
ar
X

iv
:1

10
2.

10
96

v2
 [

cs
.G

T
]

 2
8

M
ar

 2
01

1

Repeated Matching Pennies

with Limited Randomness∗

Michele Budinich†

m.budinich@imtlucca.it

Lance Fortnow

fortnow@eecs.northwestern.edu

June 4, 2018

Abstract

We consider a repeated Matching Pennies game in which players have
limited access to randomness. Playing the (unique) Nash equilibrium in
this n-stage game requires n random bits. Can there be Nash equilibria
(or ε-Nash equilibria) that use less than n random coins?

Our main results are as follows

• We give a full characterization of approximate equilibria, showing
that, for any γ ∈ [0, 1], the game has a γ-Nash equilibrium if and
only if both players have (1− γ)n random coins.

• When players are bound to run in polynomial time with nδ bits of
randomness, approximate Nash equilibria can exist if and only if
one-way functions exist.

• It is possible to trade-off randomness for running time. In particular,
under reasonable assumptions, if we give one player only O(log n)
random coins but allow him to run in arbitrary polynomial time with
nδ bits of randomness and we restrict his opponent to run in time
nk, for some fixed k, then we can sustain an ε-Nash equilibrium.

• When the game is played for an infinite amount of rounds with time
discounted utilities, under reasonable assumptions, we can reduce
the amount of randomness required to achieve a ε-Nash equilibrium
to nδ, where n is the number of random coins necessary to achieve
an approximate Nash equilibrium in the general case.

∗This research was partially supported by NSF grants CCF-0829754 and DMS-0652521.
†This work was done while the author was visiting Northwestern University, Department

of Electrical Engineering and Computer Science.

1

http://arxiv.org/abs/1102.1096v2

1 Introduction

In the classical setting of Game Theory, one of the core assumptions is that
all participating agents are “fully rational”. This amounts not only to the fact
that an agent must be able to make optimal decisions, given the other players’
actions, but also to the fact that he must understand how these actions will affect
the behavior of all other participants. If this is the case, a Nash equilibrium
can be viewed as a set of strategies in which each agent is simply computing
his best response given his opponents’ actions. However, in real world strategic
interactions, people often behave in manners that are not fully rational. There
are many reasons behind non-rational behavior, we focus on two: limitations on
computation and limitations on randomness.

Since the work of Herbert Simon [13], much research has focused on defining
models that take computational issues into account. In recent years, the idea
that the full rationality assumption is often unrealistic has been formalized us-
ing tools and ideas from computational complexity. It is in fact easy to come
up with settings, as in Fortnow and Santhanam [4], in which simply comput-
ing a best response strategy involves solving a computationally hard problem.
Furthermore there is strong evidence that, in general, the problem of finding
a Nash equilibrium is computationally difficult for matrix games (Daskalakis,
Goldberg and Papadimitriou [3], Chen and Deng [2]).

Traditionally bounded rationality has focused on two computational re-
sources: time and space. In this paper we focus on another fundamental re-
source: randomness.

It is a basic fact that games in which agents are not allowed to randomize
might have no Nash equilibrium. In this sense, randomness is essential in game
theory. We focus on a simple two player zero-sum game that captures this:
Matching Pennies (Figure 1). Specifically, we consider the repeated version of

Figure 1: The payoff bimatrix for the Matching Pennies game.

Matching Pennies, played for n rounds. In this game, the unique Nash equilib-
rium is the one in which, at every round, both players choose one of their two
strategies uniformly at random. The algorithm that implements this strategy
requires n random coins, one for each round. The main question we address in
this paper is: can there be Nash equilibria if the amount of randomness available

2

to both players is less than n?
First we show that, in general, the game cannot have a Nash equilibrium

in which both players have only a fraction of n random coins. In particular,
when we give both players n(1−γ) random coins, we can only achieve a γ-Nash
equilibrium. This turns out to be tight, in the sense that we can show that any
game with a γ-Nash equilibrium both players must have at least n(1− γ) coins.

The proof of this fact, however, relies on the players’ ability to implement a
strategy that runs in exponential time. We then consider games in which the
players’ strategies are polynomially-bounded. Using ideas developed in cryp-
tography and computational complexity we show that, in this setting, ε-Nash
equilibria that use only nδ coins exist if and only if one-way functions exist.

We also show that the amount of randomness can be “traded” for time.
If we allow one of the players to run in arbitrary polynomial time, but use
only O(log n) bits, we can still achieve a ε-Nash equilibrium if we restrict his
opponent to run in time nk for some fixed k > 0, while giving him nδ random
bits.

Finally we consider an infinitely repeated game with time discounted utili-
ties. In this case, in general, for any discount factor δ and approximation ε, we
can always achieve a ε-Nash equilibrium with only n random coins, if n is large
enough. When we limit players’ strategies to polynomial size circuits, we can
reduce the amount of randomness to nδ, for any δ > 0.

