Exploiting Service Usage Information for Optimizing Server
Resource Management

ALEXANDER TOTOK, Google Inc.
VIJAY KARAMCHETI, New York University

It is often difficult to tune the performance of modern component-based Internet services because: (1)
component middleware are complex software systems that expose several independently tuned server
resource management mechanisms; (2) session-oriented client behavior with complex data access patterns
makes it hard to predict what impact tuning these mechanisms has on application behavior; and (3)
component-based Internet services themselves exhibit complex structural organization with requests of
different types having widely ranging execution complexity. In this article we show that exposing and
using detailed information about how clients use Internet services enables mechanisms that achieve two
interconnected goals: (1) providing improved QoS to the service clients, and (2) optimizing server resource
utilization. To differentiate among levels of service usage (service access) information, we introduce the no-
tion of the service access attribute and identify four related groups of service access attributes, encompassing
different aspects of service usage information, ranging from the high-level structure of client web sessions to
low-level fine-grained information about utilization of server resources by different requests. To show how
the identified service usage information can be collected, we implement a request profiling infrastructure
in the JBoss Java application server. In the context of four representative service management problems,
we show how collected service usage information is used to improve service performance, optimize server
resource utilization, or to achieve other problem-specific service management goals.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Online Information
Services—Web-based services; Commercial services; K.6.4 [Management of Computing and Informa-
tion Systems]|: System Management—Quality assurance; K.6.2 [Management of Computing and In-
formation Systems]: Installation Management—~Performance and usage measurement; C.5.5 [Computer
System Implementation]: Servers; C.4 [Computer System Organization]: Performance of Systems—
Modeling techniques

General Terms: Design, Experimentation, Management, Performance

Additional Key Words and Phrases: Internet application, component middleware, quality-of-service, service
usage information, client behavior, server resource management, optimization

ACM Reference Format:

Totok, A. and Karamcheti, V. 2011. Exploiting service usage information for optimizing server resource
management. ACM Trans. Internet Technol. 11, 1, Article 1 (July 2011), 26 pages.

DOI = 10.1145/1993083.1993084 http://doi.acm.org/10.1145/1993083.1993084

1. INTRODUCTION
1.1 Motivation

In the last decade, the role of the Internet has undergone a transition from simply be-
ing a data repository to one providing access to a variety of network-accessible services

Authors’ addresses: A. Totok, Google Inc., 76 9th Ave, 6th Floor, New York, NY 10011; email:
totok@google.com; V. Karamcheti, Courant Institute of Mathematical Sciences, New York University, 715
Broadway, 7th Floor, New York, NY 10003; email: vijayk@cs.nyu.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2011 ACM 1533-5399/2011/07-ART1 $10.00

DOI 10.1145/1993083.1993084 http://doi.acm.org/10.1145/1993083.1993084

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.




1:2 A. Totok and V. Karamcheti

such as e-mail, social networking, banking, shopping, and entertainment. The emer-
gence of these web portals marked a shift from monolithically structured web sites
with static read-only content, which were typical for the early Internet, to complex
services that provide richer functionality, and dominate the modern Internet. These
services share several commonalities in the way they are structured and the way they
are used by their clients.

— Session-oriented usage by clients. The typical interaction of users with such services
is organized into sessions, a sequence of related requests, which together achieve
a higher-level user goal. An example of such an interaction is an online shopping
scenario for an e-commerce web site, which involves multiple requests that search
for particular products, retrieve information about a specific item (e.g., quantity and
price), add it to the shopping cart, initiate the check-out process, and finally com-
mit the order. The success of the whole session now becomes the ultimate client
goal [Cherkasova and Phaal 2002], which contrasts with per-request success perfor-
mance metrics of the early Internet.

— Complex data access patterns. Application data no longer has read-only access, as
was typical for the older content-providing web sites. In scenarios such as the one
just mentioned, certain service requests not only read but also write application
data. Moreover, concurrent requests coming from different clients can access and
modify shared application data. Data access patterns become even more compli-
cated when the application data is replicated (e.g., for failover purposes) or par-
titioned (e.g., due to business requirements). The outcome of a request execution
depends on the datasources it accesses, and may be influenced by concurrent user
requests. For some services, it becomes crucial to preserve the correctness of a ses-
sion’s execution, w.r.t. the data it accesses.

— Use of component middleware. A growing number of services utilize component mid-
dleware such as the Java Platform Enterprise Edition (Java EE) framework [Java
EE 2011] as their building platform. Such services are structured as aggregations
of multiple application components communicating with each other and with the
back-end databases, while the middleware provides commonly required support for
communication, security, persistence, clustering, and transactions. Consequently,
a web application’s behavior depends not only on the way it is programmed, but
also on the way it is assembled, deployed, and managed at runtime. As an example,
changing middleware policies such as transaction demarcation may significantly im-
pact not only application performance, but also certain aspects of application logic
and the correctness of data presented to the users.

These characteristics have implications for how service providers ensure reasonable
service quality for client requests. Providing good performance quality of service (QoS)
has been a classic problem in the context of Internet services, and, the characteristics
outlined above have made this problem even harder. Not only is providing performance
guarantees more difficult for modern Internet services, but service providers now also
need to take care of ensuring correctness of service (application) logic and providing
expected data quality to the service clients.

1.1.1 Performance Quality. GVU WWW User Surveys [2001] showed that around 19%
of the people surveyed attribute the bad experiences they had with Internet services
to bad performance. The primary performance concern for service users is request re-
sponse time [Barnes and Mookerjee 2009; Selvridge et al. 2001]. One study [Moskalyuk
2006] showed that 33% of shoppers on a slow-loading e-commerce web site abandoned
the site entirely, and 75% of visitors would never shop on that site again.

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:3

The key contributing factor to long response delays is service overload, when the
user load nears or exceeds server capacity, which causes request rejections and in-
creases request response times, even in the absence of network disruptions. To im-
prove service performance in the situation of service overload, service providers have
traditionally used server-side resource management mechanisms to improve utiliza-
tion of server resources. But this is harder to do for modern Internet services for the
following reasons. First, middleware usually exposes several mechanisms that can
be independently tuned in an attempt to improve application performance and opti-
mize server resource utilization. However, these mechanisms do not provide a unique
server configuration, which would be optimal for all request loads. Second, complex
session-oriented client behavior makes it hard to predict what impact tuning a server
resource management mechanism would have on server performance, which may vary
for different incoming request mixes. Finally, component-based applications exhibit
complex structural organization, where different sets of application components and
middleware services are used to execute requests of different types. Some requests,
for example, may need to access a back-end database, some may need CPU-intensive
processing, while others may need exclusive access to a component or a critical
resource.

The inability of service providers to predict the exact effects of using the server
resource management mechanisms on service performance for a given client load ac-
counts for the fact that these mechanisms are often used in an ad-hoc or “best-guess”
manner. This results in suboptimal usage of server resources, not tailored for the spe-
cific incoming request load, and, as a consequence, the service clients do not get the
best performance quality they could potentially get.

1.1.2 Service Logic and Data Quality. Clients of an Internet service expect that the ser-
vice will operate according to the advertised functionality, present valid information,
and correctly process and store the data submitted by its users. It is generally per-
ceived that such correctness of the service (application) logic is solely the responsibility
of the application developers. However, this may not hold true for component-based
applications, where some functionality is delegated to the middleware. The behavior of
the latter functionality is guided by configuration information provided by application
assemblers, application deployers, and system administrators (e.g., through deploy-
ment descriptors and runtime server policies). This configuration information may
significantly impact application behavior and the quality of data presented to its users;
in the worst case, resulting in critically incorrect or abnormal application behavior.

An example of such undesirable service behavior is so-called “fare-jumping,” when,
during a shopping session, an item’s price increases between the time a client first
looks at it and the time he tries to checkout the order. One report showed that such an
issue presents a problem for the e-commerce web sites selling airline tickets [Tedeschi
2005]. Such data quality problems stem from several facts. First, client requests
read and write shared application data, potentially invalidating the data accessed by
concurrent requests of different users. Second, the application data gets cached and
replicated, which results in some requests returning out-of-date information.

A typical approach to cope with such problems is to retain as much control over
data manipulation as possible in the application code. Another approach is to mini-
mize the extent to which concurrent execution of user sessions is allowed. However,
both of these approaches seem to be inadequate. First, contrary to the middleware
paradigm, they place an unnatural burden on application developers and limit appli-
cation modularity and reuse. Second, they worsen the service performance or restrict
usage of the service by its clients. In order to provide reasonable service logic and data
quality guarantees, while not limiting service performance, service providers need to

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:4 A. Totok and V. Karamcheti

Request flow
rate of

user session g :
structure i i ion int incoming new
Incoming session inter- sessions
request mix request times

Coarse-grained resource utilization and “reward” specification

“resource
consumption units”
for each request
type

average server
request processing
time

request “reward”
specification

Fine-grained server Data access patterns

resource utilization
s read-write effects on
application middleware request shared state
components i attributes
services used
traversed
databases data quality
accessed tolerance

Fig. 1. Relationships between service access attributes.

|leyap uolewJojul Buisealoul

(

understand how the data-quality-affecting server-side mechanisms they employ (e.g.,
transaction demarcation, data caching) impact the application logic and the quality
of application data. On the other hand, the application developers need some guide-
lines for application development and structuring that would enable efficient use of
the middleware mechanisms.

