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ABSTRACT

We investigate search engines’ mechanism for allocating im-
pressions generated from different search terms. This mech-
anism is equivalent to running an independent GSP auc-
tion for each search term only when the number of search
terms is small. In practice, the number of search terms is
so large that an advertiser cannot possibly communicate to
the search engine all the GSP auctions that he wishes to
participate in. For example, a travel agency is interested
in all search terms pertaining to flight, including “flight to
boston”, “ticket to SFO”, “cheap airfare”; etc. Therefore, the
search engine introduces broad match keywords as a bidding
language that allows an advertiser to submit a bid for mul-
tiple GSP auctions at once. However, with broad match
keywords, the GSP auctions are no longer independent, i.e.
an advertiser’s bid in one auction may depend on his bid in
another auction.

We propose the broad match mechanism as a model that
captures this aspect of the multi-keyword sponsored search
mechanism. We study the performance of this mechanism
under the price of anarchy (POA) framework. We identify
two properties of broad match keywords, namely expressive-
ness and homogeneity, that characterize the POA and we
prove almost tight bounds on the POA. The bounds allow us
to explore trade-offs between the two properties. We intro-
duce the exact-match-only mechanism whose performance,
when compared to that of broad match mechanisms, gives
us an insight into the net benefit of broad match keywords.
The broad match mechanism can also be viewed as a mech-
anism that copes with severe communication constraint i.e.
the valuation of an advertiser is described by many more
numbers than the search engine can solicit.
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1. INTRODUCTION

It is important to distinguish search terms from keywords
when we discuss search advertising with multiple search terms.
When a user enters a search term into a search engine, the
search engine has an opportunity to show an ad to the user
by putting it alongside the user’s search result. This op-
portunity is called an impression. Advertisers want to buy
impressions because they are a source of traffic to their web-
sites. Therefore, the commodity that the search engine sells
to the advertisers is impression.! However, each advertiser
values the impressions generated from certain search terms
more than others.? Therefore, the search engine sells im-
pressions by running a separate auction for each search term.
We call the mechanism that allocates impressions generated
from all different search terms the multi-keyword sponsored
search mechanism (MKSS), for reasons that will become
clear later. The auction that the MKSS mechanism uses to
allocate impressions generated from a specific search term is
called the GSP auction. The big problem with this approach
is that the number of search terms that an advertiser wants
is enormous e.g. every phrase that contains “android”. It
will take practically forever for an advertiser to communi-
cate all the desired search terms to the search engine.

The search engine introduces keywords to deal with the
large number of search terms. A keyword can be associated
with multiple search terms. When an advertiser bids using
a keyword, he automatically bids on all search terms asso-
ciated with it. We can think of the keywords as a bidding
language that allows an advertiser to bid on many search
terms at once. There are two important types of keywords.
A broad match keyword “b” is associated with all search
terms deemed relevant to b by the search engine. For exam-
ple, broad match keyword “apple” is associated with search

1Search engines may sell impressions by clicks. As long as
the number of clicks per impression (CTR) for each adver-
tiser is fixed, clicks and impressions are just different units
of the same commodity.

2For example, Disney values impressions generated from the
search term “disney” much more than those generated from
“srocery” (because users who search for “disney” are more
likely to follow the ad to Disney’s website).



terms “apple”, “apple cider”, “apple iphone”, “fruit”, etc. In

contrast, an exact match keyword “b” is associated with the
only search term “b”. One benefit of a broad match keyword
is that it allows advertisers to bid on rare search terms e.g.
search terms with more than 3 words. Since there are many
of them, the set of such search terms cannot be communi-
cated efficiently without broad match keywords and some
would have gone wasted because of the lack of bidders.

Our understanding of the GSP auction does not extend
easily to the multi-keyword sponsored search mechanism. A
number of papers studied the GSP auction [7, 4, 6, 5, 20,
14, 17, 10]. All of them assume the GSP auction is run in
isolation or, in other words, there is only one search term in
the world. Without broad match keywords, the sponsored
search mechanism is equivalent to multiple of those GSP
auctions running independently. With broad match key-
words, such equivalence no longer holds.®> The performance
metric that we use to study sponsored search is welfare. In
this setting, it corresponds to the sum of each advertiser’s
value for his allocated impressions.? [4] showed that, under
some assumptions, the welfare of every equilibrium of every
GSP auction is close to the optimal. It would be nice to
have an analogous theorem for the multi-keyword sponsored
search mechanism.

Broad match keywords play an important role in the per-
formance of the sponsored search mechanism. Broad match
keywords can improve welfare because they allow advertis-
ers to obtain impressions that would otherwise be wasted.
Broad match keywords also have their drawbacks. For ex-
ample, if we search for “blackberry preserve” on a popular
search engine, we may find an ad from Research in Motion,
the company that makes smartphones, at the top position.
The welfare would have been greater if the search engine had
allocated this impression to a jam company instead (replaced
Research in Motion’s ad with the jam company’s ad).5 We
suspect this phenomenon occurs because Research in Motion
places a bid on the broad match keyword “blackberry” which
is associated with the search term “blackberry preserve”. In
short, broad match keywords can cause the mechanism to
misallocate an impression, taking away an impression from
the advertiser who values it the most and giving it to another
advertiser who does not value it at all.

