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ABSTRACT

In this paper we propose a highly effective and scalable
framework for recognizing logos in images. At the core of
our approach lays a method for encoding and indexing the
relative spatial layout of local features detected in the logo
images. Based on the analysis of the local features and the
composition of basic spatial structures, such as edges and
triangles, we can derive a quantized representation of the
regions in the logos and minimize the false positive detec-
tions. Furthermore, we propose a cascaded index for scalable
multi-class recognition of logos.

For the evaluation of our system, we have constructed
and released a logo recognition benchmark which consists
of manually labeled logo images, complemented with non-
logo images, all posted on Flickr. The dataset consists of a
training, validation, and test set with 32 logo-classes. We
thoroughly evaluate our system with this benchmark and
show that our approach effectively recognizes different logo
classes with high precision.
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Figure 1: Point triples (red lines) detected on the
Fedex logo. Green crosses denote local features.

1. INTRODUCTION

One long-standing goal of computer vision is certainly ob-
ject recognition. Much research has been dedicated to ob-
ject recognition in general and also various subproblems have
been explored, nevertheless the task remains challenging. In
this paper we focus on logo recognition. We consider logo
recognition a subset of object recognition, as most logos can
be considered objects with a planar surface. In addition lo-
gos are designed to catch someone’s attention. However, a
specific logo class can have relatively large intra-class vari-
ance and the recognition of logos in natural images has to
deal with perspective tilt which is the main difference to
near-duplicate retrieval approaches.

There are many powerful object recognition schemes, such
as for instance proposed by Felzenszwalb et al [4], but these
methods usually require to learn and apply one or more mod-
els per class. In contrast, our long term goal is to perform
logo recognition on thousands of images per minute, whereby
the number of different logo classes is huge. In that case the
usage of one-vs-all classifiers can be expensive or even infea-
sible. In general a logo recognition system should be able to
determine quickly if an unknown image contains a logo of a
certain class. While it is certainly doable to test an incoming
test image for every logo class present in the database this
is not an option due to speed issues, the expected high false
alarm rate and especially because of the likely disagreement
among the multiple classifiers.

To illustrate this, consider the following real-world sce-
nario. On Flickr!, a large scale social media sharing site,

YFlickr: http://www.flickr.com



more than 4000 images are uploaded every minute. Typ-
ically, a logo database contains multiple samples of thou-
sands of brands. While the commercial interest to detect
logos in images is huge, before any recognition system can
be deployed in practice it needs to address the scalability
constraints in terms of images processed per minute and
number of logo-classes supported, while maintaining a very
high rate of recognition accuracy. In this work we go one
step towards this long term goal and propose a system that
is heavily tuned towards efficient multi-class object recogni-
tion with high precision at the cost of recall.

At the basis of our system we use local features, which
have been proven to be efficient for image object retrieval
in general. Following the visual bag of words paradigm [11],
local features can be quantized using a visual dictionary and
the image be treated as document containing visual words.
Fxisting retrieval models can then be applied to retrieve sim-
ilar candidate images. However, for image object retrieval
systems to obtain acceptable retrieval performance an ex-
pensive post retrieval step is needed, to verify the existence
of the object in the candidate image.

Therefore, we propose to index the relative spatial layout
of local features on logo regions by means of a cascaded
index. The primary index contains quantized pairs of points,
each point representing a patch in the model of the logo-
class. When a pair of points from a test image correspond
with an entry in the primary index, the secondary index
is queried, which consists of the triples of points forming
the model of each logo class. Figure 1 depicts an example
of detected point triples (in red) for the Fedex logo. The
introduction of the cascaded index drastically reduces the
number of false positive classifications to the point that we
no longer need to perform the expansive post-retrieval step
on each logo-class to validate the presence of that logo in
the test image.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work relevant in the context of this
paper. The motivation for the cascaded index is given in
Section 3. In Section 4 it is discussed how the proposed rep-
resentation of spatial layout can be used to derive a model
for each logo class. The usage of the cascaded index for effi-
cient logo recognition is discussed in Section 5. We present
our dataset for evaluation in Section 6. The results of our
experiments are then presented in Section 7, followed by the
conclusions in Section 8.

