
ar
X

iv
:1

00
4.

40
80

v1
  [

cs
.D

S
]  

23
 A

pr
 2

01
0

A General Framework for Graph Sparsification

Ramesh Hariharan
Strand Life Sciences

Debmalya Panigrahi
CSAIL, MIT

Abstract

Given a weighted graphG and an error parameterε > 0, thegraph sparsificationproblem requires
sampling edges inG and giving the sampled edges appropriate weights to obtain asparse graphGε with
the following property: the weight of every cut inGε is within a factor of(1± ε) of the weight of the
corresponding cut inG. Benczúr and Karger [2] showed how to obtainGε with O(nlogn/ε2) edges
in time O(mlog3n) for weighted graphs andO(mlog2n) for unweighted graphs using a combinatorial
approach based on strong connectivity. Spielmanet al [22] showed how to obtainGε with O(nlogn/ε2)
edges in timeO(mlogcn) for some (large) constantc using an algebraic approach based on effective
resistances. Our contributions are as below (all for weighted graphsG with n vertices andm edges
having polynomial-sized weights, unless otherwise stated):

• Benczúr and Karger [2] conjectured that using standard connectivity instead of strong connectivity
for sampling would simplify the result substantially, and posed this as an open question. In this
correspondence, we resolve this question by showing that sampling using standard connectivities
also preserves cut weights and yields aGε with O(nlog2n/ε2) edges.

• We provide a very simple strictly linear time algorithm (i.e. O(m) time) for graph sparsification
that yields aGε with O(nlog2n/ε2) edges.

• We provide another algorithm for graph sparsification that yields aGε with O(nlogn/ε2) edges in
O(mlog2n) time (for unweighted graphs, this reduces toO(mlogn) time).

• Combining the above two results, we obtain the fastest knownalgorithm for obtaining aGε with
O(nlogn/ε2) edges; this algorithm runs in timeO(m+ nlog4n/ε2) whereas the previous best
bound isO(mlog3n).

• If G has arbitrary edge weights, we give anO(mlog2n)-time algorithm that yields aGε containing
O(nlog2n/ε2) edges. The previous best bound isO(mlog3n) time for aGε with O(nlogn/ε2)
edges.

• Most importantly, we provide a generic framework that sets out sufficient conditions for any partic-
ular sampling scheme to result in good sparsifiers; all the above results can be obtained by simple
instantiations of this framework, as can known results on sampling by strong connectivity and
sampling by effective resistances1.

Our algorithms are Monte-Carlo, i.e. work with high probability, as are all efficient algorithms for graph
sparsification.

A key ingredient of our proofs is a generalization of bounds on the number of small cuts in an
undirected graph due to Karger [8]; this generalization might be of independent interest.

1 with a Gε that is slightly denser than the best-known result for the effective resistance case.
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1 Introduction

A cutof an undirected graph is a partition of its vertices into twodisjoint sets. Theweightof a cut is the sum
of weights of the edges crossing the cut, i.e. edges having one endpoint each in the two vertex subsets of
the partition. For unweighted graphs, each edge is assumed to have unit weight. Cuts play an important role
in many problems in graphs: e.g., the maximum flow between a pair of vertices is equal to the minimum
weight cut separating them.

A skeleton G′ of an undirected graphG is a subgraph ofG on the same set of vertices where each edge in
G′ can have an arbitrary weight. In a series of results, Karger [9, 10] showed that an appropriately weighted
sparse skeleton generated byrandom samplingof edges approximately preserves the weight ofeverycut
in an undirected graph. This series of results culminated ina seminal work by Benczúr and Karger [2]
that showed the following theorem. Throughout this paper, for any undirected graphG and anyε ∈ (0,1],
(1±ε)G is the set of all appropriately weighted subgraphs ofG where the weight of every cut in the subgraph
is within a factor of(1± ε) of the weight of the corresponding cut inG.

Theorem 1 (Benczúr-Karger [2]). For any undirected graph G with m edges and n vertices, and forany
error parameterε ∈ (0,1], there exists a skeleton Gε containing O(nlogn

ε2 ) edges such that Gε ∈ (1± ε)G
with high probability.2 Further, such a skeleton can be found in O(mlog2n) time if G is unweighted and
O(mlog3n) time otherwise.

Besides its combinatorial ramifications, the importance ofthis result stems from its use as a pre-processing
step in several graph algorithms, e.g. to obtain anÕ(n3/2+m)-time algorithm for approximate maximum
flow using theÕ(m

√
m)-time algorithm for exact maxflow due to Goldberg and Rao [6];and more recently,

Õ(n3/2+m)-time algorithms for approximate sparsest cut [12, 20].
Subsequent to Benczúr and Karger’s work, Spielman and Teng[23, 24] extended their results to pre-

serving all quadratic forms, of which cuts are a special case; however, the size of the skeleton constructed
wasO(nlogcn) for some large constantc. Spielman and Srivastava [22] improved this result by constructing
skeletons of sizeO(nlogn

ε2 ) in O(mlogO(1)n) time, while continuing to preserve all quadratic forms. Recently,
this result was further improved by Batsonet al [1] who gave a deterministic algorithm for constructing
skeletons of sizeO( n

ε2 ). While their result is optimal in terms of the size of the skeleton constructed, the

time complexity of their algorithm isO(mn3

ε2 ), rendering it somewhat useless in terms of applications.
Benczúr and Karger [2], and Spielmanet al [23, 24, 22, 1] use contrasting techniques to obtain their

respective results; the former use combinatorial graph techniques while the latter use algebraic graph tech-
niques. In each case, the goal is to obtain a probability value pe for each edgee so that sampling each edge
e independently with probabilitype and giving each sampled edgee a weight 1/pe yields Gε ∈ (1± ε)G.
Benczúr and Karger [2] choosepe inversely proportional to thestrong connectivityof e while Spielmanet
al [23, 24, 22, 1] choosepe proportional to theeffective resistanceof e (both concepts are defined below).

Definition 1. Thestrong connectivityof an edge(u,v) in an undirected graph G is the maximum value of k
such that there is an induced subgraph G′ of G containing both u and v, and every cut in G′ has weight at
least k.

Definition 2. Theeffective resistanceof an edge(u,v) in an undirected graph G is the effective electrical
resistance between u and v if each edge in G is replaced by an electrical resistor between its endpoints
whose electrical resistance is equal to the weight of the edge.

2We say that a property holdswith high probability(or whp) for a graph onn vertices if its failure probability can be bounded
by the inverse of a fixed polynomial inn.
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1.1 Our Results

We obtain the following results.

The Generic Framework. We provide a general proof framework as follows. For any given sampling
scheme (i.e., assignment to thepe’s), we show that if this assignment satisfies two sufficient conditions, then
the sampling scheme results in good sparsifiers. All of the results stated below are then simple instantiations
of the above framework, i.e. we show that the sufficient conditions hold. The resulting algorithms are also
much simpler than those in [2] or in [22, 1].

Faster Algorithms. Our first result is an efficient algorithm for constructing a sparse skeleton.

Theorem 2. Suppose G is an undirected graph with n vertices and m edges. Then, for any fixedε ∈ (0,1],
there is an efficient algorithm for finding a skeleton Gε of G having O(nlogn

ε2 ) edges in expectation such that
Gε ∈ (1± ε)G whp. The time complexity of the algorithm is O(m+nlog4 n/ε2) if the weights of all edges
are bounded by a fixed polynomial in n (including all unweighted graphs).

This is the first sampling algorithm that runs in time strictly linear inm; all previous algorithms had a time
bound of at leastO(mlog2 n) for unweighted graphs, andO(mlog3 n) for weighted graphs. This algorithm
improves the time complexity of several problems, where creating a graph sparsifier in the first step. We
mention some of these applications.

• This yields anO(m)+ Õ(n3/2/ε3)-time algorithm for finding theε-approximate maximum flow be-
tween two vertices of an undirected graph using the exact maxflow algorithm in [6]. The previous
best algorithm had a running time ofO(mlog3n)+ Õ(n3/2/ε3).

• This yields anO(m)+ Õ(n3/2)-time algorithm for finding anO(logn)-approximate sparsest cut [12,
20], and anO(m)+ Õ(n3/2+δ )-time algorithm for finding anO(

√
logn)-approximate sparsest cut for

any constantδ [20]. The previous best algorithms had running time ofO(mlog3 n)+ Õ(n3/2) and
O(mlog3 n)+ Õ(n3/2+δ ) respectively.

The sampling algorithm in Theorem 2 is obtained by composingtwo different algorithms described below.
The first algorithm is fast but generates a slightly denser skeleton. The second (slower) algorithm then
operates on this skeleton to obtain a smaller skeleton.