1.2 Approach and Methodology

In this work we focus on solutions that target the following three interconnected goals:
(1) providing improved QoS guarantees to the clients of Internet services; (2) achiev-
ing optimal server resource utilization; and (3) providing application developers with
the guidelines for natural application structuring, that enable efficient use of the pro-
posed mechanisms for improving service performance. Specifically, we make the claim
that exposing and using detailed information about how clients use component-based
Internet services enables mechanisms that achieve the range of goals listed.

Service usage (or service access) information can be shown at different levels: from
the high-level structure of user sessions, to low-level information about server resource
consumption by different request types. Some of this information can be automatically
obtained by request profiling, some can be obtained by statically analyzing the appli-
cation structure, while others need to be specified by the service provider. To differ-
entiate among various flavors of service usage information, we introduce the notion
of the service access attribute, and identify the following four related groups of service
access attributes, that correspond to different levels of service usage information. The
relationship between the service access attributes is shown schematically in Figure 1.
In Section 3 we describe the four service access attributes in greater detail.

— Request flow. This service access attribute provides the high-level information about
the requests that are being invoked against the service. The information about
an individual request is usually limited to its type, session (client) identity, and
(optionally) the time of its arrival.

— Coarse-grained resource utilization and “reward”. This service access attribute con-
tains information about the high-level execution “cost” of requests of different types.

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information

Table I. Service Access Attributes for Problems In this Study

1:5

Request Flow

Coarse-Grained
Resource

Fine-Grained
Resource

Data Access

utilization of
server resource
pools

mix (breakdown
by request type)

various stages of
request processing

Utilization Utilization Patterns
Problem 1: U . Average request
Maximizing tser ts ess1on processing times
reward structures and “rewards”
Problem 2:
Optimizing Incoming request Times spent in

The OP-COP-VALP

Problem 3: U . model: specifies
- ser session .
Session data conflicting requests
. . structures :
integrity and data consistency
constraints
Problem 4: Components invoked | Read-write
Service by different behavior of
distribution request types requests

Service provider may also specify the so-called “reward” (or “profit”) brought by each
type of service request. This is an opportunity for providers of business-critical ser-
vices to indicate which requests are more valuable according to the service business
logic.

— Fine-grained server resource utilization. This service access attribute provides more
detailed information about service requests of different types. It contains the infor-
mation about how requests are processed in the application server. It may specify,
for example, how long a request of a certain type spends in the database, on average,
or which application components it accesses.

— Data access patterns. This service access attribute contains the information about
how requests access application data. It may specify, for example, whether a re-
quest is read-only, read-write, or write-only. It may also specify what segments of
application data are accessed by the request, and whether this data is shared among
several clients or not.

To validate the claim that service usage information can be used to improve QoS
guarantees and to better manage Internet services, we show its applicability to the
following four problems: (1) maximizing reward brought by Internet services; (2) op-
timizing utilization of server resource pools; (3) providing session data integrity guar-
antees; and (4) enabling service distribution in wide-area environments. The problems
were chosen to represent a wide range of challenges facing service providers in oper-
ating Internet services. In each problem we show how utilizing specific service access
attributes helps to achieve the problem goal. Not all of the service access attributes
are equally useful for all problems, which utilize different kinds of service usage in-
formation (see Table I) and exhibit various amounts of automatic exploitation of such
information. Note also that the actual information specified in the service access at-
tributes varies for different problems, QoS targets, and metrics being optimized.

In problems (1) and (2), we assume that the underlying computing infrastructure
(hardware and software) is stochastic and that sampling enough service requests and
measuring times spent in various stages of request execution is sufficient to recon-
struct the broad picture of infrastructure behavior. The amount of time it takes to
process a request depends on how loaded the underlying infrastructure is and on other
factors such as delays in services provided by other machines, like the database server

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:6 A. Totok and V. Karamcheti

or the JMS infrastructure. In the aforementioned two problems, we assume a ded-
icated infrastructure, for which the preceding assumptions indeed take place. Ac-
knowledging that most modern Internet service deployments usually assume sharing
of infrastructure resources and concurrent handling or requests from many other ap-
plications, in the future we plan to extend our work to shared and virtualized environ-
ments. Note also that in this study, we treat database as a black box and do not track
database activities performed over database connections and in the database server. It
is an interesting direction for future work to investigate how the techniques proposed
in this article can be augmented and enhanced when profiling of the database server
is added to the picture.

The solutions and techniques that we propose for each problem differ, but they span
a representative range of mechanisms that researchers have proposed and used for
predicting and improving performance of Internet services and server resource uti-
lization. These mechanisms and techniques include mathematical modeling, statisti-
cal methods (event profiling and information gathering, Bayesian inference analysis),
server resource management mechanisms (admission control, request prioritization
and scheduling, concurrency control techniques), and application restructuring.

All of the proposed mechanisms, except for application restructuring, can be im-
plemented in a modular and pluggable fashion as middleware services, which makes
possible the voluntary use of such services that does not require changing the origi-
nal application code of Internet services. To support this claim, we implemented and
evaluated these mechanisms in the enterprise-level Java EE [Java EE 2011] applica-
tion server JBoss [JBoss 2011]. The mechanisms showed their effectiveness, without
bringing significant performance and management overheads. Although we show their
utility in the context of the Java EE component middleware, we believe that the tech-
niques and mechanisms described are general enough to be applicable to web servers
utilizing other technologies.

Different parties involved in different stages of a component-based Internet service
lifecycle could benefit from different aspects of the work in this article. Application
developers could benefit from using the set of application design rules and optimiza-
tions for building component-based applications. Middleware architects and develop-
ers could benefit from utilizing the set of middleware mechanisms to introduce their
functionality into the middleware systems. Service operators (e.g., system adminis-
trators) could benefit from using the models and techniques in order to boost perfor-
mance of component-based Internet services and improve their manageability, given
that these mechanisms and the corresponding functionality is provided by the under-
lying middleware.

The rest of the article is organized as follows. Section 2 provides necessary back-
ground information. Section 3 describes in greater detail the four identified service
access attributes; while Section 4 talks about how this information is obtained with
the implemented JBoss Request Profiling Infrastructure. The four problems chosen to
validate the main claim made in this study are described separately in Sections 5, 6, 7,
and 8. In each section we formulate the problem, present an overview of the proposed
solution, mechanisms, and techniques, and point the reader to further publications
dedicated to the problem. We conclude the article with Section 9.

2. BACKGROUND
2.1 Java EE Component Middleware

Among current day enterprise-level component middleware standards, Java Platform
Enterprise Edition [Java EE 2011] is the most widely accepted and used component
framework. Applications developed using the Java EE framework usually adhere

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1.7

~

(< A .
Web Tier| [ _EJBTier ) (pata Tier
session entity

Stateless
Sessmn

< RMI >
. Java
Servilet

Fig. 2. Java EE component architecture.

Client

HTML

RN

to the classical 3-tier architecture, with web tier, business tier, and data tier (see
Figure 2). Java EE components belonging to each tier are developed adhering to spe-
cific Java EE standards. Web tier deals with the presentation logic of the applica-
tion. Components in this tier include Java Servlets and Java Server Pages (JSP) [Java
EE Web 2011]. These components are invoked to process incoming HTTP requests,
and are responsible for the generation of the response HTML pages, invoking com-
ponents from the business tier or communicating directly with the data tier, to get
application data from back-end datasources, if necessary. Business tier, sometimes
called middle tier or, in the Java EE realm, EJB tier, consists of Enterprise Java
Beans (EJB) components [EJB 2011], which have three flavors: Session, Entity, and
Message-Driven. Session beans usually provide generic application-wide services, and
also serve as facade objects in front of shared persistent datasources. Entity beans
are transactional shared persistent entities, representing a synchronized in-memory
copy of the database information. Message-driven beans are stateless components and
serve the purpose of processing incoming asynchronous messages. Data tier serves
the purpose of persistently storing the application data, and is usually represented
by relational databases. Java EE application components usually communicate with
relational datasources through JDBC (Java DataBase Connectivity) [JDBC 2011] in-
terfaces. In this study, we work with the Java EE application server JBoss [JBoss
2011], augmented with the Jetty HTTP/web server [Jetty 2011].

2.2 Resource Consumption and Bottlenecks in Java EE Applications

There are several aspects of component middleware platforms in general, and of the
Java EE component framework in particular, relevant to this study that influence
performance of Internet applications built on these platforms.

— Component invocations. Component invocation is a relatively expensive operation
compared to a plain Java object method invocation, especially in container imple-
mentations that use Java reflection mechanisms extensively (which is a common
practice). CPU consumption of a service request depends on how many component
invocations are involved in its execution and on the types of the invoked components.
For example, invocation of a method on an entity EJB is typically more expensive
than on a session bean (partly because of the need to synchronize an EJB’s state
with the database).

— RMI serialization. Early EJB container implementations used Java RMI (Remote
Method Invocation) for all intercomponent communication, even for components
residing within the same JVM. This approach imposes significant RMI serializa-
tion/deserialization overheads [Cecchet et al. 2002]. With the introduction of EJB
local interfaces, it became possible to specify component collocation, which allows

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:8 A. Totok and V. Karamcheti

EJB containers to avoid using RMI for intercomponent communication. To reduce
the cost of marshalling, application servers usually provide communication opti-
mizations for components residing in the same JVM (even if they don’t use EJB
local interfaces), by using local object references instead of going through RMI.

