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Abstract. In light of the growing market of Ad Exchanges
for the real-time sale of advertising slots, publishers face new
challenges in choosing between the allocation of contract-based
reservation ads and spot market ads. In this setting, the pub-
lisher should take into account the tradeoff between short-term
revenue from an Ad Exchange and the long-term benefits of de-
livering good quality spots to the reservation ads. In this paper,
we formalize this combined optimization problem as a stochas-
tic control problem and derive an efficient policy for online ad
allocation in settings with general joint distribution over place-
ment quality and exchange bids. We prove asymptotic optimal-
ity of this policy in terms of any trade-off between quality of
delivered reservation ads and revenue from the exchange, and
provide a rigorous bound for its convergence rate to the optimal
policy. We also give experimental results on data derived from
real publisher inventory, showing that our policy can achieve any
Pareto-optimal point on the quality vs. revenue curve. Finally,
we study a parametric training-based algorithm in which instead
of learning the dual variables from a data sample (as is done
in non-parametric training-based algorithms), we learn the pa-
rameters of the distribution and construct those dual variables
from the learned parameter values. We compare parametric and
non-parametric ways to estimate from data both analytically and
experimentally in the special case without the ad exchange, and
show that though both methods converge to the optimal policy as
the sample size grows, our parametric method converges faster,
and thus performs better on smaller samples.

1 Introduction
Ad Exchanges like RightMedia, AdECN or DoubleClick
are an emerging market for the real-time sale of online
ad slots on the Internet. While exchanges differ in their
implementations, in a generic Ad Exchange (AdX) [17],
publishers post an ad slot with a reservation price, adver-
tisers post bids, and an auction is run; this happens be-
tween the time a user visits a page and the ad is displayed.
Thus AdX implements a spot market for display ads.
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From the publisher’s point of view, the goal is to maxi-
mize revenue gained from sale of the ad inventory. In iso-
lation, this problem is similar to optimal auction design,
and Myerson [18] shows that the optimal reserve price can
be calculated from the bid distribution. However, AdX
represents only one possible sales outlet for the publisher.
In fact, even in the presence of this efficient real-time mar-
ket, many web publishers still get a significant portion of
their revenue from making individual deals with specific
advertisers or agencies. These deals usually take the form
of a specific number of ad impressions reserved over a
particular time horizon (e.g., one million impressions over
a month). A publisher can make many such deals with dif-
ferent advertisers, with potentially sophisticated relation-
ships between the advertisers’ targeting criteria. So for
a given piece of ad inventory, the publisher must quickly
decide whether to send the inventory to AdX (and at what
price), or to assign it to an advertiser with a reservation.

In this paper, we study the problem faced by the pub-
lisher, jointly optimizing over AdX and the reservations.
We bring to bear techniques from revenue management
and stochastic optimization, and derive an efficient policy
for making real-time ad allocation decisions. We prove
that our policy is asymptotically optimal in terms of an
arbitrary (i.e., publisher-defined) trade-off between qual-
ity delivered to reservation ads and revenue from the ex-
change. Our policy and analysis is quite general, and
works for any joint distribution over placement quality
and exchange bids, even allowing correlation between ad-
vertisers, or between quality and exchange bids. In partic-
ular, we provide a rigorous bound on the convergence rate
of our policy to the optimal policy (Theorem 2). Typically
ad allocation research compares to the optimal offline pol-
icy in hindsight; instead, we compare our policy with an
optimal online policy, obtaining a bound on regret, as in
online machine learning. We also give experimental re-
sults on data derived from real publisher inventory, show-
ing that our policy can achieve any Pareto-optimal point
on the quality vs. revenue curve.

A special case of our model is one without the ad ex-
change, where the publisher needs only to choose be-

1

ar
X

iv
:1

10
2.

25
51

v1
  [

m
at

h.
O

C
] 

 1
3 

Fe
b 

20
11



tween reservation ads, maximizing quality while respect-
ing reservations. A well-studied technique for this prob-
lem in the algorithms literature is to solve an optimiza-
tion problem on a data sample, then use the dual vari-
ables online for the remaining inventory. Interestingly,
when one specializes our policy to the case without an
exchange, a similar dual program emerges; however in
our parametric model, the dual variables are derived al-
gebraically from the parameters of the distribution rather
than from the data. Of course in practice, parameters must
be learned from data; thus a fair comparison to the known
sampling-based methods is to allow our policy to learn
its parameters from the same-sized sample. We perform
this comparison both analytically and experimentally, and
show that though both methods converge to the optimal
policy as the sample size grows, our parametric method
converges faster, and thus performs better on smaller sam-
ples. Our analysis may be of independent interest as a
general comparison of parametric vs. non-parametric es-
timators of distribution quantiles.

2 Model
Consider a publisher displaying ads in a web page. The
publisher signs contracts with a set A of advertisers
guaranteeing them a certain number of targeted impres-
sions within a given time horizon. We denote by A =
{1, . . . , A} the set of advertisers. We assume that a total
of N users arrive in the time horizon. The web page has
a single slot for ads, and each user is shown at most one
impression per page.

Users have different characteristics, and depending on
their profile they may be more or less attractive for differ-
ent advertisers. We assume that the n-th impression is en-
dowed with a vector of qualitiesQn = {Qn,a}a∈A, where
Qn,a is the predicted quality advertiser a would perceive
if the impression is assigned to her. Furthermore, qual-
ities {Qn}n=1,...,N are random, independent, and iden-
tically distributed; however, we do allow qualities to be
jointly distributed across advertisers. This captures the
fact that advertisers might have similar target criteria, and
hence the qualities perceived might be correlated. Quali-
ties are, hence, drawn independently from the same joint
c.d.f G(·). We do not impose any further restrictions on
the qualities, other than finite second moments.

The publisher has agreed to deliver exactly Ca impres-
sions to advertiser a ∈ A; neither over-delivery nor under-
delivery is allowed. We denote by ρ = {ρa}a∈A with
ρa = Ca

N , the capacity to impression ratio of each adver-
tiser. Note that a necessary condition for the feasibility of
the operation is that the number of arriving impressions
suffices to satisfy the contracts, or

∑
a∈A ρa ≤ 1. An

Impression n-th
arrives with
quality Qn

Assign to an advertiser or discard

Submit to AdX
with price p

Obtain payment

Assign to an
advertiser or
discard

ac
ce

pt

reject

Figure 1: Publisher’s decision tree for a new impression.

assumption of this general model is that any user can be
potentially assigned to any advertiser. In practice each
advertiser may be interested in a particular group of user
types. It is important to note that this is not a limitation of
our results, but rather a modeling choice; in §F.4 we show
how to handle targeting criteria by setting Qn,a = −τa
for impressions not matching the targeting criteria of an
advertiser. This can also be interpreted as forcing the pub-
lisher to pay a penalty to the advertisers each time an un-
desired impression is incorrectly assigned.

Arriving impressions may either be assigned to the
advertisers, discarded or auctioned in the Ad Exchange
(AdX) for profit. In AdX [17], the publisher contacts the
exchange with a minimum price she is willing to take for
the slot. Additionally, the publisher may submit some
partial information of the user visiting the website. For
simplicity, we first assume that no information about the
user is revealed. However, in section F.3 we relax this as-
sumption. Internally the exchange contacts different ad
networks, and in turn they return bids for the slot. The
exchange determines the winning bid among those that
exceed the reserve price via an auction, and returns a pay-
ment to the publisher. In this case we say that the impres-
sions is accepted, and the publisher is contractually obli-
gated to display the winning impression. In the case that
no bid attains the reserve price, no payment is made and
the impression is rejected. We present the formal model of
the exchange in Section 2.2. The entire operation above is
executed before the page is rendered in the user’s screen.
Thus, in the event that the impression is rejected by the ex-
change, the publisher may still be able to assign it to some
advertiser. Figure 1 summarizes the decisions involved.

For notational simplicity we extend the set of advertis-
ers toA0 = {0}∪A by including an outside option 0 that
represents discarding an impression. We set the quality of
the outside option identically to zero, i.e. Qn,0 = 0 for
all impressions n = 1, . . . , N . In the following, the terms
discarding an impression or assigning it to advertiser 0 are
used interchangeably. We set ρ0 = 1 −

∑
a∈A ρa to be

the fraction of impressions that are not assigned to any
advertiser. To wit, a fraction of the ρ0 impressions will
be assigned to the winning impression of AdX, and the
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remainder effectively discarded.

2.1 Objective The publisher’s problem is to maximize
the overall placement quality of the impressions assigned
to the advertisers together with the total revenue obtained
with AdX, while complying with the contractual obliga-
tions. Note that the objectives are potentially conflicting;
in the short-term, the publisher might boost the revenue
stream from AdX at the expense of assigning lower qual-
ity impressions to the advertisers. In the long term, how-
ever, it may be convenient for the publisher to prioritize
her advertisers, in view of attracting future contracts.

We attack the multi-objective problem by taking a
weighted sum of both objectives. The publisher has at
her disposal a parameter γ, which allows her to trade-off
between these conflicting objectives. The aggregated ob-
jective is given by

yield = revenue(AdX) + γ · quality(advertisers),

Hence, by choosing a suitable large γ the advertisers may
focus on assigning high quality impressions to the adver-
tisers; while a small γ would prioritize the revenue from
AdX. Without loss of generality, we set γ = 1 for the
remainder of this paper, except when noted otherwise.

2.2 AdX Model The publisher submits an impression
to AdX with the minimum price it is willing to take, de-
noted by p ≥ 0. The impression is accepted if there is a
bid of value p or more. We denote by B the winning bid
random variable. In the following we assume that bids are
independent of the quality of the impression, and identi-
cally distributed according to a c.d.f. F (·). Hence, the im-
pression is accepted with probability 1 − F (p) = F̄ (p).
In this first model, when the impression is accepted, the
publisher is paid the minimum price p. In Sections F.2
and F.3 we drop this assumption and consider a more gen-
eral second-price auction with side information.

Suppose the publisher has computed an opportunity
cost c for selling this inventory in the exchange; that is,
the publisher stands to gain c if the impression is given to
a reservation advertiser.

Given opportunity cost c ≥ 0 the publisher picks
the price that maximizes its expected revenue. Hence,
the publisher solves the optimization problem R(c) =
maxp≥0 F̄ (p)p+ F (p)c. Changing variables, we can de-
fine r(s) = sF̄−1(s) to be the expected revenue under
acceptance probability s, and rewrite this as

R(c) = max
s∈[0,1]

r(s) + (1− s)c. (1)

Also, let s∗(c) = min {arg max0≤s≤1 r(s) + (1− s)c}

be the least maximizer of (1), and p∗(c) = F̄−1 (s∗(c))
be the price that verifies the maximum.

Assumption 1 The expected revenue under survival
probability s is continuous, concave, non-negative,
bounded, and satisfies lims→0 r(s) = 0. We call a func-
tion r(s) that satisfies all of the assumptions above a reg-
ular revenue function.

These assumptions are common in RM literature (see,
e.g., [9]). A sufficient condition for the concavity of
the revenue is that B has increasing generalized failure
rates [13]. Regularity implies, among other things, the ex-
istence of a null price p∞ such that limp→p∞ F̄ (p)p = 0.

Proposition 1 Suppose that r(s) is regular revenue func-
tion. Then, R(c) is non-decreasing, convex, continuous,
and R(c) ≥ c. Additionally, R(c) − c is non-increasing,
s∗(c) is non-increasing, and p∗(c) is non-decreasing.

An important consequence of above is that the maxi-
mum revenue expected from submitting an impression to
AdX is always greater than the opportunity cost. This
should not be surprising, since the publisher can pick a
price high enough to compensate for the revenue loss of
not assigning the impression. Hence, assigning an impres-
sion directly to an advertiser (rather than first testing the
exchange) is never the right decision, and so in Figure 1
the upper branch is never taken.

In §F.2 we show that r(s) remains regular in the pres-
ence of multiple bidders in the AdX by considering the
joint density of the highest and second-highest bids (given
by [12]).

3 Our Bid-Price Control Policy
We can formulate an optimal control policy for yield max-
imization based on dynamic programming (DP), where
the state of the system is represented by the number of
impressions yet to arrive, and a vector of the number of
impressions needed to comply with each advertiser’s con-
tract. We present the details of this DP in Section A. Un-
fortunately, the state space of the DP has size O(NA+1),
and in most real-world problems the number of impres-
sions in a single horizon can be in the order of millions,
and so the DP is not efficiently solvable. Thus, here
we give an approximation algorithm in which stochas-
tic quantities are replaced by their expected values, and
are assumed to be continuous. Such “deterministic ap-
proximation problems (DAP)” are popular in RM (see,
e.g., [22]). In our setting, the approximation we make
is to enforce contracts to be satisfied only in expectation.
In §3.1, we formulate and solve an optimization problem
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based on this assumption, then in §3.2 wrap a full stochas-
tic policy around it (one that always meets the contracts,
not just in expectation).

3.1 Deterministic Approximation Problem (DAP)
When an impression arrives, the publisher controls the re-
serve price submitted to AdX, and the advertiser to whom
the impression is assigned, if rejected by AdX. Alterna-
tively, in this formulation we state the controls in terms of
total probabilities, where each control is a function from
the quality domain to [0, 1]. Let ~s = {sn(·)}n=1,...,N

and~ı = {in(·)}n=1,...,N be vectors of controls, such that
when the nth impression arrives with quality Q the im-
pression is accepted by AdX with probability sn(Q), and
with probability in,a(Q) it is assigned to advertiser a. The
conditional probability of an impression being assigned to
advertiser a given that it has been rejected by AdX is given
by In,a(Q) = in,a(Q)/(1− sn(Q)).

We denote byP the set of feasible controls. A control is
feasible if (i) the individual controls are non-negative, (ii)
it satisfies the contractual constraint in expectation, and
(iii) for every realization of the qualities the probabilities
sum up to at most one. The objective of the DAP is to
find a sequence of real-valued functions that maximize the
expected yield:

JDN = max
~s,~ı∈P

N∑
n=1

E

[
r(sn(Qn)) +

∑
a∈A

in,a(Qn)Qn,a

]

s.t.
N∑
n=1

E [in,a(Qn)] = Nρa ∀a ∈ A,∑
a∈A

in,a(Q) + sn(Q) ≤ 1, (a.s.) ∀n,

sn(Q) ≥ 0, in,a(Q) ≥ 0, (a.s.) ∀n, a ∈ A

The first term of the objective accounts for the revenue
from AdX, while the second accounts for the quality per-
ceived by the advertisers. Notice that in the DAP we wrote
the total capacity as Nρa instead of Ca to allow the prob-
lem to be scaled.

Alas, the problem is still hard to solve since the num-
ber of functions is linear in N . However, exploiting the
regularity of the revenue function, we can show that in the
optimal solution to DAP, we can drop the dependence on
n in the controls. This follows from the linearity of the
constraints together with the concavity of the objective.
We formalize this discussion in the following proposition.