Theorem 3. Suppose G is an undirected graph with n vertices and m edges. Then, for any fixedε ∈ (0,1],

there is an efficient algorithm for finding a skeleton Gε of G having O(nlog2 n
ε2 ) edges in expectation such that

Gε ∈ (1± ε)G whp. The time complexity of the algorithm is O(m) if the weights of all edges are bounded
by a fixed polynomial in n (including all unweighted graphs),and O(mlog2 n) if the edges have arbitrary
weights.

Theorem 4. Suppose G is an undirected graph with n vertices and m edges. Then, for any fixedε ∈ (0,1],
there is an algorithm for finding a skeleton Gε of G having O(nlogn

ε2 ) edges in expectation such that Gε ∈
(1± ε)G whp. The time complexity of the algorithm is O(mlogn) for unweighted graphs and O(mlog2n) if
the weights of all edges are bounded by a fixed polynomial in n (including all unweighted graphs).
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Sampling by Standard Connectivity, Effective Resistancesand Strong Connectivity. In proving Theo-
rem 1, the authors had to use strong connectivity because themore natural notion ofstandard connectivities
seemed to pose complications.

Definition 3. Thestandard connectivity, or simplyconnectivity, of an edge(u,v) in an undirected graph G
is the maximum flow between u and v in G.

The authors conjectured that using standard connectivity instead of strong connectivity for sampling would
simplify the result substantially, and posed this as their main open question. In this correspondence, we
resolve this question by showing that sampling using standard connectivities also preserves cut weights.

Theorem 5. Suppose G is an undirected graph on n vertices. For any fixedε ∈ (0,1], let Gε be a skeleton
of G formed by sampling edge e in G with probability3 pe = min(96(3+lgn) lnn

0.38keε2 ,1), where ke is the standard
connectivity of edge e in G. If selected in the sample, edge e is given a weight of1/pe in the skeleton. Then,

Gε has O(nlog2 n
ε2 ) edges in expectation and Gε ∈ (1± ε)G whp.

Observe that the size of the skeleton constructed using standard connectivity has an extra logn factor com-
pared to that constructed using strong connectivity. We conjecture that this factor can indeed be removed by
more careful analysis.

We show that exactly the same proof as above holds if we replace standard connectivity witheffective
resistanceof an edge. Thus, we show that sampling edges using effectiveresistances also produces a sparse
skeleton that approximately preserves all cut weights, a result independently obtained by Spielman and
Srivastava recently for the larger class of all quadratic forms (cuts are a special type of quadratic forms) with
a tighter bound on the size of the skeleton [22]. Our result, though weaker, has a much simpler proof.

We also show that the results obtained in [2] using strong connectivity can be obtained as a simple
instantiation of our general sampling framework.

Generalizations of Cut Counting. Theedge connectivityof an undirected graph is the minimum weight
of a cut in the graph. A key ingredient in the proof of Theorem 1is a celebrated theorem due to Karger [8])
that gives tight bounds on the number of distinct cuts of a fixed weight in an undirected graph in terms of
the ratio of the weight of the cuts to the edge connectivity ofthe graph.

Theorem 6(Karger [8]). For an undirected graph with edge connectivity c and for anyα ≥ 1, the number
of cuts of weight at mostαc is at most O(n2α ).

While this theorem is extremely useful in bounding the number of small cuts in an undirected graph (e.g.
in sampling [9, 10, 2], network reliability [11], etc.), it does not shed any light on the distribution of edges
according to their connectivities in cuts. We generalize the above theorem and show that though there may
be many distinct cuts of a fixed large weight in a graph, there are a small number of distinct sets of edges in
these cuts if we restrict our attention to only edges with large (standard) connectivity. To state our theorem
precisely, we need to introduce the notion ofk-heavyandk-light edges, and that of thek-projectionof a cut.

Definition 4. An edge is said to be k-heavy if it has connectivity at least k,and k-light otherwise. The
k-projection of a cut is the set of k-heavy edges in the cut.

Since every edge has connectivity at leastc, Theorem 6 can be interpreted as bounding the number of distinct
k-projections of cuts of sizeαk by O(n2α) for k= c. We generalize this result to arbitrary values ofk.

3lnn= logen; lgn= log2 n.

4



Theorem 7. For any undirected graph with edge connectivity c and for anyk≥ c and anyα ≥ 1, the number
of distinct k-projections of cuts of weight at mostαk is at most n2α .

We believe this theorem will be of independent interest.

Roadmap. In section 2, we describe our generic sampling framework, and provide one example of instan-
tiating this framework that proves Theorem 3 for the unweighted case. In section 3, we prove Theorem 7
and use it to prove Theorem 8, the main framework theorem stated in section 2. In section 4, we give
two sampling algorithms for graphs with polynomial edge weights: the first algorithm constructs skeletons

containingO(nlog2 n
ε2 ) edges in expectation and has time complexityO(m), thus proving Theorem 3 for the

polynomial weights case; the second algorithm constructs skeletons containingO(nlogn
ε2 ) edges in expecta-

tion and has time complexityO(mlogn) for unweighted graphs, andO(mlog2 n) for graphs with polynomial
edge weights, thus proving Theorem 4. Combining these two theorems proves Theorem 2. In section 5,
we prove Theorem 5 and show that results on sampling by effective resistances and sampling by strong
connectivities can also be derived from our framework. Finally, in section 6, we give a sampling algorithm

for graphs with arbitrary edge weights that constructs skeletons containingO(nlog2 n
ε2 ) edges in expectation

and has time complexityO(mlog2n), thus proving Theorem 3 for the arbitrary weights case.

2 The Generic Framework

We describe a generic sampling framework—each of our individual sampling schemes is obtained by a
particular setting of parameters of this generic framework.

SupposeG= (V,E) is an undirected graph where edgee∈ E has weightwe. We will assume throughout
thatwe is a positive integer. LetGM = (V,EM) denote the multi-graph constructed by replacing each edgee
by we unweighted parallel edgese1,e2, . . . ,ewe. Consider anyε ∈ (0,1]. We construct a skeletonGε where
each edgeeℓ ∈ EM is present in graphGε independently with probabilitype, and if present, it is given a
weight of 1/pe. (For algorithmic efficiency, observe that an identical skeleton can be created by assigning
to edgeea weight ofRe/pe whereRe is generated from the binomial distributionB(we, pe); this can be done
in time O(wepe) rather than timeO(we) (see e.g. [7])).

What values ofpe result in a sparseGε that satisfiesGε ∈ (1± ε)G? Let pe = min( 96α lnn
0.38λeε2 ,1), where

α is independent ofe andλe is some parameter ofe satisfyingλe ≤ 2n−1. The exact choice of values for
α and theλe’s will vary from application to application. However, we describe below a sufficient condition
that characterizes a good choice ofα andλe’s.

To describe this sufficient condition, partition the edges in GM according to the value ofλe into sets
F0,F1, . . . ,Fk where k = ⌊lgmaxe∈E{λe}⌋ ≤ n− 1 and ei ∈ Fj iff 2 j ≤ λe ≤ 2 j+1 − 1. Now, let G =
G0,G1,G2, . . . ,Gi = (V,Ei), . . . ,Gk be a set of subgraphs ofGM (we allow edges ofGM to be replicated
multiple times in theGis) such thatFi ⊆ Ei for everyi. G is said to be a(π,α)-certificatecorresponding to
the above choice ofα andλe’s if the following properties are satisfied:

π-connectivity For i ≥ 0, any edgeeℓ ∈ Fi is π-heavy inGi.

α-overlap For any cutC containingc edges inGM, let e(C)i be the number of edges that crossC in Gi. Then,

for all cutsC, ∑k
i=0

e(C)i 2i−1

π ≤ αc.

Theorem 8 describes the sufficient condition; its proof appears later in section 3. The intuition for this
proof is as follows. Consider all cutsC in GM; restrict each cut to just the edges inFi (we do this because
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edges inFi have roughly the same sampling probabilities, which enables an easy application of Chernoff
bounds). How many such distinctFi-restricted cuts are there? Organize all cutsC in GM into doubling
categories, each comprising cuts with roughly equal valuesof e(C)i ; now using Theorem 7 as applied toGi

and theπ-connectivity property above, we can conclude that this count is nO(e(C)i /π) per category. Next, for
a particular cutC and itsFi-restriction, we need to apply an appropriate Chernoff bound with a carefully

chosen deviation-from-expectation parameter so that thisdeviation has probability at mostn−Ω(e(C)i /π); this
probability offsets the above count, thereby allowing us toclaim that this deviation holds for all cuts in one
doubling category (and the number of categories is not too many, so the same fact extends across categories

as well). The actual value of this deviation comes out to beO(ε) · e(C)i
π · 2i−1

α . Theα-overlap property now
allows us to bound the sum of this deviation over alli, 0≤ i ≤ k, by εc, as required.