2. RELATED WORK

The related work on image retrieval and object recognition
is vast. In this section we highlight the related work on
image object retrieval and logo recognition that is relevant
in the context of our approach.

There are several publications that address the retrieval of
printed logos, e.g. for efficient search in logo databases used
for petty patents. However, logo recognition in photos has
not gained as much attention. Bagdanov et al. [2] retrieve
logos from sports video databases by directly matching fea-
ture descriptors in the video to these of training images.
Joly et al. [5] propose a new visual query expansion strategy
for querying a database with SIF'T' descriptors followed by a
geometric consistency check. Both approaches do not scale
well with an increasing database size.

A turning point in scalable image object retrieval, which
also provides the basis for our approach is the introduction

of the bag-of-words approach [11]. At the core of the visual
bag-of-words approach is the quantization of local features
for efficient indexing instead of matching the raw descriptors
directly. The descriptors are quantized to discrete visual
words that form a vocabulary derived by k-means cluster-
ing. However, for this approach to be succesful, one or more
post-retrieval steps are needed to filter the high number of
false-positives. By embeding the spatial information in the
index, we can significantly reduce the number of false posi-
tives, as we will show in this paper. In addition, and unlike
recent work on near-duplicate retrieval [13, 3, 9] where large
vocabularies with several thousands up to millions visual
words are used, we have to deal with intra-class variance of
logos themselves and perspective tilt. To minimize quan-
tization errors we therefore use a relatively small vocabu-
lary of 2000 visual words. In this work we use SIFT [7]
descriptors derived from hessian-affine interest points [8] to
describe images as these are more robust to image tilt and
perspective transformations than other features. However,
our approach can be used with other local features as well.
Kleban et al. [6] also do logo recognition by performing fre-
quent item-set mining to discover association rules in spatial
pyramids of visual words.

Essentially different to other existing approaches is the
encoding of spatial structure with a hash function. In Sec-
tion 4 we describe in detail how this can be achieved. In
short, similar regions in two images can be determined by
indexing geometric structures of local features in hash ta-
bles. Our work in this area is similar to geometric hash-
ing [12], however we do not have a single model image but
create a model for each logo-class out of several training im-
ages. The result of the training is a set of triples of interest
point, which consistently appear across the different train-
ing images. Poullot et al. [10] use bucketing techniques to
build a signature of local feature triples. In contrast to our
approach they build a signature for the whole image and
their approach is more suited to near-duplicate detection.
In a recent publication, Avrithis et al. [1] incorporate global
geometry in the index by means of feature map hashing.
Rather than building a global geometric representation, we
index spatial structures that describe a small region of the
image, making our approach more suitable for the detection
of logo objects.

3. THE CASCADED INDEX

Experience shows that an index that holds single features -
e.g. stored within an inverted file - can be easily used for im-
age retrieval, but the features or the bag-of-word model lack
distinctiveness which usually makes a post-retrieval verifica-
tion step necessary. In previous qualitative experiments we
experienced that even pairs of local features have not been
as discriminative as desired for logo recognition. Because of
that and moreover because three points are the minimum
number of points to describe a 2-D plane we chose to de-
scribe the spatial structure of logos with feature triples.

The main idea is that if two images contain similar re-
gions we can expect similar spatial layout of features. In
other words within these regions the relative position of the
features to each other should be roughly the same for both
images. This holds disregarding the actual orientation and
scale of such a region.

We therefore propose a new index type that holds the
spatial structure of feature triples and still can be queried
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Figure 2: Schema of the cascaded index. i, j and k
denote the local features that have been indexed.

efficiently. The structure of the index itself is motivated by
the way test images are scanned for logos. For an unknown
test image we do not have any prior knowledge where to ex-
plore promising point configurations that should be matched
against the index. Therefore we propose to use a cascaded
indez. The cascaded index holds both lower-dimensional and
higher-dimensional feature representations. These are linked
such that each lower-dimensional feature representation is
part of a higher-dimensional representation. This struc-
ture allows to scan the sparsely populated high-dimensional
feature space by determining a lower-dimensional subspace
which is part of it first.