Related Work

There are many recent approaches to bounded rationality using a computational
complexity perspective. For instance Halpern and Pass [7] study games in which
players’ strategies are Turing machines. The idea of considering randomness as
a costly resource in game theory has received only limited attention. Kalyanara-
man and Umans [11] study zero-sum games, and give both an efficient deter-
ministic algorithm for finding ε-Nash equilibria, as well as a weaker, but more
general, result in the spirit of our Lemma 3.1, giving a randomness-efficient
adaptive on-line algorithm for playing repeated zero-sum games. Hu [9] also
considers a similar setting but he is concerned with computability rather than
complexity. He considers infinitely repeated plays of 2 player zero-sum games
that have no pure strategy Nash equilibrium, and in which players have a set
of feasible actions, which represents both the strategies they can play and the
strategies they can predict. In this setting Hu gives necessary and sufficient
conditions for the existence of Nash equilibria. Finally Gossner and Tomala [6],
give entropy bounds on Bayesian learning in a game theoretic setting, in a more
general framework then this paper. Their results applied to Matching Pennies
do not achieve the tight bounds we get in Lemma 3.1.

The rest of the paper is organized as follows. In Section 2 we introduce the
notation and known results used. Section 3 presents an information theoretic
impossibility result. Section 4 considers players whose strategies are limited to
polynomial sized Boolean circuit families, while Sections 5 and 6 give exten-

3

sions of the main results to complexity pseudorandom number generators and
infinitely repeated versions of the game.

2 Background and Definitions

2.1 Game Theory Notation

Throughout the paper we consider a repeated game of Matching Pennies. We
focus on this game because it captures one of the fundamental aspects of ran-
domness in game theory. Studying such a simple game also allows us to get
tight bounds. However, variations of our results extend to other similar 2 per-
son zero-sum repeated games.

The payoffs at each round are shown in Figure 1. Let h : {H,T} × {H,T} →
{−1, 1}, be the payoff to Player 1 (P1), and −h the payoff for P2. When we allow
the players to randomize, we denote as Si a randomized strategy on ∆{H,T }
for player i. P1’s expected payoff in one round is

E [h(S1, S2)] =
∑

s1,s2∈{H,T}
Pr (S1 = s1) Pr (S2 = s2)h(s1, s2).

Let u : {H,T}
n
× {H,T}

n
→ {−n, · · · , n} be P1’s cumulative payoff when the

game is played for n rounds. In the repeated game, mixed strategies can be
viewed as distribution over sequences of length n that are dependend on the
opponent’s strategy. Given the adversary’s strategy, let Ri = (r1i , · · · , r

n
i) ∈

∆{H,T}
n
denote a randomized strategies for player i. P1’s expected cumulative

payoff is

E [u(R1, R2)] =

n
∑

t=1

E
[

h(rt1, r
t
2)
]

.

Finally we define the expected average payoff to P1 for the n-round game as

E [U(R1, R2)] =
E [u(R1, R2)]

n
,

and consequently P2’s expected payoff is −E [U(R1, R2)]. To denote player’s i
payoff we will sometimes use the standard notation E [U(Ri, R−i)], where Ri is
player’s i mixed strategy and R−i is his opponent’s mixed strategy.

Definition 2.1 (Nash equilibrium). A pair of mixed strategies (R1, R2) is a
Nash equilibrium for the n-stage Matching Pennies game if, for i = 1, 2:

E [U(Ri, R−i)] ≥ E [U(R′
i, R−i)] for all R′

i ∈ ∆{H,T}n.

In some cases we will consider a relaxed notion of equilibrium, namely ε-Nash
equilibrium.

Definition 2.2 (ε-Nash equilibrium). A pair of mixed strategies (R1, R2) is a
ε-Nash equilibrium for the n-stage Matching Pennies game if, for i = 1, 2:

E [U(Ri, R−i)] ≥ E [U(R′
i, R−i)]− ε for all R′

i ∈ ∆{H,T}n.

4

2.2 Complexity and Pseudorandomness

We give a brief description of the pseudorandomness tools we need for this
paper. For more details we recommend the textbooks of Arora and Barak [1]
and Goldreich [5].

The model of computation used throughout most of the paper is based on
Boolean Circuits. We consider circuits with AND, OR and NOT gates, and
denote by Cn a circuit with n input nodes. A circuit family {Ci}i∈N is an
infinite collection of circuits, intuitively one for each input length.

The size of a circuit |Cn| is the number of gates. A circuit family is poly-
nomial sized if there is a k > 0 such that, for all n, |Cn| ≤ nk. The class of
languages recognizable by families of polynomial sized circuits is called P/Poly.
Any language that can be decided in polynomial time by a deterministic or
randomized Turing machine is also in P/Poly. Formally P ⊆ BPP ⊆ P/Poly.