Theorem 8. If there exists a(π,α)-certificate for a particular choice ofα and λe’s , then the skeleton
Gε ∈ (1± ε)G with probability at least1−4/n. Further Gε has O(α logn

ε2 ∑e∈E
we
λe
) edges in expectation.

2.1 A Simple Algorithm for Unweighted Graphs

We show how we can instantiate the above framework with specific values ofα , λe’s to obtain a very simple

sampling algorithm that runs inO(m) time and obtains a skeleton of sizeO(nlog2 n
ε2 ). This proves Theorem 3

for the unweighted case.
In order to present our sampling algorithm, we need to define the notion ofspanning forests. As earlier,

G denotes a graph with integer edge weightswe for edgee andGM is the unweighted multi-graph wheree
is replaced withwe parallel unweighted edges.

Definition 5. A spanning forestT of GM (or equivalently of G) is an (unweighted) acyclic subgraph of G
satisfying the property that any two vertices are connectedin T if and only if they are connected in G.

We partition the set of edges inGM into a set of forestsT1,T2, . . . using the following rule:Ti is a spanning
forest of the graph formed by removing all edges in T1,T2, . . . ,Ti−1 from GM such that for any edge e∈ G, all
its copies in GM appear in a set of contiguous forests Tie,Tie+1, . . . ,Tie+we−1. This partitioning technique was
introduced by Nagamochi and Ibaraki in [19], and these forests are known asNagamochi-Ibaraki forests(or
NI forests). The following is a basic property of NI forests.

Lemma 1 (Nagamochi-Ibaraki [19, 18]). For any pair of vertices u,v, they are connected in NI forests
T1,T2, . . . ,Tk(u,v) for some k(u,v) and not connected in any forest Tj , for j > k(u,v).

Nagamochi and Ibaraki also gave an algorithm for constructing NI forests that runs inO(m+n) time if GM

is a simple graph (i.e.G is unweighted) andO(m+nlogn) time otherwise [19, 18]. Note that our sampling
schemes are relevant only whenm> nlogn; therefore, the NI forests can be constructed inO(m) time for
all relevant input graphs.

We setλe to the index of the NI forest thate appears in, and setα = 2 andπ = 2i−1. For anyi > 0,
let Gi contain all edges in NI forestsT2i−1,T2i−1+1, . . . ,T2i+1−1; let G0 = F0 = T1. Each edge inFi appears
exactly once inGi, once inGi+1, and does not appear at all in any of the otherG j ’s, j 6= i, i+1. This proves
α-overlap. Further, for any edgee∈ Fi, i > 0, Lemma 1 ensures that the endpoints ofe are connected in
each ofT2i−1,T2i−1+1, . . . ,T2i−1. It follows thate is 2i−1-heavy inGi , thereby provingπ-connectivity. We can
now invoke Theorem 8 and conclude that this sampling scheme results inGε ∈ (1± ε)G with probability at
least 1−4/n. It remains to bound the number of edges inGε , as follows.
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Sincewe = 1 for each edgeeand the total number of NI forestsK is at mostn2, we have

∑
e∈E

we

λe
= ∑

e∈E

1
λe

=
K

∑
j=1

∑
e∈Tj

1
λe

=
K

∑
j=1

∑
e∈Tj

1
j
≤ (n−1)

K

∑
j=1

1
j
= O(nlogK) = O(nlogn).

It follows from Theorem 8 thatGε hasO(nlog2 n
ε2 ) edges.

The time complexity for constructing the NI forests isO(m) and that for sampling isO(1) per edge
giving anotherO(m); so overall, the algorithm takesO(m) time.

3 Proofs of Main Theorems

In this section, we will first prove Theorem 7, and then use it to prove Theorem 8. Let us start by defining
k-heavy andk-light vertices.

Definition 6. A vertex in an undirected graph is said to be k-heavy if at least one edge incident on the vertex
is k-heavy; otherwise, the vertex is said to be k-light.

We need the following property ofk-heavy vertices.

Lemma 2. The sum of weights of edges incident on a k-heavy vertex is at least k.

Proof. For anyk-heavy vertexv, there exists some other vertexu such that the maxflow betweenu andv is
at leastk. Thus, any cut separatingu andv must have weight at leastk; in particular, this holds for the cut
containing onlyv on one side.

SupposeG is an any weighted undirected graph. We scale up the weights of all edges inG uniformly until
the weight of every edge is an even integer; call this graphGs. We replace each edgee= (u,v) of weightwe

in GS with we parallel unweighted edges betweenu andv to form an unweighted multi-graphGM. Clearly,
any cut inGM has an even number of edges. Theorem 7 holds for any value ofk in G if and only if it holds
for any even integerk in GM. Therefore, it suffices to prove Theorem 7 for all even integersk on unweighted
multigraphs where the weight of every cut is even. We also assume thatGM is connected; if not, the theorem
holds for the entire graph since it holds for each connected component.

We introduce two operations on undirected multigraphs:spitting-offandedge contraction. The splitting-
off operation was introduced by Lovász in [13, 14] (ex. 6.53):

Definition 7. A pair of edges(s,u) and(u, t) are said to besplit-off in an undirected multigraph if they are
replaced by a single edge(s, t).

Various properties of the splitting-off operation have been explored [15, 16, 5, 25]. We need the following
property.

Definition 8. For any k> 0, a splitting-off operation is said to be k-preservingif all edges in the graph
(except those being split-off) that were k-heavy before thesplitting-off continue to be k-heavy after the
splitting-off.

The following lemma is a corollary of a deep result of Mader [15] for splitting-off edges while maintaining
the maxflows of pairs of vertices; however, we give a much simpler direct proof of this lemma here.
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Lemma 3. Suppose GM is an undirected multigraph where every cut contains an evennumber of edges. Let
k > 0 be any even integer. Then, for any k-light non-isolated vertex u in GM, there exists a pair of edges
(s,u) and(u, t) such that splitting-off this pair is k-preserving.

Proof. We will prove that for every edge(s,u), there exists an edge(u, t) such that splitting-off this pair of
edges retains the following property:any pair of vertices x,y that were k-connected (i.e. had a maxflow of
at least k) before the splitting-off continue to be so after the splitting-off. We define ak-separatorto be any
cut that separates at least one pair ofk-connected vertices, and call ak-separator with exactlyk edges atight
cut. Since all cuts have even number of edges and the weight ofa cut can decrease by at most 2 due to a
splitting-off operation, we only need to ensure that we do not decrease the number of edges in any tight cut
when we split-off a pair of edges.

Suppose there exists no edge(u, t) such that splitting-off(s,u) and(u, t) retains thek-heavy property for
all k-heavy edges. Then, for every neighbort (other thans) of u, there exists at least one tight cut havings, t
on one side andu on the other. Consider a minimum-sized collection of tight cutsX1,X2, . . . ,Xℓ, whereXi is
the subset of vertices on the side of the cut not containingu. If ℓ= 1, movingu to the side ofX1 produces a
k-separator containing less thank edges, which is a contradiction. Thusℓ≥ 2. Now,let

A= X1∩X2;B= X1\X2;C= X2\X1;D =V \ (X1∪X2).

Then,s∈ A andu∈ D. SinceX1 andX2 arek-separators, either (1)A andD arek-separators, or (2)B and
C arek separators. In either case, this pair ofk-separators must be tight cuts since they contain at least
k edges each beingk-separators and at mostk edges each because their total number of edges is at most
that ofX1 andX2. If A andD are tight cuts, we can replace cutsX1 andX2 by D in the collection of tight
cuts, contradicting minimality of this collection. On the other hand, ifB andC are tight cuts, the counting
argument also shows that there is no edge betweenA andD, contradicting the existence of edge(s,u).

Let us now extend the notion of splitting-off to vertices.

Definition 9. A vertex with even degree in an undirected graph is said to besplit-off if a pair of edges
incident on it is repeatedly split-off until the vertex becomes isolated. Splitting-off of a vertex is said to be
k-preservingif each constituent edge splitting-off is k-preserving.

Note that the number of edges in a cut either stays unchanged or decreases by 2 after a splitting-off operation.
Thus, if every cut in the graph had an even number of edges to start with, then each cut continues to have
an even number of edges after a sequence of splitting-off operations. Therefore, the following lemma is
obtained by repeatedly applying Lemma 3 to ak-light vertex.