Here, we chose to index local feature pairs within an edge
index as the lower dimensional description and feature triples
including their relative layout in a triangle index. The two
indexes are linked, such that the edge index contains only
edges that are part of the triangle index.

This dependency allows us to perform efficient queries in
two steps: (1) First pairs of points are used to query the
edge index, which contains the edges corresponding to pairs
of points in the logos. When pairs of random points are
matched against this index only a small number of edges will
be matched successfully. (2) These edges give a hint from
where random triangles could be constructed. Therefore,
the two points of an edge plus an additional point are taken
for constructing a query to the triangle index.

To be precise we want to define some terms used through-
out the paper. A pair of points enriched with their rela-
tive orientations and point triples enriched with their rela-
tive layout are called edges and triangles. We refer to the
k-means quantization of local feature descriptors to visual
words as labels and declare points as matching if their la-
bels are equal. Edges and triangles are considered to match
if they consist of points that match and also have similar
spatial layout. The training aims to gather these matching
edges and triangles from training images.

4. TRAINING

As we eventually want to describe the spatial layout of
visual features of each class by using an index of edges and
triangles we need to build a model for every logo class. That
is, given a pair of training images, the training procedure
should find correspondences of triangles (i,7, k) such that
these are present in both images and within a region that
can be judged by humans as visually similar.

We would like to stress the fact that the training we em-
ploy can be replaced with other approaches more suited for
finding correspondences across two images. One example of
an alternative training would be to estimate the homogra-
phy between training images with RANSAC to derive fea-
ture triples. However, to illustrate the indexing of triangles
we demonstrate how this indexing technique can be used to
determine correspondences across training images by index-

Image A Image B

Figure 3: Relative position of feature pairs in two
images. Green arrows indicate the orientation of the
corresponding SIFT feature.

ing the local features of a single image.

The triangle index of each class is created by simply ag-
gregating the triangles resulting from matching all pairs of
training images. Then for each triangle all of its edges are
stored in the edge index. Thus the edges in this index are al-
ways part of an indexed triangle. Once the training is done
test images can then be matched against the whole index
containing the triangle representations of all classes.

4.1 Learning of logo classes

To represent a certain logo class n training images are
selected and matching triangles are computed for any com-
bination of these. That is, if there are n images per class
@ image pairs are matched. Note that we often ob-
served that the matching procedure was not able to find
matching triangles for a certain training image pair. Pri-
marily this is caused by the inability of the features to be
robust against large tilts. In addition many logos are on
reflecting background which is known to distort descriptors.
However, the advantage of this exhaustive matching pro-
cedure is that images that cannot be matched with some
images can still be matched to other images. The result of
the matching procedure can be considered a graph where
only some images are connected. So even if the matching
fails in some cases, e.g. due to very challenging image pairs
and the imperfectness of the features, the connected sub-
graphs yield matches across different images. For instance,
matching fails for logos where the colours are inverted. All
the matching triangles then form the model of a logo class.

For indexing we quantize the feature descriptors to dis-
crete visual word IDs called labels. We further compute the
Euclidean distance between descriptors if the visual word la-
bels are equal. This allows to sort the visual word matches
between two descriptors in ascending order by their Eu-
clidean distance. For each descriptor ¢ in image I4 only
the top 300 matches to descriptors in image [, are kept and
vice versa. Each feature is described by its x- and y-position,
scale, orientation, label and its descriptor.

4.2 Similarity of relative positions and angles

We aim to find initial edge candidates by finding pairs of
points (¢, 7) that have the same visual word labels and their
features have also similar relative orientations «, 8 to each
other (see Figure 3). Let F, be the set of features in image 14
and I} the set of features in image Ig. Then Fj,x;, denotes
the set of all combinations of local features of one image
with features with identical visual word labels of the other
image. The subsequent steps determine the matching pairs
(4,4) from all potential pairs F,xp and discard all others.