— Communication with the database. Accessing the database entails significant per-
formance overhead of retrieving the data from disk, moving it to memory, and send-
ing it over the network to the application server machine. Inefficiently structured
JDBC code can significantly limit application performance. The most prominent ex-
ample of this situation is synchronization of entity beans with the database, which,
with inaccurate server configuration, may happen for every business method in-
voked on the entity bean [Cecchet et al. 2002]. CPU, memory, and network data
transfers are much faster than reading and writing data from/to disk, so primary
overhead in accessing the database is database disk I/O. Even if the data happens
to be cached in memory on the database side, the overhead may still be significant.
A common misconception is that the problem is bandwidth, while the problem is the
CPU overhead for writing and reading an object’s data to/from the wire. Modern
application servers provide facilities to limit unnecessary entity bean database syn-
chronization by, for example, updating the state of the bean only before the method
call, if the call is read-only.

— Contention for exclusively-held server resources. Some of the server resources are
shared among requests, while some are held exclusively by a request for the whole
duration or a portion of it. Examples of the former include low-level OS resources,
such as CPU and memory, while the latter are represented by such middleware re-
sources as server threads and database connections. In the situation of server over-
load (static or transient), these resources become a source of request contention,
with internal request queues building up. It is sometimes the case that the appli-
cation performance is limited by such exclusively held “bottleneck” resources, even
when there is enough CPU power to process more requests.

The application implementation method has a significant impact on application per-
formance [Cecchet et al. 2002] as well. Usually, Java EE applications with session
beans perform as well as Java servlets-only applications, and much better than most
of the implementations based on entity beans. The fine-granularity access exposed by
entity beans limits scalability, which, however, can be improved using session facade
beans. For implementations using session facade beans, local communication cost is
critically important, but EJB local interfaces (or application server optimizations sub-
stituting for the use of the latter) improve performance by avoiding the RMI commu-
nication layers for local communications.

2.3 Sample Java EE Applications

To test the techniques proposed in our work, we have used two sample Java EE appli-
cations. One of them, an implementation of the TPC-W benchmark application, was
developed by ourselves, while the other, Java Pet Store, was developed elsewhere.
TPC-W application [TPC-W 2005] is a transactional web e-commerce benchmark,
which emulates an online store that sells books. TPC-W specifies the application data
structure and the functionality of the service; however it neither provides implemen-
tation nor limits implementation to any specific technology. The TPC-W specification
describes in detail the 14 web invocations (requests types, in our terminology) that
constitute the web site functionality, and defines how they change the application data
stored in the database. A typical TPC-W session consists of the following requests: a
user starts web site navigation by accessing the Home page; searches for particular
products (Search); retrieves information about specific items (Item Details); adds some

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:9

of them to the shopping cart (Add To Cart); initiates the check-out process, register-
ing and logging in as necessary (Register, Buy Request); and finally commits the order
(Buy Confirm). We have developed our own implementation of the TPC-W benchmark,
realized as a Java EE component-based application [TPC-W-NYU 2006]. The imple-
mentation utilizes the Session Facade design pattern [Marinescu 2002]. For each type
of service request there is a separate servlet which, when necessary to generate the
response HTML page, invokes business method(s) on an associated session bean(s),
which, in turn, access application shared data stored in the database through a set of
fine-grained invocations to the related entity EJBs.

Java Pet Store application [Java Pet Store 2006] is a well-known and widely adopted
best-practices sample Java EE application. It represents an online store that sells
pets. Java Pet Store aims at covering as much of the Java EE component platform
as possible in a relatively small application. Its main focus is on design patterns and
industry best practices that promote code and design reuse, extensibility, and modu-
larity. Therefore, Java Pet Store is a relatively heavyweight application, compared to
our TPC-W implementation. The fundamental design pattern used in Java Pet Store is
the Model-View-Controller (MVC) architecture [Singh et al. 2002], which decouples the
application’s data structure, business logic, data presentation, and user interaction.

3. SERVICE ACCESS ATTRIBUTES

Information about service usage by clients can be exposed at different levels: from
the high-level structure of incoming request flow, to low-level information about re-
source consumption and data access patterns of different request types. Some of this
information can be automatically obtained by request profiling, some can be obtained
by statically analyzing the application structure, while some information needs to be
specified by the service provider. In our work, we identify four related groups of service
access attributes, that correspond to different levels of service usage information. The
relationship between different service access attributes, which are described in detail
below, is shown schematically in Figure 1.

3.1 Request Flow

This service access attribute provides the high-level information about the requests
that are being invoked against the service and represents the highest level of service
usage information. The information about an individual service request is limited to
its type, session (client) identity, and (optionally) ¢ime of arrival. Request type corre-
sponds to the functionality of a request. It is often possible to determine the func-
tionality of an HTTP request as well as its parameters by using the request’s URL.
For example, in the TPC-W application, HTTP request http://tpcw.com/item?id=57
requests a web page with a detailed description of the item with id 57. Thus, the
organization of HTTP requests makes it possible to infer a request’s type and its pa-
rameters at the earliest stage of request execution—request preprocessing at the web
tier—thus enabling collection of the request flow information through real-time profil-
ing of incoming user requests in the web server.

Service usage information specified in the request flow service access attribute may
come in different forms. For example, it may state the rate and the arrival pattern of
the requests of certain types as they are received by the server. It may also describe
the (typical) structure(s) of incoming user sessions. Different service management
problems addressed in this article are sensitive to different aspects of the request flow
information. In Table II we list the most important request flow properties that we are
looking at in this work. In our work we distinguish between request-oriented service
request flow specification, where session identity of requests is not important and is

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:10 A. Totok and V. Karamcheti

Table Il. Most Common Properties In the Request Flow Service Access Attribute

overall request rate

RATE
RATE; rate of requests of a particular type ¢
Vi average number of requests of type i in a session

R; percentage of requests of type i among all requests
L,y average session length (in requests)

T average session inter-request time

A rate of incoming new sessions

CBMG structure of web sessions (Section 3.1.1)

not taken into account, and session-oriented request flow specification, where session
identity of requests is important and which usually comes with some information about
web session structure(s). Note that models capturing the structure of request flow can
be used to reproduce and simulate user activities, hence the problem of representa-
tion of request flow information is tightly coupled with the problem of web workload
generation.

Request flow information usually contains various timing parameters describing
the arrival patterns of service requests. In a request-oriented request flow specifica-
tion, overall request rate RATE and rate of requests of a particular type RATE; are
usually of interest. In a session-oriented request flow specification, session interre-
quest times and arrival patterns of new sessions are the most commonly used timing
parameters. It is usually assumed that session interrequest time is a random variable
with a certain distribution, and its mean value Ti, (i.e., average session interrequest
time) is one of the timing parameters of interest. For the arrivals of new user sessions,
whatever this process looks like, we are interested in the average rate of incoming new
sessions—A, which reflects the intensity of the user load (Table II).

3.1.1 Web Session Structure Modeling. A user session consists of a sequence of service
requests issued by a single user. These requests do not go in arbitrary order, because
they adhere to the application logic of the service. In the realm of web-based services,
the set of service requests that a user can make consists of the HTML links presented
on the web page that was last displayed to the user; that is, it depends on the result of
the previous request. Therefore, generally, session structure can be captured by a state
transition diagram, where states denote results of service requests (web pages), and
transitions denote possible service invocations. Whereas state transition diagrams
producing possible web session structures can be arbitrarily complex, in most cases
these diagrams have quite simple organization, or can be considerably simplified by
only accounting for state transitions (and so certain session structures) that represent
typical user behavior for a given Internet service. For example, session structures can
often be represented by graphs, where the set of possible state transitions (possible
service requests) depends only on the current state (previous request).

In this work we follow the adopted approach to model web session structures by
state transition diagrams. Specifically, we adopt the classic customer behavior model
graph approach [Menascé et al. 1999] to model user sessions. As originally proposed,
the customer behavior model graph (CBMG) is a plain state transition graph, where
the set of possible transitions (service requests) does not depend on the application
(session or shared) state. In the CBMG model, state transitions are governed by tran-

sition probabilities p;; of moving from state ¢ to state j( zyzl pij = 1, where N is the

number of states in the CBMG. In our model we extend the classical CBMG model
to also allow a finite number of finite-domain attributes for each state of the CBMG.

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:11

Pse.ie
e ) Pese

Search
mpty cart]
N

Item
[empty cart]

Exit
[browser]

pie,ie
Pie,a

Add To Cart

Pa,r

Buy Request

Fig. 3. CBMG of a sample TPC-W buyer session.

Exit
[buyer]

These attributes can be used to represent session state, that is, session events like
signing-in and signing-out of an e-commerce Web site, or the number of items put into
the shopping cart for an online store. The set of possible state transitions and their
probabilities can in turn depend on the values of these attributes. Since the set of state
attributes and their values is finite, each extended CBMG may be reduced to an equiv-
alent CBMG, by duplicating states for each possible combination of state attribute
values.