Lemma 4. Suppose GM is an undirected multigraph where the number of edges in every cut is even. Let k
be an even integer. Then, there exists a k-preserving splitting-off of any non-isolated k-light vertex u in GM.

Our second operation isedge contraction.

Definition 10. Contractionof edge e= (u,v) in an undirected multigraph G is defined as merging u and v
into a single vertex (i.e. all edges incident on either u or v are now incident on the new vertex instead). Any
self-loops produced by edges between u and v are discarded.

We will now prove Theorem 7.

Proof of Theorem 7.We run the following randomized algorithm on multigraphGM:

8



1. Split-off all k-light vertices ensuring thek-preserving property (Lemma 4).

2. Contract an edge chosen uniformly at random in the resulting graph.

3. If the contraction produces ak-light vertex, split it off.4

4. If ≤ 2α vertices are left, output a random cut; otherwise, go to step2.

Consider a cutC that has at mostαk edges; let itsk-projection beS. In any of the splitting-off operations, no
edge inScan be split-off since these edges continue to bek-heavy throughout the execution of the algorithm.
So, if no edge crossing cutC (either an edge inGM or one produced by the splitting-off operations) is
contracted during the execution of the algorithm, then all edges inS survive till the end. To estimate the
probability that no edge crossing cutC is contracted, leth j be the number of vertices left at the beginning
of the jth iteration. Thus,h1 is the number ofk-heavy vertices inGM (note that allk-light vertices are
split-off initially), andh j+1 is eitherh j −1 orh j −2 depending on whether a vertex was split-off in step 3 of
iteration j. Observe that the number of edges crossingC cannot increase due to the splitting-off operations.
Further, Lemma 2 asserts that at the beginning of iterationj, there are at leasth jk/2 edges in the graph.
Thus, the probability that no edge inC is selected for random contraction in step 2 of iterationj is at least
1− αk

hjk/2 = 1− 2α
hj

. Then, the probability that no edge crossingC is contracted in the entire execution of the
algorithm is at least

∏
j

(
1− 2α

h j

)
≥

2α+1

∏
i=n

(
1− 2α

i

)
=

(
n

2α

)−1

.

Since there are 22α−1 cuts in a graph with 2α vertices, the probability that the random cut output by the
algorithm contains only edges crossing cutC (and thereforeS is exactly the set ofk-heavy edges inGM

output by the algorithm) is at least
( n

2α
)−1

21−2α ≥ n−2α . This is true for every distinctk-projection of cuts
having at mostαk edges; hence, the total number of suchk-projections is at mostn2α .

In addition to the above theorem, we need the following non-uniform version of Chernoff bounds (for
Chernoff bounds, see e.g. [17]) to prove Theorem 8. (A proof of this theorem is given in the appendix.)

Theorem 9. Consider any subset C of unweighted edges, where each edge e∈C is sampled independently
with probability pe for some pe ∈ [0,1] and given weight1/pe if selected in the sample. Let the random
variable Xe denote the weight of edge e in the sample; if e is not selected in the sample, then Xe = 0. Then,
for any p such that p≤ pe for all edges e, anyε ∈ (0,1], and any N≥ |C|, the following bound holds:5

P

[
|∑

i

Xe−|C||> εN

]
< 2e−0.38ε2pN.

We will now use Theorem 7 to prove Theorem 8. (We re-use the notation defined in section 2.) For any cut

C in GM, let F(C)
i = Fi ∩C andE(C)

i = Ei ∩C for 0≤ i ≤ k;6 let f (C)i = |F(C)
i | ande(C)i = |E(C)

i |. Also, let f̂ (C)i

be the expected weight of all edges inF(C)
i in the skeleton graphGε . We first prove a key lemma.

4If an edge betweenu andv is contracted in step 2, all edges that were previouslyk-heavy continue to be so after the contraction,
except the edges betweenu andv. So, at most one vertex (the new vertex) becomesk-light as a result of this contraction.

5For any eventE , P[E ] represents the probability of eventE .
6For any cutC and any set of edgesZ, Z∩C denotes the set of edges inZ that cross cutC.
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Lemma 5. For any fixed i, with probability at least1− 4
n2 ,

| f (C)i − f̂ (C)i | ≤ ε
2

max

(
e(C)i 2i−1

πα
, f (C)i

)

for all cuts C in GM.

Proof. By theπ-connectivity property, any edgee∈ Fi is π-heavy inGi for any i ≥ 0. Therefore,e(C)i ≥ π.

Let Ci j be the set of all cutsC such thatπ2 j ≤ e(C)i ≤ π2 j+1−1, j ≥ 0. We will prove that with probability
at least 1−2n−2j+1

, all cuts inCi j satisfy the property of the lemma. Then, the lemma follows byusing the
union bound overj (keepingi fixed) since 2n−2+2n−4+ . . .+2n−2 j + . . .≤ 4n−2.

We now prove the above claim for cutsC∈Ci j . Let X(C)
i denote the set of edges inF(C)

i that are sampled

with probability strictly less than 1; correspondingly, let x(C)i = |X(C)
i | and letx̂(C)i be the total weight of

edges inX(C)
i in the skeleton graphGε . Since edges inF(C)

i \X(C)
i have a weight of exactly 1 inGε , it is

sufficient to show that with probability at least 1− 2n−2j+1
, |x(C)i − x̂(C)i | ≤

( ε
2

)
max

(
e(C)i 2i−1

πα ,x(C)i

)
for all

cutsC ∈ Ci j . Since each edgee∈ X(C)
i hasλe < 2i+1, we can use Theorem 9 with the lower bound on

probabilitiesp= 96α lnn
0.38·2i+1ε2 . There are two cases. In the first case, supposex(C)i ≤ e(C)i 2i−1

πα . Then, for anyX(C)
i

whereC∈ Ci j , by Theorem 9, we have

P

[∣∣∣∣x
(C)
i − x̂(C)i

∣∣∣∣>
(ε

2

) e(C)i 2i−1

πα

]
< 2e

−0.38ε2
4

(
96α lnn

0.38·2i+1ε2

)
e
(C)
i 2i−1

πα ≤ 2e−
6e
(C)
i lnn

π ≤ 2e−6·2j lnn,

sincee(C)i ≥ π2 j for anyC ∈ Ci j . In the second case, supposex(C)i >
e(C)i 2i−1

πα . Then, for anyX(C)
i where

C∈ Ci j , by Theorem 9, we have

P

[∣∣∣∣x
(C)
i − x̂(C)i

∣∣∣∣>
(ε

2

)
x(C)i

]
< 2e

−0.38ε2
4

(
96α lnn

0.38·2i+1ε2

)
x(C)i < 2e−

6e
(C)
i lnn

π ≤ 2e−6·2j lnn,

sincex(C)i >
e(C)i 2i−1

πα ≥ 2i+ j−1

α for anyC ∈ Ci j . Thus, we have proved that

P

[∣∣∣∣x
(C)
i − x̂(C)i

∣∣∣∣>
(ε

2

)
max

(
e(C)i 2i−1

πα
,x(C)i

)]
< 2e−6·2j lnn = 2n−6·2j

for any cutC ∈ Ci j . Now, by theπ-connectivity property, we know that edges inF (C)
i , and therefore those

in X(C)
i , areπ-heavy inGi. Therefore, by Theorem 7, the number of distinctX(C)

i sets for cutsC ∈ Ci j is

at mostn
2
(

π2 j+1
π

)
= n4·2j

. Using the union bound over these distinctX(C)
i edge sets, we conclude that with

probability at least 1−2n−2j+1
, all cuts inCi j satisfy the property of the lemma.

We now use the above lemma to prove Theorem 8.

Proof of Theorem 8.For any cutC in GM, let c be the number of edges inC; correspondingly, let ˆc be the
total weight of the edges crossing cutC in the skeleton graphGε . Sincek≤ n−1, we apply the union bound
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to the property from Lemma 5 over the different values ofi to conclude that with probability at least 1− 4
n,

we have∑k
i=0 | f̂

(C)
i − f (C)i | ≤ ∑k

i=0

( ε
2

)
max

(
e(C)i 2i−1

πα , f (C)i

)
for all cutsC in GM. Then, with probability at

least 1− 4
n,

|ĉ−c|= |
k

∑
i=0

f̂ (C)i −
k

∑
i=0

f (C)i | ≤
k

∑
i=0

| f̂ (C)i − f (C)i | ≤ ε
2

k

∑
i=0

max

(
e(C)i 2i−1

πα
, f (C)i

)
≤ ε

2

(
k

∑
i=0

e(C)i 2i−1

πα
+

k

∑
i=0

f (C)i

)
≤ εc,

since∑k
i=0

e(C)i 2i−1

πα ≤ c by theα-overlap property and∑k
i=0 f (C)i ≤ c sinceF(C)

i ’s form a partition of the edges
in C.