For any two point pairs as in Figure 3 we can compute the



relative orientation of these two points across both images
by computing the difference of the relative angle:

Aa:oz—oz,andA,Bz,B—B/ (1)

Then we compute an angle similarity score s(Ac) for all fea-
ture pairs (¢,7) in Faxp. The similarity score s(Aa) is based
on the difference of the angles across images A and B be-
tween the orientation of 4 and ¢’ and the relative position of
j and j'. We compute a normalized score for this difference
of the two angles, i.e.

_(Aw)?

s(Aa)=ne 2% . (2)

This score yields a value that indicates the similarity of the
angles. We empirically adjusted ¢ = 8 and normalize the
score by 1 such that the score curve has its maximum of 1.0
at 0° difference. With increasing A« the score quickly and
smoothly drops to zero for differences higher than 25°.

While s(Aa) only considers a score for the relative posi-
tion of j seen from point ¢ we can derive a symmetric score:
The score s(AB) describes the similarity from the view of
point j relative to position of ¢. The final symmetric score
for an edge (4, ) is then defined as:

SiMedge (1, J) = SiMeage(J, 1) = s(Aa)s(Ap) (3)

Note that simeage(d, ) will quickly drop to O if one of the
two angles is not consistent across the two images. While
the comparison of such a difference of angles could yield a
binary result the use of a continuous score function allows
to sort the matching edges by their match quality.

All edges (i,7) that have a score simedge(i,J) above a
threshold T%sim form the initial edge set Fnatcn. Many po-
tential combinations of features (¢, ) of the two images are
therefore excluded from further computations. The remain-
ing edges are known to match across the two images and
serve as a starting point for further processing of spatial
configurations.

4.3 Matching a pair of images

The encoding of geometric structure as described in Sec-
tion 4.2 greatly reduces the number of false positive edge
matches. Virtually we have increased the quantization space
for edge signatures using simeage (%, ) as a highly discrimi-
native function to filter non-matching edges. In this section
we expand the spatial awareness of our matching technique,
to further reduce the noise.

Creating and analysing triangles. We incorporate spa-
tial layout by indexing triangles, rather than edges. In par-
ticular, we index the spatial structure of all point triplets
of image 14 and then match the point triplets of image Ip
against this index. Let E,,qtch be the set of detected edges
(Section 4.2) and Vinqtcn, the set of points within Ep,qtch-
A triangle (4,7, k) is derived by randomly selecting an edge
(4,7) from Epasch and a third arbitrary point k from Viatcn-

Figure 4 depicts the information extracted from each tri-
angle to create a signature. Each triangle is described by an
8-tuple, of which the quantized elements form a signature:

e The quantized labels for each of the three points (i, 7, k).

e The quantized angle 1 between edges (i,5) and (¢, k).

e The quantized angle d2 between edges (4, k) and (7, 1).

e The relative orientations «, § and ~ of the three points.
The combination of the two angles §; and d2 captures the

Y
d(i,k) d(j,k)
X d
o1 y
d(i.j)
B
visual words shape orientation
64-Bit Integer | i | j | k | §1| 62| o | B | Y |

Figure 4: Representation of a triangle

shape of the triangle. By observation we then found that
taking the orientations of the features themselves into ac-
count leads to better performance on letter-like logos. In
this case the orientations of the features are also important
to describe the layout. Therefore we include the relative
orientations «, 3 and vy (see Figure 4) of the three points
in the signature. These orientations depend on the orien-
tations of the SIFT features but are relative to each other.
Therefore in-plane rotation and scale invariance of the tri-
angle representation is maintained. Out-of-plane rotations
are captured by the width of the quantization bins for the
angles describing the triangle’s shape.