A function is one-way if it is easy to compute and hard to invert.

Definition 2.3 (One-way Function). A one-way function is a polynomial-time
computable function f : {0, 1}n → {0, 1}n such that, for all polynomial size
circuits D and y = f(x) (where x is chosen uniformly at random on {0, 1}n),
Pr(f(D(y)) = f(x)) < n−c for all c > 0 and sufficiently large n.

Informally, two objects are indistinguishable if no polynomial sized circuit
family can tell them apart with noticeable probability.

Definition 2.4 (Indistinguishability). Let X,Y be two random variables on
{0, 1}n. We say that X and Y are computationally indistinguishable if for every
family of polynomial size circuits {Ci}i∈N

, every c > 0 and for sufficiently large
n

∣

∣

∣
Pr (Cn (X) = 1)− Pr (Cn (Y) = 1)

∣

∣

∣
<

1

nc
.

A cryptographic pseudorandom number generator (PRNG) is a deterministic
algorithm whose output is computationally indistinguishable from the uniform
distribution, provided that it’s input is truly random. We will denote by Uk a
random variable uniformly distributed on {0, 1}k.

Definition 2.5 (Cryptographic PRNG). A cryptographic pseudorandom num-
ber generator is a deterministic polynomial time algorithm G : {0, 1}l(n) →
{0, 1}n, where l(n) < n is a polynomial time computable function, such that
G(Ul(n)) and Un are computationally indistinguishable.

There are two basic properties about pseudorandom number generators that
we will use. One relates the notion of pseudorandomness to the notion of pre-
dictability.

Definition 2.6 (Unpredictable). Let G : {0, 1}l(n) → {0, 1}n be a polynomial
time algorithm, and G(x) = (y1, · · · , yn). We call G unpredictable if for every
family of polynomial size circuits {Di}i∈N

, all c > 0 and for sufficiently large n

Pr (Di (y1, . . . , yi−1) = yi) ≤
1

2
+

1

nc
.

5

Intuitively a pseudorandom number generator must be unpredictable, oth-
erwise we could easily build a test for it by using the predictor circuits. In
1982 Yao [14] proved the opposite implication, thus establishing the following
theorem.

Theorem 2.7 (Yao’s Theorem). A polynomial time algorithm G : {0, 1}l(n) →
{0, 1}n is unpredictable if and only if G is a pseudorandom number generator.

H̊astad, Impagliazzo, Luby and Levin in 1999 [8] showed how to construct
pseudorandom number generators with polynomial expansion based on one-way
functions.

Theorem 2.8 (PRNG’s from one-way functions). One way functions exist if
and only if for every δ > 0 there is a pseudorandom number generator with
l(n) = nδ.

Cryptographic pseudorandom number generators’ main power lies in the
ability to fool any polynomial sized adversary, while running in polynomial time.
However, in other areas of complexity, such as derandomization, the crucial issue
is having a smaller seed.

Definition 2.9 (Complexity PRNG). A complexity pseudorandom number gen-
erator is a 2l(n) time computable function G : {0, 1}l(n) → {0, 1}n, such that for
any circuit C of size n

∣

∣

∣
Pr
(

C
(

Ul(n)

)

= 1
)

− Pr (C (G (Un)) = 1)
∣

∣

∣
< n−1.

The essential difference with cryptographic pseudorandom number genera-
tors is the order of quantifiers. A cryptographic pseudorandom number genera-
tor fools circuits of an arbitrary polynomial size. The complexity pseudorandom
number generator fools circuits only of a fixed polynomial size but under the
right assumptions requires far fewer random bits.

Impagliazzo and Wigderson [10] building on a series of paper starting with
Nisan and Wigderson [12] characterize when complexity pseudorandom number
generators exist.

Theorem 2.10. There exists L ∈ DTIME(2O(l(n))) and ε > 0 such that no
circuit of size at most 2εl(n) can compute L if and only if there exists a complexity
pseudorandom number generator with l(n) = C logn for some C > 0.

3 Information Theoretic Bounds

In this section we make no computational assumptions on the players, and show
that there can be no Nash equilibrium if we limit the amount of randomness
available to both players.

Lemma 3.1. For any γ ∈ [0, 1], if P2 has less than n(1− γ) random bits, then
P1 has a deterministic strategy A that achieves an expected average payoff of at
least γ.

6

Proof. We will give a strategy A = (a1, · · · , an) for P1 that achieves a high
payoff against any strategy B = (b1, · · · , bn) from P2.

Player 1 will enumerate all of P2’s possible coin flips, and will obtain a set
of 2n(1−γ) possible strategies, one of which is the one being used by P2. After
each play by P2, P1 can eliminate all the strategies that do not play that action
at that round. Let St be the set of strategies that are consistent with P2’s plays
up to round t. Initially the set S1 contains 2n(1−γ) strategies, and, for all t,
|St+1| ≤ |St|.