Proposition 2 Suppose that the revenue function is reg-
ular. Then, there exists a time-homogenous optimal so-
lution to the DAP, i.e. where sn(Qn) = s(Qn) for all
n = 1, . . . , N and in(Qn) = i(Qn) for all n = 1, . . . , N .

The previous proposition allows us scale the problem so
that N = 1, and consider the maximum expected revenue
of one impression, denoted by JD1 . In order to compute
the DAP’s optimal solution, we consider its dual problem,
which is given by (see §B for derivation):

ψ(v) = min
v

{
ER
(

max
a∈A0

{Qa − va}
)

+
∑
a∈A

vaρa

}
(3)

Note that R is convex and non-decreasing and the max-
imum is convex w.r.t v, hence the composite function
within the expectation is convex. Using the fact that ex-
pectation preserves convexity, we obtain that the objective
ψ(v) is convex in v.

When the distribution Q is known, the dual problem in
(3) can be solved using a Subgradient Descent Method. It
is worth noting that in many applications the distribution
of Q is unknown and should be learned as impressions ar-
rive. We postpone the analysis of that problem until §E.2.
Once the optimal dual variables v are known, the primal
solution can be constructed as given in the following the-
orem.

Theorem 1 Suppose that the revenue function is reg-
ular, and there is zero probability of a tie occurring,
i.e. P{Qa − va = Q′a − v′a} = 0 for all distinct
a, a′ ∈ A0. Then, the optimal controls for the DAP
are s(Q) = s∗ (maxa∈A0

{Qa − va}), and Ia(Q) =
1 {Qa − va > Qa′ − va′ ∀a′ ∈ A0}, that is, the impres-
sion is assigned to the unique advertiser maximizing dis-
counted quality. Furthermore, the optimal dual variables
solve the equations

E [(1− s∗(Qa − va))Ia(Q)] = ρa, ∀a ∈ A.

3.2 Our Stochastic Policy The solution of the DAP
suggests a policy for the stochastic control problem, but
we must deal with two technical issues: (i) when more
than one advertiser maximizes Qa−va we need to decide
how to break the tie, and (ii) we are only guaranteed to
meet the contracts in expectation, whereas we must meet
them exactly. We defer the first issue until §B.1, where
we give an algorithm for generalizing the controls Ia(Q)
to the case where ties are possible.

In the following let xn,a be the total number of impres-
sions left to assign to advertiser a to comply with the con-
tract, and m = N − n the total number of impressions
remaining to arrive.
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Stochastic Policy µ
1. Observe state (m,X) and the realization Qn.
2. Let An = {a ∈ A : xn,a > 0}.
3. Let a∗n = arg maxa∈An∪{0} {Qn,a − va}.
4. If

∑
a∈A xn,a < m, set p = p∗(Qn,a∗n − va∗n);

else, p = p∞.
5. Submit to AdX with price p. If rejected, and a∗n 6=

0, assign to advertiser a∗n.

Notice that impressions are only assigned to advertis-
ers with contracts that have yet to be fulfilled. When all
contracts are fulfilled, impressions are sent to AdX with
the revenue maximizing price p∗(0). Moreover, when the
total number of impressions left is equal to the number of
impressions necessary to fulfill the contracts, the price is
set to p∞, and thus all incoming impressions are directly
assigned to advertisers. Hence, the stochastic policy µ
satisfies the contracts with probability 1.

4 Asymptotic Analysis
In this section we give our main result:

Theorem 2 Let JµN be the expected yield under the
stochastic policy µ, and J∗N the maximum expected yield
of any feasible stochastic policy. Then,

JµN
J∗N
≥
JµN
JDN
≥ 1− 1√

N
K(ρ),

where K(ρ) =
√

A
A+1

∑
a∈A0

1−ρa
ρa

.

In terms of regret, our previous bound can be written as
J∗N − J

µ
N ≤

√
NK(ρ)JD1 , achieving an O(

√
N) regret

w.r.t the optimal online policy. In particular, we may fix
the capacity to impression ratio of each advertiser, and
consider a sequence of problems in which capacity and
impressions are scaled up proportionally according to ρ.
Then, the yield under policy µ converges to the yield of
the optimal online policy as N goes to infinity.

Theorem 2 is proven in two steps. First, we show that
the optimal objective value of the DAP provides an up-
per bound on the objective value of the optimal policy, i.e.
J∗N ≤ JDN . For this first result, we proceed by taking the
optimal stochastic control policy, and construct a feasible
solution for the DAP by taking expectations over the his-
tory. Later, we exploit the concavity of the objective and
apply Jensen’s inequality to show that this new solution
attains a greater revenue in the DAP.

Second, we lower bound the yield of the stochastic pol-
icy in terms of the DAP objective. In proving that bound,
we look at N∗, the first time that any advertisers contract
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Figure 2: Figure 2a plots the quality and revenue relative
to the case γ = ∞, as a function of γ. Figure 2b plots,
in a quality vs. revenue graph, the objective values of the
optimal solutions for the different choices of γ, together
with the Pareto frontier. Both plots are for Instance 2,
given in §E.

is fulfilled or the point is reached where all arriving im-
pressions need to be assigned to the advertisers. We refer
to the time after N∗ as the left-over regime. The first key
observation in the proof was that before timeN∗, the con-
trols of the stochastic policy behave exactly as the optimal
deterministic controls. The second key observation was
that the expected number of impressions in the left-over
regime is O(

√
N), and the left-over regime has a small

impact on the objective. See §C for details.

5 Experiments
Experimental results on real publisher data confirm that,
as we increase the trade-off parameter γ, the quality of the
impressions assigned to the advertisers increases, while
the revenue from AdX subsides (Figure 2a). Starting from
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the baseline case that disregards the AdX (γ = ∞), we
observe that the revenue from AdX can be substantially
increased by sacrificing a small fraction of the overall
quality of the impressions assigned. More generally, the
Pareto frontier of efficiency vs. revenue (Figure 2b) is
highly concave, relatively horizontally flat around γ =∞,
and vertically flat around γ = 0; thus there are huge
marginal improvements at the extremes, and it is highly
beneficial to choose intermediate values of γ. We detail
the data model in §D, and give the full experimental re-
sults in §E.

6 Comparison to the Primal-Dual Method
Consider the allocation problem faced by a publisher in
display advertising in which arriving impressions need to
be assigned to advertisers, and there is no option of send-
ing to an exchange. This problem is a particular case of
our model where the winning bid random variable is iden-
tically zero, i.e. B = 0. The following proposition shows
that the optimal controls admit simple analytical expres-
sions.

Proposition 3 Suppose that ties have zero probability.
Then, in the case without AdX the optimal controls are
Ia(Q) = 1 {Qa − va ≥ Qa′ − va′ ∀a′ ∈ A0} where v =
{va}a∈A0

satisfies v0 = 0 and

P {Qa − va ≥ Qa′ − va′ ∀a′ ∈ A0} = ρa ∀a ∈ A.

The resulting decision rule arg maxa{Qa−va} is iden-
tical to the rule studied in previous work (e.g., [6]), where
va is an optimal dual variable resulting from solving an
assignment problem on a sample of the data, where the
distribution is unknown. Roughly speaking, in [6] (and
similarly in other work [7, 25, 1], it is shown that as long
as the sample is of size ≈ εn, the overall assignment will
be ≈ ε close to the optimal offline solution.

In our model, the parameters of the quality distribution
are known, so we do not need to use a sample. Of course
in practice, the parameters need to be learned, and so we
would need to use a sample of the data in order to learn
them; but in many settings (including online advertising)
it is reasonable to assume that we at least know the form
of the distribution (e.g., normal, exponential, Zipf), albeit
not the specific parameters (mean, variance, covariance,
etc.). The techniques in [6] are powerful because they
don’t need to assume anything about the distribution, but
it is important to ask what can be gained from knowing
the form of the distribution, which is what we do in the re-
mainder of this section, both analytically and experimen-
tally.

More formally, suppose the distribution of quality is not
known with certainty, but we have at our disposal a sample
of M quality vectors {qm}Mm=1 that may be used to pin-
down the distribution. Additionally, it is known that the
qualities are drawn independently from a population with
continuous density g(x|θ), where θ is an unknown param-
eter to be estimated. Let G(x|θ) be the c.d.f. which we
assume to be strictly monotonic. For simplicity, we deal
with the case of one advertiser with capacity to impression
ratio of ρ. From Proposition 3 the optimal DAP control is
the (1 − ρ)-quantile of Q, that is, v = Ḡ−1(ρ|θ). We
compare the asymptotic efficiency of a parametric and a
non-parametric estimation of the model.

Parametric estimation method. Let θ̂mle
M be the maxi-

mum likelihood estimator (MLE) of the unknown param-
eter θ. That is, θ̂mle

M is an optimal solution of the program
maxθ

∑M

m=1 log g(qm|θ). Once we have our estimator,
we plug-in the estimated distribution in the dual prob-
lem, and solve for the optimal dual variable v̂mle

M . Again,
from Proposition 3 we have that the optimal dual vari-
able, given our maximum likelihood estimation, is given
by v̂mle

M = Ḡ−1(ρ|θ̂mle
M ).

In turn, by the invariance property of the MLE, it is the
case that v̂mle

M is the maximum likelihood estimator of the
true optimally dual variable v (see, e.g., [4]). As a con-
sequence, under some regularity conditions, we have that
our new estimator is consistent, asymptotically efficient,
and asymptotically normal

√
M(v̂mle

M − v)⇒ N (0, u(θ)),

where the u(θ) is the Cramér-Rao lower bound on the
variance of any unbiased estimator. The Cramér-Rao

lower bound is u(θ) =
(
∂Ḡ−1

∂θ (ρ|θ)
)2

I(θ)−1, where

I(θ) = E
[(

∂
∂θ ln g(Q|θ)

)2]
is the Fisher information of

parameter θ.

Non-parametric estimation method. Considering the
Sample Average Approximation (SAA) of the dual prob-
lem (3) we can obtain a non-parametric estimator of the
truly optimal dual variable (see Chapter 5 from [20] for a
review of the topic). In a SAA the expected value of the
stochastic program is approximated by the sample aver-
age function over the observations {qm}Mm=1. In our case,
we have that

v̂M = arg min
v

1

M

M∑
m=1

max{qm − v, 0}+ ρv.
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Equivalently, the previous problem can be stated as a lin-
ear program, and in this case one obtains the training-
based Primal-Dual method as described in [6]. It
can be shown that, under some conditions, the non-
parametric estimator v̂M is consistent and asymptotically
normal [20]. As we shall see, this estimator is not nec-
essarily efficient. It is not hard to prove that the sam-
ple (1 − ρ)-quantile is an optimal solution to the SAA
problem. Hence, from the asymptotic distribution of the
(1− ρ)-quantile we have that

√
m(v̂M − v)⇒ N (0, u′(θ)),

where the variance is u′(θ) = ρ(1−ρ)
g(v|θ)2 .

Analysis. Both the parametric and the non-parametric
estimators converge, as the number of samples increases,
to the true optimal solution. However, the non-parametric
estimator is not as efficient as the parametric counterpart.
Indeed, this is expected since the maximum likelihood es-
timator is known to be asymptotically efficient. We mea-
sure the relative efficiency as the ratio of asymptotic vari-
ance of the non-parametric estimator to parametric one,
i.e. ε(θ) = u′(θ)

u(θ) .
Until now, our analysis has been in terms of the optimal

dual solution. The rationale is that the closer the dual vari-
able is to the true value v, the better the performance of the
policy should be. Next, we quantify analytically how does
a deviation from the optimal solution impacts the perfor-
mance of the policy. To assess the performance of the
policy we look at the fluid limit as described in Section I.
The next proposition shows that the relative efficiency in
terms of the performance is exactly equal to ε(θ). Hence,
there is no loss in looking at the relative efficiency of the
estimators instead.

Proposition 4 The relative efficiency of the non-
parametric estimator is

ε(θ) = ρ(1− ρ)I(θ)

(
∂Ḡ

∂θ
(v|θ)

)−2

≥ 1, (4)

which is exactly equal to the relative efficiency in terms of
the policies’ performance.

Examples. To fix ideas we consider two simple exam-
ples. First, suppose thatQ ∼ exp(θ). The maximum like-

lihood estimator is given by θ̂mle
M =

(
1
M

∑M
m=1 qm

)−1

,

and the Fisher information is I(θ) = θ−2. The optimal
dual variable is v = −θ−1 ln ρ. Hence, the relative effi-
ciency is ε(θ) = (1− ρ)/(ρ ln2 ρ). In this case, the rel-
ative efficiency is lower bounded by ε(θ) ≥ 1.544. The

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

ρ

re
la

tiv
e 

ef
fic

ie
nc

y

 

 

exponential
normal

Figure 3: Relative efficiency as a function of the capacity
to impression ratio ρ for the exponential distribution, and
the normal distribution with known variance.

lower bound is tight, and attained at ρ ≈ 0.2032. The rel-
ative efficiency as a function of the capacity to impression
ratio is plotted in Figure 3. As shown in the figure, the
relative efficiency may be arbitrarily bad as the capacity
to impression ratio gets close to zero or one.

For the next example we assume that qualities are nor-
mal with known variance σ2 and unknown mean, that is,
Q ∼ N (θ, σ2). The maximum likelihood estimator is the
sample mean, θ̂mle

M = 1
M

∑m
m=M qm, and the Fisher Infor-

mation is I(θ) = σ−2. In this case the relative efficiency
is given by ε(θ) = 2πρ(1 − ρ) exp

(
Φ−1(1− ρ)2

)
, with

Φ−1 being the inverse of the standard normal c.d.f. Here
the relative efficiency is lower bounded by ε(θ) ≥ π/2,
with the minimum attained at ρ = 1/2. Interestingly, the
relative efficiency is invariant under monotonic transfor-
mations of any random variable. Hence, the previous re-
sult holds too for the log-normal distribution.

Experiments. The previous analysis was in terms of a
single advertiser; we show experimentally that the advan-
tage of parametric estimation extends to multiple advertis-
ers as well. The computational experiment is conducted
as follows. First, a training data set of M impressions
is generated. We denote the sampled quality vectors by
{qm}Mm=1. Then, we estimate the parameters of the model
on the training set as follows. For each type we esti-
mate the type probabilities π̂T ; and mean µ̂T , and covari-
ance matrix Σ̂T of the logarithm of the qualities. Next,
the dual problem (3) is solved on the estimated paramet-
ric model using a Gradient Descent Method, which we
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describe in §H. Note that, since no AdX is considered,
the maximum expected revenue function R(·) is the iden-
tity. Using the optimal solution vEST we construct a policy
µEST as in §3.2.