Creating triangle signatures. Quantizing the angles and
proportions in bins using hard boundaries introduces errors
and potential loss of matches. Therefore, when construct-
ing the signature for each triangle multiple signature vari-
ants are generated. We have extensively experimented with
the parameter settings to minimize the quantization error,
while maintaining the specificity of the triangle signatures.
We observed optimal performance when multiple signatures
for each triangle were stored. Therefore, the four different
angles and the proportion of the distances are quantized to
both the best bin and the second best bin. As a result we
store 32 (= 2°) different signatures for each triangle. The
optimal quantization for all three parameters is evaluated in
Section 7.3. For efficiency each triangle signature is packed
into a 64-bit integer value (see Figure 4) before indexed.
To avoid degenerated triangles to be included in the index
we impose some additional constraints on the points (4, j, k).
If these are not satisfied, the triangle is not stored in the in-
dex. We discard degenerated triangles that carry little spa-
tial information and are not descriptive. One such constraint
is that each of the three points was quantized to a different
visual word label. This constraint comes from the fact that
many logos have some kind of border. Along that border
many interest points may have similar descriptors and have
the same label. Point triples consisting of such points do
not carry sufficient discriminative information. In addition
the spatial distance between all of the points (¢, j, k) has to
be above 5 pixel and the minimum angle of the triangle has
to be 15°. Both constraints discard triangles where at least
two points are located very close to each other. In that case
the triangle does not describe spatial structure. Finally we

d(i.j) a(4,k)
d(;jk) and d(é,j) such that these

are in [%, 3]. This constraint also discards triangles which
carry little information of spatial structure but more impor-
tant it improves the locality of the detection. Even if two
features on the actual logo were detected we often observed

constrain the eccentricities




Figure 5: Two triangles that match across images.
Green lines show the orientations of the features.
The numbers denote the visual word label.

a bad detected triangle caused by the detection of a random
third point outside the actual logo.

Detecting triangles.. When matching two images, we store
the signature of each triangle in the first image /4 in a hash
table. To find a correspondence to triangles of the second
image Ig, we then test all the triangles constructed from
the top edges in Eyqatcn and an additional point therein if
a similar signature exist in the hash table. Note that for
every triangle in Ip we only generate a single discrete repre-
sentation and only query the hashtable of 14 once. Figure 5
depicts a found matching triangle between two training im-
ages of class "Ford”.

5. RECOGNITION
5.1 Querying the edge index

Given an unknown test image we have no prior knowledge
regarding which logo it contains (if any at all) and at what
locations, scales and sizes. Therefore, a Monte Carlo method
is employed: The edge index is queried with randomly se-
lected pairs of points out of the set of visual features V' of
the input image. For most queries no match will be found
in the index. Ideally only matches are found for queries that
were extracted from a region where a logo is present. Com-
pared to the number of possible combinations of points the
randomly chosen pairs of points and the number of returned
matches is relatively small. Each edge detection implies that
a part of a triangle within the triangle index has been de-
tected. The triangles are then drawn by randomly sampling
an edge from the set of detected edges and sampling an ad-
ditional point belonging to one of these.?

Note that querying a hash table is extremely fast and
therefore a huge number of random samples can be tested.
Unfortunately the feature space of our triangle description
is extremely huge, such that it is not feasible to scan this
sparsely populated space efficiently in practice. However,
the given edge detections within a lower dimensional fea-
ture space (the space of edge representations) allow to scan
the semantically linked yet higher dimensional feature space
of triangle representations in an efficient manner as only a
subspace has to be scanned therein. One can observe that
with this cascaded sampling Logos covering a big area in the
image are very likely to be discovered quickly.

However, logos that are small may need many queries from
a small area to be discovered successfully. Therefore in ad-
dition to the Monte Carlo sampling close pairs of points are

2Randomly drawn degenerated triangles (see Section 4.3)
can be discarded without actually querying the index.
Duplicate drawn samples are discarded as well.

sampled by selecting neighbors within a distance of 3px to
30px of a given point. These samples will likely cover even
very small logos. As the queries are not selected randomly
a relatively small number of queries are enough to cover the
whole image thoroughly.