The strategy A for P1 is straightforward: at round t, P1 will play based
on the most likely event: he will consider all strategies in St and play H if the
majority of strategies in St use H at round t and play T otherwise. Let pt be
the exact fraction of strategies that are the majority at round t,

pt =
max{|{bt | bt = H}|, |{bt | bt = T }|}

|St|
, (3.1)

so that pt ∈ [1/2, 1]. P1’s expected payoff at round t is:

E
[

h(at, bt)
]

= pt − (1− pt) = 2pt − 1 ≥ 0.

Thus P1’s average expected payoff is at least 0. To show that P1 can actually
achieve an average expected payoff of γ we need to consider the amount of
information P1 gains at each round. We define the following potential function
φ : {1, . . . , n} → R:

φ(t) =

t−1
∑

k=1

h(ak, bk)− log |St|,

which considers both the accumulated payoff for P1 and the log-size of the set
of consistent strategies. At time t = 1 there are 2n(1−γ) possible strategies for
P2, so φ(1) = −n(1 − γ). We will now lower bound the expected increase in φ
at each round. We can express this as

E [φ(t+ 1)− φ(t)] =

(

E

[

t
∑

k=1

h(ak, bk)

]

−E

[

t−1
∑

k=1

h(ak, bk)

])

−
(

E
[

log |St+1|
]

−E
[

log |St|
])

= E
[

h(at, bt)
]

−
(

E
[

log |St+1| − log |St|
])

= 2pt − 1−
(

E
[

log |St+1| − log |St|
])

.

Now consider E
[

log |St+1|
]

. When P1 looses he can eliminate a pt fraction of
strategies, thus the new set St+1 will contain a (1−pt) fraction of the strategies
in St. On the other hand, when P1 wins, |St+1| = pt|St|. To complete the
analysis we have to consider two cases, since if pt = 1 then E

[

log |St+1|
]

is not
well defined.

First assume pt = 1. This happens when all feasible strategies for P2 have
the same action at round t. In this case P1 will win with probability 1, and the

7

size of the set of feasible strategies will stay the same. So, overall, the increase
in φ will be 1.

Now assume pt ∈ [1/2, 1). Then, the expected size of the set St+1 is:

E
[

log |St+1|
]

=
(

(1 − pt) log(1− pt)|St|+ pt log pt|St|
)

. (3.2)

The expected change in log |St| does not depend on St, but only on pt, since

E
[

log |St+1| − log |St|
]

=
[

(1− pt) log(1 − pt)|St|

+pt log pt|St|
]

− log |St|

= (1− pt) log(1− pt) + pt log pt.

So that the overall change in potential when pt < 1 is

E [φ(t+ 1)− φ(t)] ≥ 2pt − 1− (1 − pt) log(1− pt)− pt log pt,

which is always at least 1 for pt ≥ 1/2.
So, for all pt ∈ [1/2, 1], at each step the potential function ϕ increases by at

least 1. Thus, after n rounds we have that

E [φ(n)] ≥ φ(1) + min
t
{nE [φ(t+ 1)− φ(t)]}

≥ −n(1− γ) + n = nγ.

Since P1’s expected payoff is at least E [φ(n)], this completes the proof.

This result immediately implies that, without any computational assump-
tion, there can be no equilibrium with less than n random coins.

Corollary 3.2. For all γ1, γ2 ∈ [0, 1] such that γ1 + γ2 > 0, if P1 and P2 have,
respectively, n(1 − γ1) and n(1 − γ2) random coins, then there can be no Nash
equilibrium in the n-stage Matching Pennies repeated game.

Proof. Assume, by contradiction, that (S1, S2) is such a Nash equilibrium. By
Lemma 3.1, P1’s expected payoff must be E [U(S1, S2)] ≥ γ2 and P2’s payoff
−E [U(S1, S2)] ≥ γ1, otherwise they would be better off by using the majority
strategy in the proof of Lemma 3.1. Summing the two inequalities we get
γ1 + γ2 ≤ 0, a contradiction, since we assume γ1 + γ2 > 0.

However, if we limit the amount of randomness available to both players, we
are still able to achieve an ε-Nash equilibrium. Furthermore, if the game has a
ε-Nash equilibrium, then both players must have at least (1−ε)n random coins.

Theorem 3.3. Let γ ∈ [0, 1]. The game has a γ-Nash equilibrium if and only
if both players have n(1− γ) random coins.

For simplicity we assume γ is the same for both players, however a similar
result holds even in the case where the two players have a different amount of
random coins.