We now prove the size bound onGε . The expected number of distinct edges inGε is

∑
e∈E

1− (1− pe)
we ≤ ∑

e
wepe.

The bound follows by substituting the value ofpe.

4 Sampling in Graphs with Polynomial Edge Weights

In this section, we will give an algorithm for sampling in undirected weighted graphs, where the weight of
every edge is an integer bounded bynd for a fixed constantd > 0. The algorithm constructs a skeleton graph

containingO(nlogn
ε2 ) edges in expectation and has time complexityO(m+ nlog4 n

ε2 ). Our strategy, as outlined

in the introduction, has two steps: first we run an algorithm that constructs a skeleton graph withO(nlog2 n
ε2 )

edges in expectation and has time complexityO(m); then, we run a different algorithm that constructs a
sparser skeleton containingO(nlogn

ε2 ) edges in expectation on the skeleton graph constructed in the first

step. The second algorithm takes timeO(mlog2n) on a graph withm edges and thereforeO(nlog4 n
ε2 ) time

on the skeleton graph produced in the first step. To ensure that the final skeleton graph is in(1± ε)G, we
chooseε/3 as the error parameter for each algorithm. As an additionalobservation, we show that the time
complexity of the second algorithm improves toO(mlogn) if its input graph is unweighted.

We will describe both these algorithms for an input graphG, where the weightwe of every edgee is
an integer bounded bynd for a fixed constantd > 0. Note that the input graph to the second algorithm in
the above two-step sampling scheme may have fractional weights. However, we can scale up all weights
uniformly until they are integral, and the scaled weights continue to be bounded by some fixed polynomial
in n. Once the skeleton graph is obtained, we scale all weights down uniformly to obtain the final skele-
ton graph. The unweighted multigraph constructed by replacing each edgee with we parallel unweighted
edgesei ,e2, . . . ,ewe betweenu and v is denoted byGM. Also, T1,T2, . . . denotes a set of NI forests of
GM; edgeej appears in forestTie+ j−1, where 1≤ j ≤ we. Thus, the copies of edgee appear in NI forests
Tie,Tie+1, . . . ,Tie+we−1. For both algorithms, we will use the generic sampling scheme described in section 2.

Algorithm for Step 1. For any edgee= (u,v), we chooseλe = ie+we−1, i.e. the index of the last NI
forest where a copy ofe appears; also setα = 2 andπ = 2i−1. For anyi ≥ 1, defineGi to be the graph
containing all edges in NI forestsT2i−1,T2i−1+1, . . . ,T2i−1 (call this set of edgesYi) and all edges inFi, i.e.
all edgese with 2i ≤ λe ≤ 2i+1−1. Let G0 only contain edges inF0. For anyi 6= j, Fi ∩Fj =Yi ∩Yj = /0;
thus, each edge appears inGi for at most two different values ofi, provingα-overlap. Further, for any edge
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e∈ Fi , Lemma 1 ensures that the endpoints ofe are connected in each ofT2i−1,T2i−1+1, . . . ,T2i−1. It follows
thate is 2i−1-heavy inGi, thereby provingπ-connectivity.

We now prove the size bound. For any edgee′ ∈ EM, let t(e′) be the index of the NI forest it appears in.
Then,

∑
e∈E

we

λe
= ∑

e∈E

we

∑
j=1

1
ie+we−1

≤ ∑
e∈E

we

∑
j=1

1
ie+ j −1

= ∑
e′∈EM

1
t(e′)

=
K

∑
ℓ=1

∑
e′∈Tℓ

1
ℓ
≤ (n−1)

K

∑
ℓ=1

1
ℓ
=O(nlogK)=O(nlogn),

where the last step follows from the observation that the total number of NI forestsK is at mostnd+2,
whered is a constant. Using Theorem 8, we conclude that the skeletongraphGε constructed by the above

algorithm hasO(nlog2 n
ε2 ) edges in expectation and is in(1± ε)G whp.

Time Complexity. The time complexity for constructing the NI forests, and therefore figuring outpe

values isO(m+nlogn). We sample each edgee by setting its weight in the skeletonGε to re/pe, wherere

is drawn randomly from the Binomial distribution with parameterswe andpe. This is clearly equivalent to
the sampling scheme described above, and can be done inwepe expected time for each edgee (see e.g. [7]),

and thereforeO(nlog2 n
ε2 ) time overall. Sincem> nlog2 n

ε2 for this algorithm to be invoked, the overall time
complexity of the algorithm isO(m).

Algorithm for Step 2. Before describing our second sampling algorithm, we define the following opera-
tion on graphs. (Recall the definition of edge contraction given in section 3.)

Definition 11. Let G= (V,E) be an undirected graph, and let V1,V2, . . . ,Vk be a partition of the vertices
in G such that for each Vi , the induced graph of G on Vi is connected. Then,shrinkingG with respect to
V1,V2, . . . ,Vk produces the graph formed by contracting all edges between vertices in the same Vi for all i.

Our sampling algorithm uses our generic sampling scheme where λe is determined using the following al-
gorithm. HereHc = (Vc,Ec) is a graph variable representing a weighted graph. The algorithm is described
recursively; we callSetLambda(G,0) to execute it.

SetLambda(H, i)

1. SetHc = H

2. If total weight of edges inEc is at most|Vc| ·2i+1, then

(a) Setλe = 2i for all edgese∈ Ec

(b) Remove all edges inEc from H; supposeH splits into connected componentsH1,H2, . . . ,Hk

(c) For eachH j containing at least 2 vertices, callSetLambda(H j, i +1)

Else,

(a) Construct 2i +1 NI forestsT1,T2, . . . ,T2i+1 for Hc

(b) ShrinkHc wrt the connected components inT2i+1; updateVc andEc accordingly

(c) Go to step 2

12



Also, setα = 4 andπ = 2k wherek= ⌊lgmaxe∈E{λe}⌋. For anyr, recall thatFr contains allwe unweighted
copies of edgee from GM, wheree satisfies 2r ≤ λe ≤ 2r+1−1. For anyi ≥ 1, let Gi contain all edges in
Fr for all r ≥ i −1, where each edge inFr is replicated 2k−r+1 times inGi; let G0 contain edges ofF0 where
each edge is replicated 2k times. We need the following lemma to prove thatπ-connectivity is satisfied.

Lemma 6. For any j≥ 1, consider any edge e∈ Fj , i.e. an edge e for which the above algorithm sets
λe = 2 j . Then, e is2 j−1-heavy in the graph∪r≥ j−1Fr .

Proof. For any edgee in Fj , letGe=(Ve,Ee) be the component ofGcontainingesuch thatSetLambda(Ge, j−
1) was executed. We will show thate is 2j−1-heavy inGe; sinceGe is a subgraph ofG, the lemma follows.
In the execution ofSetLambda(Ge, j −1), there are multiple shrinking operations, each of them comprising
the contracting of a set of edges. We claim that any such contracted edge is 2j−1-heavy inGe; it follows that
any two verticesu andv that got shrunk into a single vertex are 2j−1-connected inGe.

Let Ge havek shrinking phases; let the graph produced after shrinking phaser beGe,r . We now prove
that all edges contracted in phaser must be 2j−1-connected inGe by induction onr. For r = 1, sincee
appears in the(2 j−1+1)st NI forest of phase 1,e is 2j−1-connected inGe. For the inductive step, assume
that the property holds for phases 1,2, . . . , r. Any edge that is contracted in phaser + 1 appears in the
(2 j−1+1)st NI forest of phaser +1; therefore,e is 2j−1-connected inGe,r . By the inductive hypothesis, all
edges ofGe contracted in previous phases are 2j−1-heavy inGe; therefore, an edge that is 2j−1-heavy inGe,r

must have been 2j−1-heavy inGe.

Consider any cutC in G containing an edgee∈ Fi for any i ≥ 0. Let the corresponding cut (i.e. with the
same bipartition of vertices) inGi beCi. We need to show that the number of edges inCi is at least 2k to
proveπ-connectivity. If i = 0, e is replicated 2k times inG0 thereby proving the property. Fori ≥ 1, let the
maximumλa of an edgea in C bekC, where 2j ≤ kC ≤ 2 j+1−1 for somej ≥ i. By the above lemma,Ci

contains at least 2j−1 distinct edges ofG, each of which is replicated at least 2k− j+1 times. Thus,Ci contains
at least 2k edges.