Simultaneously, we employ the primal-dual (PD)
method on the training data, as in [6]. The PD method
amounts to solving a sample average approximation of
problem (3), which results in a linear program (see (15)).
The linear program is solved using CPLEX 12. Again,
using the dual optimal solution vPD we construct a policy
µPD.

Afterwards, we assess the performance of both poli-
cies using a fluid limit (i.e., we compute the performance
numerically, not experimentally; see §I). These steps are
replicated on 50 different training sample sets. Plots of
the results for one instance are shown in Figure 4. Details
of the data model are given in §D, and Table 2 in §E re-
ports the average results over the training sets for different
sizes of training sets, and instances.

Results show that for both algorithms, as the size of
the training set increases, the optimality gap decreases
at a rate of O(M

1
2 ). However, the parametric method

performs uniformly better that the non-parametric PD
method. Also, the variability across different training sets
diminishes as the size of the training set increases. In-
deed, we observe that the standard deviation over training
sets converges to zero for both methods, but the conver-
gence is faster for the parametric one. In some sense this
is expected, since the true data model follows exactly the
distributional assumptions. However, the PD method is
expected to be more robust to model misspecification.

Another experiment, though results are not reported,
was conducted to test the strength of the parametric
method on real data. We observed that, when the train-
ing set is small (around thousands), the parametric method
performs better than the non-parametric one. However, as
the sample size increases the non-parametric method out-
performs the other. The rationale for this behavior is that,
when data is scarce, the parametric method can exploit the
distributional assumptions to reconstruct a fair representa-
tion of the data. However when data is larger, the fit of our
model to real data is not perfect, and the non-parametric
method can withstand deviations more robustly.

7 Related Work
Online Allocation. Our work is closely related to online
ad allocation problems, including the Display Ads Allo-
cation (DA) problem [8, 7, 1, 25], and the AdWords (AW)
problem [16, 6]. In both of these problems, the publisher
must assign online impressions to an inventory of ads, op-
timizing efficiency or revenue of the allocation while re-
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Figure 4: Average (a) and standard deviation (b) of yield
as a function of training set sample size; results are shown
for the parametric method (EST) based on our policy µ
and the primal-dual method (PD) as in [6]. Both policies
converge to the optimal yield, but EST converges faster,
and with less variance.

specting pre-specified contracts.
In the DA problem, given a set of m advertisers with a

set Sj of eligible impressions and demand of at most n(j)
impressions, the publisher must allocate a set of n im-
pressions that arrive online. Each impression i has value
wij ≥ 0 for advertiser j. The goal of the publisher is
to assign each impression to one advertiser maximizing
the value of all the assigned impressions. The adver-
sarial online DA problem was considered in [8], which
showed that the problem is inapproximable without ex-
ploiting free disposal; using this property (that advertis-
ers are at worst indifferent to receiving more impressions
than required by their contract), a simple greedy algorithm
is 1

2 -competitive, which is optimal. When the demand of
each advertiser is large, a (1 − 1

e )-competitive algorithm
exists [8], and it is tight. The stochastic model of the
DA problem is more related to our problem. Following a
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training-based dual algorithm by Devanur and Hayes [6],
training-based (1 − ε)-competitive algorithms have been
developed for the DA problem and its generalization to
various packing linear programs [7, 25, 1]. These pa-
pers develop a (1 − ε)-competitive algorithm for online
stochastic packing problems in which OPT

wij
≥ O(m logn

ε3 )

(or OPT
wij
≥ O(m logn

ε2 ) applying the technique of [1]) and
the demand of each advertiser is large, in the random-
order and the i.i.d model.

In the AdWords (AW) problem, the publisher allocates
impressions resulting from search queries. Advertiser j
has a budget b(j) on the total spend instead of a bound
n(j) on the number of impressions. Assigning impres-
sion i to advertiser j consumes wij units of j’s budget
instead of 1 of the n(j) slots, as in the DA problem. Other
than training-based dual algorithms and primal-dual algo-
rithms that get similar bounds as in the DA problem [6],
online adaptive optimization techniques have been ap-
plied to online stochastic ad allocation [24]. Such control-
based adaptive algorithms achieve asymptotic optimality
following an updating rule inspired by the primal-dual al-
gorithms. Our work differ from all the above in three
main aspects: (i) We study both the parametric and non-
parametric models, and compare their effectiveness in
terms of the size of the sample sizes—both analytically
for various distributions and experimentally on real data
sets. (ii) Instead of using the framework of competitive
analysis and comparing the solution with the optimum so-
lution in hindsight, we compare the performance of our
algorithm with the optimal online policy, and present a
rate of convergence bound under this model. This is akin
to regret bounds found in online Machine Learning; and
(iii) None of the above work considers the simultaneous
allocation of reservation ads and ads from AdX. In par-
ticular, these previous works do not consider the trade-off
between the revenue from a spot market based on real-
time bidding and the efficiency of reservation-based allo-
cation. It is tempting to simply reduce to online stochastic
packing by considering the AdX as just another “adver-
tiser.” The problem with this is that it does not allow ad-
justing the reserve price, or allocating a reservation adver-
tiser if the AdX rejects. In fact one can make such a reduc-
tion go through by considering online decisions on pairs
of (reserve price, advertiser)s, and formalize the problem
as an online allocation problem with general packing con-
straints. After a couple more steps, one can apply the tech-
niques of [6, 7, 25, 1] to derive an online algorithm for the
combined problem. However this approach discretizes the
price space into multiples of δ; thus (a) we lose 1+δ in the
yield, (b) we increase the running time by a factor of 1

δ ,
and (c) for the the competitiveness proof to hold, the OPT

be larger than O( 1
δ
m logn
ε3 ). In addition, there is no clear

way to apply the parametric technique. The method pre-
sented in this work not only avoids this dependence, it is
a much more natural, extensible solution to the problem.

There has been recent work on display ad allocation
with both contract-based advertisers and spot market ad-
vertisers [11, 10]. These focus on “fair” representative
bidding strategies on behalf of the contract-based adver-
tisers competing with the spot market bidders [11]. This
line of work is mainly concerned with computing such fair
representative bidding strategies for contract-based adver-
tisers. Instead we focus on combined yield optimization
and present a model and an algorithm taking into account
any trade-off between quality delivered to reservation ads
and revenue from the spot market.

Revenue Management. Another stream of relevant work
is that of Revenue Management (RM). Even though RM is
typically applied to airlines, car rentals, hotels and retail-
ing [23], our problem formulation and analysis is inspired
by RM techniques. As in the prototypical RM problem,
we look for a policy maximizing the ex-ante expected rev-
enue, which can be obtained using dynamic programming
(DP). Since the resulting DP is intractable, we aim for
a deterministic version in which stochastic quantities are
replaced by their expect values and quantities assumed to
be continuous. These are common in the literature [9, 14],
and provide policies with provably good performance.

The case without AdX can be thought of as a Network
RM problem (see, e.g., [22]) in which users’ click prob-
abilities are requests for itineraries, and advertisers are
edges in the network. The only caveat is that we aim to
satisfy all contracts, or completely deplete all resources by
the end of the horizon. A popular method for controlling
the sale of inventory in revenue management applications
is the use of bid-price controls. These where originally in-
troduced by [21], and thoroughly analyzed by [22]. In this
setting, a bid-price control sets a threshold or bid price for
each advertiser, which may be interpreted as the oppor-
tunity cost of assigning one additional impression to the
advertiser. When a user arrives, an impression is assigned
to the advertiser whose click probability exceeds this op-
portunity cost in the largest amount.

From this perspective, our contribution is the inclusion
of a spot market, the exchange, as an new sales channel.
In this case, our policy is a suitable modification of a bid-
price control that takes into account AdX by incorporating
a pricing function. This pricing function quotes a reserve
price to submit to the exchange that depends on the oppor-
tunity cost of assigning the impression to an advertiser.
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8 Extensions and Conclusions
Our approach is general and applies to solve many exten-
sions of the basic problems we have described thus far:
Target Quality Constraint. Previously, we considered
the objective of a publisher as a suitable combination of
quality and AdX revenue. An alternate formulation is one
in which the publisher imposes a minimum overall qual-
ity for the impressions assigned to the advertisers. This
might be more natural for some publishers; they might
feel more comfortable specifying target quality constraint
than picking a Lagrange multiplier to weight the impact of
quality in the objective. Additionally, in some settings the
advertisers themselves might demand that certain level of
quality is guaranteed. In Section F.1, we extend our algo-
rithm to this alternative objective.
AdX with Multiple Bidders. We generalize our results to
the case where multiple buyers participate in the Ad Ex-
change. We model AdX as an auction with K risk neutral
buyers. In Section F.2 we show that all our results hold
when individual valuations are drawn independently from
the same distribution.
AdX with User Information. In most systems, the pub-
lisher shares some user information with the exchange. In
turn, the exchange may partially disclose the user infor-
mation to their advertisers. The advertisers may react to
this information, and bid strategically [17]. We extend our
model to the case when the bids from AdX are correlated
with the quality of the impression (a surrogate for user
information). This is presented in Section F.3.
User Types. We have thus far assumed that any user could
be potentially assigned to any advertiser. In practice, how-
ever, advertisers have specific targeting criteria. For in-
stance, a guaranteed contract may demand for females
with certain age range living in New York, while other
contract may demand for males in California. We show
in Section F.4 how to handle this by forcing the publisher
to pay a good-will penalty to the advertisers each time an
undesired impression is incorrectly assigned.

Our approach helps publishers determine when and
how to access AdX to complement their contract sales
of impressions. We also hope our insights here—in
particular the comparison between parametric and non-
parametric approaches—will help us understand ad allo-
cation problems more deeply.
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A Dynamic Programming Formulation
In this section we derive an optimal policy based on dynamic programming, which will not be efficient (due to the size
of the state space). Interestingly, however, the resulting Bellman equation closely resembles in form the decision rule
we use in our policy.

Let (m,X) be the state of the system, where we denote by m the total number of impressions remaining to arrive,
and by X = {xa}a∈A the number of impressions needed to comply with each advertiser’s contract. Let the value
function, denoted by Jm(X), be defined as the optimal expected revenue obtainable under state (m,X). Using the
fact that is optimal to first test the exchange, we obtain the following Bellman equation

Jm(X) = EQn
[

max
p≥0

{
F̄ (p)(p+ Jm−1(X)) + (1− F̄ (p)) max

a∈A0

{Qn,a + Jm−1(X − 1a)}
}}]

= Jm−1(X) + EQn
[
R

(
max
a∈A0

{Qn,a −∆aJm−1(X)}
)]

, (5)

where we defined 1a as a vector with a one in entry a and zero elsewhere, 10 = 0, and ∆aJm(X) = Jm(X) −
Jm(x − 1a) as the expected marginal revenue of one extra impression for advertiser a. In (5) the objective accounts
for the revenue obtained from attempting to send the impression to AdX. In the revenue has two terms that depend
on whether the impression is accepted or not by AdX. In the latter case the maximum accounts for the decision of
assigning the impression directly to the advertiser or discarding the impression (when a = 0). In (5) we used the fact
that assigning an impression directly to an advertiser is never the right decision (except in boundary conditions, see
below). The publisher, however, may choose to discard impressions with low quality after being rejected by AdX.

Our objective is to compute J∗N = JN (C). The boundary conditions are

Jm(x) = −∞, ∀X s.t. xa < 0 for some a ∈ A,

Jm(x) = −∞, ∀m <
∑
a∈A

xa.

Recall that when the contract with an advertiser is fulfilled, no extra revenue is obtained from assigning to her more
impressions. This is the case of the first boundary condition, which guarantees that advertisers whose contract is
fulfilled are excluded from the assignment. In particular, when X = 0 all remaining impressions are sent to AdX with
the revenue maximum price p∗(0) when x = 0. The second boundary condition guarantees that the contracts with the
advertisers are always fulfilled. When

∑
a∈A xa = m AdX must be bypassed, and impressions should be assigned

directly to the advertisers.
Summarizing, the optimal policy is:

Algorithm 1 Optimal policy for the case with one advertiser.
Observe state (m,X) and the realization Qn.
Let a∗ = arg maxa∈A0

{Qn,a −∆aJn−1(X)}.
Submit to AdX with price p∗ (Qi,a∗ −∆a∗Jn−1(X)).
if impression rejected by AdX and a∗ > 0 then

Assign to advertiser a∗.
end if

In the above policy, when the impression is submitted to AdX, the optimal price ponders an opportunity cost of
Qi,a∗ − ∆a∗Jn−1(X). This opportunity cost, when positive, is just the value of the impression discounted by the
loss of potential revenue from assigning the impression right now. Note that the two boundary conditions are implicit
in the optimal policy. By the first boundary condition, when the contract of an advertiser is fulfilled or xa = 0 for
some advertiser a ∈ A, the marginal expected revenue of the advertiser becomes infinity, i.e. ∆aJn−1(X) =∞, and
that advertiser is excluded from future decisions (since it is dominated at least by the outside option). By the second
boundary condition, when

∑
a∈A xa = m the expected marginal revenue of all advertisers whose contracts have

already been fulfilled (including the outside option) becomes negative infinity. Hence, the set of available advertisers
is restricted to those whose contract is yet to be fulfilled. This guarantees that the policy complies with the contracts.

12



B Derivation of the Dual to DAP
The DAP is given by:

JDN = max
~s,~ı∈P

N∑
n=1

E

[
r(sn(Qn)) +

∑
a∈A

in,a(Qn)Qn,a

]

s.t.
N∑
n=1

E [in,a(Qn)] = Nρa ∀a ∈ A, (6a)∑
a∈A

in,a(Q) + sn(Q) ≤ 1, (a.s.) ∀n, (6b)

sn(Q) ≥ 0, in,a(Q) ≥ 0, (a.s.) ∀n, a ∈ A

To find the dual, we introduce Lagrange multipliers v = {va}a∈A for the capacity constraints (6a), and multiplier
λ(Q) ≥ 0 for constraint (6b). Additionally, non-negativity constraints are kept in the feasible set. The Lagrangian,
denoted by L(s, i; v, λ) is

L(s, i; v, λ) = E

[
r(s(Q)) +

∑
a∈A

ia(Q)Qa

]

− E

[∑
a∈A

va (ia(Q)− ρa) + λ(Q)

(∑
a∈A

ia(Q) + s(Q)− 1

)]
.

The dual function, denoted by φ(v, λ), is the supremum of the Lagrangian over the feasible set. Thus, we have that

φ(v, λ) = sup
s(·)≥0,ia(·)≥0

L(s, i; v, λ)

= sup
s(·)≥0

E [r(s(Q)) + (1− s(Q))λ(Q)] +
∑
a∈A

vaρa

+
∑
a∈A

sup
ia(·)≥0

E [ia(Q) (Qa − va − λ(Q))]

= ER(λ(Q)) +
∑
a∈A

vaρa +
∑
a∈A

sup
ia(·)≥0

E [ia(Q) (Qa − va − λ(Q))] ,

where the first equation follows because the objective is separable, and the last equation from solving the AdX vari-
ational problem. In order for the dual function to be finite we require that Qa − va ≤ λ(Q) almost surely in Q.
Otherwise, the dual function is unbounded.