Figure 3 shows the CBMG of a sample buyer session for the TPC-W application
(Section 2.3). This CBMG produces simplified user session structures, which use only
a subset of the available TPC-W request types, but are rich enough to include essen-
tial application activities and represent requests with a wide range of functional and
execution complexity. Each session modeled by this CBMG starts with the Home re-
quest, and may end either after several Search and Item Details (Item in short) requests
(we refer to such sessions as browser sessions), or after putting one or more items in
the shopping cart and completing the purchase (buyer session). This CBMG has one
(boolean-valued) state attribute for the Search and ltem states, which denotes the pres-
ence of items in the shopping cart, to model the assumption that once a user puts an
item into the shopping cart, he never abandons the session and eventually commits the
order. With such structure, this CBMG can be used to produce workloads that stress
essential buyer activities. Other CBMGs can be used to model sessions that experience
different behaviors.

It was shown in Menascé et al. [1999] that if one uses a mix of several CBMG session
structures, then the resulting workload can approximate a given service request log as
closely as desired by choosing the model parameters appropriately (i.e., the number
of CBMGs and their transition probabilities), which can be obtained from the service
request log by using a clustering algorithm. Following this approach, we would typi-
cally model a session-oriented web workload as one consisting of K CBMGs: CBMGj,
CBMGg, ..., CBMGgk. The probability of a session having the structure of CBMG;, is
Pk z,{il pr = 1. For a session with structure CBMG;, the probabilities of state transi-
tions are denoted pf -

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:12 A. Totok and V. Karamcheti

Several studies analyzed web access logs obtained from web servers of organiza-
tions ranging from educational institutions to e-commerce web sites [Menascé et al.
2000; Cherkasova and Phaal 2002; Shi et al. 2002; Akula and Menascé 2007]. They
report that session interrequest times usually have an exponential distribution, but
have also been observed to have a lognormal or even a Pareto distribution. Following
this finding, we model session interrequest (user think) times as either exponentially
or log-normally distributed. It is generally believed that the times between new ses-
sion arrivals are well modeled by an exponential distribution, which corresponds to
a Poisson arrival process and fits well into the framework of classical Queueing the-
ory [Kleinrock 1975]. The Poisson process produces a relatively smooth sequence of
events, and fails to model the occasionally bursty traffic sometimes observed at web
sites [Wang et al. 2002]. To better model the latter, we also use the B-model [Wang
et al. 2002], which has been shown to produce synthetic traces with burstiness match-
ing that of real web traffic.

The request flow parameters that we are looking at in this work (Table II) can be
extracted from the parameters of a CBMG-based session-oriented web workload. The
values of V;, the average number of visits to state i, can be obtained by solving the fol-
lowing system of linear equations (this apparatus was originally developed in Menascé
et al. [1999]):

Vi=1
Vi= > Vi pri foralli=2,...,N

where V7 is the entry state (e.g., the Home request in the CBMG in Figure 3). The
average session length is given by the equation

(1

N
Lav=> Vi, (2)
i=1
and the breakdown of requests by their type is given by
Vi
R; = T (3)

Finally, the overall request rate and request rates for specific request types are
given by

RATE = 1-L

4
RATE; = /.-V; fori=1,...,N “)

In case the user load consists of several CBMGs, Egs. (1) to (4) are generalized in a
straightforward manner using the probabilities associated with different CBMGs as a
weighting factor.

3.2 Coarse-Grained Resource Utilization and “Reward”

This service access attribute contains information about the high-level “cost” of exe-
cuting requests of different types and the “profit” (“reward”) that requests of different
types bring to the service provider.

3.2.1 Coarse-Grained Resource Utilization. Requests of different types may exhibit dif-
ferent execution complexity and show different server resource consumption, since
they tend to utilize different sets of application components and middleware services.
Some requests, for example, may need to access a back-end database, while others
may need CPU-intensive processing. Information about the coarse-grained “cost” of a

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:13

request execution can help in an approximate comparison of resource consumption by
different requests. Processing times for individual requests in typical Internet services
can vary widely by as much as two-to-four orders of magnitude. However, there tends
to be much more variation across request types than for requests within the same type
but with different request parameters [Chen et al. 2001; Elnikety et al. 2004]. There-
fore, request execution cost is usually specified on the basis of request type. This cost
can be specified by the service provider in the form of abstract resource consumption
units (called computational quantums in Chen et al. [2001]). However, such static
specification can be quite inaccurate for the following reasons. First, request execu-
tion times tend to depend on actual user load—request processing times under heavy
load are much higher that those measured in isolation. Second, execution of complex
SQL queries in the database, especially those involving merging and sorting, depend
on the volume of the data processed, which may vary considerably during service life-
time. An alternative approach, which we adopt in this work, is to specify request
execution cost as the average request processing time of the requests of a certain type.
This approach is also attractive because it allows automated collecting and updating
the required information through online request profiling in real time.

3.2.2 Request Reward. Service providers of business-critical services are interested
in boosting service revenues. However, different user sessions make different contri-
butions to the profit attained by the service. The specification of profit (or, generally
speaking, “reward”) brought by service requests is an opportunity for service providers
to indicate which requests are more valuable according to the service logic, or to in-
dicate which requests are crucial for the service. This information may be used by
server-side resource management mechanisms to allocate server resources preferen-
tially to requests. For example, in the online shopping scenario, the service provider
might be interested in giving a higher execution priority to the sessions that have
placed something in the shopping cart (potential buyer sessions), as compared to the
sessions that just browse product catalogs, making sure that clients that buy some-
thing (and so bring profit to the service) receive better QoS. In another example, for
Internet services whose web pages contain third-party-sponsored advertisements, the
service provider’s profits may (directly) depend on the number of visits to those pages.
Consequently, the service provider may wish to provide better QoS to the sessions that
visit these pages more often. It is the service provider’s responsibility to define the
reward function associated with the session. The model we adopt in this study is sim-
ple yet general enough to encompass several possible applications: a reward value is
defined for every request type of the service. The reward of the session is the sum of
rewards of the requests in the session.

3.3 Fine-Grained Server Resource Utilization

This service access attribute provides detailed information about how service requests
are processed in the application server. The actual information about the way a request
gets processed by the server may vary for different problems, QoS targets, and metrics
being optimized. Here are the examples of information that could be specified in this
service access attribute, and which could be useful in determining server resource
utilization by service requests.

— Components invoked during a request’s execution, their types and time spent in
each component. Component invocation is a relatively expensive operation for the
application server (Section 2.2), so a request’s server resource consumption is di-
rectly affected by how many component invocations are involved in the execution of
a service request.

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:14 A. Totok and V. Karamcheti

waiting waiting

queue

Database

Thread

S0—CQo0ITOW
S0—CcQ0TOW

Service pool Thread connection
request pool
- ) request wait timeout: request served
walit timeout: served request rejection (thread and DB
request rejection (thread released)  (thread released) connection released)

Fig. 4. Request execution model with 2-level exclusive resource holding threads and database connections.

— Databases accessed by a request and time spent processing SQL directives. Process-
ing complex database queries is a major performance bottleneck in data-centric
Internet services, hence this information can be used in assessing the execution
complexity of a request.

— Communication with auxiliary middleware services, such as the JNDI naming ser-
vice or the transaction manager service. This information may be used in assess-
ing the request’s resource consumption and in identifying middleware services that
become performance bottlenecks.

The low-level information about how service requests are processed in the appli-
cation server can be obtained through a fine-grained profiling of server-side request
processing (see Section 4 for the description of our JBoss Request Profiling Infrastruc-
ture) by statically analyzing the application structure (application source code and
deployment descriptors), or by a combination of both approaches.

3.3.1 Request Execution Model with 2-Level Exclusive Resource Holding. It is often the case
that middleware performance is limited by several “bottleneck” resources that are held
exclusively by a service request for the whole duration or some significant portion of it
(such as server threads or database (DB) connections), as opposed to low-level shared
OS resources. In the absence of application errors, failing to obtain such a resource
is the major source of request rejection. In this work we advocate and use a request
execution model, where a request is rejected (with an explicit message) if it fails to
obtain a critical server resource within a specified time interval. This approach is
shared by a vast majority of robust server architectures that bound request processing
time in various ways (e.g., by setting a deadline for request completion), as opposed
to a less robust approach, where a request is kept in the system indefinitely until it
is served (or is rejected by lower-level mechanisms such as TCP timeout). The former
approach not only guarantees that a request is either served within a time limit or
unambiguously rejected, but also helps to more efficiently free server resources of the
requests that cannot be handled due to the server capacity limitations.

Figure 4 schematically illustrates our model of request execution and the flow of a
request through the system. Requests compete for two critical exclusively-held server
resources: server threads and DB connections; these resources are pooled by the web
application server. If the timeout value for obtaining a thread or a DB connection ex-
pires, the request is rejected with an explicit rejection message. An acquired database
connection is cached, and is used exclusively by the request until it is processed (we
leave the discussion of the rationale behind this to a separate publication [Totok and
Karamcheti 2010a]). When the request is processed, the thread and cached database
connections are returned to their respective pools. Note that some requests do not
require access to database(s), so they can be served successfully just by acquiring a
server thread. Note that Figure 4 shows a simplified picture where a request needs

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:15

at most one DB connection during its execution (e.g., if it accesses only a single data-
base). In our request processing model, the request execution time can be represented
as follows:

t=w" Rt p+wPB g+ +wlP g, (5)

where wT™PF is the time waiting for a thread; p, time doing request processing before

getting DB connection(s); wPB, time waiting for a i-th DB connection; g;, time process-
ing the request after the i-th DB connection was obtained by the request, but before
i+ 1-th DB connection was requested from its respective pool, or the request completed
its execution. This g; time includes the time spent in making SQL queries, retrieving
the results, processing them, and doing all other request processing while the DB con-
nection is cached by the request. Note that in this work we treat the database as a
black box.