8

Proof. To show the “only-if” implication, consider, by way of contradiction, a
game that has a γ-Nash equilibrium (S1, S2) but in which both players have less
than n(1 − γ) random bits. Thus there must be a γ′ > γ such that they have
exactly n(1 − γ′) random bits. Since (S1, S2) is a γ-Nash equilibrium, it must
be the case that, for any strategy S′

1 for P1

E [U(S1, S2)] ≥ E [U(S′
1, S2)]− γ.

By Lemma 3.1 we know that both players have a strategy that achieves a payoff
of at least γ′ > γ, so that the above implies E [U(S1, S2)] > 0. Applying the
same argument to P2, we get −E [U(S1, S2)] > 0, a contradiction.

The “if” part follows from Lemma 3.4 below.

Lemma 3.4. Let γ ∈ [0, 1]. If both players have n(1 − γ) random coins, then
the game has a γ-Nash equilibrium.

For simplicity we assume γn is even.

Proof. Consider the following strategies: both player use their random coins
to play uniformly at random for the first n(1 − γ) rounds. Thereafter P1 will
always play H , while P2 will alternate between H and T , playing H,T, We
claim that this is a γ-Nash equilibrium.

First notice that no player can improve his payoff in the first n(1−γ) rounds,
given his opponent’s strategy. Let’s consider the remaining nγ rounds. P1 could
improve his payoff by playing H,T,H, T . . . , however this only increases his
payoff by γ. This holds also for P2, that could play T, T, . . . , however gaining
only γ.

4 Computationally Efficient Players

The proof of Lemma 3.1 in the previous section relies heavily the fact that we
make no computational assumptions. In particular, to implement the major-
ity strategy and compute pt in (3.1) requires solving #P hard problems, by
reduction from #SAT. If we restrict the players to run in time polynomial in
n this particular strategy likely becomes unfeasible. In this setting, under rea-
sonable complexity assumptions, it is possible to greatly reduce the amount of
randomness and, at the same time, achieve a ε-Nash equilibrium.

We consider players’ whose actions are polynomial size Boolean circuits. A
strategy is thus a circuit family {Ci}i∈N, such that circuit Cl(n) takes as input
l(n) random coins and outputs the n actions to be played. Notice that this
definition implies that each agent can simulate any of his opponent’s strategies.

We consider equilibria that use nδ random coins for any δ > 0. Theorem 4.1
shows that such ε-Nash equilibria exist if and only if one-way functions exist.

Theorem 4.1. If players are bound to run in time polynomial in n, then, for
all δ > 0 and sufficiently large n, ε-Nash equilibria that use only nδ random
coins exist, where ε = n−k for all k > 0 and sufficiently large n’s, if and only if
one-way functions exist.

9

Proof. The if part is Lemma 4.3, while the only-if part is Lemma 4.4.

As a preliminary result we show that, in our setting, the expected utility
when at least one player uses a pseudorandom number generator can’t be too
far from the expected utility when playing uniformly at random.

Lemma 4.2. Assume one-way functions exist, and let G be the strategy corre-
sponding to the output of a pseudorandom number generator. For any strategy
S that runs in time polynomial in n, for all k > 0 and sufficiently large n,

∣

∣

∣
E [U(G,S)]

∣

∣

∣
≤ n−k and

∣

∣

∣
E [U(S,G)]

∣

∣

∣
≤ n−k.

Proof. We prove only the first inequality, the proof for the second one being
symmetric.

Proof by contradiction. Assuming there is a k > 0 such that
∣

∣

∣
E [U(G,S)]

∣

∣

∣
>

n−k for infinitely many n’s, we will construct a test T for G, and show that
∣

∣

∣
Pr
(

T
(

G
(

Ul(n)

))

= 1
)

− Pr (T (Un) = 1)
∣

∣

∣
> n−c (4.1)

for some c > 0 and infinitely many n’s, thus contradicting the assumption that
G is a pseudorandom number generator.

First consider the n random variables Ai(G,S), for i = 1, · · · , n, where
Ai(G,S) is simply P1’s payoff at round i. Since

∑n
i=1 Ai(G,S) = nU(G,S),

n
∑

i=1

E [Ai(G,S)] > n1−k.

This implies that there must be an i such that E [Ai(G,S)] > n−k. Fix that i.
The test T takes as input an n-bit sequence x and generates a sequence of

plays s according to strategy S. Now T simulates an n-stage repeated Matching
Pennies game with strategies (x, s). If P1 wins the i-th round then it will output
1, otherwise the output will be 0. In other words, T outputs 1 if and only if
Ai(x, s) = 1. Notice that T runs in time polynomial in n.

When x is drawn from the uniform distribution, P1 will win with probability
1/2, or Pr (T (Un) = 1) = 1/2.

Now notice, that since Ai ∈ {−1, 1}, Pr (Ai = 1) = E[Ai]+1
2 . This implies

that

Pr
(

T (G(Ul(n))) = 1
)

=
E [Ai] + 1

2
>

1

2nk
+

1

2
.