5.2 Querying the triangle index

Given the set of edges Eji: that are contained in the edge
index we then construct triangle queries using (i,7) and a
third point k£ from FEj;; and query the triangle index. Once
we find matching triangles then the votes for each class are
accumulated and yield the frequency of detections per class.

The detection counts are then thresholded with a deci-
sion threshold 1.;,ss for each class separately to determine
whether a logo is present or not. Section 7.2 describes how
these class-specific thresholds are obtained in an adaptive
manner. In general, once a class has more than Teqss tri-
angle detections the logo is considered as discovered. Oth-
erwise the image is considered to show no logo.

6. DATASET

For a realistic evaluation of our proposed approach a large
collection of photos in a real world environment is required.
At the moment we are only aware of one dataset for evaluat-
ing logo recognition on photos, the BelgaLogos dataset [5].
However, we feel that this dataset is not ideal to evaluate
an approach based on local features as it contains many im-
ages containing very small logos. The overall performance
on this dataset therefore depends not only on the recogni-
tion system but also largely on the capabilities of the visual
features. We feel that the dataset is not adequate for evalu-
ating the recognition system rather than the visual features
themselves. In addition the Belgal.ogos dataset was origi-
nally used for logo retrieval rather than for classification and
defines only a small number of query images.

Therefore we built and publish the new dataset ”FlickrL-
0gos” containing photos depicting logos.®> We collected lo-
gos of 32 different classes by downloading them from Flickr.
The specific classes were determined by trial-and-error and
mostly chosen by the number of logos we could retrieve by
querying the Web service with appropriate queries. In ad-
dition we only included logos that have an approximately
planar surface.

There are 32 logo classes: Adidas, Aldi, Apple, Becks,
BMW, Carlsberg, Chimay, Coca-Cola, Corona, DHL, Esso
Erdinger, Fedex, Ferrari, Ford, Foster’s, Google, Guiness,
Heineken, HP, Milka, Nvidia, Paulaner, Pepsi, Ritter Sport,
Shell, Singha, Starbucks, Stella Artois, Texaco, Tsingtao
and UPS.

The retrieved images were inspected manually to ensure
that the specific logo is actually shown. The whole dataset is
split into three disjunct subsets P1, P>, and Ps3, each contain-
ing images of all 32 classes. The first partition P, consists
of 10 images that were hand-picked such that these consis-
tently show a single logo under various views with as little
background clutter as possible. The other two partitions P
and Ps contain 30 images per class. Unlike P; these images
possibly contain more than one instance of a logo. However,
we tried to avoid this where possible. In total both P> and
P35 have 960 images showing logos. The subset P; for four

3The dataset and supplementary material is available at
http://www.multimedia-computing.de/flickrlogos



Figure 6: Example detection of the Esso logo: Original image (left), all detected edges of any class (middle
left), edges belonging to real class (middle right) and the final detected triangles (right)

Figure 7: Examples of 4 of the 32 logo classes. Classes from left to right: Esso, Fedex, Paulaner, Ritter Sport

of these classes is shown in Figure 7.

Subset | Description Images Sum
P Hand-picked images, 10 1 320
1 single logo, clean background per class
Images showing at least a sin- 30 1
Py gle logo under various views per ¢lass | 3960
Non-logo images 3000
Images showing at least a sin- 30 1
Ps gle logo under various views Per ¢lass | 3960
Non-logo images 3000

Table 1: Disjunct subsets of our dataset

To facilitate the development of high-precision classifiers
the evaluation of their sensitivity on non-logo images is very
important. Therefore both partitions P> and P; include an-
other 3000 images downloaded from Flickr with the queries
"building”, "nature”, “people” and "friends”. These images
are unlikely to contain logos and complete our dataset. A

brief summary of the data subsets is shown in Table 1.

7. EVALUATION

In the following we describe the setup of several experi-
ments and their results.