Next, the dual problem is minv,λ(·)≥0 φ(v, λ). When the revenue function is regular the DAP’s objective is concave
and bounded from above. Moreover, the constraints of the primal problem are linear, the feasible set convex, and 0
is an interior solution w.r.t constraints (6a), and (6b). Hence, by the Strong Duality Theorem (p.224 in [15]) the dual
problem attains the primal objective value. So, we have that

JD1 = min
v,λ(·)

ER(λ(Q)) +
∑
a∈A

vaρa

s.t. λ(Q) ≥ Qa − va, ∀Q, a (7)
λ(Q) ≥ 0 ∀Q.

In the dual problem, λ(Q) is bounded from below byQa−va for all a ∈ A0, with v0 = 0. Because the optimal AdX
revenue functionR is non-decreasing and the problem is to minimize the objective, it should be the case that the bound
is tight in the optimal solution. Thus, we let λ(Q) = maxa∈A0

{Qa − va}, and obtain the equivalent minimization
problem
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min
v

{
ER

(
max
a∈A0

{Qa − va}
)

+
∑
a∈A

vaρa

}
. (8)

B.1 Handling ties Theorem 1 had an assumption that there would be no ties between advertisers verifying the
maximum Qa − va. In this section we address this situation. Devanur and Hayes [6] proposed introducing small
random and independent perturbations to the qualities, or smoothing the dual problem to break ties. We provide an
alternate method that directly attacks ties, and provides a randomized tie-breaking rule. Computing the parameters
of the tie-breaking rule requires solving a flow problem on a graph of size 2|A|; thus in some settings it may not be
possible. In section H, we show that in practice ties do not occur frequently. However, for completeness we provide a
full characterization of the problem.

For any non-empty subset S ⊆ A0, we define a S-tie as the event when the maximum is verified exactly by all
the advertisers a ∈ S, and the impression is rejected by AdX. Note that the tie may be a singleton, in the case that
exactly one advertiser verifies the maximum. Since the dual variables v are known, the probability of such event can
be written as

P(S-tie) = E
[(

1− s∗(λ(Q)
)
1
{
Qa − va = λ(Q) ∀a ∈ S, Qa − va < λ(Q) ∀a /∈ S

}]
,

where λ(Q) = maxa∈A0
{Qa−va}. With some abuse of notation we define the ∅-tie as the event when the impression

is accepted by AdX, that is, P(∅-tie) = E[s∗(λ(Q))]. Note that the tie events induce a partition of the quality space,
and we have that

∑
S⊆A0

P(S-tie) = 1.
We look for a random tie-breaking rule that assigns an arriving impression to advertiser a ∈ S with conditional

probability Ia(S) given that a S-tie occurs. Hence, the routing probabilities depend on which advertisers tie, and not
on the particular realization of the qualities (they are independent of λ(Q)). Therefore, under such policy the total
probability, originating from S-ties, of an impression being assigned to advertiser a is ya(S) = P(S-tie)Ia(S). We
can interpret ya(S) as the normalized flow of impression assigned to the advertiser originating from S-ties. We will
show that, in terms of ya(S) as decision variables, finding the tie-breaking rule amounts to solving a transportation
problem.

First, in order for the publisher to fulfill the contract with an advertiser a ∈ A the incoming flow of impressions
over all possible ties sums up to ρa. The previous constraint can be written as∑

S⊆A0:a∈S

ya(S) = ρa, ∀a ∈ A. (9)

Notice that we impose no constraints for a = 0 since any number of impressions can be discarded. Alternatively, we
could set ρeff

0 = 1 − P(∅-tie) −
∑
a∈A ρa because the impressions effectively discarded are those that are rejected

by AdX and not assigned to an advertiser. Second, the outgoing flow of impressions originating from a particular tie
should sum up to the actual probability of that tie occurring. Then, we have that∑

a∈S
ya(S) = P(S-tie), ∀S ⊆ A0. (10)

Third, we require that ya(S) ≥ 0 for all S ⊆ A0 and a ∈ S. Finally, in order to obtain the tie-breaking rule we need
a non-negative flow satisfying constraints (9) and (10). Once a such solution is found, the optimal controls can be
computed as

Ia(Q) =

{
ya(S)/P(S-tie) if a ∈ S, and Q is an S-tie,
0 otherwise,

s(Q) = s∗
(

max
a∈A0

{Qn,a − va}
)
.
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It is not hard to see that the previous problem can be stated as a feasible flow problem in a bipartite graph. We briefly
describe how to construct such graph next. On the left-hand side of the graph we include one node for each non-empty
subset S ⊆ A0, and in the right-hand side we add one node for each advertiser a ∈ A0. In the following we refer
to nodes in the left-hand side as subset nodes, and to those in the right-hand side as advertiser nodes. The supply for
subset nodes is P(S-tie), while the demand for advertiser nodes is ρa. Arcs in the graph represent the membership
relation, i.e., the subset node S and advertiser node a are connected if and only if a ∈ S. Moreover, arc capacities are
set to infinity. In Figure 5 the resulting bipartite graph is shown.

Subset nodes
S ⊆ A0, S 6= ∅

Advertiser nodes
a ∈ A0

S1

S2

...

S2A

0

1

...

A

ρeff
0

ρ1

ρA

P(S1)

P(S2)

P(S2A)

Figure 5: Bipartite flow problem solved to obtain the tie-breaking rule. On the left-hand side of the graph we include
one node for each non-empty subset S ⊆ A0 (subset nodes), and in the right-hand side we add one node for each
advertiser a ∈ A0 (advertiser nodes). The supply for subset nodes is P(S-tie), while the demand for advertiser nodes
is ρa. Arcs in the graph represent the membership relation, i.e., the subset node S and advertiser node a are connected
if and only if a ∈ S. Arc capacities are set to infinity.

An important question is whether the flow problem admits a feasible solution. The next result proves that the answer
is affirmative when the dual variables v are optimal for the dual problem (3). The proof proceeds by casting the feasible
flow problem as a maximum flow problem, and then exploiting the optimality conditions of v to lower bound every
cut in the bipartite graph.

Proposition 5 Suppose that v ∈ RA is an optimal solution for the dual problem (3). Then, there exists a non-negative
flow satisfying constraints (9) and (10).

We conclude this section by showing that the solution constructed is optimal for the primal problem. Notice that the
solution is feasible because it satisfies constraints (9) and (10). In order to prove optimality it suffices to show that it
attains the dual objective value, or that it satisfies the complementary slackness conditions. The latter follows trivially.

Once the optimal controls are calculated, we construct our stochastic policy as follows.

Stochastic Policy µ

1. Observe state (m,X) and the realization Qn.

2. Let An = {a ∈ A : xn,a > 0}.
3. Let A∗n = arg maxa∈An∪{0} {Qn,a − va}.
4. If

∑
a∈A xn,a < m, set p = p∗(maxa∈An∪{0} {Qn,a − va}); else, p = p∞.

5. Submit to AdX with price p. If rejected, and A∗n 6= {0}, assign to advertiser a in A∗n with probability
Ia(Qn)/

∑
a′∈A∗n

Ia′(Qn).

Notice that impressions are only assigned to advertisers with contracts that have yet to be fulfilled. Additionally, as
the contracts of some advertisers are fulfilled, these are excluded of the assignment, and the routing probabilities Ia(·)
of the remaining advertisers are scaled-up and normalized.
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C Proof of the Main Result
In this section we prove Theorem 2. We proceed in the following way. First, we formulate the problem as a stochastic
control problem (SCP). Though not practical, this abstract and equivalent formulation is useful from a theoretical point
of view. Second, we show that the optimal objective value of the DAP provides an upper bound on the objective value
of the SCP. Finally, we show that the upper bound is asymptotically tight.

A stochastic control policy maps states of the system to control actions (prices and target advertiser), and is adapted
to the history up to the decision epoch. We restrict our attention to policies that always submit the impression to AdX,
which were argued to be optimal. Recall that given the reserve price, the publisher knows the actual probability that
the impression is accepted by AdX. As before, we recast the problem in terms of the survival probability control.
Hence, the publisher picks the probability that the impression is accepted. Conversely, given a survival probability the
reserve price can be easily computed using F̄−1(·). We denote by sµn(Q) the target survival probability under policy µ
at time n when an impression with quality Q arrives. Similarly, we let Iµn,a(Q) indicate whether the nth impressions is
assigned to advertiser a or not when policy µ is used. In particular, Iµn,a(Q) = 1 indicates that the impression should
be assigned to the advertiser if rejected by AdX.

We let the binary random variable Xn(sµn(Q)) indicate whether the nth impression is accepted by AdX or not
when policy µ is used. Specifically, Xn(sµn(Q)) = 1 indicates that the impression is accepted by AdX, and when
Xn(sµn(Q)) = 0 the impression is rejected by AdX. Notice that, conditioning on the quality of the impression and the
history, Xn(sµn(Q)) is a Bernoulli random variable with success probability sµn(Q).

We denote by M the set of admissible policies, i.e. policies that are non-anticipating, adapting and feasible. A
feasible policy should satisfy the contractual obligations with each advertiser, or equivalently the number of impres-
sions assigned to advertiser a should be exactly equal to Ca in an almost sure sense. Additionally, the target advertiser
controls should satisfy that

∑
a∈A I

µ
n,a(Q) ≤ 1, since the impression should be assigned to at most one advertiser.

Finally, the equivalent stochastic optimal control problem is

J∗N = max
µ∈M

E

[
N∑
n=1

r(sµn(Qn)) + [1− sµn(Qn)]
∑
a∈A

Iµn,a(Qn)Qn,a

]

s.t.
N∑
n=1

[1−Xn(sµn(Qn))] Iµn,a(Qn) = ρaN (a.s.) ∀a ∈ A, (11)∑
a∈A

Iµn,a(Qn) ≤ 1, (a.s.) ∀n,

0 ≤ sµn(Qn) ≤ 1, Iµn,a(Qn) ∈ {0, 1}, (a.s.) ∀n, a

where J∗N denotes the optimal expected revenue over the set of admissible policiesM. The objective follows from
the fact that conditioning on the quality of the impression and the history, Xn(sµn(Q)) is a Bernoulli random variable.
The first term of each summand in the objective accounts for the revenue obtained from AdX when the impression is
accepted, while the second term accounts for the yield obtained when the impression is rejected and later assigned to
an advertiser. By the Principle of Optimality it is the case that the dynamic program described in section A provides
an optimal solution to the SCP [2].

We are now ready to prove the two theorems that imply Theorem 2. We first show the following:

Proposition 6 The optimal objective value of the DAP provides an upper bound on the objective value of the optimal
policy, i.e. J∗N ≤ JDN .

Proof: Let µ∗ be the optimal policy for the stochastic control problem. Let ŝ = {ŝn(·)}n=1,...,N and ı̂ =
{ı̂n(·)}n=1,...,N be deterministic vectors of controls defined as

ŝn(Q) = EFn
[
sµ
∗

n (Q) | Q
]

∀Q pointwise,

ı̂n,a(Q) = EFn
[
(1− sµ

∗

n (Q))Iµ
∗

n,a(Q) | Q
]

∀Q pointwise, a ∈ A,
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where the expectation is taken over the history of the system until n, which is denoted by Fn, and conditional on a
particular realization ofQ. The resulting controls are independent of the history, and dependent only on the realization
of Q and the impression number n. Thus, they fulfills the first approximation and they are valid deterministic vectors
of controls. We will show that (ŝ, ı̂) is feasible for the DAP, and that its objective value (in the DAP) dominates the
optimal objective value of the SCP. Then, we may conclude that J∗N ≤ JDN (ŝ, ı̂) ≤ JDN , because no feasible solution
is better than the optimal.

First, for the contract fulfillment constraint we have that for each advertiser a ∈ A

Ca = E

[
N∑
n=1

(1−Xn(sµ
∗

n (Qn)))Iµ
∗

n,a(Qn)

]

=

N∑
n=1

E
[
EFn

[
(1− sµ

∗

n (Qn))Iµ
∗

n,a(Qn) | Qn
]]

=

N∑
n=1

E [̂ın,a(Q)] ,

where the first equality follows from taking expectations to the almost sure contract fulfillment constraint of µ∗, the
second from the tower rule, and the third from substituting ŝ and ı̂ pointwise for all Q and the fact that impressions are
i.i.d. Non-negativity of the controls follows trivially. Additionally, is it not hard to show that

∑
a∈A ı̂n,a(·)+sn(·) ≤ 1

for all n. Thus, (ŝ, ı̂) is a feasible deterministic control.
Second, the objective value of the optimal stochastic control is bounded by

J∗N = E

[
N∑
n=1

EFn
[
r
(
sµ
∗

n (Qn)
)
| Qn

]
+
∑
a∈A

Qn,aEFn
[
(1− sµ

∗

n (Qn))Iµ
∗

n,a(Qn) | Qn
]]

≤ E

[
N∑
n=1

r (ŝn(Qn)) +
∑
a∈A

Qn,a ı̂n,a(Q)

]
= JDN (ŝ, ı̂),

where the first equality follows from the tower rule and because Qn is measurable w.r.t. the conditional expectation,
and the inequality from applying Jensen’s inequality to the concave revenue function.

Now we complete the proof of Theorem 2 by bounding the yield of the stochastic policy in terms of the DAP
objective.
Proof of Theorem 2: The first bound follows from Proposition 6.

Let Sµn,a =
∑n
i=1 (1−Xi(s

µ
i (Qi))) I

µ
i,a(Qi) be the total number of impressions assigned to advertiser a by time n

when following the stochastic policy µ. Additionally, we denote by Sµn = {Sµn,a}a∈A the random vector of impressions
assigned to advertisers. Then, xn,a = Ca − Sµn,a is the total number of impressions left to assign to advertiser a to
fulfill the contract, and m = N − n is the total number of impressions remaining to arrive.

To simplify the proof, we let C0 = N −
∑
a∈A Ca be the total number of impressions that are not assigned to any

advertiser (accepted by AdX and discarded), and we refer to Sµn,0 = n −
∑
a∈A Sn,a as total number of impressions

not assigned to any advertiser by time n when following the stochastic policy µ. Because C0 is the total number of
impressions we can dispense of, when the point is reached that Sn,0 = C0, then all remaining impressions need to be
assigned to the advertisers.

Let the random time N∗ = inf
{

1 ≤ n ≤ N : xn,a = 0 for some a ∈ A or
∑
a∈A xn,a = m

}
be the first time

that any advertiser’s contract is fulfilled or the point is reached where all arriving impressions need to be assigned to
the advertisers. Clearly, N∗ is a stopping time with respect to the stochastic process {Sµn}n=1,...,N .