The communication constraint necessitates the use of broad
match keywords. Since the GSP auction is not truthful, ad-
vertisers may need to continually adjust their bids to re-
spond to others’ bids. An advertiser with limited resources
may find the task of adjusting one million bids every hour
daunting. On the search engine side, hundreds of thousands
of advertisers collectively submitting 100000000000 new bids
every hour can put too much load on the server. Search en-
gines typically place a limit on the number of keywords per
advertiser, which is the same as a limit on the number of
bids. We can also view this as an implementation constraint.
Here’s an excerpt from AdWords’ documentation:

3When an advertiser uses a broad match keyword, he is
forced to use the same bid for all GSP auctions whose search
terms are associated with that keyword.

4Welfare also correlates with user experience. Users tend to
have good experience when the right impression is matched
to the right advertiser.

SWe have been observing the sponsored search result and
notice that indeed jam companies lose some impressions with
this search term to Research in Motion.
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To ensure that accounts do not place unneces-
sary load on our advertising servers, we ask that
you keep the overall number of keywords in your
account to a manageable size (typically 50,000
keywords or less).

With this contraint, broad match keywords become nec-
essary for the advertisers and for any model of the multi-
keyword sponsored search mechanism.

Our model, called the broad match mechanism, is de-
signed to capture the effects of broad match keywords on
advertiser behavior and the performance of the MKSS mech-
anism. In our model, each advertiser can submit a bid for
each predefined keyword but the total number of keyword
bids must not exceed k. Then each advertiser’s keyword
bids are translated into bids on search terms. A GSP (Vick-
rey) auction® is run for each search term to allocate the
corresponding impressions. To better illustrate the effects
of broad match keywords, we assume that the GSP auction
has only 1 slot and, while keeping the allocation rule the
same, the search engine charges payment per impression.
We believe these two details are not important for under-
standing the effects of broad match keywords and can only
serve as a distraction.

There is also a theoretical motivation for studying the
broad match mechanism. It is an example of a mechanism
with severely constrained communication. Each advertiser
has a different valuation for each search term. Since it is
impossible for advertisers to communicate their valuations
for every search term, it is impossible for the mechanism to
obtain enough information to maximize welfare. It is also a
situation when the revelation principle does not apply. It is
a situation where designing the bidding language is as im-
portant as designing the mechanism. We attempt to answer
the question: What makes good broad match keywords?
We identify two properties of broad match keywords that
characterize the upper bound on the price of anarchy of the
mechanism. The two properties are expressiveness and ho-
mogeneity. They are in conflict with each other and thus it
is difficult for the mechanism designer to obtain both at the
same time. Therefore, the best mechanism needs to strike a
balance between the two.

Our Results .

e We propose a model of the multi-keyword sponsored
search mechanism, called the broad match mechanism.
The model captures the interactions between advertis-
ers in the presence of broad match keywords. It is
also an example of a mechanism that copes with se-
vere communication constraint.

e We prove almost-tight worst-case bounds on the wel-
fare of equilibria of broad match mechanisms. We
assume that the advertisers have additive valuations.
While it is impossible to prove any bound on every
equilibrium, even when there is only one search term?,
our bounds apply to “plausible” equilibria. Implau-
sible equilibria are equilibria in which an advertiser

5The GSP auction is equivalent to the Vickrey auction if
there is only 1 slot.

"Single-item Vickrey auction is a special case of the broad
match mechanism. Then consider two bidders with valua-
tions 1 and 0 who bid 0 and 1 respectively.



plays a weakly dominated strategy. An analogy for the
Vickrey auction would be when a bidder bids higher
than his valuation. We identify a particular set of un-
dominated strategies for each bidder. The bounds are
parameterized by expressiveness () and homogeneity
(¢). We prove that the welfare of every pure Nash equi-
librium, in which bidders play undominated strategies,
in fully-expressive broad match mechanisms is at least

Tic) times that of the welfare-maximizing allocation.

This almost matches our lower bound of Fj% in the worst
case.

e We add a flexibility for the mechanism designer to
trade off expressiveness and homogeneity of the broad
match mechanism. We prove that the welfare of every
pure Nash equilibrium, in which bidders play undom-
inated strategies, in broad match mechanisms with
parameters (a,c) is at least @7 times that of the

welfare-maximizing allocation.

e To weigh the net benefit of broad match keywords, we
introduce the exact-match-only (EMO) mechanism, a
mechanism that does not have any broad match key-
word. A comparison of the price of anarchy between a
broad match mechanism and an EMO mechanism can
be used as a quick test to show how much broad match
keywords benefit the multi-keyword sponsored search
mechanism.

e We extend our bound on the price of anarchy of the
EMO mechanism to subadditive valuation. EMO mech-
anisms corresponds to combinatorial auctions with item-
bidding in [3, 15]. However, our mechanisms have an
extra constraint on communication complexity. Com-
munication constraint is parameterized by 7y, the num-
ber of items an advertiser is interested in divided by
the number of items that x keywords can cover. We
prove that the upper bound on the price of anarchy of
EMO mechanisms degrades gracefully with parameter

-

Related Work.