The data in the request execution model with 2-level exclusive resource holding (e.g.,
the values of p and ¢;) is an example of the actual service usage information specified
in the fine-grained server resource utilization service access attribute. In Section 6 we
will discuss specifically how in this model the knowledge of the values of p and ¢; can
be used to identify the optimal configuration of the thread and DB connection pools in
a web application server environment.

3.4 Data Access Patterns

This service access attribute contains information about how service requests access
application data. The information specified at this level varies for different problems,
QoS targets, and metrics being optimized, but typically it would specify the read-write
behavior of a request w.r.t. the data it accesses, and information about whether this
data is shared among multiple users. This service access attribute may also specify,
based on the needs of a specific service management problem, more detailed informa-
tion, for example, what segment(s) of application data is (are) accessed and what the
consequences of accessing this data are. It may also specify how tolerable a certain
request is to application data quality (Section 1.1). This information may be used in
managing data replication and caching, as well as scheduling the execution of concur-
rent client requests that access shared business-critical application data and that are
critical to application data quality.

A concrete example of information specified in this service access attribute is the
0P-COP-VALP model, a flexible model for specifying web session data consistency (in-
tegrity) constraints, which we introduced in a previous work [Totok and Karamcheti
2007]. In the OP-COP-VALP model, potential shared data conflicts are identified by spec-
ifying pairs of conflicting service requests (operations): OPERATION (0P, for short)
and CONFLICTING OPERATION (cop, for short). For simplicity, one may think of
0P and COP as READ and WRITE operating with associated conflict semantics. The
model also provides ways to specify the tolerable data inconsistency. The 0P-COP-VALP
model then allows us to specify the situations when the middleware should validate a
web session’s correctness of execution (w.r.t. the defined conflicting operations). This
is done by specifying that certain service requests represent VALIDATION POINTS
(VALP, for short), which act like database checkpoints or commits. This model draws its
ideas from several areas of advanced transaction processing, such as semantics-based
concurrency control [Garcia-Molina 1983] and relaxed consistency [Wong and Agrawal
1992], but is specifically tailored for the case of concurrent web sessions. Note also
that while a request’s read-write data access patterns can be obtained through re-
quest profiling or static code analysis, such information as the tolerance to application
data quality needs to be specified by the service provider, on the basis of some business

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:16 A. Totok and V. Karamcheti

or QoS requirements, which are not “encoded” in the application structure or logic and
cannot be inferred automatically.

4. REQUEST PROFILING INFRASTRUCTURE

Tracing user requests is a well-known and widely used technique in computer systems,
utilized for various purposes, such as accounting, debugging, and performance analy-
sis. The request logging feature is available in all mature web application servers,
however, the information traced by the standard request logging functionality has a
very limited scope. In order to be able to gather more fine-grained information about
request execution, we need a request profiling infrastructure, such as the one used
in Pinpoint [Chen et al. 2002] for problem determination and root-cause analysis in
dynamic Internet services. To this end, we implemented our own request profiling
infrastructure for the JBoss/Jetty web application server. The implementation takes
advantage of the microkernel architecture of JBoss [Fleury and Reverbel 2003], and,
overall, contributes to less than 1% of the server codebase. The infrastructure (as well
as all other middleware mechanisms injected in JBoss) is implemented in a modu-
lar, extensible, and pluggable fashion. Where necessary, certain functionality modules
are substituted with ones also augmented with the profiling execution hooks. Only
absolutely necessary changes were made to the original JBoss/Jetty code, which are
backward compatible with the original server configuration. We also show that perfor-
mance overheads imposed by the infrastructure are rather small.

4.1 JBoss/Jetty Instrumentation

Various JBoss/Jetty modules are augmented with additional functionality and execu-
tion hooks to gather information about service request execution. While a request
is being processed, all the information associated with it is kept in the local Request
Context, associated with the request through a dedicated ThreadLocal Java object (a
request is executed by a single thread). When the request completes, this data is sent
to the Request Profiling Service, where it is added to a server-wide in-memory ser-
vice usage information storage. Figure 5 schematically shows the architecture of the
profiling infrastructure.

The Request Profiling middleware service acts as a centralized storage of informa-
tion about completed service requests. The service keeps track of currently active ses-
sions, as well as the aggregated information about recently completed service requests.
The former is used to keep histories of session requests and inter-request times for cur-
rently active sessions, while the latter is used to extract various parameters of service
usage from the history of recent requests executed against the service.

Request profiling in JBoss/Jetty is performed at all three Java EE tiers (Section 2.1).
Request profiling at the web tier is performed by the modified Jetty HTTP/web server.
It is used to gather high-level request flow information about incoming client requests,
which are classified by their type (based on the URL pattern) and session affiliation.
To inject profiling functionality, we substituted the default Jetty’s socket listener mod-
ule with an augmented socket listener implementation, which for each request creates
a request context object and associates it with the request’s thread. Profiling at the
EJB tier is performed by adding two JBoss EJB interceptors [Marrs and Davis 2005;
Fleury and Reverbel 2003], that is, the client profiling interceptor and server profiling
interceptor (each at the client and the server sides correspondingly), which record in
the request context the information about the EJB components and business meth-
ods invoked. The interceptors are also responsible for propagating the request con-
text between the JVMs by putting it in the serializable part of the invocation object,
which travels over the wire, in case of a remote invocation. We injected the profiling

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:17

JBoss

/Jetty Web Server|  EJB container | [

Client Profiling
Interceptor

JBoss JCA

Managed
Connection Pool

Socket Listener
. Database
Server Profiling .
Connection
7% Interceptor M
2 anager
D -
N S g/
=e
5@
v | 5 —-
Service Request) | S
request Context /| — —

€

Request Profiling Service

Fig. 5. Architecture of the JBoss/Jetty profiling infrastructure.

functionality into the data tier by modifying the database connection manager and
managed connection pool modules. This allowed us to gather information about how
database connections are assigned to requests and record various connection man-
agement events, for example, when connections are requested from the pool, granted,
closed, and returned to the pool (Section 3.3.1). Note that we do not profile how specif-
ically DB connections are used by requests (i.e., what JDBC queries are executed).
Such, more detailed, information can only be obtained with additional profiling hooks
injected into the database-specific JDBC driver code. However, information gathered
by our profiling mechanisms is sufficient for the server resource management mecha-
nisms that we propose for the problems described in this work.

4.2 Gathering and Analyzing the Service Usage Information

The Request Profiling middleware service not only gathers the information about re-
cent service requests, but also provides mechanisms to manage this information and
methods to extract parameters of service usage that we are interested in. To keep
track of only recent service usage, we implement an information-gathering mechanism
where events are stored in so-called shifting epochs. A currently open epoch records
events (e.g., new session arrivals) either for a specified time interval or until it accu-
mulates a certain number of events, after which this epoch closes, a new one opens and
starts to record events, and the oldest epoch is discarded. This mechanism simplifies
phasing out the aging epochs, imposes a limit on the memory used for storing the in-
formation, and also reduces data management overheads of recording an event (one
does not need to discard the oldest event on every event arrival).

To extract various service usage parameters (e.g., average session inter-request
time) we perform statistical analysis of the accumulated data. Each request for a
parameter estimate indicates the number of recent epochs to be used for it, and each
calculated parameter estimate is accompanied by the confidence interval with a con-
fidence level value of 95%, computed using the Student’s T-test [Roussas 1997]. The
confidence interval contains the actual value that we are trying to estimate with a
probability of 95%. Based on the specific problem at hand, a computed parameter

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:18 A. Totok and V. Karamcheti

Table Ill. Comparative Performance of JBoss/Jetty Web Application Server Augmented with
Profiling Infrastructure (orig.: original server, prof.: server with the profiling infrastructure)

User load | Average request response | CPU utilization | Memory utilization (MB)
time (ms)

(in 1) orig. prof. orig. prof. | orig. prof.

A=1 40 52 9.7% 9.9% 104 125

L=2 61 75 25.9% | 27.4% 109 135

=3 83 104 32.0% | 35.9% 114 143

A=4 127 201 40.3% | 45.1% 142 164

A=5 187 320 57.4% | 64.2% 154 173
.=5.5 670 n/a 68.8% n/a 160 n/a

estimate can be deemed invalid if its confidence interval is larger than a predefined
threshold (e.g., £0.01, or +10% of the estimated value). In this case, the parameter es-
timate can be discarded or recomputed taking into account a greater number of epochs
(and a greater number of events), which will likely decrease the computed confidence
interval.

4.3 Performance Overheads of the Profiling Infrastructure

To evaluate the performance overheads that our profiling infrastructure imposes we
conducted a series of experiments with two server configurations with the TPC-W
application deployed on them: (1) original JBoss/Jetty application server and (2)
JBoss/Jetty augmented with our profiling infrastructure. The server environment for
these tests consisted of two dedicated workstations (one with JBoss/Jetty web applica-
tion server, another with MySQL database server [MySQL 2011]), connected by a high-
speed LAN. A separate workstation was used to produce artificial session-oriented user
load, with different /1, the rate of new session arrivals (Section 3.1). In order to better
evaluate the overheads of the profiling infrastructure, we used the TPC-W applica-
tion configuration with the smallest database population size, and therefore with the
highest sustainable request throughput. In the experiments, we measured average
request response times and CPU and memory utilization. The latter two parameters
were only measured for the JBoss/Jetty server, because MySQL server performance
did not depend on the presence of the JBoss/Jetty profiling infrastructure. In both
tested server configurations, the MySQL database server was the performance bot-
tleneck. The results of the experiments are shown in Table III, which represents an
example of comparative performance of our web application server infrastructure, with
and without the implemented request profiling infrastructure.