We now proveα-overlap. For any cutC, recall that f (C)i ande(C)i respectively denote the number of
edges inFi ∩C and inCi (whereCi is as defined in the previous paragraph) respectively. Then,

k

∑
i=0

e(C)i 2i−1

π
=

e(C)0

2π
+

k

∑
i=1

e(C)i 2i−1

π
=

f (C)0 2k

2k+1 +
k

∑
i=1

f (C)i 2k−r+12i−1

2k =
f (C)0

2
+

k

∑
i=1

k

∑
r=i−1

f (C)r

2r−i

≤ f (C)0 +
k

∑
r=0

r+1

∑
i=1

f (C)r

2r−i ≤ 3 f (C)0 +
k

∑
r=1

f (C)r

r+1

∑
i=1

1
2r−i ≤ 4 f (C)0 +4

k

∑
r=1

f (C)r ≤ 4c.

DefineDi to be the set of connected components in the graphG\ (F0∪F1∪ . . .∪Fi−1) for any i ≥ 1; let
D0 be the single connected component inG. For anyi ≥ 0, if any connected component inDi remains intact
in Di+1, then there is no edge from that connected component inFi. On the other hand, if a component inDi

splits intoη components inDi+1, then the algorithm explicitly ensures that the number of edges inFi from
that connected component is at mostη2i+1. Since each such edge hasλe =

1
2i , the contribution of these

edges to the sum∑e∈E
we
λe

is at most 2η ≤ 4(η −1) (sinceη ≥ 2). But,η −1 is the increase in the number
of components arising from this single component. Therefore, if di = |Di |, then

∑
e

we

λe
≤

k

∑
i=0

4(di+1−di)≤ 4n

since ultimately we haven singleton components. Using Theorem 8, we conclude that theskeleton graph
Gε constructed by the above algorithm hasO(nlogn

ε2 ) edges in expectation and is in(1± ε)G whp.
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Time Complexity. We show below that the algorithm to find values ofλe can be implemented inO(mlogn)
time for unweighted graphs, andO(mlog2 n) time for graphs with polynomial edge weights. Once we have
obtained the sampling probabilities, we use the same trick as in the previous algorithm, i.e. sample from a
Binomial distribution, to produce the skeleton inO(nlogn

ε2 ) additional time. Since the algorithm is invoked

only if m> nlogn
ε2 , the total running time isO(mlogn) if G is unweighted andO(mlog2 n) otherwise.

We now determine the time complexity for finding the values ofλe. Consider one call toSetLambda(H,i)
which begins withH = (V,E) and letHc = (Vc,Ec) denote the graphH as it evolves over the various iter-
ations in this procedure. Each iteration of steps (a) and (b)in the else block takesO(|Vc| logn+ |Ec|)
time. We show that the number of vertices halves in each iteration (save the last) and therefore the to-
tal time over all iterations isO(|V| logn+ |E| logn). Since we are dealing with the case of polynomial
edge weights, the depth of recursion isO(logn). Therefore, over all recursive calls, the time comes to
O(nlog2n+mlog2 n) = O(mlog2 n).

To see that the number of vertices halves from one iteration to the next, consider an iteration that begins
with Ec having weight at least|Vc| ·2i+1. Ec for the next iteration (denoted byE′

c) comprises only edges in
the first 2i NI forests constructed in the current iteration. So the total weight of edges inE′

c is at most|Vc| ·2i .
If this is not the last iteration, then this weight exceeds|V ′

c| ·2i+1. It follows that|V ′
c| ≤ |Vc|/2, as required.

From the above description, note that for the unweighted case,|E′
c| ≤ |Ec|/2, and therefore the time taken

over all iterations in one recursive call isO(|V|+ |E|). Over all recursive calls this comes toO(mlogn).

5 Sampling Schemes using various Connectivity Parameters

In this section, we present several sampling schemes using various measures of connectivity. Some of these
results were previously known; however, we will show that these results follow as simple corollaries of our
generic sampling scheme whereas the original proofs were specific to each scheme and substantially more
complicated. The algorithms for implementing these schemes are less efficient than the algorithms that we
have previously presented; therefore we restrict ourselves to structural results in this section. As earlier,G is
the weighted input graph (with arbitrary integer weights);GM is the corresponding unweighted multigraph;
T1,T2, . . . ,TK is a set of NI forests ofGM.

5.1 Sampling using Standard Connectivities

For any edgee= (u,v), setλe to the standard connectivity of the edge; also setα = 3+ lgn andπ = 2i−1. Fi

is defined as the set of all edgesewith 2i ≤ λe≤ 2i+1−1 for anyi ≥ 0. For anyi ≥ 1+ lgn, let Gi contain all
edges in NI forestsT2i−1−lgn,T2i−1−logn+1, . . . ,T2i+1−1 and all edges inFi. For i ≤ lgn, Gi contains all edges in
T1,T2, . . . ,Ti and all edges inFi. For anyi ≥ 0, letYi denote the set of edges inGi but not inFi. For anyi 6= j,
Fi ∩Fj = /0 and each edge appears inYi for at most 2+ logn different values ofi; this provesα-overlap. To
proveπ-connectivity, we note that Lemma 1 ensures that for any pairof verticesu,v with maximum flow
f (u,v) and for anyk≥ 1, u,v are at least min( f (u,v),k)-connected in the union of the firstk NI forests, i.e.
in T1∪T2∪ . . .Tk. Thus, any edgee∈ Fi is at least 2i-heavy in the union of the NI forestsT1,T2, . . . ,T2i+1−1.
Since there are at most 2i−1 edges overall inT1,T2, . . . ,T2i−1−lgn−1, any edgee∈ Fi is 2i−1-heavy inGi. This
provesπ-connectivity.

We now prove the size bound. The next lemma is similar to its corresponding lemma for strong connec-
tivity in [2].

Lemma 7. Suppose G is an undirected graph where edge e has weight we and standard connectivity ke.
Then,∑e

we
ke

≤ n−1.
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Proof. We use induction on the number of vertices in the graph. For a graph with a single vertex and no
edge, the lemma holds vacuously. Now, suppose the lemma holds for all graphs with at mostn−1 vertices.
Let C be a minimum cut inG, and letλ be its weight. For any edgee∈ C, ke = λ . Thus,∑e∈C

we
ke

= 1.
We remove all edges inC from G; this splitsG into two connected componentsG1 andG2 with n1 andn2

vertices respectively, wheren1,n2 ≤ n− 1. Further, the standard connectivity of each edge inG1,G2 is at
most that inG. Using the inductive hypothesis, we conclude that∑e∈G1

we
ke

≤ n1−1 and∑e∈G2
we
ke

≤ n2−1.
We conclude that

∑
e

we

ke
≤ n1−1+n2−1+1= n−1.

Using Theorem 8, we conclude that the expected number of edges in the skeleton graphGε is O(nlog2 n
ε2 ) and

Gε ∈ (1± ε)G whp.

5.2 Sampling using Effective Resistances

For any edgee= (u,v), setλe to the effective conductance of the edge, i.e.λe=
1
Re

whereRe is the effective
resistance of edgee. The next two lemmas imply that the skeletonGε ∈ (1± ε)G whp.

Lemma 8. Suppose that a sampling scheme (that uses the generic sampling scheme) hasλe ≤ ke for each
edge e in graph G, where ke is the standard connectivity of e in G. Then, the skeleton constructed is in
(1± ε)G whp.

Proof. We use the same definition ofα , π andGis as in the sampling scheme with standard connectivities,
and verify thatπ-connectivity andα-overlap continue to be satisfied.

Lemma 9. Suppose edge e in an undirected graph G has standard connectivity ke and effective resistance
Re. Then, 1

Re
≤ ke.

Proof. Consider a cutC of weightke separating the terminals of edgee. We contract each side of this cut
into a single vertex. In other words, we reduce the resistance on each edge, other than those inC, to 0.
By Rayleigh’s monotonicity principle (e.g. [4]), the effective resistance ofe does not increase due to this
transformation. Since the effective resistance ofe after the transformation is 1/ke, Re ≥ 1/ke in the original
graph.

The size bound follows from the following well-known fact (see e.g. [22]).7

Fact 1. If Re is the effective resistance of edge e with weight we in an undirected graph, then∑eweRe≤ n−1.

It follows from Theorem 8 that the expected number of edges inskeletonGε is O(nlog2 n
ε2 ).

5.3 Sampling using Strong Connectivities

For any edgee, setλe to the strong connectivity of the edge; setα = 1 andπ = 2k, wherek= ⌊lgmaxe∈E{λe}⌋.
Let Gi contain all edges inFr for all r ≥ i, where each edge inFr is replicated 2k−r times. We use the fol-
lowing property of strong connectivities that also appearsin [2].