Even-Dar et al. studied the algorithmic problem of com-
puting the utility-maximizing bid for a single bidder when
there are broad match keywords [12]. Mahdian and Wang
observed that after the advertisers commit to a set of key-
words (but not bid amounts), the sponsored search mecha-
nism with overlapping broad match keywords may not have
an equilibrium [13]. They also gave an algorithm for comput-
ing a set of non-overlapping broad match keywords that ap-
proximate the welfare of the optimal non-overlapping broad
match keywords in a setting where advertisers are not al-
lowed to bid on exact match keywords. The main difference
from our work is they assume the algorithm knows the val-
uations of advertisers. Kumar et al. studied the problem of
allocating a large number of distinct items (impressions) to
bidders whose valuations are drawn from distributions [18].
The realized valuation is more complex than what the auc-
tioneer can elicit but the distributions are known. Singh et
al. studied the setting in which the auctioneer can withhold
information on the presence of some search terms [19]. They
don’t consider any communication restriction as each bidder
can submit a different bid for every search term.
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Our approach of using the price of anarchy to evaluate
mechanisms without dominant strategies is similar to [3, 15,
4]. [3, 15] studied combinatorial auctions (CA) with item-
bidding, which run a separate auction for each item and
allow bidders to bid in every auction. The mechanism uses
less communication than the complexity of bidder valuation
which is subadditive in [3]. However, the number of items
in our setting is much larger and so large that bidders can-
not participate in every auction that they are interested in.
Our work also introduces broad match keywords into the
bidding language and investigates the problem of designing
the mechanism with the best equilibria.

As mentioned earlier, many works focus on single search-
term GSP auctions. For example, [4, 7, 16, 20, 14, 2, 17]
study the revenue or the efficiency of the equilibria of single
search-term GSP auctions. [5, 6] designed truthful auctions
for a single search term. It is impossible to have truth-
ful auctions in our setting with many search terms because
of the communication constraint. There are models and re-
sults for multi-search-term algorithms/mechanisms but they
don’t consider communication requirements and thus effec-
tively don’t have keywords [8, 9, 11]. Ghosh et al. studied
the algorithmic problem of bundling search terms to maxi-
mize revenue and welfare [1].

2. THE MODEL

Assume all impressions generated from the same search
term are identical. We denote the group of impressions gen-
erated from the same search term j by query j.¥We consider
a one-period model i.e. the search engine has a set M of
m queries available for sale in a given period (the number
of impressions in each query is known to all parties). The
number of queries m is finite but very large. There are n
advertisers. Each advertiser i has a valuation v; : 2™ — RT
that describes his value for each subset of the queries.” We
also define v;(j) = vi({j}). We assume v;(f)) = 0 and
v;(S) < v(T) for all S C T. The advertisers’ valuations
are additive across queries i.e. vi(A) =3, 4 vi(j). We will
point out when our results also apply to subadditive valua-
tions. One can see that this model is a type of combinatorial
auction, which may be of independent interest. We will now
use “advertiser” and “bidder” interchangeably.

Bidder ’s support S; is defined by S; = {j|vi(j) > 0},
i.e. the set of queries for which ¢ has positive valuation.
One of the main challenges of sponsored search is some
|Si|’s are so large that it is impossible for the bidders to
communicate all v;(j)’s in their supports. An allocation
X ={X1, X2, ..., X, } is an assignment of queries to bidders
(X; to bidder 7) such that each query is assigned to at most
one bidder, i.e. X; C M and X; N X; = 0 for all i,5. The
welfare SW(X) of an allocation X is defined as Y, v:(X;).
We will examine the welfare of a few mechanisms under rea-
sonable communication requirements (which will be defined
later on).

8Since we consider a setting with one slot and no budget,
an advertiser who wins an auction for search term j will win
all impressions with that search term.

91f we assume the number of impressions in query j (in the
given period) is 1, an advertiser whose value-per-click is ¢
and click-through-rate is p will have valuation v;({j}) =

npc.
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Figure 1: An example of a broad match mechanism.
The queries (a,b,c,d) are shown as circles on the bot-
tom and the keywords (K,L,P) are shown as squares.
The broad match keywords are K and L. The exact
match keyword is P. An advertiser who places a bid
of 2 on K and 3 on L automatically bids 2 on queries
a and 3 on queries b,c,d.

2.1 The Broad Match Mechanism

We propose a model of the multi-keyword sponsored search
mechanism employed by popular search engines. The broad
match mechanism deals with the enormous number of queries
by defining sets over them. Each set is called a keyword. For
example, keyword “apple” contains queries “apple”, “apple
cider”, “apple iphone”, etc. When an advertiser bids on a
keyword, he automatically bids on all queries contained in
that keyword (using the same bid amount). There are three
types of keywords: exact match, phrase match and broad
match. An exact match keyword b contains the only query
“b”. A phrase match keyword b contains all queries con-
taining b, e.g. “a b ¢”. A broad match keyword b contains
all queries deemed relevant to b by the search engine (they
can be anything). Since phrase match is just a special case
of broad match, we will lump them together and call them
broad match from now on. Figure 1 shows an example of a
mechanism with multiple keywords.