Thus
∣

∣

∣
Pr
(

T
(

G1

(

Ul(n)

))

= 1
)

− Pr (T (Un) = 1)
∣

∣

∣
>

1

2nk
,

which proves the lemma.

Lemma 4.3. If one-way functions exist and players are bound to run in time
polynomial in n, then for every δ, k > 0 and for sufficiently large n, the n-stage
has an n−k-Nash equilibrium in which each player uses at most nδ random bits.

10

Proof. Assume, by contradiction, that one-way functions exist but there are
values δ > 0 and k > 0 such that the game has no n−k-Nash equilibrium in
which players use at most nδ random coins.

Since we assume one-way functions exist, by Theorem 2.8 there exist pseu-
dorandom number generators that use nδ coins. Assume both players use the
output of such pseudorandom number generators as their strategies (which we
call, respectively, G1 and G2). Since we are assuming that this is not a n−k-
Nash equilibrium, one of the players, say Player 1, must have a strategy A such
that

E [U (A,G2)] > E [U (G1, G2)] + n−k. (4.2)

By Lemma 4.2 we can choose a k′ > 0 such that

E [U (A,G2)] > −n−k′

+ n−k. (4.3)

Pick c = k′ = k + 1, so that E [U (A,G2)] > n−c for n > 2. This contradicts
Lemma 4.2, proving the claim.

We now prove the opposite direction, that is that the existence of Nash
equilibria that use few random bits implies the existence of one-way functions.

Lemma 4.4. If for every δ > 0 there is a Nash equilibrium in which each player
uses nδ random bits and runs in time polynomial in n, then one-way functions
exist.

Proof. Let (A,B) be such a Nash equilibrium and assume, by contradiction,
that one-way functions don’t exist. This implies that pseudorandom number
generators can’t exist (Goldreich [5]), and so, A and B can’t be sequences that
are computationally indistinguishable from uniform.

Thus, by Yao’s theorem (Theorem 2.7), we know that there are polynomial
size circuit families {Ci}i∈N

and {Di}i∈N
such that

Pr (Ci(y1, . . . , yi) = yi+1) > 1/2 + δ1

Pr (Di(z1, . . . , zi) = zi+1) > 1/2 + δ2,

for some δ1, δ2 > 0, whereA(x1, . . . , xl1(n)) = (y1, y2, . . . , yn) andB(x1, . . . , xl2(n)) =
(z1, z2, . . . , zn).

To get a contradiction it is sufficient to show that players are better off by
using the predictor circuits C and D. Consider Player 1: using D, at each
round he can guess, given the previous history, the opponent’s next move with
probability 1

2 + δ1. Thus his expected payoff at any round t is

E
[

h(dt, bt)
]

>
1

2
+ δ1 −

1

2
+ δ1 = 2δ1,

where the expectation is over the internal coin tosses of the predictor circuit D.
The overall expected payoff is

E [U(D,B)] >
1

n

n
∑

t=1

2δ = 2δ1.

11

Now, let w = E [U(A,B)] be the value of the expected payoff when players play
(A,B). Consider the following cases:

i) w ≤ 0: this implies that Player 1 could gain 2δ1 by using strategy D,

ii) w > 0: by definition Player 2’s expected payoff is −E [U(A,B)] < 0, so
Player 2 can achieve a higher payoff by using his predictor circuit C,

In both cases we see that (A,B) can’t be a Nash equilibrium, a contradiction.

5 Exchanging Time for Randomness

In this section we determine conditions under which a ε-Nash equilibrium can
arise, given that one of the players has only a logarithmic amount of randomness
and his opponent must run in time nk for some fixed k. This shows how we
can trade off randomness for time; the player with O(log n) random bits runs
in time polynomial in n, while the player with more random bits runs in fixed
polynomial time.

Theorem 5.1. Assume there exists f ∈ DTIME(2O(l(n))) and ε > 0 such that
no circuit of size at most 2εl(n) can compute f and that one-way functions
exist. Let Player 1’s strategies be circuits of size at most nk that use at most
nδ random bits for some k > 2 + cδ, where c ≥ 1 is a constant related to the
implementation of a cryptographic pseudorandom number generator. Assume
Player 2 has access to only M log n random bits. As long as M > Ck, where C
is the constant in Theorem 2.10, then for all ε > 0 and sufficiently large n there
is a ε-Nash equilibrium.

Proof. Let G1 be the cryptographic pseudorandom number generator available
to Player 1 and G2 be the complexity pseudorandom number generator used by
player 2. Furthermore let S1 be the set of all possible strategies for P1 (for all
δ > 0 circuits of size at most nk that use nδ random bits), and S2 the set of
strategies available to P2 (polynomial size circuit families and M logn random
coins). We will show that for all ε > 0 and sufficiently large n, (G1, G2) is a
ε-Nash equilibrium with the required properties.