7There are many proofs of this fact, e.g. use linearity of expectation coupled with the fact that effective resistance of an edge is
the probability that the edge is in a random spanning tree of the graph [3].
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Lemma 10. In any undirected graph G, if an edge e has strong connectivity k, then e continues to have
strong connectivity k even after all edges with strong connectivity strictly less than k have been removed
from G.

Consider any cutC with an edgee∈ Fi. Let the corresponding cut (i.e. with the same bi-partitionof vertices)
in Gi beCi . We need to show that the number of edges inCi is at least 2k to proveπ-connectivity. Let the
maximum strong connectivity of an edge inC bekC, where 2j ≤ kC ≤ 2 j+1−1 for somej ≥ i. By the above
lemma,Ci contains at least 2j distinct edges ofG, each of which is replicated at least 2k− j times. Thus,Ci

contains at least 2k edges.
We now proveα-overlap. For any cutC, recall that f (C)i ande(C)i respectively denote the number of

edges inFi ∩C and inCi (whereCi is as defined in the previous paragraph) respectively. Then,

k

∑
i=0

e(C)i 2i−1

π
=

k

∑
i=0

k

∑
r=i

f (C)r 2k−r2i−1

2k =
k

∑
i=0

k

∑
r=i

f (C)r

2r−i+1 =
k

∑
r=0

r

∑
i=0

f (C)r

2r−i+1 =
k

∑
r=0

f (C)r

r

∑
i=0

1
2r−i+1 <

k

∑
r=0

f (C)r = c.

The size bound follows from the following lemma due to Bencz´ur and Karger.

Lemma 11 (Benczúr-Karger [2]). If ke is the strong connectivity of edge e with weight we in an undirected
graph, then∑e

we
ke

≤ n−1.

It follows from Theorem 8 that the expected number of edges inthe skeleton graphGε is O(nlogn
ε2 ) and that

Gε ∈ (1± ε)G whp.

6 Sampling in Graphs with Arbitrary Edge Weights

Unfortunately, the algorithms presented earlier for sampling in a graph with polynomial edge weights fail if
the edge weights are arbitrary. In particular, we can no longer guarantee that the expected number of edges
in a skeleton graph constructed by these algorithms isÕ(n/ε2), even though it continues to approximately
preserve the weight of all cuts whp. Therefore, we need to modify our techniques to restore the size bounds,
as described below.

We sort the edges in decreasing order of their weight, breaking ties arbitrarily. We add edges to the NI
forests in this sorted order, i.e. when edgee is being added, the NI forests contain all edges of weight greater
thane. To inserte= (u,v), we find the NI forest with the minimum index whereu andv are not connected;
call this indexie. Then,e is inserted in NI forestsTie,Tie+1, . . . ,Tie+we−1. Note that this does not produce any
cycle in the NI forests since Lemma 1 ensures that ifu,v are disconnected inTie, then they are not connected
in Tk for anyk≥ ie.

For any edgee= (u,v), setλe to the index of the first NI forest where edgee is inserted, i.e.λe = ie;
also setα = 2 andπ = 2i−1. For anyi ≥ 1, letGi contain all edges in NI forestsT2i−1,T2i−1+1, . . . ,T2i−1 (call
this set of edgesYi) and all edges inFi, i.e. all edgese with 2i ≤ λe ≤ 2i+1−1. LetG0 = F0. For anyi 6= j,
Fi ∩Fj =Yi ∩Yj = /0; thus, each edge appears inGi for at most two different values ofi, provingα-overlap.
On the other hand, for any edgee∈ Fi, Lemma 1 ensures that the endpoints ofe are connected in each of
T2i−1,T2i−1+1, . . . ,T2i−1. It follows thate is 2i−1-heavy inGi , thereby provingπ-connectivity.

We now prove the size bound on the skeleton. Partition edges into subsetsS0,S1, . . . whereSj contains
all edgesewith j < ie

we
≤ j +1. The following lemma states that none of these subsets is large.

Lemma 12. For any j, |Sj | ≤ n−1.
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Proof. We prove that the edges in any subsetSj form an acyclic graph. Suppose not; letC be a cycle formed
by the edge inSj , ande= (u,v) be the edge that was inserted last in the NI forests among the edges inC.
Let e′ be any other edge inC. Then,we′ ≥ we, and hence

ie′ +we′ −1> we′( j +1)−1≥ we( j +1)−1≥ ie−1.

Since both the first and last terms are integers,ie′ +we′ −1≥ ie. Therefore,u′ andv′ were connected inTie
for eache′ = (u′,v′) in C. So,u andv were connected inTie sinceC is a cycle, beforee was added toTie.
But, thenewould not have been added toTie, a contradiction.

Thus,

∑
e

we

ie
≤ ∑

j:Sj 6= /0

|Sj |
j

≤ (n−1) ∑
j:Sj 6= /0

1
j
= O(nlogn)

since at mostm< n2 of the Sj ’s are non-empty. Using Theorem 8, we conclude that the skeleton Gε has

O(nlog2 n
ε2 ) edges in expectation and thatGε ∈ (1± ε)G whp.

Finally, we need to show that the construction of NI forests where edges are added in decreasing order
of weight can be done inO(mlog2 n) time. We use a data structure (call it apartition tree) P to succinctly
encode the NI forests. The leaf nodes inP exactly correspond to the vertices in graphG, i.e. there is a
one-one mapping between these two sets. On the other hand, each non-leaf nodev of the partition tree has
a numbern(v) associated with it that satisfies the following property:for any two vertices x,y in the graph,
if z be theleast common ancestor8 of their corresponding leaf nodes in P, then x and y are connected in
exactly the first n(z) NI forests. Then,n(z)+1 is the index of the first NI forest where edge(x,y) is to be
inserted. Initially, all then leaf nodes inP representing the graph vertices are children of the root node r,
andn(r) = 0. As edges are inserted in the NI forests, the partition treeevolves, but we make sure that the
above property holds throughout the construction. Additionally, we also maintain the invariant that ifx is a
child of y in P, thenn(x)> n(y).

We need to show that we can maintain the above properties of the partition tree as it evolves, and also
retrieve the lca of any pair of vertices efficiently for this evolving partition tree. Let(x,y) be the edge being
inserted, letz= lca(x,y) in the partition tree, and letu andv be the children ofz that are ancestors ofx and
y respectively. Observe that adding an edge(x,y) to trees with indices fromns+ 1 to ns+ ℓ increases the
connectivity of a pair of verticesw1,w2 iff they were previously connected inns+ i trees for some 0≤ i < ℓ,
w1,x were connected inns+ j trees for somej ≥ i andw2,y were connected inns+ k trees for somek≥ i
(or vice-versa). In this case,w1,w2 are now connected inns+min( j,k, ℓ) trees after adding the edge(x,y).
Further, ifn(u)−n(z) < w(x,y), then an edge of weight less thanw(x,y) must have been added to the trees
according to the second invariant, which violates the fact that edges are added in decreasing order of weight.
Thus,n(u)−n(z) ≥ w(x,y); similarly n(v)−n(z) ≥ w(x,y).

There are three cases:

1. n(u)− n(z) = n(v)− n(z) = w(x,y). We mergeu andv into a single nodes that remains a child of
z andn(s) = n(u). The first invariant is clearly maintained. For the second invariant, observe that
the only pairs of verticesw1,w2 whose connectivity changed were those withlca(w1,w2) = z, where
w1,w2 are descendants ofu,v respectively. Their connectivity increases ton(u), which is reflected in
the partition tree.

8The least common ancestoror lca of two nodesx,y in a tree is the deepest node that is an ancestor of bothx andy.
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2. n(u)−n(z) = w(x,y) andn(v)−n(z) > w(x,y) (symmetrically forn(u)−n(z) > w(x,y) andn(v)−
n(z) = w(x,y)). We makev a child of u (from being a child ofz), andn(u) = n(z) +w(x,y). For
notational convenience in the proofs later, we replaceu andv by a pair of new nodess andt where
n(s) andn(t) are respectively equal to the updated values ofn(u) andn(v). The first invariant is clearly
maintained. For the second invariant, observe that the onlypairs of verticesw1,w2 whose connectivity
changed were those withlca(w1,w2) = z, wherew1,w2 are descendants ofu,v respectively. Their
connectivity increases ton(z)+w(x,y), which is reflected in the partition tree.

3. n(u)−n(z)>w(x,y) andn(v)−n(z)>w(x,y). We introduce a new noder as a child ofzand parent of
u andv, andn(r) = n(z)+w(x,y). For notational convenience in the proofs later, we replaceu andv by
a pair of new nodessandt wheren(s) = n(u) andn(t) = n(v). The first invariant is clearly maintained.
For the second invariant, observe that the only pairs of verticesw1,w2 whose connectivity changed
were those withlca(w1,w2) = z, wherew1,w2 are descendants ofu,v respectively. Their connectivity
increases ton(z)+w(x,y), which is reflected in the partition tree.