In the following, let Rµn be the revenue from time n under policy µ. Similarly, we denote by Rn the revenue
from time n when the deterministic control are used in an alternate system with no capacity constraints. Because
the deterministic controls are time-homogeneous, and the underlying random variables are i.i.d., then the random
variables {Rn}n=1,...,N are i.i.d. too. Moreover, it is the case that ERn = JD1 . Notice that when n < N∗, the controls
of stochastic policy µ behave exactly as the optimal deterministic controls. Thus, Rn = Rµn for n < N∗. Using this
fact together with the fact that N∗ is a stopping time we get that

JµN = E

[
N∑
n=1

Rµn

]
= E

[
N∗∑
n=1

Rn +

N∑
n=N∗+1

Rµn

]
≥ E

[
N∗∑
n=1

Rn

]
= EN∗JD1 , (12)
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where the inequality follows from the non-negativity of the revenues, and the last equality from Wald’s equation. Then,
we conclude that JµN/J

D
N ≥ EN∗/N .

Next, we turn to the problem of lower bounding EN∗. Before proceeding we make some definitions. We define by
Sn,a the number of impressions assigned to advertiser a by time n when following the deterministic controls in the
alternate system with no capacity constraints. As for the revenues, it is the case that Sn,a = Sµn,a for n < N∗. We
define Sn,0 in a similar fashion.

Let Na = inf {n ≥ 1 : Sn,a = Ca} be the time when the contract of advertiser a ∈ A is fulfilled, and N0 =
inf {n ≥ 1 : Sn,0 = C0} be the point in time where all arriving impressions need to be assigned to the advertisers.
Even though these stopping times are defined with respect to the stochastic process that follows the deterministic
controls, it is the case that N∗ = mina∈A0

{Na}. In the remainder of the proof we study the mean and variance of
each stopping time, and then conclude with a bound for EN∗ based on those central moments.

For the case of a ∈ A, the summands of Sn,a are independent Bernoulli random variables with success probability
ρa. The success probability follows from (6a). Hence, Na is a negative binomial random variable with Ca successes
and success probability ρa. The mean and variance are given by ENa = N , and Var[Na] = N 1−ρa

ρa
, where we used

that ρa = Ca/N . Similarly, for the case of a = 0, now the summands of Sn,0 are Bernoulli random variables with
success probability ρ0. Hence, N0 is a negative binomial random variable with C0 successes and success probability
ρ0.

Finally, using the lower bound on the mean of the minimum of a number of random variables of Aven (1985) we
get that

EN∗ = E min
a∈A0

{Na} ≥ min
a∈A0

ENa −
√

A

A+ 1

∑
a∈A0

Var[Na]

= N −
√

A

A+ 1

√∑
a∈A0

N
1− ρa
ρa

= N −
√
NK(ρ). (13)

The result follows from combining (12) and (13).

A key observation in proving the last theorem was that the number of impressions in the left-over regime isO(
√
N).

In fact, using a Chernoff bound, we may show that the probability that the number of impressions in the left-over
regime exceeds a fraction of the total impressions decays exponentially fast.

Corollary 1 The probability that the number of impressions in the left-over regime exceeds a fraction ε > 0 of the
total impressions decays exponentially fast, as given by

P{N −N∗ ≥ εN} ≤
∑
a∈A0

exp(−2ε2ρaN).

Proof: We prove the complement, that is, the probability that N∗ ≥ (1 − ε)N converges exponentially fast to one.
Notice that N∗ ≥ (1 − ε)N if and only if by time (1 − ε)N the contract of each advertiser is not yet fulfilled
(S(1−ε)N,a < Ca), and the point where all impressions need to be assigned to advertisers has not been reached
(S(1−ε)N,0 < C0). Combining De Morgan’s law and Boole’s inequality we get that

P{N∗ ≥ (1− ε)N} = P{S(1−ε)N,a < Ca ∀a ∈ A0} ≥ 1−
∑
a∈A0

P{S(1−ε)N,a ≥ Ca}.

Recall that S(1−ε)N,0 is the sum of (1 − ε)N independent Bernoulli random variables with success probability
ρa. Hence, we conclude by applying Chernoff’s bound to the each summand to obtain P{S(1−ε)N,a ≥ Ca} ≤
exp(−2ε2ρaN).

Proof of Proposition 3: Because B = 0, then it is not hard to show that F̄−1(s) = 0, and that the revenue function
is r(s) = 0. Hence, the revenue function is regular and satisfies Assumption 1. Moreover, the optimal survival
probability is s∗(c) = 0, and R(c) = c. The result follows from substituting these functions in Theorem 1.
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Figure 6: Graphical representation of the empirical distribution of log-quality for a type with two advertisers (data is
log-transformed).

D Data model
In this section we give a parametric model based on our observation of real data. Our model will be slightly more
general than the discussion thus far. We characterize an impression type by the subset of advertisers T ⊆ A that are
interested on it. Although the number of types may be exponential in A, in practice we observe that a linear number of
them suffice to characterize 98% of the inventory. We observe that the predicted quality perceived by the advertisers
within a type is approximately log-normal. This can be seen in Figure 6, where the empirical distribution of log-quality
is graphically represented for a type with two advertisers (data is log-transformed). The histograms on the diagonal
show the marginal log-quality of each advertiser, which approximately resemble a normal curve. On the off-diagonals,
scatter plots show the correlation between advertisers, which is strongly positive. In some sense this is expected, since
many advertisers have similar targeting criteria.

Given a particular type T , we assume that quality follows a multivariate log-normal with mean vector µT and
covariance matrix ΣT for the advertisers in the type, and takes a value of −τa for advertisers not in the type, that is,
the advertiser pays a good-will penalty for assigned undesired impressions. The total distribution of quality is given
by the mixture of these types distribution with mixing probabilities π(T ). Thus, we have that

Q ∼

{
lnN (µT ,ΣT ), for a ∈ T,
−τa, for a 6∈ T,

w.p. π(T ).

D.1 Estimation Data from four different publishers was analyzed for a consecutive period of seven days. First, the
capacities of the reservations were used to compute the ratios ρ. Second, logs were analyzed to estimate the types
frequencies, and the parameters of the underlying log-normal distributions. Figure 7 describes Instance 1, a publisher
with 4 types and 3 advertisers. The parameters for the remaining publishers will be made available online in a later
version.

With multiple bidders, AdX runs a sealed bid second-price auction. We analyze the first and second highest bids
for the inventory submitted to AdX. In this first approach to the problem, we assume that bids are independent of the
quality of the impressions. We denote by {(Bm1 , Bm2 )}m=1,...,M the sampled highest and second highest bids from
the exchange. Sample data is used to compute the two primitives of our model: (i) the complement of the quantile of
the highest bid p(s), and (ii) the revenue function of r(s). Both functions are estimated on a uniform grid {sj}100

1 of
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Types

Advertisers

T1

T2

T3

T4

1

2

3

ρ1 = 0.4

ρ2 = 0.1

ρ3 = 0.3

π(T1) = 0.2

π(T2) = 0.3

π(T3) = 0.1

π(T4) = 0.4

Type Ads π(T ) µT ΣT

T1 {1, 2, 3} 0.2
(

7.8155
7.8155
7.8155

) (
0.3 0.1 0.1
0.1 0.3 0.1
0.1 0.3 0.1

)
T2 {1, 2} 0.3 ( 6.6755

7.0655 ) ( 0.3180 0.1649
0.1649 0.3602 )

T3 {2, 3} 0.1 ( 6.6355
7.8055 ) ( 0.4347 0.2357

0.2357 0.4367 )

T4 {1, 3} 0.4 ( 7.2155
6.9155 ) ( 0.23 0.05

0.05 0.40 )

Figure 7: Description of Instance 1.

survival probabilities in the [0, 1] range.
First, for each point in the grid j, the price pj = p(sj) is estimated as the (1 − sj)-th population quantile of the

highest bid. Then, using sampled bids, we estimate the revenue function w.r.t. to prices at the grid points as

r(pj) =
1

M

M∑
m=1

1{Bm1 ≥ pj}max{Bm2 , pj} (14)

Finally, the revenue function is obtained by composing (14) and p(s). The estimated survival probability and revenue
function from two different publishers are shown in Figure 8.

E Experimental Results
Two experiments were conducted to study our algorithm. First we study the impact of introducing an AdX on the pub-
lisher’s yield. Second, we compare the previously known primal-dual approach to ad allocation that is non-parametric
to our approach here which is parametric.

E.1 Impact of AdX This first experiment explores the potential benefits of introducing an AdX, and how the pub-
lisher can take advantage of it. We study the impact of the trade-off parameter γ on both objectives, that is, the quality
of the impressions assigned to the advertisers, and the revenue from AdX. The limiting choices of γ = 0, and γ =∞
are of particular interest. The first choice represents the case where the publisher disregards the quality of the im-
pressions assigned to the advertisers, and strives to maximize the revenue extracted from AdX. Here the publisher
strategically picks the reserve price so that just enough impressions are rejected to satisfy the contracts. In the second
choice, the publishers prioritizes the quality of the impressions assigned, and submits the remanent inventory to AdX.
We use this case as the baseline to which we compare our method.

The experiment was conducted as follows. First, we set up a grid on the trade-off parameter γ. Then, we solve the
publisher’s problem as given in (3). The resulting policies are evaluated using a fluid limit (see I). Table 1 reports the
expected quality and revenue for different choices of γ. Figure 2a plots the quality, and revenue relative to the baseline
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(a) Instance 1
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(b) Instance 2

Figure 8: Estimated survival probability and revenue function for AdX from two different publishers.

case; as a function of γ. In Figure 2b we plot, in a quality vs. revenue graph, the objective values of the optimal
solutions for the different choices of γ, together with the Pareto frontier.

Discussion. Results confirm that, as we increase the trade-off parameter γ, the quality of the impressions assigned
to the advertisers increases, while the revenue from AdX subsides. Interestingly, starting from the baseline case that
disregards the AdX (γ = ∞), we observe that the revenue from AdX can be substantially increased by sacrificing a
small fraction of the overall quality of the impressions assigned. For instance, by exploiting strategically the AdX, the
publisher can increase AdX’s revenue by 8% by giving up only 1% quality. Conversely, starting from the case that
disregards the advertiser’s quality (γ = 0), the publisher can raise the quality in a large amount at the expense of a
small decrease in AdX’s revenue.

Alternatively, the previous analysis can be understood in terms of the Pareto frontier. Results show that the Pareto
frontier is highly concave, relatively horizontally flat around γ =∞, and vertically flat around γ = 0. This explains the
huge marginal improvements at the extremes. There are several advantages to the quality vs. revenue representation.
First, the Pareto frontier allows for quick grasp of the nature of the operation. When the publisher’s current operation
is sub-optimal, its performance point should lie in the interior of the frontier. In this case, the Pareto frontier allows
the publisher to measure its efficiency, and quantify the potential benefits an optimal policy may introduce. Second,
when the choice of the trade-off parameter is not clear, the publisher may impose a lower bound on the overall quality
of the impressions, and instead maximize the total revenue from AdX. The efficient frontier provides the maximum
attainable revenue, and the proper γ to achieve the quality constraint.

E.2 Comparison with the Primal-Dual Approach In this second experiment we study the performance the our
algorithm, and contrast it with a Primal-Dual (PD) method. This experiment was discussed in §6, but we give the
full experiments and discussion here for the benefit of the reader. Since no existing PD method is known yet for the
AdX problem, we consider instead the case with no AdX. The Primal-Dual approach [6], uses a sample from data
to estimate the dual variables and uses it in a bid-price control policy. In contrast, our algorithm, as stated, assumes
the parameters of the quality distribution are known, and uses that to estimate the dual variables. So, we do not need
to use a sample. Of course in practice, the parameters need to be learned, and so we would need to use a sample of
the data in order to learn them; but in many settings (including online advertising) it is reasonable to assume that we
at least know the form of the distribution (e.g., normal, exponential, Zipf), albeit not the specific parameters (mean,
variance, covariance, etc.). The techniques in [6] are powerful because they don’t need to assume anything about the
distribution, but it is important to ask what can be gained from knowing the form of the distribution, which is what we
do in the remainder of this section.

In order to objectively assess the performance of our algorithm we adopt the user type model described in §D as a
generative model. The generative model is used to generate sample data on which both our algorithm and a PD method
are tested. The advantages of adopting a generative model are twofold. First, it allows us to compute the truly optimal

21



Instance 1
γ 0 0.001 0.01 0.05 0.075 0.1

Yield 110.94 112.78 128.81 202.46 249.11 296.95
Quality 1107.32 1779.07 1801.00 1864.95 1891.19 1913.78

Revenue 110.94 111.00 110.80 109.21 107.27 105.57

γ 0.25 0.5 0.75 1 10 ∞
Yield 590.54 1098.43 1608.80 2122.99 20764.82 ∞

Quality 1998.31 2044.89 2055.72 2061.33 2072.22 2075.52
Revenue 90.97 75.98 67.00 61.66 42.61 38.48

Instance 2
γ 0 0.001 0.01 0.05 0.075 0.1

Yield 428.73 429.02 434.22 459.57 477.39 495.66
Quality 483.02 545.27 573.23 676.34 720.31 752.35

Revenue 428.73 428.47 428.49 425.75 423.37 420.42

γ 0.25 0.5 0.75 1 10 ∞
Yield 617.04 834.39 1056.05 1279.88 9425.63 ∞

Quality 843.47 880.69 891.49 896.89 906.46 907.05
Revenue 406.17 394.05 387.43 382.99 360.99 356.11

Table 1: Expected yield, advertisers’ quality and revenue from AdX for two instances, and different choices of γ.

policy µOPT. Second, the true performance of any policy can be evaluated efficiently using a fluid limit (see Section I).
The computational experiment is conducted as follows. First, a training data set of M impressions is generated.

We denote the sampled quality vectors by {qm}Mm=1. Then, we estimate the parameters of the model on the training
set as follows. For each type we estimate the type probabilities π̂T ; and mean µ̂T , and covariance matrix Σ̂T of the
logarithm of the qualities. Next, the dual problem (3) is solved on the estimated parametric model using a Gradient
Descent Method as described in §H. Note that, since no AdX is considered, the maximum expected revenue function
R(·) is the identity. Using the optimal solution vEST we construct a policy, which be refer as µEST.

Simultaneously, we employ the PD method on the training data. The PD method amounts to solving a sample
average approximation of problem (3), which results in the following linear program

min
v,λ

1

M

M∑
m=1

λm +
∑
a∈A

ρava (15)

s.t. λm + va ≥ qm,a, ∀m, a
λm ≥ 0 ∀m.