Using set notation, we denote the set of queries that key-
word A contains by A. To control communication complex-
ity, each bidder is allowed to bid on at most k keywords (all
types combined). Let b = (b1, ba, ..., bn) denote the bid pro-
file where b; is bidder ¢’s bid vector. Denote bidder ’s bid on
keyword A by b;(A) and, overloading the notation, bidder 4’s
bid on query j by b;(j), interpreting b;(A) = 0 for keywords
without a bid. We allow keywords to be overlapping. To re-
solve the bid on query j for bidder ¢, b; (j) = maxa.jeca bi(4),
the maximum of i’s bids over all keywords containing the
query j. For each query, the mechanism runs a Vickrey auc-
tion i.e. allocates query j to the highest bidder ¢ at a price
pi(j) equal to the second-highest bid maxy; bk (j) for that
query. The following summarizes the broad match mecha-
nism:

1. Each bidder ¢ submits bid b; on keywords upfront. The
number of keywords A such that b;(A) > 0 must be at
most K.

2. Each bidder’s bid is translated into bids on queries
using the formula b;(j) = maxa.jca b;(A).

3. For each query j, allocate the query to the bidder with
the highest b;(j) and charge him the price p;(j) =
maxp-£q bk (])

Since this broad match mechanism charges a price p;(j)
for the entire search term, it is called the per-search-term
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model. One might want to consider a per-impression model
that charges payment per impression. We present a per-
impression model in section 7 and show that our analysis of
this per-search-term model generalizes to the per-impression
model.

Denote the queries allocated to bidder ¢ by X;(b). Each
bidder ¢ wants to maximize his utility: w;(X;(b),b_;) =
Zjexi(b) vi(j) — pi(4)-

As mentioned in the introduction, no welfare guarantee
is possible if a bidder uses an unreasonable bid. We re-
fine the bidders’ strategy spaces using the concept of un-
dominated strategy. We say bidder i’s bid vector b; weakly
dominates b} if for all bid profiles b_; of the other bidders,
ul(Xz(bl, bfi), b,L) 2 ul(Xz(b;, bfi), b,i)7 Where (b;, b,l) de—
notes the bid profile when bidder i bids b; and all other
bidders bid according to b. For the rest of this paper, we
restrict the strategy space of each bidder to a set of undom-
inated strategies. The strategy space D; of bidder i is the
set of bid vectors b; such that 1) the number of keywords
A with b;(A) > 0 is at most x and 2) for every keyword A,
there exists a query j € A such that b;(A) < v;(j). The bid
vectors outside of D; are unreasonable in the sense that they
overbid on every single query associated with some keyword.
Observe that for every bid vector b} ¢ D;, there exists a bid
vector in D; that weakly dominates it and this transition is
polynomial-time computable.

2.2 The Bidding Game

Players generally have no dominant strategies in this mech-
anism. Therefore, we analyze the performance of this mech-
anism by looking at its equilibria. Let v = {v1,v2,...,vn}
denote the fixed valuation profile of the bidders. A bid pro-
file b = {b1,ba, ..., bn} is a pure Nash equilibrium if u;(b) >
u; (b;,b_;) for every player i and b;. Note that any Nash
equilibrium in which bidders use strategies in D = {D;} is
also a Nash equilibrium without any strategy-space restric-
tion.

Let OPT(v) denote the optimal allocation, i.e. OPT(v) =
argmazx SW(X). The pure price of anarchy (POA) is the
ratio between the welfare of the optimal allocation and the
welfare of the worst pure Nash equilibrium:

SW(OPT(v))

pure POA = SW (b)

max
b: a pure Nash eq.

where we define SW(b) = SW(X(b)).

As is standard in Nash equilibrium analysis, our setting is
a full-information setting. That is every bidder knows all the
information necessary to compute the payoff matrix, includ-
ing every bidder’s valuation. The search engine (auctioneer)
needs not know anything about bidder valuations.

3. HOMOGENEOUS KEYWORDS

We begin by showing that the performance of broad match
mechanisms can be parameterized by a property of the key-
words, called homogeneity. When a bidder uses broad match
keywords, the mechanism loses some information about the
bidder’s valuation. This loss can be minimized by designing
only keywords that, in the bidders’ perspectives, group sim-
ilar queries. We conceptualize this notion in the following
definition.



Definition 3.1 (Homogeneity)
A keyword A is c-homogeneous if for every bidder ¢ and
every two queries g1,q2 € A, vi(q1) < ¢ vi(g2).

By definition, exact match keywords are 1-homogeneous.
Note that valuations of different bidders for the same query
can still differ greatly.

Recall that the number of keyword bids is limited for each
bidder. Therefore, in order to provide any welfare guaran-
tee, the keywords must have good coverage of the bidders’
valuations.

Definition 3.2 A set K of keywords is said to be fully ex-
pressive if for every bidder 4, it is always possible to simul-
taneously bid on every query in S; using at most x keywords
from K.

Definition 3.3 A broad match mechanism is said to be
fully expressive if the set of all keywords in the mechanism
is fully expressive.

Now we will prove a bound of ¢ + ¢ on the price of an-
archy for broad match mechanisms. The main technique
is to use each bidder’s equilibrium condition to bound the
optimal welfare by prices, which, in turns, are bounded by
the welfare of the equilibrium. The main challenge is that
the limited number of keywords requires the bidder to drop
one of the current keyword bids before he can bid on a new
keyword. This adds to the equilibrium condition a switch-
ing cost, which works against our bound. We limit the to-
tal switching cost by using only x equilibrium conditions
per bidder. The limited number of equilibrium conditions
means we need to carefully choose deviation bids to obtain
the desirable bound.