The presence of the profiling infrastructure decreased the maximum sustainable
session throughput, but only slightly: 4 = 5.5 was the approximate maximum ses-
sion throughput for the original server configuration, while 4 = 5, for the server
augmented with the profiling infrastructure (interval [0 — 5.5] used in Table III there-
fore represents the operational range of our test server envronment as a function
of user load, measured in 1). As the results show, CPU and memory overheads
are small and are consistent for various user loads. Request response times for the
server with the profiling infrastructure are only marginally higher if the server op-
erates well below maximum sustainable user load. The overhead margin becomes
higher as the load approaches server capacity, but under such a load the server shows
deteriorating performance in any case, as request response times for both the orig-
inal JBoss/Jetty server configuration and the one with the profiling infrastructure
skyrocket.

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:19

5. PROBLEM 1: MAXIMIZING REWARD BROUGHT BY INTERNET SERVICES

In a typical setting, a web application server hosting an Internet service processes
the incoming user request on a first-come-first-served basis. This approach provides
fair access to the service for all clients. When a need emerges to provide some clients
with a better service (e.g., based on their predefined customer status), the request
scheduling and processing is governed by the service level agreements (SLA) or other
analogous mechanisms that differentiate between different client groups. A common
element in all these schemes is that QoS received by a client is determined upfront by
its association with a client group.

While trying to provide its clients with reasonable or prenegotiated QoS, the ser-
vice provider running a commercial service also wants to boost its revenues. Different
user sessions bring different levels of profit to the service provider. For example, in the
online shopping scenario introduced earlier, the service provider might be interested in
giving a higher execution priority to the sessions that end up buying something buyer
sessions), and a lower priority to the sessions that don’t buy anything (browser ses-
sions), making sure that clients that buy something receive better QoS. However, the
information about user intentions to buy products is not encoded in its client group’s
profile, so SLA-based approaches are not as beneficial here.

To be able to provide better QoS to the sessions that bring more profit (reward),
the service provider now needs to predict the behavior of a client. If the client is
a returning customer and his identity can be determined (e.g., using cookies), then
decisions on QoS provided to this client can be based on the history of his service usage
(e.g., history of previous purchases). However, the success of this per-client history-
based approach, is, not unexpectedly, highly dependent on the correlation between the
past and the future behavior of a client, and may not work well if such a correlation is
absent or weak.

Instead of focusing on individual client behavior, we advocate predicting a session’s
activities by associating it with aggregated client behavior or broader service usage
patterns, obtained for example through online request profiling. Specifically, we pro-
pose reward-driven request prioritization (RDRP) mechanisms that try to maximize
reward attained by the service via dynamically assigning higher execution priority
values to the requests whose sessions are likely to bring more reward. Our RDRP
algorithms work with the assumption that the following service usage information,
(logically belonging to the request flow and coarse-grained resource utilization service
access attributes) is available. This information is obtained by the request profiling
infrastructure (Section 4) in real time. We assume that the user load (request flow)
consists of K CBMGs: CBMG;, CBMGsg, ..., CBMGg. The probability of a session
having the CBMG;,, structure is p;, Z,ﬁil pr = 1 (Section 3.3.1). For each request type
I, its execution cost, cost;, is defined as the average execution time of requests of this
type. We also assume that reward is defined for each request type. In the online shop-
ping scenario, the profit of the service is reflected by the volume of items sold. So we
define a reward function by assigning a reward value of 1 for the Add To Cart request:
the shopping cart will contain as many items in it as the number of times the Add to
Cart request was executed.

Given the above, the RDRP mechanism works in the following way. For every in-
coming request, it looks at the sequence of requests already seen in the session and
compares this sequence with the known CBMG structures of the session types com-
prising the user load. A Bayesian inference analysis estimates the probability that the
given session is of type CBMGg;, for each £ = 1, ..., K (step 1). For each session type
CBMG;, the algorithm computes the values of expected reward and execution cost, re-
sulting from the future requests of the session, assuming it had the structure CBMG;,

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:20 A. Totok and V. Karamcheti

Service usage information

— ! P} {oost)

request Step 1 :
+ prgb ft:]at tthS’aZSIon » expected _reward and requeSt
. > Is of type k Step 3 = »| Step 4 P
session expected cost priority
. Step 2 expected reward and
hlstory expected_cost,

if the session of type CBMGy

Fig. 6. Logical steps of the Reward-Driven Request Prioritization method.

(step 2). This information is used to get the nonconditional values of expected reward
and execution costs of the future session’s requests (step 3). We then define the priority
of the request, as its session’s reward (attained and expected) divided by the expected
execution cost of the future session’s requests (step 4). The assigned request priori-
ties govern the scheduling of available server threads and DB connections to incoming
requests. The logical sequence of the RDRP algorithm steps is depicted in Figure 6.

We implemented our proposed RDRP methods as a set of middleware mechanisms,
which are seamlessly and modularly integrated in the web application server JBoss,
and which make use of the information gathered by our request profiling infrastruc-
ture. We evaluated our approach on the TPC-W benchmark application, and compared
it with both the session-based admission control [Cherkasova and Phaal 2002] and the
aforementioned per-client history-based approach. Our experiments show that RDRP
techniques yield benefits in both underload and overload situations, for both smooth
and bursty client behavior. In underload situations, the proposed mechanisms give
better response times for the clients that bring more reward, which is crucial for en-
suring return customers. This is important because it is often the case that the bulk
of service customers are returning clients, so providing good QoS to long-time cus-
tomers is a key factor in service success [Pecaut et al. 2000; VanBoskirk et al. 2001].
In overload situations, when some of the requests get rejected, the mechanisms en-
sure that sessions that bring more reward are more likely to complete successfully,
and that the aggregate profit attained by the service increases compared to other so-
lutions. Additionally, our experiments show that the history-based approach matches
the performance of our RDRP mechanisms on the amount of reward attained and re-
sponse times only if the correlation between the clients’ past and future behavior is,
respectively, 75% or greater and 50% or greater. Further details on the RDRP tech-
niques, implemented middleware infrastructure, and the performance results can be
found in another publication [Totok and Karamcheti 2010b].

6. PROBLEM 2: OPTIMIZING UTILIZATION OF SERVER RESOURCE POOLS

It is often the case that Internet service performance is limited by certain “bottle-
neck” server resources (such as server threads or database connections) that are held
exclusively by a service request for the whole duration of its execution (or for some
significant portion of it), as opposed to low-level shared OS resources (Section 2.2). In
the absence of application errors, failing to obtain such a resource constitutes a major
source of request rejections, especially in the situation of server overload. Optimizing
utilization of web server threads and database connections proves to be a nontriv-
ial task because for different client loads, different configurations of the thread and
database connection pools provide the optimal performance. This happens because
different sets of application components and middleware services are used to execute
requests of different types. Some requests need to access a database (so they need to
obtain and exclusively hold a database connection), while some do not.

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:21

To come up with a solution to this problem, we propose a methodology that com-
putes the optimal number of threads and database connections for a given Internet
application, its server and database environment, and specific user load (request mix).
The methodology is built on the model of request execution with 2-tier exclusive re-
source holding (1st tier: threads, 2nd tier: database connections) which we introduced
in Section 3.3.1. The methodology consists of the following steps.

(1) In the first step, a limited set of offline experiments are conducted, where the ac-
tual application (Internet service) and its server environment are subjected to an
artificial user load. The user load is chosen to be representative of the actual (an-
ticipated) user load, that is, it is close to the load that we expect the system will
experience during its real-life operation. We use a different number of threads and
database connections for each test run, and only a sparse subset of possible values
for these resource pools is used throughout the experiments. During this series
of such “profiling tests,” information logically belonging to the fine-grained server
resource utilization service access attribute is obtained with the use of the request
profiling Infrastructure (Section 4). More specifically, we are interested in the av-
erage values of p and q; for different requests types, that is, the time a request
spends in the different stages of its execution (Section 3.3.1).

(2) In the second step, the values obtained for these timing parameters (considered
as functions of the number of threads and database connections) are used as data
points for function interpolation in order to get the values of these parameters for
all possible combinations of the number of threads and database connections.

(8) The third step, unlike the first two, is performed in operating conditions and in real
time, when the server environment is subjected to actual user load. The parame-
ters of the incoming request mix—the values of RATE; (Section 3.1)—are obtained
through online request profiling by the request profiling infrastructure (Section 4).
Then, special mathematical model of request execution takes as input the inter-
polated functions p and q; from step 2 and the parameters of the actual incoming
request flow and computes the number of threads and database connections that
provides the best request throughput, thus achieving optimal utilization of web
server threads and database connections.

If the user load changes but stays close enough to the load used in the “profiling
tests” in step 1, the optimal number of threads and database connections for the new
load can be recomputed in real time by just applying step 3 above, using the new
values of incoming request mix (RATE;) and the old functions p and g; (from step
2), without the need to rerun the “profiling tests” of step 1 for the new request flow.
This happens because dependence of functions p and ¢; on the incoming request mix
(RATE,;) is very weak, that is, their values change insignificantly when the request flow
parameters RATE; stay close enough to their initial values. This consideration enables
dynamic adaptation of web application server environments to changing user load
conditions.