The linear program is solved using CPLEX 12. Again, using the dual optimal solution vPD we construct a policy µPD.
Afterwards, we assess the performance of both policies using a fluid limit. These steps are replicated on 50 different

training sets. Table 2 reports the average results over the training sets for different sizes of training sets, and instances.
Plots of the results for a given instance are shown in Figure 4.

Discussion. Results show that for both algorithms, as the size of the training set increases, the optimality gap de-
creases at a rate of O(M

1
2 ). However, the parametric method performs uniformly better that the non-parametric PD

method. Additionally, the variability across different training sets diminishes as the size of the training set increases.
Indeed, we observe that the standard deviation over training sets converges to zero for both methods, but the conver-
gence is faster for the parametric one. In some sense this is expected, since the true data model follows exactly the
distributional assumptions. However, the PD method is expected to be more robust to model misspecification.
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Instance 1 (A = 3, T = 4, OPT = 2075.09)

Training
Set Size

EST PD
mean std.dev. mean. std.dev

100 2004.16 (3.42%) 33.978 1990.32 (4.08%) 37.552
1000 2053.41 (1.04%) 10.008 2047.92 (1.31%) 12.365
2500 2065.12 (0.48%) 4.956 2062.76 (0.59%) 5.838
5000 2068.44 (0.32%) 3.681 2066.99 (0.39%) 4.224

Instance 1 (A = 6, T = 10, OPT = 907.44)

Training
Set Size

EST PD
mean std.dev. mean. std.dev

1000 889.58 (1.97%) 8.861 882.77 (2.72%) 12.829
2500 894.43 (1.43%) 7.485 887.64 (2.18%) 10.418
5000 898.59 (0.98%) 5.231 892.51 (1.65%) 7.625
10000 901.13 (0.70%) 3.588 897.42 (1.10%) 4.692
25000 904.69 (0.30%) 1.712 901.97 (0.60%) 2.720
50000 905.03 (0.27%) 1.267 903.44 (0.44%) 1.567

Instance 3 (A = 17, T = 15, OPT = 894.82)

Training
Set Size

EST PD
mean std.dev. mean. std.dev

2500 859.83 (3.91%) 9.937 849.44 (5.07%) 14.615
5000 868.61 (2.93%) 5.870 861.06 (3.77%) 7.954
10000 877.59 (1.92%) 5.226 873.46 (2.39%) 6.577
25000 884.04 (1.20%) 2.585 881.13 (1.53%) 3.747
50000 887.34 (0.84%) 1.926 885.11 (1.08%) 2.728

Instance 4 (A = 14, T = 10, OPT = 928.76)

Training
Set Size

EST PD
mean std.dev. mean. std.dev

2500 892.55 (3.90%) 12.886 888.88 (4.29%) 13.427
5000 903.04 (2.77%) 8.537 901.79 (2.90%) 10.277

10000 911.25 (1.88%) 6.951 909.96 (2.02%) 6.935
25000 917.30 (1.23%) 3.353 915.81 (1.39%) 3.705
50000 921.36 (0.80%) 2.668 920.11 (0.93%) 2.716

Table 2: Experimental results comparing the performance of our parametric method (EST) with the non-parametric
primal-dual method (PD). No AdX present in this experiment.
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Another experiment, though results are not reported, was conducted to test the strength of the parametric method
on real data. We observed that, when the training set is small (around thousands), the parametric method performs
better than the non-parametric one. However, as the sample size increases the non-parametric method outperforms the
other. The rationale for this behavior is that, when data is scarce, the parametric method can exploit the distributional
assumptions to reconstruct a fair representation of the data. However when data is larger, the fit of our model to real
data is not perfect, and the non-parametric method can withstand deviations more robustly.

F Extensions
In this section we consider a number of extensions of the model and policy from the previous section.

F.1 Target Quality Constraints In section 2.1 we discussed an alternate formulation in which the publisher imposes
a minimum overall quality for the impressions assigned to the advertisers. This might be more natural for some
publishers; they might feel more comfortable specifying target quality constraint than picking a Lagrange multiplier to
weight the impact of quality in the objective. Additionally, in some settings the advertisers themselves might demand
that certain level of quality is guaranteed.

In the following, we impose that the average quality of the impressions assigned to advertiser a is larger or equal
than a threshold value `a. Now, the publisher would strive to maximize the revenue from AdX, while complying with
the target quality constraints, and the contractual obligations. The one-impression DAP would be similar, except that
the objective only accounts for AdX’s revenue, and the inclusion of the constraints

E [ia(Q)Qa] ≥ `a, ∀a ∈ A. (16)

We attack the problem, as done before, by considering its dual. Let γa ≥ 0 be the Lagrange multiplier associated
to (16). As a side note, problem (2) can be interpreted as the Lagrange relaxation of our new problem w.r.t. the target
quality constraints, and the dual variables γ as the shadow price of the target quality constraints. The new constraints
preserve the convexity of the program, and strong duality still holds. Following the same steps, we obtain the new dual
problem

min
γ≥0,v

{
ER

(
max
a∈A0

{γaQa − va}
)

+
∑
a∈A

vaρa − γa`a

}
,

which still is a convex minimization problem. The publisher might now jointly optimize over v, and γ to construct a
provably good policy. Additionally, in a similar fashion to Proposition 9, we may compute the directional derivative
of the objective w.r.t. the dual variables γ.

Regarding the performance the bid-price control, Theorem 2 still holds, and the policy asymptotically attains the
optimal revenue from AdX, while complying with the delivery targets. However, we still need to argue about the
expected average quality assigned to the advertisers. Unfortunately, for those advertisers whose constraint (16) is
binding, our algorithm might not attain the desired quality target. Nevertheless, from our asymptotic analysis we may
show that the expected average quality is lower bounded by

E

[
1

N

N∑
n=1

[1− sµn(Qn)] Iµn,a(Qn)Qn,a

]
≥ EN∗

N
E [i∗a(Q)Qa] ≥

(
1− 1√

N
K(ρ)

)
`a.

Hence, for advertisers with binding constraint (16), albeit not feasible, the expected average quality becomes arbitrary
close to the threshold value as the number of impressions in the horizon increases. On the other hand, for the remaining
advertisers whose target quality constraint is not binding, the expected average quality will surpass the threshold for
suitably large N .

F.2 AdX with Multiple bidders Here we generalize our results to the case where multiple buyers participate in
the Ad Exchange. We model AdX as an auction with K risk neutral buyers. The publisher believes that individual
valuations are drawn independently from the same distribution with c.d.f F (·), density f(·), and support [p0, p∞].
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Moreover, we assume that the distribution of the values have increasing failure rates, are absolutely continuous and
strictly monotonic. The publisher must choose the reservation price p that maximizes her expected revenue given that
her value for the impression is c ≥ 0. As before, we denote by R(c) the optimal expected revenue of the publisher.

[18] argued that under our assumptions the optimal mechanism is a Vickrey or second-price sealed-bid auction.
Moreover, it is known that in such auctions bidding the true valuation is a dominant strategy for the buyers, and that
the optimal reservation price p∗(c) is independent of the number of buyers [12].

Let B1:K and B2:K be the order statistics which denote the highest and the second highest bid respectively. Given
a reserve price p, the item is sold if B1:K ≥ p, i.e., there is some bid higher than the reserve price. The winning buyer
pays the second highest bid, or alternatively max{B2:K , p}, since the seller should receive at least the reserve price p.
Therefore, the publisher’s maximization problem is

R(c) = max
p≥0

E [1{B1:K ≥ p}max{B2:K , p}+ 1{B1:K < p}c] .

Recall that, instead of reserve prices, we casted our problem in terms of survival or winning probabilities. Then,
letting s be the probability than the impression is sold, we have that s = P{B1:K ≥ p} = 1−FK(p) since valuations
are i.i.d. Conversely, the reserve price as a function of the survival probability is given by p(s) = F̄−1(1−(1−s)1/K),
which is well-defined due to the strict monotonicity of the c.d.f. In terms of survival probabilities, the problem is now

R(c) = max
0≤s≤1

r(s) + (1− s)c,

where we defined the revenue function as r(s) = r(p(s)), and r(p) = E [1{B1:K ≥ p}max{B2:K , p}].
The next proposition shows that the revenue function is regular, and as a consequence all previous results hold for

the case with multiple bidders.

Proposition 7 Under the previous assumption, the revenue function r(s) is regular. Moreover, the optimal reserve
price p∗(c) solves

F̄ (p)

f(p)
= p− c,

when c ∈ [p0 − 1/f(p0), p∞]. When the opportunity cost is higher than the null price (c > p∞), the publisher
bypasses the exchange (p∗(c) = p∞). Finally, when the opportunity cost is low enough (c < p0 − 1/f(p0)), the
impression is kept by the highest bidder (p∗(c) = p0).

Proof: The joint distribution of B1:K and B2:K has a density function [12]

f(b1, b2) =

{
K(K − 1)F (b2)K−2f(b1)f(b2) if b1 ≥ b2
0 otherwise

.

Then, we have that

r(p) = E [1{B2:K ≥ p}B2:K + p1{B1:K ≥ p,B2:K < p}]

=

∫ ∞
p

∫ b1

p

b2f(b1, b2) db2 db1 + p

∫ ∞
p

∫ p

0

f(b1, b2) db2 db1

= K(K − 1)

∫ ∞
p

b2F (b2)K−2f(b2)(1− F (b2)) db2 +KpF (p)K−1(1− F (p))

Continuity of r(s) follows because the p.d.f. is continuous, and p(s) is continuous (if F not strictly monotone, the
inverse may have jumps). Additionally, we may bound the revenue by

r(p) ≤ E [1{B1:K ≥ p}B1:K ] ≤ KE [1{B ≥ p}B] ≤ KEB <∞,
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the first inequality follows because B1:K is the maximum, the second because any order statistic is upper bounded
by the sum of the bids, and the fourth because bids are integrable. Moreover, integrability of B implies that
limp→∞ r(p) = 0.

Next, we turn to the concavity of r(s). Differentiating w.r.t to p we get

dr

dp
= KF (p)K−1(F̄ (p)− pf(p)).

Then, using the fact that dsdp = −KF (p)1−k/f(p) we get from the composition rule that

dr

ds
=

dr

dp

∣∣∣∣
p(s)

dp

ds
= p(s)− 1

h(p(s))
,

where h(p) = f(p)/F̄ (p) is the hazard rate of the bidder’s valuation. Because p(s) is non-increasing in s and the h(p)
is non-decreasing in p, we conclude that drds is non-increasing. Thus, the revenue function is concave.

Finally, notice that the that derivative of the objective w.r.t to s is

p(s)− 1

h(p(s))
− c, (17)

which is non-increasing. When c > p∞ we have that (17) is negative, so s∗(c) = 0 and p∗(c) = p∞. Similarly, when
c < p0 − 1/h(p0) we that (17) is positive, so s∗(c) = 1 and p∗(c) = p0.

Notice that by writing max{B2:K , p} = p+ (B2:K − p)+ we get that the setup of Section 2.2 is the particular case
where K = 1.

F.3 AdX with User Information In most systems, the publisher shares some user information with the exchange.
In turn, the exchange may partially disclose the user information to their advertisers. The advertisers may react to this
information, and bid strategically [17]. In this section we extend our model to the case when the bids from AdX are
correlated with the quality of the impression (a surrogate for user information). For simplicity we consider the case of
one bidder. Nevertheless, our analysis can be easily extended to the general case.

Let F̄ (p|Q) = P{B ≥ p | Q} be the conditional probability that the bid from AdX is greater than p given that the
impression quality vector isQ. Additionally, we define the conditional revenue function as r(s|Q) = sF̄−1(s|Q). The
publisher can exploit the correlation between user information and bids to update his prior on AdX bids. Conditioning
on the impression quality, we obtain that the maximum expected revenue under opportunity cost c, denoted byR(c|Q),
is now

R(c|Q) = max
0≤s≤1

r(s|Q) + (1− s)c. (18)

In order to apply the results from the previous sections we require that the conditional revenue function r(·|Q) is
regular for all qualities Q almost surely.

The rest of the analysis follows in a straightforward way by conditioning on the impression quality. The dual
problem (3) now reads

min
v

{
ER

(
max
a∈A0

{Qa − va} | Q
)

+
∑
a∈A

vaρa

}
,

where we replaced the maximum expected revenue by R(·|Q). It is worth noting that now the optimal reserve price to
be submitted to AdX depends both on the maximum discounted quality, and the actual realization of the quality vector.

F.4 User Types Previously we assumed that any user could be potentially assigned to any advertiser. In practice,
however, advertisers have specific targeting criteria. For instance, a guaranteed contract may demand for females with
certain age range living in New York, while other contract may demand for males in California. Next, we show how
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to handle this by forcing the publisher to pay a good-will penalty to the advertisers each time an undesired impression
is incorrectly assigned.

Instead of grouping user types according to their attributes, we aggregate user types that match the criteria of the
same subset of advertisers. This has the advantage of reducing the space of types to a function of the number of
advertisers (which is typically small in practice) rather then the number of possible types (which is potentially large).
Hence, a user type is characterized by the subset of advertisers T ⊆ A that are interested in it. In the following,
we let T be the support of the type distribution, and π(T ) the probability of an arriving impression being of type T .
As before we assume that, across different impressions, types are independent and identically distributed. Given a
particular type T , the predicted quality perceived by the advertisers within the type is modeled by the non-negative
random vector Q(T ) = {Qa(T )}a∈T .

Even if the total number of impressions suffices to satisfy the contracts, i.e.
∑
a∈A ρa ≤ 1, the inventory may not

be enough to satisfy the contracts targeting criteria. Our algorithm guarantees that the total number of impressions Ca
is always respected, yet some advertisers may be assigned impressions outside of their criteria. If an impression of
type T happens to be assigned to an advertiser a 6∈ T , the publishers pays a nonnegative goodwill penalty τa. These
penalties allow the publisher to prioritize certain reservations, specially when the contracts are not feasible. Thus, the
ex-ante distribution of quality is given by the mixture of the types distribution with mixing probabilities π(T ), and we
we have that

Q ∼

{
Qa(T ), for a ∈ T,
−τa, for a 6∈ T,

w.p. π(T ).

Notice that all our previous results hold if we apply the same analysis to the mixture distribution.
As we stated, the inventory may not be enough to satisfy the contracts targeting criteria. Even if penalties are high

enough, it may be the case that advertisers are assigned impressions outside their criteria. It is straightforward to state
the problem of determining whether contracts can be satisfied or not, as a feasible flow problem on a bipartite graph.
The problem can be formulated on an graph with one node for each user type T with a supply of π(T ), on the left
side; and one node for each advertisers a ∈ A0 with a demand ρa, on the right side. Then, we say that the operation is
feasible if the user type-advertiser graph admits a feasible flow.