Theorem 3.4 For every fully-expressive broad match mech-
anism with c-homogeneous keywords and at least one pure
Nash equilibrium, the pure POA is at most ¢ + c.

PRrOOF. Let SW(b) denote the welfare of a pure Nash
equilibrium. Let OPT(v) = {O01,0,...,0,} denote the
welfare-maximizing allocation. WLOG, we assume that O; C
Si. We have that SW(OPT(v)) =32, 3" ,c0, vi(j). We will
show that SW(OPT(v)) < (¢? + ¢)SW(b).

Fix a bidder i. Consider the set of queries @ = O;\ X;(b).
Let h(q) denote the highest bidder other than i for query
q € Q, e byg(q) = pi(q). Let K; be the set of keywords
on which bidder i is currently bidding. Since the mechanism
is fully-expressive, there exists a set of at most x keywords
Kj = {A1, Az, A3, ...} such that Q C UAGK; A (K covers all
queries in Q). Now we assign each query in Q to a keyword
in K. Let Ax(Q) denote @ N (Ax\ U A)).

Next we consider a particular deviation for ¢. Consider a
keyword A € K| and the set A(Q), dropping the subscript
for succinctness. Order the queries g1, q2,...,q1 € A(Q) so
that pi(q1) < pi(q2) < ... < pi(q). Let t be the largest in-
teger such that Lv;(q:) > pi(q¢). Let b;* be the bid vector
obtained by 1) removing a keyword bid from b; if b; has
keyword bids, and 2) setting the keyword bid b;' (A) to p:(q:)-
Observe that by is in #’s undominated strategies. Let o(A)
denote the keyword bid that is removed when b is con-
structed from b; (0(A) is a dummy keyword @ if no keyword
bid is removed). We choose the removed bids so that o(A)
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is unique for each A (this is possible because |Kj| < k). Let
W = X;(b;,b_;). Consider bidder i switching his bid vec-
tor from b; to b, Let W’ = X,;(b,b_;). The equilibrium
condition implies 3y, vi(5) —pi(§) > 22,y vi(d) —pi(F)-

Let U = 2 jeww Vi(j) — pi(j) (the switching cost).
Since the price that a bidder pays is independent of his bids,
pi(j) remains the same for j € W N W’. Canceling out the
terms with 7 € W N W', we have

Ut o> Y wil) - pid)

JEWN\W
t

> > wile) —pila)+ Y wild) —pid)
o JEWNIWNQ
t

1

> D vile) —pile)+ Y —vila) —pila)

= JEWNIWNGQ

We obtain the second inequality by separating the terms
with queries in @ from the other terms and noting that 4
wins only queries with p;(j) < pi(¢g:). The last inequality
comes from the assumption that keywords are homogeneous
and the fact that p;(j) is at most the bid of p;(q:). Next we
drop the terms %vi(qt) — pi(qt), using the fact that they
are positive.

t t
U+ piler) > Y wvilar) (1)
r=1 r=1
t l t
U+ pilar)+ Y piler) = D vilgr)
r=1 r=t+1 r=1
L1
+ > —vila) (2)
r=t+1
1 l
c Ut +c- Y pilar) = Y wvilar) (3)
r=1 r=1
! l
c Uf+ D ongn(ar) = D vilar) (4)
r=1 r=1
c U+ > wpi) = D wilh) (5)
JEAQ) I€AQ

We obtain (2) using the fact that Lv;(g-) < pi(gr) for all
r > t. Inequality (4) uses the assumption that p;(¢r) =
bn(g,)(¢r) is in undominated strategies (of bidder h(g,)),
which implies there exists a keyword A and a query j € A
such that g- € A and by, )(qr) = bag,)(A) < Un,)();
then the homogeneity of keyword A implies vp(q,)(j) < ¢ -
Vn(ar) (4r)-

Now we bound the total switching cost ZAGK; U# by the

total welfare of bidder 7. Recall that UZ-A = Zjew\w, vi(5)—
pi(j) which implies

vi(J)-

Uit < Z vi(g) =

JEW\W/

>

FEX;(bi b i)\ X (b ,b_;)

Summing both sides over A € K/, we have



Sutey Y

A€K] AEK] GEX;(bi,b—i)\X; (b ,b_;)

vi(j)  (6)

Let 6(A) denote the set of queries that bidder ¢ would lose

if he drops his bid on keyword A. The set X; (b, b_:)\ X (b, b_

is precisely d(c(A)). Using the fact that oc(A) € K; and the
fact that o(A)’s are distinct, we have

Sut s Y Y un

A€EK] AeK/) jes(a(A))

ST wild)

A€K; jE§(A)

(7)

IN

(®)

Since bidder i can lose a query j only if he drops his bid
on the keyword argmaza.jeab;(A), for every two distinct
keywords A, B € Kj, the sets §(A) and §(B) are disjoint.