We use thedynamic treedata structure [21] for updating the partition tree. This data structure can be
used to maintain a dynamically changing forest ofn nodes, while supporting the following operations9 in
O(logn) time per operation:

Cut(v) Cut the subtree under nodev from the tree containing it, and make it a separate tree with root v.

Link( v,w) (w needs to be the root node of a tree not containingv.) Join the tree rooted atw and that
containingv by makingw a child ofv.

LCA( v,w) (v andw need to be in the same tree.) Defined previously.

We maintain a dynamic tree data structure for the partition tree. Recall that the partition tree can be modified
in three different ways. The last two modifications requireO(1) cut and link operations each. Therefore,
the overall time complexity of these modifications isO(mlogn). On the other hand, the first modification
requiresO(d) cut and link operations, whered is the lesser number of children amongu andv. We will
prove the following lemma bounding the total number of operations due to the first type of modification.

Lemma 13. The total number of cut and link operations due to modifications of the first type in the partition
tree is O(mlogn).

Theorem 10 follows immediately.

Theorem 10. The time complexity of constructing NI forests where edges are inserted in decreasing order
of weight is O(mlog2n) for graphs with arbitrary edge weights.

We now prove Lemma 13.

Proof of Lemma 13.We set up a charging argument for the cut and link operations due to the first type
of modification. Define a functionf on the nodes of the partition tree where each nodev has f (v) = 1
initially. In the first type of modification, we assignf (s) = f (u)+ f (v); in the second type of modification,
f (s) = f (u)+ f (v) and f (t) = 1; in the third type of modification,f (r) = f (u)+ f (v) and f (s) = f (t) = 1.
Observe that the sum off (·) over all nodes in the partition tree increases by at most 2 forany of the above
modifications.

9The dynamic tree data structure supports other operations as well; we only define the operations that we require.
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Let Cu be the set of children of nodeu; then, letFC(u) = ∑v∈Cu
f (v). We charge the cut and link

operations for the first type of modification to the children of u (resp.,v) if FC(u) ≥ FC(v) (resp.,FC(v) >
FC(u)); each child ofu (resp.,v) is chargedO(1) operations. Now, letSu be the set of siblings of any nodeu
in the partition tree; correspondingly, letFS(u) = ∑v∈Su

f (v). Observe that whenever a nodeu is charged due
the first type of modification,FS(u) at least doubles. Further,FS(u) never decreases for any nodeu due to
any of the three types of modifications. Since the sum off (.) over all nodes in the partition tree increases by
at most 2 for any of the modifications, and there arem modifications overall, each node is charged at most
O(logm) = O(logn) times. Further, each modification introducesO(1) new nodes; so the total number of
operations due to modifications of the first type isO(mlogn).
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A Proof of Theorem 9

We need the following inequality.

Lemma 14. Let f(x) = x− (1+x) ln(1+x) andα = 1−2ln2. Then,

f (x) ≤
{

αx2 if x∈ (0,1)

αx if x≥ 1.

Proof. First, considerx∈ (0,1). Define

g(x) =
f (x)
x2 =

1
x
−
(

1
x
+

1
x2

)
ln(1+x).

We can verify thatg(x) is an increasing function ofx for x ∈ (0,1]. Further, atx = 1, g(x) = α . Thus,
f (x) < αx2 for x∈ (0,1).
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Now, considerx≥ 1. Define

h(x) =
f (x)
x

= 1−
(

1+
1
x

)
ln(1+x).

We can verify thath(x) is a decreasing function ofx for x≥ 1. Further, atx= 1, h(x) = α . Thus, f (x)≤ αx
for x≥ 1.

We use the above inequality to prove the following lemmas.

Lemma 15. Suppose X1,X2, . . . ,Xn is a set of independent random variables such that each Xi, i∈{1,2, . . . ,n},
has value1/pi with probability pi for some fixed0< pi ≤ 1 and has value 0 with probability1− pi . For any
p≤ mini pi and for anyε > 0,

P

[
∑

i

Xi > (1+ ε)n

]
<

{
e−0.38ε2pn if 0 < ε < 1

e−0.38ε pn if ε ≥ 1.

Proof. For anyt > 0,10

P

[
∑

i

Xi > (1+ ε)n

]
= P

[
et ∑i Xi > et(1+ε)n

]

<
E
[
et ∑i Xi

]

et(1+ε)n (by Markov bound(see e.g. [17]))

=
n

∏
i=1

E
[
etXi
]

et(1+ε)n (by independence ofX1,X2, . . . ,Xn)

=
n

∏
i=1

piet/pi +1− pi

et(1+ε)n

=
n

∏
i=1

1+ pi(et/pi −1)

et(1+ε)n

≤ exp(
n

∑
i=1

pi(e
t/pi −1)− t(1+ ε)n) (since 1+x≤ ex, ∀x≥ 0).

Sincepi ≥ p for all i ∈ {1,2, . . . ,n},

n

∑
i=1

(pi(e
t/pi −1))≤

n

∑
i=1

(p(et/p−1)) = np(et/p−1).

Thus,

P

[
∑

i

Xi > (1+ ε)n

]
< exp(np(et/p−1)− t(1+ ε)n).

Settingt = pln(1+ ε), we get

P

[
∑

i
Xi > (1+ ε)n

]
<

(
eε

(1+ ε)1+ε

)pn

.

10For any random variableX, E[X] denotes the expectation ofX.
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Since 1−2ln2<−0.38, we can use Lemma 14 to conclude that

P

[
∑

i

Xi > (1+ ε)n

]
<

{
e−0.38ε2pn if 0 < ε < 1

e−0.38ε pn if ε ≥ 1.

Lemma 16. Suppose X1,X2, . . . ,Xn is a set of independent random variables such that each Xi, i∈{1,2, . . . ,n},
has value1/pi with probability pi for some fixed0< pi ≤ 1 and has value 0 with probability1− pi . For any
p≤ mini pi and for anyε > 0,

P

[
∑

i

Xi < (1− ε)n

]{
< e−0.5ε2pn if 0 < ε < 1

= 0 if ε ≥ 1.

Proof. For ε ≥ 1,

P

[
∑

i

Xi < (1− ε)n

]
≤ P

[
∑

i

Xi < 0

]
= 0.

Now, supposeε ∈ (0,1). For anyt > 0,

P

[
∑

i

Xi < (1− ε)n

]
= P

[
e−t ∑i Xi > e−t(1−ε)n

]

<
E
[
e−t ∑i Xi

]

e−t(1−ε)n (by Markov bound)

=
n

∏
i=1

E
[
e−tXi

]

e−t(1−ε)n (by independence ofX1,X2, . . . ,Xn)

=
n

∏
i=1

pie−t/pi +1− pi

e−t(1−ε)n

=
n

∏
i=1

1− pi(1−e−t/pi )

e−t(1−ε)n

≤ exp(
n

∑
i=1

−pi(e
−t/pi −1)+ t(1− ε)n) (since 1−x≤ e−x, ∀x≥ 0).

Sincepi ≥ p for all i ∈ {1,2, . . . ,n},

n

∑
i=1

(pi(1−e−t/pi ))≤
n

∑
i=1

(p(1−e−t/p)) = np(1−e−t/p).

Thus,

P

[
∑

i

Xi < (1− ε)n

]
< exp(np(1−e−t/p)+ t(1− ε)n).

Settingt =−pln(1− ε), we get

P

[
∑

i

Xi < (1− ε)n

]
<

(
eε

(1− ε)1−ε

)pn

≤ e−0.5ε2pn.
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We now prove Theorem 9 using the above lemmas.

Proof of Theorem 9.Let δ = εN
|C| . First, consider the case whereδ ∈ (0,1). From Lemmas 15 and 16, we

conclude that

P

[
|∑

e
Xe−|C||> ε |C|

]
= P

[
|∑

e
Xe−|C||> δ |C|

]
< 2e−0.38δ 2p|C|

= 2e−0.38ε2pN(N/|C|) ≤ 2e−0.38ε2pN (sinceN ≥ |C|).

Now, consider the case whereδ ≥ 1. From Lemmas 15 and 16, we conclude that

P

[
|∑

e
Xe−|C||> εN

]
= P

[
|∑

e
Xe−|C||> δ |C|

]
< e−0.38δ p|C| = e−0.38ε pN ≤ e−0.38ε2pN (sinceε ≤ 1).
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