We evaluated our methodology on the TPC-W benchmark application. We used our
method to compute the optimal number of threads and database connections and the
corresponding value of the maximum sustainable request throughput. We also deter-
mined these values experimentally, trying different sizes of the thread and database
connection pools. Our results show that the proposed method is always able to accu-
rately compute the optimal number of threads and database connections, and the value
of the maximum sustainable request throughput computed by the method always lies
within a 5% margin of the actual value determined experimentally. Further details on
this methodology to compute the optimal number of web server threads and database

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:22 A. Totok and V. Karamcheti

connections, the mathematical models behind it, and the performance results can be
found in another publication [Totok and Karamcheti 2010a].

7. PROBLEM 3: SESSION DATA INTEGRITY GUARANTEES

This problem deals with the previously described situation of the need to ensure ap-
plication data quality when multiple concurrent user sessions involve requests that
read and write a shared application state and potentially invalidate each other’s data
(Section 1.1.2). Depending on the nature of the business represented by the service,
allowing the session with invalid data to progress can lead to potential financial penal-
ties incurred by the service (e.g., selling an item which has gone out of stock, or selling
it at a lower price), while blocking the session’s execution might result in user dissatis-
faction. In the latter case, the session execution is deferred, and the case is relayed to
customer service or awaits the intervention of system administrators. A compromise
would be to tolerate some bounded data inconsistency [Wong and Agrawal 1992], de-
note it ¢ (measured in some units, e.g., price or item quantity difference), which would
allow more sessions to progress while limiting the potential financial loss to the ser-
vice. The current dominant approach in web-based shopping systems is to satisfy the
client at all costs, and never defer its session (which corresponds to tolerating q = 00),
but one could envision scenarios where imposing some limits on tolerable session data
inconsistency (and so limiting the possible financial loss) at the expense of a small
number of deferred sessions might be a more preferable alternative. Besides online
shopping, examples of the systems where such tradeoffs might prove beneficial are
online trading systems and auctions.

To enforce that the chosen degree of data consistency is preserved, the service can
rely on various concurrency control algorithms. Several such algorithms (e.g., two-
phase locking, optimistic validation at commit) have been developed in the context of
classical database transaction theory. However, these algorithms need to be modified
to be able to enforce session data consistency constraints due to the substantial differ-
ences between classical transactions and web sessions. To address this shortcoming,
we came up with three versions of the classical concurrency control algorithms specif-
ically tailored for web sessions: optimistic validation, locking, and pessimistic admis-
sion control. The algorithms work by rejecting the requests of the sessions for which
they cannot provide data consistency guarantees (so these sessions become deferred).
However, they utilize different strategies in doing so, which leads to different numbers
of deferred sessions, which are not known to the service provider in advance. In order
to meaningfully tradeoff having to defer some sessions for guaranteed bounded session
data inconsistency, the service provider can benefit from models that predict metrics
such as the percentage of successfully completed sessions, for a certain degree of toler-
able data inconsistency (the value of q), based on service particulars and information
about how clients use the service.

To this end, we propose analytical models that characterize execution of concurrent
web sessions with bounded shared data inconsistency for the aforementioned three
concurrency control algorithms. The models operate in an application-independent
manner using the 0P-COP-VALP data access model, which we introduced in Section 3.4.
Mapping service requests to the operations in the 0P-COP-VALP model is done by the
service provider, who uses the information about application data access patterns to
identify how the service requests access and changes the shared application state. To
compute the metrics of interest (such as the percentage of successfully completed ses-
sions), the proposed analytical models take as input request flow information obtained
through real-time profiling of incoming client requests, performed by our Request Pro-
filing Infrastructure (Section 4). To validate the models, we demostrated their applica-
bility in the context of a sample TPC-W buyer scenario. We compared the results of

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:23

the analytical models with those of concurrent web session executions in a simulated
and in the real JBoss web application server environment. The three sets of results
closely matched each other, thus validating the models.

Besides allowing one to quantitatively reason about tradeoffs between the bene-
fits of limiting tolerable session data inconsistency and the drawbacks of deferring
some sessions to enforce data consistency, the models also permit comparison between
concurrency control algorithms regarding the chosen metric of interest (e.g., the per-
centage of successfully completed sessions). In particular, since the proposed models
use as input the service usage parameters that are easily obtained through profiling
of incoming client requests, one can build an automated decision-making process as
a part of the service or of its server environment (e.g., middleware platform), which
would choose an appropriate concurrency control algorithm in real time in response to
changing service usage patterns.

To test this claim we implemented such an automated decision-making infra-
structure as a part of our JBoss web application server environment. Session data
consistency is enforced by our infrastructure, which is capable of intercepting (and
so rejecting, if need be) the service requests, and deciding which concurrency control
method is the best to use, based on the analytical models and the parameters of service
usage, obtained by the request profiling infrastructure. Our experiments show that the
infrastructure is always able to pick the best algorithm. During a test run with the
dynamic adaptation in place, the infrastructure achieved a higher value of the met-
ric of interest (e.g., 75.6% of successful sessions) as compared to a scenario where the
concurrency control algorithm is fixed (67.1% of successful sessions). Further details
on the analytical models, the implemented automated decision-making infrastructure,
and the experiment results can be found in another publication [Totok and Karamcheti
2007].

8. PROBLEM 4: SERVICE DISTRIBUTION IN WIDE-AREA ENVIRONMENTS

In the recent decade, application distribution and replication has become a noticeable
trend in the way Internet services are designed and utilized. These techniques bring
application data and data processing closer to remote clients and help cope on the
network level, with the unpredictable nature of Internet traffic, especially in wide-
area environments, and, on the application level, with high-volume, widely varying,
disparate client workloads. Examples of this approach vary, from old-fashioned web
caching of static content to web content delivery using content-distribution networks
(CDN), to distributed (edge) service deployment [Akkerman et al. 2005; Gao et al. 2003,
2005].

Internet services built as component-based applications are natural candidates for
service distribution, because component frameworks offer mechanisms enabling dis-
tributed application deployments [Akkerman et al. 2005]. Despite their nominal suit-
ability, component-based applications are traditionally deployed only in a centralized
fashion in high-performance local area networks. In the rare cases when these ap-
plications are distributed in wide-area environments, the systems tend to be highly
customized and handcrafted. When a component-based application is distributed in
wide-area environments, intercomponent communication, otherwise “invisible” in lo-
cal area networks, results in dramatically increased request response times, whose
impact on overall service performance depends on what application components and
back-end datasources are accessed during a service request’s execution. Information
of this kind belongs to the fine-grained resource utilization service access attribute,
and needs to be available for the service provider to be able to assess the performance
quality of the application being distributed.

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:24 A. Totok and V. Karamcheti

On the other hand, in order to ensure that business-critical service requests ex-
perience small response delays, the application should be engineered in a way that
limits unnecessary wide-area intercomponent communication. To achieve this, the ap-
plication developer needs to be aware of (1) the “read-write” data access behavior of
service requests; and (2) whether or not the application state accessed in a request
is shared among several clients. In other words, while developing the application,
the developer needs to take into account the application’s data access patterns. Our
approach to enabling beneficial and efficient distribution of component-based appli-
cations in wide-area environments is to (1) take into account the information about
read-write shared data access patterns and fine-grained resource utilization by ser-
vice requests of different types and (2) based on this information, provide guidelines
for application (re)structuring, which limits wide-area intercomponent communica-
tion. To this end, we identified and recommended a small set of design rules and
optimizations for application structuring that enable distribution of component-based
applications: (1) the remote facade design pattern; (2) stateful component caching;
(3) query caching; and (4) asynchronous updates.

We validated the applicability of these design rules by applying them to the Java
Pet Store sample Java EE application (Section 2.3). We deployed Java Pet Store in
a fixed, simulated wide-area environment, applied the identified design patterns and
optimizations in different combinations, and measured the performance of the applica-
tion. Configuration with all the applied design patterns achieved the best overall per-
formance and scalability by accumulating all improvements. The remote facade design
pattern, in which collections of related entity EJB components accessed by a single ser-
vice request are wrapped with a thin layer of facade objects [Marinescu 2002], avoids
redundant wide-area communication, because requests from remote clients, who have
access only to a facade object, delegate their execution in just one network call to the re-
mote facade, which in turn performs multiple fine-grained local calls against collocated
EJB components. The use of the remote facade pattern is required if communicating
components are separated by a wide-area network, regardless of the nature of user
requests served by these components. The use of this pattern also helps to implicitly
define the optimal application partitioning granularity. Read-only entity EJBs, which
implement the stateful component caching design pattern and query caches deployed
in edge servers absorb the load generated by remote clients and save expensive trips
to centralized datasources. Asynchronous propagation of updates achieves scalability
and guarantees that updaters are not penalized by blocking on write operations. The
overall effect of applied design patterns and optimizations is two-fold. First and fore-
most, remote clients are almost completely insulated from wide-area effects. In the
few cases when remote clients incur wide-area intercomponent calls, the communica-
tion overhead is as small as possible due to the remote facade design pattern. Sec-
ond, both local and remote clients experience improved performance due to aggressive
caching of stateful components. Further details about the design patterns and opti-
mizations, their implementation, and the experiment results can be found in Llambiri
et al. [2003].