First we argue that, for all γ > 0 and sufficiently large n, |E [U(G1, G2)] | <
γ. The proof of this fact is similar to the proof of Lemma 4.2, showing by way
of contradiction, that if |E [U(G1, G2)] | ≥ γ then we can build a test for the
cryptographic pseudorandom number generator G1.

Now we show that, for the appropriate setting of parameters, G1 fools S2 and
G2 fools S1. For any k, Player 2 can fool circuits of size nk by using C lognk =
Ck logn random bits. So, forM > Ck, G2 fools S1. Notice also that since Player
2 runs in time O(nCk), the cryptographic pseudorandom number generator G1

fools S2. Let h be the one-way permutation used by the pseudorandom number
generator G1, and assume h us computable in time nc for some c > 0. Given h,

12

G1 is defined as follows: let x, y ∈ {0, 1}
n
δ

2 , and let (x, y) be G1’s seed (notice
that |(x, y)| = nδ), then

G1(x, y) =
(

fn(x)⊙ y, fn−1(x) ⊙ y, . . . , f(x)⊙ y
)

,

where x ⊙ y =
∑

i xiyi mod 2. There are O(n2) applications of h, so G1 runs
in time O(n2+cδ). So, for k ≥ 2 + cδ, G1 fools S2.

At this point we’re almost done. As in Lemma 4.3 assume, by contradiction,
that the assumptions in the theorem hold but (G1, G2) is not a ε-Nash equi-
librium for some ε > 0. This implies that at least one of the two players can
improve his expected payoff by more than ε by switching to some other strategy.
First consider P2, and assume there is a strategy S2 ∈ S2 such that

E [U(G1, S2)] > E [U(G1, G2)] + ε.

As in Lemma 4.3 this implies that S2 would be a test for the cryptographic
pseudorandom number generator G1, contradicting the fact that G1 fools S2.
Similarly, assume P1 has a strategy S1 ∈ S1 such that

E [U(S1, G2)] > E [U(G1, G2)] + ε.

Again, S1 can easily be made into a test for G2, contradicting the fact that G2

fools S1.

6 Infinite Play

We now consider an infinitely repeated game of Matching Pennies, and show
that, if utilities are time discounted, we can always achieve a ε-Nash equilibria
using a large enough (but finite) amount of random coins. First we determine
the least amount of randomness required to achieve a ε-Nash equilibrium in the
general, i.e. computationally unbounded, case.

Lemma 6.1. For all discount factors δ ∈ (0, 1) and all ε > 0, there is an ε-Nash

equilibrium in which the players use only n random bits, for n > log ε(1−δ)
log δ .

Proof. Given δ, ε > 0 consider the following strategies: both players play the
Nash equilibrium strategy for the first n rounds. After this P1 will always play
H , while P2 will play H and T alternatively. The overall expected payoff is
0. However, after round n, both players could switch to a strategy that always
wins, achieving a total expected payoff of 0 +

∑∞
t=n δ

t = δn

1−δ . To ensure that
our strategies are indeed a ε-Nash equilibrium we just need to make sure that

0 >
δn

1− δ
− ε.

Rearranging and taking logarithms we get n > log ε(1−δ)
log δ .

13

Now we consider players’ whose strategies are families of polynomial size
Boolean circuits (as in Section 4), and assume one-way functions exist. We first
give a version of Lemma 4.2 for time discounted utilities on a finite number of
rounds.

Lemma 6.2. Assume one-way functions exist, and let G = (g1, . . . , gn) be the
strategy corresponding to the output of a cryptographic pseudorandom number
generator. Let S = (s1, . . . , sn) be any strategy. For all δ ∈ (0, 1), k > 0 and
for sufficiently large n

∣

∣

∣
E

[

n
∑

t=1

δth(gt, st)

]

∣

∣

∣
≤ n−k and

∣

∣

∣
E

[

n
∑

t=1

δth(st, gt)

]

∣

∣

∣
≤ n−k.

Proof. Again we give the proof only for the first inequality. Assume, by contra-
diction, that |E [

∑n
t=1 δ

th(gt, st)] | > n−k for some δ, k and infinitely many n’s.
Consider the random variables A1(c

1
1, c

1
2), . . . , An(c

n
1 , c

n
2), defined as At(c

t
1, c

t
2) =

1 if P1 wins round t when playing according to (C1, C2) and 0 otherwise. Let
A(C1, C2) =

∑

t δ
tAt(c

t
1, c

t
2), so thatE [A(G,S)] ≥ |E [

∑n
t=1 δ

th(gt, st)] | > n−k.
This implies that there is a t such that δtE [At(g

t, st)] > n−k−1, which implies
E [At(g

t, st)] > n−k−1. Fix that t. As in Lemma 4.2, consider the test T that,
given a sequence of plays x, generates a play s from S and outputs 1 if P1 wins
round t and outputs 0 otherwise.

