iron, AP=51.2%

Figure 10: Confusion matrices (rows: ground truth,
columns: estimates) for the 3D Object Category
data sets car and iron.

Figure 9, too (blue and magenta curves). As expected, the
average precision is reduced when decreasing the part lev-
els due to the lack of information of the small object parts.
Note that with two part levels, our approach still performs
better than the baseline approach, although the reduction
in performance is considerable when compared to a spatial
part layout with L. = 4 part levels. Consequently, a part lay-
out with sufficiently many part levels is necessary to achieve
increased robustness against partial occlusions.

6.4.3 Pose Estimation

In Section 5.2, we mention that our approach is able to
provide an approximate pose label based on the viewpoint-
specific pre-detection step. Figure 10 shows the resulting
confusion matrices on the car and iron data sets for classi-
fying all true positive detections into the 8 azimuth angles
defined by the 3D category data set. For cars, we observe
that neighboring viewpoints are rarely confused. Confusion
is more pronounced for opposing views due to the symme-
tries inherent in the car class. For example, 30.0% of back
views are classified as front views. Note that the pose esti-
mation relies exclusively on the pose label provided by the
best-scoring viewpoint-specific part layout model of the pre-
detection step. Since the parts of these layout models are
selected in an unsupervised way which does not take into ac-
count the inter-viewpoint discriminativity of the parts, such
a behavior cannot be avoided in the present approach. Still,
with an average precision of 62.6%, our approach is com-
parable to other reported results, notably [20] with approx-
imately 67.0% or [15] with 70.0%. For the iron class, we
observe the same behavior with respect to diagonal views;
no published pose estimation results on the iron data set are
currently available for comparison.

7. CONCLUSION

In the present work, an approach to viewpoint indepen-
dent retrieval of images containing objects of a certain class
is described. We extend the common part-based approaches,
which usually exploit the spatial consistency of the detec-
tions of visible parts from a given viewpoint, with our con-
cept of "hallucinated” part detections by simultaneously learn-
ing the spatial layout of "true” as well as "hallucinated” part
detector responses in a joint spatial encoding. In contrast to
other approaches, our proposed method is unsupervised in
the sense that no tedious bounding-box, viewpoint, or part
annotations are required. Although it is exclusively trained
on a few synthetic 3D object models, we achieve state-of-the-
art results in multi-view object class detection and viewpoint



Figure 11: Some successful detection results of our approach on the 3D Object Category data sets car (left),
bicycle (center) and iron (right).

estimation on current benchmark data sets and demonstrate

increased robustness towards partial occlusion.
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