9. CONCLUSION

In this article we looked at several performance and service management issues en-
countered in modern component-based Internet services. We showed that exposing
and using detailed information about how clients use Internet services enables mech-
anisms that achieve the two interconnected goals: (1) providing improved QoS to the
service clients, and (2) optimizing server resource utilization. To differentiate among
different levels of service usage (service access) information, we introduced the no-
tion of the service access attribute and identified four related groups of service access

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



Exploiting Service Usage Information 1:25

attributes, which correspond to different levels of service usage information, ranging
from high-level structure of client web sessions to low-level fine-grained information
about utilization of server resources by different requests. We showed how the iden-
tified service usage information can be collected; for this we implemented a request
profiling infrastructure in the JBoss Java EE application server. In the context of
four representative service management problems: (1) maximizing reward brought by
Internet services; (2) optimizing utilization of server resource pools; (3) providing
session data integrity guarantees; and (4) enabling service distribution in wide-area
environments, we showed how collected service usage information is used to im-
prove service performance, to optimize server resource utilization or to achieve other
problem-specific service management goals.

REFERENCES

AKKERMAN, A., TOTOK, A., AND KARAMCHETI, V. 2005. Infrastructure for automatic dynamic deployment
of J2EE applications in distributed environments. In Proceedings of the 3rd International Working Con-
ference on Component Deployment (CD’05). Lecture Notes in Computer Science, vol. 3798, Springer,
Berlin.

AKULA, V. AND MENASCE, D. 2007. Two-level workload characterization of online auctions. Electron.
Commerce Res. Appl. 6, 2, 192-208.

BARNES, D. AND MOOKERJEE, V. 2009. Customer delay in e-commerce sites: Design and strategic implica-
tions. In Business Computing, Handbooks in Information Systems, vol. 3, G. Adomavicius and A. Gupta
Eds., Emerald Group Publishing, Bradford, England, 74-85.

CECCHET, E., MARGUERITE, J., AND ZWAENEPOEL, W. 2002. Performance and scalability of EJB applica-
tions. ACM SIGPLAN Not. 37,11, ACM, New York.

CHEN, M., KICIMAN, E., FRATKIN, E., BREWER, E., AND F0OX, A. 2002. Pinpoint: Problem determination in
large, dynamic, Internet services. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN’02). IEEE Computer Society, Los Alamitos, CA.

CHEN, X., MOHAPATRA, P., AND CHEN, H. 2001. An admission control scheme for predictable server re-
sponse time for web accesses. In Proceedings of the International World WideWeb Conference (WWW’01).
ACM, New York.

CHERKASOVA, L. AND PHAAL, P. 2002. Session-based admission control: A mechanism for peak load
management of commercial web sites. IEEE Trans. Computers 51, 6, 669-685.

EJB. 2011. Enterprise JavaBeans Technology.
http://www.oracle.com/technetwork/java/index-jsp-140203.html.

ELNIKETY, S., NAHUM, E., TRACEY, J., AND ZWAENEPOEL, W. 2004. A method for transparent admission
control and request scheduling in dynamic e-commerce web sites. In Proceedings of the International
World Wide Web Conference (WWW’04). ACM, New York.

FLEURY, M. AND REVERBEL, F. 2003. The JBoss extensible server. In Proceedings of the 4th
ACM/IFIP/USENIX International Middleware Conference. Lecture Notes in Computer Science, vol.
2672, Springer, Berlin.

GAO, L., DAHLIN, M., NAYATE, A., ZHENG, J., AND IYENGAR, A. 2003. Application specific data replication
for edge services. In Proceedings of the International World Wide Web Conference (WWW’03). ACM,
New York.

GAO, L., DAHLIN, M., ZHENG, J., ALVISI, L., AND IYENGAR, A. 2005. Dual-quorum replication for edge
services. In Proceedings of the 6th ACM/IFIP/[USENIX International Middleware Conference. Lecture
Notes in Computer Science, vol. 3790, Springer, Berlin

GARCIA-MOLINA, H. 1983. Using semantic knowledge for transaction processing in a distributed database.
ACM Trans. Datab. Syst. 8, 2, 186-213.

GVU WWW USER SURVEYS. 2001. Georgia Institute of Technology. Graphics, Visualization and Usability
(GVU) Research Center. http://www.gvu.gatech.edu/user_surveys/.

JAVA EE. 2011. Java Platform Enterprise. http://www.oracle.com/technetwork/java/javaee/.

JAVA EE WEB. 2011. Java EE web application technologies.
http://www.oracle.com/technetwork/java/javaee/tech/webapps-138511.html.

JAVA PET STORE. 2006. Sample Java EE application. http:/java.sun.com/developer/releases/petstore/.
JBO0sS. 2011. JBoss Java application server. http://www.jboss.org.

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



1:26 A. Totok and V. Karamcheti

JDBC. 2011. Java database connectivity technology.
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html.

JETTY. 2011. HTTP server and servlet container. http://jetty.codehaus.org/jetty/.

KLEINROCK, L. 1975. Queueing Systems. Wiley, Hoboken, NdJ.

LLAMBIRI, D., TOTOK, A., AND KARAMCHETI, V. 2003. Efficiently distributing component-based applica-
tions across wide-area environments. In Proceedings of the 23rd International Conference on Distributed
Computing Systems (ICDCS’03). IEEE, Los Alamitos, CA.

MARINESCU, F. 2002. EJB Design Patterns: Advanced Patterns, Processes, and Idioms. Wiley, Hoboken, NdJ.

MARRS, T. AND DAVIS, S. 2005. JBoss at Work: A Practical Guide. O’Reilly Media, Sebastopol, CA.

MENASCE, D., ALMEIDA, V., FONSECA, R., AND MENDES, M. 1999. A methodology for workload character-

ization of e-commerce sites. In Proceedings of the 1st ACM Conference on Electronic Commerce (EC’99).
ACM, New York.

MENASCE, D., ALMEIDA, V., RIEDI, R., RIBEIRO, F., FONSECA, R., AND MEIRA, W. 2000. In search of
invariants for e-business workloads. In Proceedings of the 2nd ACM Conference on Electronic Commerce
(EC’°00). ACM, New York.

MOSKALYUK, A. 2006. IT Facts: e-commerce research blog on ZDNet.com, Nov. 2006.
http://blogs.zdnet.com/ITFacts/?p=12030.

MyYSQL. 2011. MySQL Database. http://www.mysql.com/.

PECAUT, D., SILVERSTEIN, M., AND STANGER, P. 2000. Winning the online consumer: Insights into online
consumer behavior, Boston Consulting Group. http://www.bcg.com.

RoUSSAS, G. 1997. A Course in Mathematical Statistics. Academic Press, Amsterdam.

SELVRIDGE, P., CHAPARRO, B., AND BENDER, G. 2001. The world wide wait: Effects of delays on user
performance. Int. J. Industrial Ergonomics 29, 1, 15-20.

SHI, W., WRIGHT, R., COLLINS, E., AND KARAMCHETI, V. 2002. Workload characterization of a personal-
ized Web site — and its implications for dynamic content caching. In Proceedings of the 7th International
Workshop on Web Caching and Content Distribution (WCW’02). IWCW, Boulder, CO.

SINGH, I., STEARNS, B., JOHNSON, M., AND THE ENTERPRISE TEAM. 2002. Designing Enterprise Applica-
tions with the J2EE Platform. Addison-Wesley, London.

TEDESCHI, B. 2005. Glitches in booking first class online. The New York Times (4/10/05), Travel Section, 6.

TOTOK, A. AND KARAMCHETI, V. 2007. Modeling of concurrent web sessions with bounded inconsistency in
shared data. J. Parall. Distrib. Comput. 67,7, 830—847.

TOTOK, A. AND KARAMCHETI, V. 2010a. Optimizing utilization of resource pools in web application servers.
Concurrency Comput: Pract. Exper. 22, 18, 2421-2444.

TOTOK, A. AND KARAMCHETI, V. 2010b. RDRP: Reward-driven request prioritization for e-commerce web
sites. Electron. Commerce Res. Appl. 9, 6, 549-561.

TPC-W. 2005. Transaction Processing Performance Council. Transactional web e-commerce benchmark.
http://www.tpc.org/tpcw/.

TPC-W-NYU. 2006. A Java EE implementation of the TPC-W benchmark.
http://www.cs.nyu.edu/totok/professional/software/tpcw/tpcw.html.

VANBOSKIRK, S., L1, C., AND PARR, J. 2001. Keeping customers loyal. Forrester Research, May.
http://www.forrester.com.

WANG, M., CHAN, N., PAPADIMITRIOU, S., FALOUTSOS, C., AND MADHYASTHA, T. 2002. Data mining
meets performance evaluation: Fast algorithms for modeling bursty traffic. In Proceedings of the 18th
International Conference on Data Engineering (ICDE’02). IEEE, Los Alamitos, CA.

WONG, M. H. AND AGRAWAL, D. 1992. Tolerating bounded inconsistency for increasing concurrency in

database systems. In Proceedings of the 11th Symposium on Principles of Database Systems (PODS’92).
ACM, New York.

Received July 2009; revised July 2010; accepted February 2011

ACM Transactions on Internet Technology, Vol. 11, No. 1, Article 1, Publication date: July 2011.