Therefore, - ., Zje&(A) vi(j) < ZjeXi(bi,b_,;)’Ui(j) and

thus
Sute ¥

A€K] JEXi(bisb_s)

vi(j) )

Summing both sides of inequality (5) over A € K| and
applying inequality (9), we have

Swild) < e D> vnl)+ED v ()

JEQ jE€EX;(b) JEQ
S owl) < e Y wl)
JEO;\X;(b) JjEX;(b)
+& D () (10)
JEO\X;(b)

Then summing both sides over ¢, adding 3>, >=.c 5. x, (1)

vi(j) to the left and adding ¢* )", > jcoinx; (k) Vi(j) to the
right yields

S w) + X wh) | <ed Do wl)

i JEO0;\X;(b) JEO;NX;(b) i jEX;(b)

N DS

i JEO;\X;(b)

>

JjEO;NX;(b)

vn () () + vi ()

SW(OPT(v)) < c¢-SW(b)+c*- SW(b)

Rearranging the terms yields the POA of ¢ +¢. O

4. THE LOWERBOUND

In this section, we show that the bound given by theorem
3.4 is almost tight. Consider the following broad match set-
ting (see figure 2). There are ¢ bidders, namely 0,1, ...,c—1.
There are c—1 queries, namely b1, ba, ..., bc—1. The only key-
word is A = {bl,bz, ...,bc_1}. 1)0(b1) =c, Uo(bj) = 1,Vj > 1.
For each i > 0, v;(b;) = 3¢ and vi(b;) = Sc for all j # 4.
There is a pure Nash equilibrium where bidder 0 bids ¢ on
keyword A and the other bidders bid nothing. The welfare of
this equilibrium is ¢+c¢—2. The optimal welfare is 502(0—1),
which results from the allocation: Xo = 0, X; = {b;}. Hence
the pure POA is at least icQ.

i)
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An example with POA at least ic2.

Figure 2: 1
,bc—1 and the keyword is A.

Queries are by, bs, ...

Theorem 4.1 There exists a fully-expressive broad match
mechanism with c-homogeneous keywords such that its pure
POA is at least icQ.

S. THE EXPRESSIVENESS-HOMOGENEITY

TRADE-OFF

In this section, we tackle the mechanism design problem:
How to design keywords for a broad match mechanism? As
shown in the previous two sections, the designer wants the
keywords to be homogeneous and fully-expressive. However,
designing such keywords can be difficult or even impossible,
given the constraint on x, the number of keyword bids. Note
that it is easy to design keywords that are fully-expressive
but not necessarily homogeneous: create 1 keyword that
contains all queries in the universe. It is also easy to design
keywords that are 1-homogeneous but not necessarily ex-
pressive: for every query j, create a keyword J = {j}. That
leads us to explore the trade-off between the two proper-
ties. The best mechanism probably lies between those two
extremes. First, we define semi-expressiveness.

Definition 5.1 A set L of keywords is a-expressive if for
every bidder i and every set Q C S; of queries such that
|Q| < [a|S;]], there exists a set K C L such that |K| < &
and Q C Uycx A

We say a broad match mechanism is a-expressive if the set
of all keywords in the mechanism is a-expressive. We can
show that the upper bound on the POA of broad match
mechanisms is a function of « and c.

Theorem 5.2 For every a-expressive broad match mecha-
nism with c-homogeneous keywords and at least one pure
Nash equilibrium, the pure POA is at most = (c® + c).

This bound advises us that when we introduce a set of
new broad match keywords that improves expressiveness by
a factor of z, the homogeneity constant of the keywords
should not increase by more than a factor of /z.

Note that the mechanism designer does not need to know
bidder valuation in order to design broad match keywords.
For homogeneity, the designer only needs to know the rela-
tive valuations of a bidder for different queries. For example,
it is enough to know that advertisers value “sneakers” and
“running shoes” roughly the same to create a keyword for
them. For expressiveness, the designer only needs to know
the set of queries that each bidder is interested in (queries
with positive valuation).



The proof of theorem 5.2 combines the arguments in the
proof of theorem 3.4 with the next lemma.

Lemma 5.3 For every constant 0 < a < 1, every additive
valuation v and every set T, there exists a set T' C T of size
at most [a|T|] such that v(T") > av(T).

PROOF. Rename the elements in T' = {1,2,...} so that
> v(2) >v3) > ... Let T = {1,2,...,[a|T|]}.
")y > aw(T), we are done. Suppose not. That means

v

(1)
o(T
(

o([alT1]) < i Let S = T\T". Then v(S) < g (171
[a|T]). That implies v(T") + v(S) < av(T) + FJJI(TT\% (7] -

[a|T]]) = aw(T) (#%) < o(T). Contradiction to the
assumption that v is additive. [

Now we modify the proof of theorem 3.4 to obtain the proof
of theorem 5.2.