The feasibility of the operation, albeit necessary, does not suffice to guarantee that no impressions outside the
targeting criteria are assigned to the advertisers. When advertisers compete for the same type, and one of them obtains
a potentially unbounded reward for that type; it may be optimal to allow the latter advertiser to cannibalize the user
type, and force the others advertisers to take types outside of their criteria. This may occur, surprisingly, for all
conceivable penalties. However, if qualities are bounded, and penalties are set high enough, then the optimal policy
would not recommend the assignment of impressions outside the targeting criteria. Even in this case some impressions
may be incorrectly assigned in the left-over regime, but the probability of this event decays exponentially fast. We
formalize this discussion in the following proposition.

Proposition 8 Suppose that the user type-advertiser graph admits a feasible flow, and that qualities and bids from
AdX are bounded by 1

A mina τa. Then, the stochastic control policy does not assign any impressions outside of the
targeting criteria, except perhaps for the left-over regime.

Note that since the left-over regime is vanishingly small in proportion to the length of the horizon (Cor. 1) this
implies that the number of unassigned impressions is small. Thus in practice, a publisher may setC ′a = Ca+ε, discard
any impressions assigned by the policy outside the targeting criteria, and ensure that contracts are filled properly.

Next, we prove by example that the requirement that qualities are bounded is necessary for the previous result
to hold. Consider a publisher who contracts with two advertisers, and agrees to deliver one half of the arriving
impressions to each one of them. Additionally, there are two impression types, denoted by T1 and T2, each occurring
50% of the time. The first advertiser only cares about the first type. She obtains a reward of zero for T1, and the
advertisers pays a positive penalty τ each time a T2 impression is assigned to her. The second advertisers admits both
types, but only obtains a positive reward Q ∼ exp(1) for the first type. The setup is shown in Figure 9.

A feasible policy could assign all T1 impressions to the first advertiser, and T2 impressions to the second adver-
tiser. However, such policy is not optimal. Notice that both advertisers compete for the T1 impressions, and the first
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Types Advertisers

T1

T2

1

2

ρ1 = 1
2

ρ2 = 1
2

π(T1) = 1
2

π(T2) = 1
2

0

0

−τ Q ∼ exp(1)

Figure 9: Example with two user types, and two advertisers.

advertiser could extract a potentially high quality from them. It is not hard to see that the optimal dual variables are
v1 = −τ , and v2 = 0; and the optimal objective value is 1

2E[Q − τ ]+ = 1
2e
−τ . Hence, it is optimal to assign those

T1 impressions with quality greater than τ to the second advertiser. Thus, no matter the value of the penalty, a fraction
e−τ of the total impression assigned to the first advertiser are undesired.

G Proofs
In this section we give proofs for those results that were not included in the main body.

Proof of Proposition 1: First, observe that for all c the objective function of (1) is concave and continuous in s, and the
feasible set is compact. Hence, by Weierstrass Theorem the set of optimal solutions is non-empty and compact. Thus,
both R(c) and s∗(c) are well-defined.

Second, R(c) ≥ c follows from letting s = 0. To see that R(c) is non-increasing, let c < c′, and s∗ be the optimal
solution under cost c. Then, R(c) = r(s∗) + (1 − s∗)c ≤ r(s∗) + (1 − s∗)c′ ≤ R(c′) where the first inequality
follows because s∗ ≤ 1, and the second because no solution is better than the optimal. To see that R(c) − c is
non-increasing, let c′ < c, and s∗ be the optimal solution under cost c. Then, by a similar argument we get that
R(c′)− c′ ≥ r(s∗)− s∗c′ ≥ r(s∗)− s∗c = R(c)− c. Convexity follows in a similar way (this is a standard result).

Third, observe that the objective function of (1) is jointly continuous in s and c. Thus, by the Maximum Theorem
R(c) is continuous in c, and s∗(c) is upper-hemicontinuous.

Finally, because r(s) + (1 − s)c has decreasing differences in (s, c) and the feasible set is a lattice, by Topkis’s
Theorem s∗(c) is non-increasing in c. The result for p∗(c) follows from the fact that F̄−1(s) is non-increasing in s.

Proof of Theorem 1: The optimality conditions of v for problem (3) imply that the directional derivative of ψ(v) along
any direction is greater or equal to zero. In particular for each advertiser a ∈ A it should the case that ∇1aψ(v) ≥ 0,
and ∇−1aψ(v) ≥ 0. Applying proposition 9 to both directions, together with the fact that there is zero probability of
a tie occurring, we get that

E [(1− s∗ (Qa − va))1{Qa − va > Qa′ − va′ ∀a′ ∈ A0}] = ρa,

and the result follows.

Proof of Proposition 4: For (4), we use that ∂Ḡ
−1

∂θ (ρ|θ) = ∂Ḡ
∂θ (v|θ)/g(v|θ), which follows from the implicit function

theorem. In view of Cramér-Rao lower bound, we have that ε(θ) ≥ 1.
Next, we look at the average yield of the policy as the number of impressions grows to infinity when a bid price of

u is employed, denoted by J̄(u). The limiting performance is given by

J̄(u) =

{
ρEθ[Q|Q ≥ u], if u < v,

Eθ[Q]− (1− ρ)Eθ[Q|Q ≤ u], if u ≥ v.

Under our assumptions, the performance function is continuous u. One would be tempted to apply the Delta Method to
derive the asymptotic distribution of the performance. Unfortunately, J̄(·) is not differentiable at v. However, it is the
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case that the performance function is semi-differentiable at v with finite right-derivative J̄ ′+(v) ≥ 0 and left-derivative
J̄ ′−(v) ≤ 0. Thus, we can apply an extension of the Delta Method for directionally differentiable functions proved by
[19], and obtain

√
m(J̄(v̂M)− J̄(v))⇒ dJ̄

(
v;N (0, u′(θ))

)
,

√
m(J̄(v̂mle

M )− J̄(v))⇒ dJ̄
(
v;N (0, u(θ))

)
,

where dJ̄(v; ξ) is the Gâteaux derivative of J̄ at the point v along the direction ξ, which is given by dJ̄(v; ξ) = J̄ ′+(v)ξ
when ξ ≥ 0, and dJ̄(v; ξ) = J̄ ′−(v)ξ when ξ < 0. Note that the asymptotic variance of the performances are u′(θ) ·K,
and u(θ) ·K respectively, where the performance scale factor is given by K = 1

2 (J̄ ′+(v)2 + J̄ ′−(v)2) − 1
2π (J̄ ′+(v) −

J̄ ′−(v))2. Thus, the relative efficiency of the performance is identical to ε(θ).

Proof:[Proof of Proposition 2] Let ~s = {sn(·)}n=1,...,N and~ı = {in(·)}n=1,...,N be any feasible vectors of controls.
Let s̄ be the mean of the controls (in terms of prices p̄ would be the generalized F̄ -mean), which is defined as

s̄(Q) =
1

N

N∑
n=1

sn(Q) ∀Q pointwise,

and let ı̄ be such that

ı̄a(Q) =
1

N

N∑
n=1

in,a(Q) ∀Q pointwise, a ∈ A.

We will show that solution in which (s̄, ı̄) are used for all impressions is a feasible control with greater or equal revenue
than the original one.

First, for the feasibility of (s̄, ı̄) observe that for each advertiser a ∈ A

Ca = EQ

[
N∑
n=1

in,a(Q)

]
= NEQ [̄ıa(Q)] ,

where the first equation follows from the feasibility of (~p,~ı) and the linearity of expectation, and the second from
substituting ı̄a pointwise for Q. Additionally, it is not hard to prove that

∑
a∈A ı̄a(·) + s̄(·) ≤ 1.

Second, we denote by JD(~s,~ı) and JD(s̄, ı̄) the objective value of the solutions (~s,~ı) and (~s,~ı) respectively. We
have that

JD(~s,~ı) = E

[
N∑
n=1

r (sn(Q)) +
∑
a∈A

Qa

N∑
n=1

in,a(Q)

]

≤ E

[
Nr

(
1

N

N∑
n=1

sn(Q)

)
+
∑
a∈A

Qa

N∑
n=1

in,a(Q)

]

= NE

[
r (s̄(Q)) +

∑
a∈A

Qa ı̄a(Q)

]
= JD(s̄, ı̄),

where the inequality follows from the concavity of the revenue function, and the second equality from substituting s̄
and ı̄ pointwise for all Q.

Given a subset of the quality space D ⊆ Ω, we define the measure PR(D) as the probability that the quality vector
belongs to that subset and the impression is rejected by the Ad Exchange when the optimal survival probability is used.
More formally,

PR(D) = E
[(

1− s∗
(

max
a∈A0

{Qa − va}
))

1{Q ∈ D}
]
.
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Notice that the latter is not a probability measure since PR(Ω) ≤ 1.
Proposition 9 characterizes the directional derivative of the objective function of the dual along some directions that,

as we will show later, are of particular interest. Results are given in terms of the measure PR.

Proposition 9 Given a subset α ∈ A, the directional derivative of the objective function of the dual w.r.t. directions
1α and −1α are respectively

∇1αψ(v) = −PR
{

max
a∈α
{Qa − va} > max

a∈A0\α
{Qa − va}

}
+
∑
a∈α

ρa,

∇−1αψ(v) = PR
{

max
a∈α
{Qa − va} ≥ max

a∈A0\α
{Qa − va}

}
−
∑
a∈α

ρa.

Proof: We consider first the direction 1α. The difference quotient at v of ψ given a step δ > 0 is

ψ(v + δ1α)− ψ(v)

δ
=

1

δ
E
[
R

(
max
a∈A0

{Qa − va − δ1a∈α}
)
−R

(
max
a∈A0

{Qa − va}
)]

+
∑
a∈α

ρa,

= Eγδ(Q) +
∑
a∈α

ρa,

where we defined γδ(Q) as the difference quotient random variable. In order to obtain the directional derivative
along vector 1α we need to look at the limit of the difference quotient as δ goes to zero. We will first show that the
γδ(Q) converges to the desired expression, and then exchange limit and expectation using the dominated convergence
theorem.

In the following we denote Qα − vα = maxa∈α{Qa − va} and Q6α − v 6α = maxa∈A0\α{Qa − va}. Using this
notation, the difference quotient random variable can be written as

γδ(Q) =
R
(

max(Qα − vα − δ,Q6α − v 6α)
)
−R

(
max(Qα − vα, Q6α − v 6α)

)
δ

= −R(Qα − vα)−R(Qα − vα − δ)
δ

1 {Q6α − v 6α + δ ≤ Qα − vα}

+
R(Q6α − v 6α)−R(Qα − vα)

δ
1 {Q6α − v 6α < Qα − vα < Q6α − v 6α + δ} ,

where in the last equation we partitioned the difference based on which of the three terms verifies the maximum. Note
than when Q6α − v 6α ≥ Qα − vα the difference is zero.

BecauseR(c)−c is non-increasing, we have that for c1 ≤ c2 then (R(c2)−R(c1))/(c2−c1) ≤ 1. So the difference
quotients in each term are bounded by 1. As a result, |γδ(Q)| ≤ 1 {Q6α − v 6α + δ < Qα − vα}, which is integrable.
Moreover, the point-wise limit of γδ(Q) as δ → 0+ is

lim
δ→0+

γδ(Q) = −R′(Qα − vα)1 {Q6α − v 6α < Qα − vα}

where we used the fact that first term converges to the derivative of R at Qα − vα, and the second term converges
point-wise to zero.

Finally, by the dominated convergence theorem together with the fact that R′(c) = 1− s∗(c) we get that

∇1αψ(v) = lim
δ→0+

ψ(v + δ1α)− ψ(v)

δ
= lim
δ→0+

Eγδ(Q) +
∑
a∈α

ρa

= E lim
δ→0+

γδ(Q) +
∑
a∈α

ρa = −PR
{

max
a∈α
{Qa − va} > max

a∈A0\α
{Qa − va}

}
+
∑
a∈α

ρa.

A similar result follows for the opposite direction −1α.
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Proof:[Proof of Proposition 5] The proof proceeds by contradiction, that is, we assume that there is no feasible flow.
First, we cast the feasible flow problem as a maximum flow problem. Feasibility would imply the existence of a flow
with value 1−P(∅-tie). But since we assume that no such feasible flow exists, by the max-flow min-cut theorem there
should exists a cut with value strictly less than 1−P(∅-tie). The contradiction arises because the optimality conditions
of v for the dual problem (3) imply that the every cut is lower bounded by 1− P(∅-tie).

In order to write the feasible flow problem as a maximum flow problem, we first add a source s and a sink t. Second,
we add one arc from s to each node associated to a non-empty subset S ⊆ A0 (left-hand side nodes) with capacity
P(S-tie). Third, we add one arc from each advertiser a ∈ A0 (right-hand side nodes) to t with capacity ρa. Lastly, we
set the capacity of arcs from S to a ∈ S to infinity.

Now, since no feasible flow exists, by the max-flow min-cut theorem there should be a cut with value strictly less
than 1−P(∅-tie). Let α ⊆ A0 be the advertiser nodes (right-hand) belonging to the t side of a minimum cut. Figure 10
shows the minimum cut. Next we argue that subset nodes in the s side verify that S ∩ α = ∅, while those in the t side
verify that S ∩ α 6= ∅. First, because the cut has minimum value, there is no arc from a subset node to an advertiser
node crossing the cut (those arcs have infinity capacity). Equivalently, within the s side of the cut, all subsets nodes
S ⊆ A0 should verify that S ∩ α = ∅. Second, observe that any subset node with S ∩ α = ∅ in the t side of the cut
could be moved to the s side of the cut without increasing the value of the cut. Hence, with no loss of generality we
can assume that all subset nodes in the t side of the cut verify that S ∩ α 6= ∅.

As a consequence, the only arcs crossing the cut are those from the source to the subsets S ∩α 6= ∅, and those from
advertisers A0 \ α to the sink. The value of this cut is

∑
S⊆A0:S∩α6=∅

P(S-tie) +
∑

a∈A0\α

ρa.

Because the value is strictly less than 1− P(∅-tie) we get that

∑
S⊆A0:S∩α6=∅

P(S-tie) <
∑
a∈α

ρa, (19)

where we used that
∑
a∈A ρa + ρeff

0 = 1− P(∅-tie).

Subset nodes
S ⊆ A0, S 6= ∅

Advertiser nodes
a ∈ A0

s t

S ∩ α 6= ∅

S ∩ α = ∅

α

A0 \ α

P(S
-ti

e)

ρa

∞

min-cut

Figure 10: The flow problem in the bipartite graph with a minimum cut. A source s connected to the subset nodes
and a sink t connected to the advertisers nodes was included. α ⊆ A0 is the subset of advertiser nodes (right-hand)
belonging to the t side. Note that no there is no arc from a subset node to an advertiser node crossing the cut.