7.1 Setup

For all training images we performed the matching of im-
age pairs as described in Section 4 to derive the triangles
for each image pair. Then we index all triangles in our cas-
caded index and let our system perform the logo detection
on the test set. We tune the parameters using a validation
set and report the performance obtained on the test set. In
our experiments we choose the subset P, of our dataset as
validation set and P; as test set.

7.2 Parameter sweep

Our proposed system has several parameters that can be
tuned for performance. Many of them directly change the

number of detections of point pairs and triples. As these
numbers may change significantly we need to adaptively
select our threshold 1,55 for the decision whether a logo
of a given class is present or not. Moreover an adaptive
threshold further improves the robustness to class imbalance
caused by different logo designs and their common place-
ments. Thus we first run the detection on a validation set
and refine all class-specific thresholds. Once we obtained
the raw detection counts on the validation set we perform
a parameter sweep over the threshold 1¢;4ss and recompute
precision and recall for each class separately. Precision here
means the ratio of recognizing the true logo class once a
logo is detected. We determine the optimal threshold for
each class by fixing the precision to 0.95 and selecting the
corresponding threshold. In case one class does not reach
0.95 precision we select the threshold for the best precision
obtained. If in severe cases no single detection was made for
a certain class we set the threshold empirically to 20. The
final performance is then computed on the test set using
those class-specific thresholds that have been refined on the
validation set. In other words, in our experiments we choose
our desired precision first and then optimize all other param-
eters for recall. We also report precision on the test set as
we fixed the precision only for the validation set.

Note that while we tune parameters defining the quantiza-
tion of items in the cascaded index we implicitly tune the
constraints of our indexing scheme to be restrictive or toler-
ant. If these constraints get less restrictive false positive de-
tections increase. However, the precision is kept constantly
high by the adaptive increase of the decision threshold if
more noise is present. Thus, more noise on the validation
set implicitly leads to decreasing recall on the test set.

7.3 Parameter optimization

As initial parameters we chose parameter values that have
been determined empirically. In each experiment we opti-
mize one parameter at a time and keep all others fixed.



Monte Carlo sampling density. As the recall of our ap-
proach is based on Monte Carlo sampling of points, one cru-
cial parameter is the number of random samples, that is the
number of queries to the index. To increase recall, we can
increase the density of the Monte Carlo sampling at query
time. Increasing this ratio will directly affect the number of
detected edges and triangles. The number of queries that
are issued to the index directly implies the probability of
the detection of a certain combination of points. We there-
fore evaluate our proposed approach by varying the number
of queries made to the cascaded index. As the number of
queries instantly changes the number of detections we per-
form the parameter sweep as described in Section 7.2 on
the validation set and compute the final performance on the
test set. This assures that we compare the recall only for
equivalently well performing systems (in terms of precision).

_ 10— re 3 5 5
& 0.9
©
£ 0.8]
Q
© 0.7,
[
20.6
3 0.5
S 0.4
o
503
g o2
0.1

Precision (+NN)
Recall (+NN)
Precision

Recall

ISPN!

IK 10K 50K 100K 200K 400K 600K 800K
#random samples

Figure 8: Performance for varying numbers of ran-
dom samples.

In Figure 8 the results of two type of system are shown.
The first system only tests random edges, the second addi-
tionally tests the spatial nearest neighbors as described in
Section 5.1 (marked as +NN).

One can see from Figure 8 that recall improves with in-
creasing number of random samples. There is a major im-
provement when e.g. 100K samples are used instead of a few
thousands but only little improvement since then. Thus, for
further experiments we always perform the nearest neigh-
bour scanning and test 100,000 random edges.

Here we used a visual vocabulary of 2000 visual words
derived from gray-scale images. The quantization is done
with empirically determined bin sizes of 24° for the three
feature orientations and 10° for §; and d>.

Visual Vocabularies. The most important part for the dis-
criminativeness of triangle representations are the visual word
labels. Therefore we compare different vocabulary sizes.