Proof of Theorem 5.2: Using the same notation, the welfare-
maximizing allocation is {O1, Oz, ...,O0,}. WLOG, assume
0; C S;. By lemma 5.3, there exists a set O; C O; such that
|0;i| < [a|O;]] and v;(Oj) > av;(O;). Then we redefine Q in
the original proof as Q@ = O\ X;(b). We redefine K| using
the new definition of expressiveness. By the assumption that
the mechanism is a-expressive, there exists a set of keywords
K such that |Kj| < x and Q C O] C UAeK{ A. Then we

proceed as in the original proof. Inequality (10) becomes

Z vi(4) C'Z vi(j) +c¢ Z

JEOI\X;(b) JEX;(b) JEOI\ X, (b)

Uh(j)(j)

Summing both sides over i, adding >, Z]eo/nx (b Vi ()
to the left and adding ¢* ", Z]eo'mx (by Vi(J) to the right
yields

b3 D BROREDY

i \jeoNX,(b) JEOINX,(b)

N DY

i \JEO;\X;(b)

<e Y Yo i)

i jeX;(b)

vn () () + vi(J)

>

JE€0INX; (b)

Comblmng the terms, we have >, v;(0;) < ¢- SW(b) +
2. SW (b). Using the fact that v;(O}) > aw;(0;), we obtain
aSW(OPT(v)) < c¢-SW(b) +c? - SW(b). Therefore,

SW(OPT(v)) < —(c + ¢)SW (b).

Rl

We note one special case, when the mechanism does not
have any broad match keyword.

Definition 5.4 (EMO mechanism)

The ezact-match-only mechanism is a broad match mech-
anism that has one exact match keyword J = {j} for each
query j and no other keywords.

All keywords in EMO mechanisms are 1-homogeneous. Let
p = max;|S;| and v = p/k. By observing that an EMO

mechanism is %—expressive7 we have the following corollary.
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Corollary 5.5 For every EMO mechanism that limits the
number of keyword bids to k, the pure POA is at most 2.

For example, if every advertiser has a positive valuation for
at most 500,000 queries and the EMO mechanism limits the
number of keyword bids to 50,000, the pure POA of this
mechanism is at most 20.

6. AN EXTENSION TO SUBADDITIVE VAL-
UATION

In this section, we generalize our bound for EMO mech-
anisms to cover subadditive valuation. A valuation v is
subadditive if for all subsets Si,S5%9,...,Sk of the queries,
v(S1 U S2 U ...USk) < v(S1) +v(S2) + ... + v(Sk). De-
fine the strategy space D; of each bidder i to be the set of
bid vectors b; such that 1) the number of keywords A with
bi(A) > 0 is at most x and 2) >°. 5 bi(j) < vi(S) for ev-
ery set S of queries. In short, D; corresponds to the set
of bid vectors that don’t overbid on any subset of queries.
The next lemma, which is proven by [3], implies that for
every bid vector b; ¢ D;, there exists a bid vector in D; that
weakly dominates it.

Lemma 6.1 Let O be a set of at most k queries and p(j) be
a price for the query j € O. Let v; be a subadditive valuation
of bidder i. There is a bid vector b; € D; such that b;(j) =0
for all j ¢ O and

= > p(j) = ui(0

jes
where S ={j € O : b;(j) > p(h)}

= > p(h)

jeo

We can think of v;(S) — Zjes p(j) as the utility of bidder ¢
from bidding b; against prices p induced by the bids of other
bidders.

Unfortunately, lemma 5.3 does not hold for subadditive
valuation but we can show that it holds when the require-
ments are slightly relaxed.

Lemma 6.2 For every constant 0 < o < 1, every subaddi-
tive valuation v and every set T, there exists a set T' C T
such that

IT'| < [a|T|] and v(T") >

PRrooF. Let a = [é] Divide T arbitrarily into a sets of
size at most [a|T’|] and name them S1, ..., Sa. By the subad-
ditivity of v, Y7, v(Ss) > v(T'). That 1mphes =3 u(S) >
Ly(T). There must be at least one set S; € {5’1,52, ey Sa}
such that v(9;) > 37 v(Si) > 2o(T). O

We keep the same definition for p and 7.

Theorem 6.3 For every EMO mechanism that has only
bidders with subadditive valuations and a limit of k on the
number of keyword bids, the pure POA is at most 2 [7].

PROOF. Denote the welfare-maximizing allocation by O =
{01,0a4,...,0,}. WLOG, assume O; C S;. Let b denote an
equilibrium bid profile. Let a = . Consider bidder 4. Ac-
cording to lemma 6.2, there exists a set of queries Q; C O;



such that |Q;| < [a]O;|] and v;(Qs) > ﬁv,(Ol) Observe
that |Q;| < k. Now we will invoke lemma 6.1, by letting p(j)
be the price of query j for bidder 7 when the other bidders
bid b_;. By lemma 6.1, there exists a bid vector b, € D;
such that b;(j) = 0 for all j ¢ @Q; and

vi(Xa (b 0-) — Y - > il
J€Q;

JEX(bi,b_y)

pl(] > Uz

Consider bidder i switching his bid from b; to b}. Denote
bidder ¢’s utility in the equilibrium by u;. The equilibrium
condition gives

wi 2 u(Xilb-)) - Y i)
JEX;(b],b—4)
> - Z pi(7)
JEQ;
[ sz
JEQ;

Summing both sides over i, we have

i i i JEQ;
> %SW (OPT(V) = > pi(
v i JEO;
> L sw(orr(y =30 > b
[v1 )
> Lsw (OPT(v Zvl

(71

The third inequality comes from the fact that the price of
an item is at most the bid of the winner. The last inequality
uses the assumption that b; € D;. Applying the fact that
SW(b) > >, ui, SW(b) > >, vi(Xi(b)), and rearranging
the terms, we have

1

SW (b) 1t

> SW(OPT(v))

O

7. THE PER-IMPRESSION BROAD MATCH
MECHANISM

In this section, we analyze a per-impression variant of the
broad match mechanism. The main difference between the
model in section 2 and the per-impression model is that in
the latter, the number of impressions for each search term is
made explicit. As a result, we can explicitly model each
bidder’s valuation per impression. This leads to a more
practical definition of homogeneity, which now operates on
value-per-impression (rather than value-per-search-term in
section 2). Despite this fundamental difference, their anal-
yses are syntactically very similar and our bound on the
POA for the per-impression mechanism mirrors that of the
per-search-term mechanism.