Next, we look at the optimality conditions of v for the dual problem (3). We distinguish between the case that
0 /∈ α and 0 ∈ α. First suppose that 0 /∈ α, and consider the direction −1α that has a −1 if a ∈ α and 0 elsewhere.
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According to proposition 9 the directional derivative of the objective at v is

∇−1αψ(v) = PR
{

max
a∈α
{Qa − va} ≥ max

a∈A0\α
{Qa − va}

}
−
∑
a∈α

ρa

=
∑

S⊆A0:S∩α6=∅

P(S-tie)−
∑
a∈α

ρa,

where we have written the event that the maximum is verified non-exclusively by some advertiser a ∈ α as all S-ties
in which some advertiser a ∈ α is involved. The optimality of v implies that the directional derivative along that
direction is greater or equal to zero, contradicting equation (19).

When 0 ∈ α we consider the direction 1A\α that has a 1 if a /∈ α and 0 elsewhere. The direction derivative is now

∇1A\αψ(v) = −PR
{

max
a∈A\α

{Qa − va} > max
a∈α∪{0}

{Qa − va}
}

+
∑

a∈A\α

ρa,

= −
∑

S⊆A0:S⊆A\α

P(S-tie) +
∑

a∈A\α

ρa =
∑

S⊆A0:S∩α6=∅

P(S-tie)−
∑
a∈α

ρa,

where in the second equation we have written the event that the maximum is verified exclusively by some advertiser
a ∈ α as all S-ties in which only advertisers in α are involved. Again, the optimality of v implies that the directional
derivative along that direction is greater or equal to zero, contradicting equation (19).

Proof:[Proof Sketch of Proposition 8] For simplicity we consider the case without AdX. Let i be an optimal solution
to the DAP, and suppose that some advertisers are assigned some types outside of their targeting criteria. We will
construct another solution with greater or equal yield in which no incorrect assignments are made.

An optimal solution to the DAP is a vector of functions iT,a : ΩT → [0, 1] for a ∈ A0 and T ∈ T such that∑
T∈T

EiT,a(Q) = ρa, ∀a ∈ A0,∑
a∈A0

iT,a(Q) = π(T ), (a.s.) ∀T ∈ T ,

We refer to each of the functions in a solution as components.
Next, we construct a feasible solution i0 to the DAP from a feasible flow of the user type-advertiser graph. Take

the difference ∆i = i0 − i, which is a circulation in the user type-advertiser graph. The circulation ∆ may have
components of mixed signs. Because i0 has no incorrect assignments, if advertiser a is assigned a type T 63 a
not in her criteria, then the circulation verifies that ∆iT,a(Q) = −iT,a(Q). Hence, the components with incorrect
assignments are negative.

Let a be an advertiser that is assigned a type T 63 a not in her criteria, that is, E[iT,a(Q)] > 0. We may find an
augmenting cycle w containing the incorrect assignment, such that if we push some flow along this cycle, we construct
another solution i+ w with fewer incorrect assignments. The cycle w has at most A+ 1 positive components, and at
most A+ 1 negative components. The cost associated to the negative components is at most A 1

A mina′ τa′ − τa ≤ 0.
All positive components arcs have a cost of at least zero, and the total cost of this cycle is positive. Thus, the new
solution i+w has greater or equal yield. Moreover, E[(i+w)T,a(Q)] < E[iT,a(Q)], and no new incorrect assignments
are introduced. Repeating this procedure, we may construct a solution with no incorrect assignments.

H Computation
In this section we describe show to compute the optimal policy for our data model. The main problem resides in the
computation of the dual objective in (3) and its gradient given a vector of dual variables.
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Objective. The first term of the objective can be written as

ER
(

max
a∈A0

{Qa − va}
)

=
∑
∀T

π(T )E
[
R

(
max
a∈A0

{Qa − va}
)
| T
]

=
∑
∀T

π(T )
∑

a∈T∪T c
E [R (Qa − va)1{Qa − va ≥ Qa′ − va′ ∀a′ 6= a} | T ]

=
∑
∀T

π(T )

(
IT,0(v) +

∑
a∈T

IT,a(v)

)

where the first equation follows by conditioning on the type, and the second because the events are a partition of the
sample space. Next, we show to compute the expectations IT,a(v).

Let MT (v) = maxa∈A0\T {−τa− va} be the maximum discounted quality of the advertisers (including the outside
option) that are not in the type, and αT (v) the set of advertisers that verify the maximum. Then, we have that

IT,0(v) = R (MT (v))P{Qa − va ≤MT (v) ∀a′ ∈ T}
= R (MT (v))GT (MT (v) + vT ),

where GT (·) is the c.d.f. of QT , and vT is the vector of dual variables for the advertisers in the type.
For a ∈ T , we compute the expectation by conditioning on the continuous random variable Qa. Further, suppose

that we partition the mean vector and covariance matrix in a corresponding manner. That is, µT = ( µa
µ−a ), and

ΣT =
(

Σa,a Σa,−a
Σ−a,a Σ−a,−a

)
. For instance, µ−a gives the means for the variables in T \ {a}, and Σ−a,−a gives variances

and covariances for the same variables. The matrix Σ−a,a gives covariances between variables in T \ {a} and set
a (as does matrix Σa,−a). Because the marginal distribution of a multivariate normal is an univariate normal, we
have that Qa ∼ lnN (µa,Σa,a). We denote by gT,a(·) the p.d.f. of Qa. Similarly, let Q−a be the vector of qualities
for advertisers in T \ {a}. Conditioning on Qa = qa, the distribution of Q−a is log-normal with mean vector
µ−a − Σ−a,a(qa − µa)/(Σa,a), and covariance matrix Σ−a,−a − (Σ−a,aΣa,−a)/(Σa,a). We denote its c.d.f. by
GT,−a(·). Putting all together, we have that

IT,a(v) = E [R (Qa − va)P{Qa′ − va′ ≤ Qa − va ∀a′ 6= a | Qa} | T ]

=

∫ ∞
va+MT (v)

R(qa − va)GT,−a(qa − va + v−a)gT,a(qa) dqa,

where v−a is the vector of dual variables for advertisers in T \ {a}.
Gradient. The forward derivative of the dual objective can be written as

∇aψ(v) = −PR
{
Qa − va > max

a∈A0\a
{Qa′ − v′a}

}
+ ρa

= −
∑
∀T

π(T )E
[
(1− s∗(Qa − va))1

{
Qa − va > max

a∈A0\a
{Qa′ − v′a}

}
| T
]

+ ρa

= −
∑
T :a∈T

π(T )PT,a(v)−
∑
T :a6∈T

a∈αT (v),|αT (v)|=1

π(T )PT,a(v) + ρa,

where the contributing types for the forward derivative are those where a is in, and those where a is not in but verifies
exclusively the maximum of the types not in (MT (v)). If two or more advertisers verify the maximum MT (v), then
increasing va does not have an impact of the type’s contribution to the objective. When a 6∈ T , the expectation is given
by

PT,a(v) =
(
1− s∗(MT (v))

)
GT (MT (v) + vT ).
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Similarly to the objective, when a ∈ T we have that

PT,a(v) =

∫ ∞
va+MT (v)

(
1− s∗(qa − va)

)
GT,−a(qa − va + v−a)gT,a(qa) dqa.

The backward derivative is computed in a similar fashion. The only exception is that, when a 6∈ T , and a verifies
the maximum MT (v),the advertiser always contributes to the derivative regardless of the number of advertisers that
attain the maximum. Hence,

∇−aψ(v) =
∑
T :a∈T

π(T )PT,a(v) +
∑
T :a6∈T
a∈αT (v)

π(T )PT,a(v)− ρa.

Optimization. We solve the dual problem (3) using a Gradient Descent Method. At each step the objective and its
objective are computed as described previously. Notice that, when multiple advertisers verify a tie, the objective is not
differentiable. In this case a descent direction is constructed using the forward and backward derivatives (if possible).

Ties. For the following, we assume that the instance is not degenerate, that is, the variances within the types
are positive, and no two advertisers are perfectly correlated. Then, within each type, non-trivial ties can only occur
between the advertisers that are not in the type (we refer to the non-trivial ties as those in which multiple advertisers
attain the same discounted quality). Moreover, there can be at most one tie within each type, and this happens when the
maximum MT (v) is verified by many advertisers, that is |αT (v)| > 1. With some abuse of notation, the probability
of such a tie is given by π(T )PT,αT (v) and it should be split among the advertisers αT (v). Note that the number of
non-trivial ties is O(T ), and the tie-breaking rule can be computed efficiently by solving a feasible flow problem.

I Fluid Limit
Exploiting our generative model we can construct a fluid model, and obtain the limiting performance of an arbitrary
bid-price policy as the number of impressions grows to infinity. We first describe the fluid equations governing the
dynamics of the fluid model, then we construct a solution to such system, and then prove that the stochastic algorithm
satisfies the fluid equation in the limit as done in [5]. For simplicity, we focus our analysis on the case with no AdX,
and no ties; though, a similar analysis applies to the more general case.

In the following we analyze the performance of the stochastic control policy when implementing some (sub-optimal)
bid-prices v. Let ω be a sample path, Jn(ω) be the cumulative yield collected up to impression n, and Sn,a(ω) the num-
ber of impressions assigned to advertiser a up to time n. We extended the previous definitions for an arbitrary time, by
taking their linear interpolations, so that they are continuous. The previous functions are random elements on C[0,∞).
We shall construct the fluid limit by scaling capacity and time proportionally to infinity, and considering a continuous
flow of impressions arriving during an horizon of length 1. More formally, we define S̄a(t) = limN→∞N−1StN,a(ω),
which can be interpreted as the fraction of impressions assigned to advertiser a by time t. Similarly, we define
J̄(t) = limN→∞N−1JtN (ω) as the cumulative yield up to time t. We are interested in computing J̄(1), the total
limiting yield of the algorithm under bid-prices v.

When capacity is scaled, each advertiser has a capacity of ρa, and the fluid model should satisfy the following
differential equations

J ′(t) =
∑

a∈A(t)

E
[
Qa1

{
a = arg max

a′∈A(t)

{Qa′ − va′}
}]
, (20a)

S′a(t) = P
{
a = arg max

a′∈A(t)

{Qa′ − va′}
}
, ∀a ∈ A0 (20b)

A(t) =
{
a ∈ A0 : S̄a(t) < ρa

}
, (20c)

with the initial conditions Sa(0) = 0, and J(0) = 0. In (20c), A(t) is the set of advertisers that are yet to be fulfilled
(including advertiser 0, which is fulfilled when the time comes all impressions should be assigned directly to the
advertisers), and (20b) determines the rate at which impressions are assigned to each advertiser. When one advertiser
is fulfilled and the fraction of impressions S̄′a(t) reaches its capacity ρa, it is excluded fromA(t), and its rate is driven
to zero. Finally, (20a) determines the rate at which yield is generated.

34



It is not hard to see that the solution to the fluid equations (20) is piecewise linear, and continuous. We construct
a solution as follows. Let an epoch, denoted by tk, be the time in which the contract of any advertiser is fulfilled
(including advertiser 0). The horizon [0, 1] is partitioned in consecutive pieces, each culminating with an epoch. The
kth piece spans the interval [tk, tk+1), and has a length of ∆k = tk+1 − tk. Since one advertiser is fulfilled at each
epoch, there are at most A+ 1 pieces.

Let Ak be set of advertisers yet to be satisfied at the beginning of stage k as given by (20c), rka be the service rate
for advertiser a during stage k as given by (20b), and yk be the yield rate during stage k as given by (20a). The length
of a stage is determined by the advertiser that is first fulfilled. Once determined, the solution is constructed recursively
as follows

∆k = min
a∈Ak

{
ρa − Sa(tk)

rka

}
, (21a)

tk+1 = ∆k + tk,

Sa(tk+1) = Sa(tk) + rka∆k,

J(tk+1) = J(tk) + yk∆k,

Ak+1 = Ak \ ak,

where ak is the advertiser that verifies the minimum in (21a), and initially t0 = 0, and A0 = A0. The functions Sa
and J are obtained as the linear interpolation of the values at the endpoints of the interval. Fortunately, the rates can
be easily obtained by evaluating the dual objective and its gradient. Let ψk(v) be the objective in (3) when restricting
to the set of advertisers Ak. Then, we have that rk = ρ−∇ψk(v), and yk = ψk(v)− v · ∇ψk(v).

We conclude by showing that functions obtained are actually the fluid limit of the stochastic process induced by the
algorithm.

Proposition 10 The fluid limits S̄a(t), and J̄(t) are a solution to the fluid equations (20).

Proof: Consider the sequence of random elements S̄N,a(t, ω) = N−1StN,a(ω), and J̄N (t, ω) = N−1JtN (ω). We
would like to show that the previous sequences are tight. By Theorem 8.3 in [3], a sequence of random elements
{XN} in C[0,∞) is tight iff (i) {XN (0)} is tight, and (ii) for all ε > 0 and η > 0, there is a δ > 0 and an integer N0

such that P{supt≤t′≤t+δ |XN (t′)−XN (t)| ≥ ε} ≤ η for N ≥ N0.
The first condition is trivially satisfied for both sequences. Disregarding integrality issues, which are not important

in the analysis, and using the fact that the processes are non-decreasing, we have that

sup
t≤t′≤t+δ

|S̄N,a(t′)− S̄N,a(t)| ≤ 1

N

(
S(t+δ)N,a − StN,a

)
≤ δ.

Thus, by picking δ < ε the second condition is satisfied for the number of impressions assigned. For the yield
processes, employing Markov’s inequality, and the bound ER2

n ≤ A2 maxa{EQ2
a} for the yield in any single period,

we obtain
1

δ
P
{
J(t+δ)N − JtN ≥ Nε

}
≤ 1

δN2ε2
E
[ (t+δ)N∑
n=tN

Rn

]2
≤ δA

2 maxa{EQ2
a}

ε2
,

which can be bounded from above by η by picking a small enough δ, and N > 1/δ.
To see that the fluid limit satisfies the equation (20b), we write the difference quotient for the number of impressions

assigned to an advertiser a

S̄N,a(t+ δ)− S̄N,a(t)

δ
=
S(t+δ)N,a − StN,a

Nδ
=

1

Nδ

(t+δ)N∑
n=tN

In,a,

with δN = N−1/2. The left-hand term converges in probability to S̄′a(t). Because the summands in the right-hand
term are binary random variables, by Kolmogorov’s criterion, we have that 1

Nδ

∑
In,a− 1

Nδ

∑
EIn,a goes to zero. We
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conclude with Dominated Convergence Theorem that 1
Nδ

∑
EIn,a converges to P

{
a = arg maxa′∈A(t){Qa′ − va′}

}
as N → ∞, because each summand In,a converges to a Bernoulli random variable with aforementioned success
probability. A similar argument holds for equation (20a).
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