We compare vocabularies of 1000 to 4096 visual words, up
to the maximum number of distinct labels we can pack into
our 64-bit integer code. In addition to hessian-affine SIFT
features extracted from grayscale versions of the images we
also compare results of the usage of 192-dimensional color-
SIFT features. As the clustering and the quantization of
the descriptors introduce hard boundaries in feature space a
smaller vocabulary should be more robust to small changes
of descriptor appearance but also possibly yield more false
positives during detection. Note that an increasing amount
of false positive detections on the validation set leads to
smaller recall on the test set (see Section 7.2).

One can see from Figure 9 that including color in descrip-
tors improves performance and larger vocabularies perform
better due to fewer false positive detections. Therefore the
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Figure 9: Performance for different sizes of visual
vocabularies for both grayscale and color SIFT.

following experiments are performed with the largest color-
SIFT vocabulary.

Quantization of triangle shape and feature orientation.
First we evaluate how the quantization of the triangle shape
affects recall. The shape of a triangle is quantized into two
discrete angles 01 and d2. From Figure 10 (left) we can see
we obtain the best recall when the bin size is 15°.
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Figure 10: Performance for different quantization
bin sizes for angle and feature orientations of trian-
gle shapes.

We further evaluate how the performance is affected if the
quantization of the feature orientations changes. While de-
signing our index we observed that including relative orien-
tations of the features significantly lowers the false positive
detections on mismatching regions. However, the orienta-
tions of features can change quite dramatically depending
on the view angle of the logo. Figure 10 (right) also shows
the recall for different quantizations bin sizes of feature ori-
entations.

Larger and smaller quantization bin sizes of either shape
or feature orientations should lead to overly specific or coarse
triangle signatures that then degrade recall. However, both
graphs in Figure 10 show rather insignificant differences. We
assume this might be caused by the extremely sparse trian-
gle representation and the fact that its discriminativeness is
bound by several components instead of a single component.
that this is due our extremely sparse triangle representation
and the effect Note that we re-train and re-build our index
for each shape and orientation parameter value to ensure
that the evaluation is not biased towards the matching re-
sults derived with a certain parameter configuration.
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Figure 11: Confusion Matrix

7.4 Summary

After tuning the parameters of the system, the best sys-
tem has a precision of 0.982 and recall of 0.61. Its edge
index holds about 613K keys and its triangle index holds
about 11M keys. Figure 11 shows the confusion matrix for
all 32 classes of this system which further underlines the high
precision of the logo recognition system. The obtained re-
sults clearly show that our system produces an extremely low
number of false positives, resulting in a high precision rate at
the cost of recall. However, one can also observe that some
logo classes are easier detected than others. One explanation
is that the number of triangles per logo can vary. With fewer
triangles, and therefore edges, in the index the chances of
detecting a logo declines. Another cause is the varying dif-
ficulty of the structure of the logos themselves. Finally, we
can observe that even without sophisticated post-processing
the detection accuracy based on adaptively thresholded de-
tection counts is very high.

8. CONCLUSIONS

In this paper we propose a highly effective and scalable
framework for recognizing logos in an image. At the core
of our approach lays a method for encoding and indexing
spatial structure that is derived from local features detected
in the logo images. We use an automatic method for con-
structing a model for each logo-class out of multiple training
images, which significantly extends our ability to detect lo-
gos under varying conditions.

Our logo recognition system is inspired by the bag of vi-
sual words approach, but through embedding spatial knowl-
edge into the cascaded index, we have successfully demon-
strated that we can get rid of the expansive post-retrieval
processing step during which existing image object retrieval
systems have to validate the existence of the query object.

For the evaluation of our system, we have constructed and
released the FlickrLogo recognition benchmark, which con-
sists of manually labelled logo images, complemented with
non-logo images. The benchmark consists of a training, de-

velopment, and test set with 32 logo-classes. We have tuned
and tested our system against the benchmark, and found
that we can effectively recognize the different logo classes
with a high precision, while maintaining a good recall.
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