7.1 The Per-impression Model

There are n bidders and m search terms. For each search
term j, the search engine (auctioneer) has n; impressions

98

for sale. Bidder ¢ has valuation v;(j) for each impression of
search term j. The bidders’ valuations are additive across
impressions. An allocation is an assignment of impressions
to bidders such that each impression is assigned to at most
one bidder. The per-impression broad match mechanism is
defined as follows

1. Each bidder ¢ submits bid b; on keywords upfront. The
number of keywords A such that b;(A) > 0 must be at
most K.

2. Each bidder’s bid is translated into bids on search
terms using the formula b;(j) = maxa.jca bi(A).

3. For each search term j, for each impression generated
from j, allocate the impression to the bidder with
the highest b;(j) and charge him the price p;(j) =
maXg=£q bk (])

Note that this mechanism always allocates all impressions
from the same search term to the same bidder. The opti-
mal (welfare-maximizing) allocation assigns each impression
from search term j to the bidder ¢ with the highest v;(j).
Therefore, our analysis deals only with allocations that as-
sign all impressions from the same search term to the same
bidder. Denote an allocation by X = {X1, X, ..., X, } where
X is the set of search terms that go to bidder i. Given a set
of search terms 7', we define v;(T') = >, m;vi(j). The wel-
fare SW(X) of an allocation X is defined as 37, 3= . mjvi(J).-
The utility of bidder 4 is 3° .y, 4y 75 (vi(§) — pi(j)). We re-
strict the strategy space of] each bidder i to D; which is
defined the same way as before.

One can view the previous per-search-term mechanism as
a special case of the per-impression mechanism where n; =1
for all j.

7.2 The Upper Bound on the POA

In this model, we use value-per-impression in the defini-
tion of homogeneity.

Definition 7.1 A keyword B is c-homogeneous if for every
bidder ¢ and every two search terms ji1,j2 € B, v;(j1) <
¢ vi(Ja).

The support of a bidder is defined as in section 2 except
it is done in terms of search terms instead of queries. The
definition of a-expressiveness remains the same. We have a
lemma similar to lemma 5.3.

Lemma 7.2 For every constant 0 < a < 1, every additive
valuation v and every set T' of search terms, there exists a
set T" C T of size at most [T such that v(T") > av(T).

We have an upper bound on the POA similar to theorem
5.2.

Theorem 7.3 For every a-expressive broad match mecha-
nism with c-homogeneous keywords and at least one pure
Nash equilibrium, the pure POA is at most é(c2 +c).

Since the proof is very similar to the proof of theorem 5.2,
we present here a proof sketch.

Proof (sketch): We use the same notations as in the proof of
theorem 5.2 except the queries are now search terms. The
equilibrium condition implies



Uit > > m(wid) — pid)

JEWN\W

Then we proceed as before except we now have n; in the
terms involving v;(j) and p;(j). Whenever we use the fact
that Lvi(g:) > pi(qe), we substitute it with Lnvi(q:) >
n;pi(ge). Then we have (compared to inequality (5))

c- Ui+ > monn() = Y mjuild)

JEA(Q) JEA(Q)

We can bound the total switching cost and combine it
with the above inequality as before. Then we have

2 2

JEOI\X;(b) JEOI\X;(b)

nvi(j) <e D> mvi(i)+c?
JEX;(b)

n5Vn () (J)

We conclude the proof by summing both sides over ¢ and
following similar syntactic manipulations as in the proof of
theorem 5.2. B

8. CONCLUSION

Broad match keywords are a crucial part of search adver-
tising. Our tight bounds on the price of anarchy of broad
match mechanisms suggest that the performance of the multi-
keyword sponsored search mechanism depends heavily on
the design of each broad match keyword (the set of queries
it is associated with). Our parameterization of the upper
bound on the price of anarchy by expressiveness and ho-
mogeneity gives the mechanism designer a flexible design
space that ranges from no broad match keyword to a fully-
expressive bidding language.

Another useful design choice is to personalize keywords for
advertisers. That is to create keywords that are exclusive to
each advertiser. We believe that this is happening the in
the industry. Our model can be easily modified to allow
such keywords by changing the definition of homogeneity to
bind only for the advertisers who can bid on them, and our
bounds will remain the same.

Our work suggests a number of interesting open questions.
First, is it possible to generalize theorem 3.4 to subadditive
valuation? Second, broad match keywords are just one way
to design the bidding language. What else can we do? Third,
since we cannot make the assumption that a GSP auction for
a search term is independent from GSP auctions for other
search terms, we might as well not use them. What are
other alternative mechanisms for allocating impressions for
all different search terms?
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