When x is drawn uniformly at random, Pr (T (Un) = 1) = 1/2. On the other
hand, when x is G’s output,

Pr
(

T (G(Ul(n))) = 1
)

= E [At] > n−k−1.

Now
∣

∣

∣
Pr
(

T (G(Ul(n))) = 1
)

− Pr (T (Un) = 1)
∣

∣

∣
>

1

2
−

1

nk+1
=

1

nc
,

for c > − log(1/2−n−1−k)
logn ≥ 0, contradicting the assumption that G is a pseudo-

random number generator.

Using the above Lemma we can show that, for all discount factors, we can
greatly reduce the amount of random coins needed to get an ε-Nash equilibrium.

Lemma 6.3. For all discount factors δ ∈ (0, 1), all ε > 0 and all ξ > 0,
there is a n−k-Nash equilibrium in which players use only nξ random coins, for
sufficiently large n’s.

Proof. As in the proof of Lemma 6.1 we consider the following strategy for both
players: for the first n rounds play the output of a cryptographic pseudorandom
number generator G, with seed length nξ. Thereafter P1 will always play H ,
while P2 will alternate between H and T . Pick any k > 0, we now show that
this is a n−k-Nash equilibrium. By Lemma 6.2 we can pick k′ = k/2 such that
the expected utility in the first n rounds lies in the interval [−n−k′

, n−k′

]. To
ensure that this is a n−k-Nash equilibrium we just need to show that

−n−k′

> n−k′

+
δn

(1− δ)
− n−k,

14

or

−2n−k′

+ n−2k′

>
δn

(1− δ)
.

Now, for any c > 0, if we set k′ =
log((

√
c+1−1)/c)
log n , then the left hand side of the

above inequality is c, so that it always holds for sufficiently large n’s.

Thus, given any n that satisfies the conditions in Lemma 6.1, there can be
a n−k-Nash equilibrium using nδ coins, for any δ > 0. To see this, consider an
m sufficiently large so that Lemma 6.3 holds and pick ξ = δ logn

logm .

7 Conclusions

We have shown how, in a simple setting, reducing the amount of randomness
available to players affects Nash equilibria. In particular, if we make no com-
putational assumptions on the players, there is a direct tradeoff between the
amount of randomness and the approximation to a Nash equilibrium we can
achieve. If, instead, players are bound to run in polynomial time, we can get
very close to a Nash equilibrium with only nδ random coins, for any δ > 0.

Some directions for future research include:

• Is it possible to extend Lemma 3.1 to m player games, for m > 2? Notice
that the strategy used in that proof does not generalize to this setting.

• Under what circumstances is it possible to further reduce the amount of
randomness available (say to O(log n) for both players)?

• Is it possible to extend these results to general zero-sum games or even
non zero-sum games?

Acknowledgments We wish to thank Tai-Wei Hu, Peter BroMiltersen, Rahul
Santhanam and Rakesh Vohra for fruitful discussions.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[2] X. Chen and X. Deng. Settling the Complexity of Two-player Nash Equi-
librium. In 47th FOCS, 2006.

[3] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity
of computing a nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009.

[4] L. Fortnow and R. Santhanam. Bounding Rationality by Discounting Time.
In 1st ICS, 2010.

15

[5] O. Goldreich. Foundations of Cryptography: Basic Applications. Cam-
bridge University Press, 2004.

[6] O. Gossner and T. Tomala. Entropy Bounds on Bayesian Learning. Journal
of Mathematical Economics, 44(1):24–32, 2008.

[7] J. Y. Halpern and R. Pass. Game theory with costly computation: For-
mulation and application to protocol security. In 1st ICS, pages 120–142,
2010.

[8] J. Hastad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom
Generator from any One-way Function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[9] T.-W. Hu. Complexity and Mixed Strategy Equilibria.
http://bit.ly/e4N8cN, 2010. Working Paper.

[10] R. Impagliazzo and A. Wigderson. Randomness vs time: Derandomization
under a uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001.

[11] S. Kalyanaraman and C. Umans. Algorithms for Playing Games with Lim-
ited Randomness. In 15th ESA, 2007.

[12] N. Nisan and A. Wigderson. Hardness vs Randomness. J. Comput. Syst.
Sci., 49(2):149–167, 1994.

[13] H. Simon. A Behavioral Model of Rational Choice. The Quarterly Journal
of Economics, 69(1):99–118, 1955.

[14] A. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS,
1982.

16

http://bit.ly/e4N8cN

	1 Introduction
	2 Background and Definitions
	2.1 Game Theory Notation
	2.2 Complexity and Pseudorandomness

	3 Information Theoretic Bounds
	4 Computationally Efficient Players
	5 Exchanging Time for Randomness
	6 Infinite Play
	7 Conclusions

