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Abstract

Given a weighted grap and an error parameter> 0, thegraph sparsificatiorproblem requires
sampling edges i® and giving the sampled edges appropriate weights to obtspawse grapls, with
the following property: the weight of every cut (B is within a factor of(1+ €) of the weight of the
corresponding cut it. Benczir and Kargef [2] showed how to obt&a with O(nlogn/?) edges
in time O(mlog®n) for weighted graphs an@(mlog?n) for unweighted graphs using a combinatorial
approach based on strong connectivity. Spielietzad [22] showed how to obtai, with O(nlogn/&?)
edges in timeD(mlog®n) for some (large) constamtusing an algebraic approach based on effective
resistances. Our contributions are as below (all for weidlgraphss with n vertices andm edges
having polynomial-sized weights, unless otherwise s)ated

e Benczlr and Karger [2] conjectured that using standardectivity instead of strong connectivity
for sampling would simplify the result substantially, anaspd this as an open question. In this
correspondence, we resolve this question by showing thaplézg using standard connectivities
also preserves cut weights and yieldsawith O(nlog®n/£?) edges.

e We provide a very simple strictly linear time algorithm (i®(m) time) for graph sparsification
that yields &G, with O(nlog?n/£?) edges.

¢ We provide another algorithm for graph sparsification theldg aG, with O(nlogn/£?) edges in
O(mlog?n) time (for unweighted graphs, this reducetgnlogn) time).

e Combining the above two results, we obtain the fastest knalgarithm for obtaining a5 with
O(nlogn/£?) edges; this algorithm runs in tim®(m+ nlog*n/e?) whereas the previous best
bound isO(mlog®n).

e If G has arbitrary edge weights, we give@tmlog?n)-time algorithm that yields & containing
O(nlog?n/e?) edges. The previous best bounddémlog®n) time for aG, with O(nlogn/£?)
edges.

e Mostimportantly, we provide a generic framework that setssofficient conditions for any partic-
ular sampling scheme to result in good sparsifiers; all tlvalesults can be obtained by simple
instantiations of this framework, as can known results ang@ing by strong connectivity and
sampling by effective resistanées

Our algorithms are Monte-Carlo, i.e. work with high prolaias are all efficient algorithms for graph
sparsification.

A key ingredient of our proofs is a generalization of boundstloee number of small cuts in an
undirected graph due to Kargér [8]; this generalizationhmize of independent interest.

1 with aG; that is slightly denser than the best-known result for thieogife resistance case.
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1 Introduction

A cutof an undirected graph is a partition of its vertices into tligjoint sets. Theveightof a cut is the sum
of weights of the edges crossing the cut, i.e. edges haviegeadpoint each in the two vertex subsets of
the partition. For unweighted graphs, each edge is assumtele unit weight. Cuts play an important role
in many problems in graphs: e.g., the maximum flow betweeniraopa&ertices is equal to the minimum
weight cut separating them.

A skeleton Gof an undirected grap8 is a subgraph o6 on the same set of vertices where each edge in
G can have an arbitrary weight. In a series of results, Ka@ét@] showed that an appropriately weighted
sparse skeleton generated taypdom samplingpf edges approximately preserves the weighewdrycut
in an undirected graph. This series of results culminated s&minal work by Benczlr and Kargét [2]
that showed the following theorem. Throughout this paparahy undirected grap® and anye € (0,1],
(1+€)Gis the set of all appropriately weighted subgraph& efhere the weight of every cut in the subgraph
is within a factor of(1+ ¢) of the weight of the corresponding cut@

Theorem 1 (Benczlr-Karger([2]) For any undirected graph G with m edges and n vertices, andfgr
error parametere € (0,1, there exists a skeleton.Gontaining G"%") edges such that Gc (1+¢€)G

with high probabilit)g Further, such a skeleton can be found irﬁnﬁ)og2 n) time if G is unweighted and
O(mlog®n) time otherwise.

Besides its combinatorial ramifications, the importancthis result stems from its use as a pre-processing
step in several graph algorithms, e.g. to obtair@n3/2+ m)-time algorithm for approximate maximum
flow using theé(m\/m)—time algorithm for exact maxflow due to Goldberg and Rao§@f] more recently,
O(n®/2 + m)-time algorithms for approximate sparsest ¢uf [12, 20].

Subsequent to Benczlr and Karger's work, Spielman and [Z31¢24] extended their results to pre-
serving all quadratic forms, of which cuts are a special chseever, the size of the skeleton constructed
wasO(nlog®n) for some large constait Spielman and Srivastava [22] improved this result by qoeting
skeletons of sizé)(”'??”) in O(mlog®® n) time, while continuing to preserve all quadratic forms. &ety,
this result was further improved by Batsenhal [1] who gave a deterministic algorithm for constructing
skeletons of siz®(;). While their result is optimal in terms of the size of the siteh constructed, the

time complexity of their algorithm i@(”g—rf), rendering it somewhat useless in terms of applications.
Benczlr and Kargef [2], and Spielmahal [23,(24,22] 1] use contrasting technigues to obtain their

respective results; the former use combinatorial graphnigaes while the latter use algebraic graph tech-

niques. In each case, the goal is to obtain a probabilityevpdifor each edge so that sampling each edge

e independently with probabilitype and giving each sampled edge weight 1 pe yieldsG; € (1+¢€)G.

Benczlr and Kargef [2] choog® inversely proportional to thetrong connectivityf e while Spielmaret

al [23,124[22] 1] choosge proportional to theeffective resistancef e (both concepts are defined below).

Definition 1. Thestrong connectivityf an edggu, V) in an undirected graph G is the maximum value of k
such that there is an induced subgraphd® G containing both u and v, and every cut inl@as weight at
least k.

Definition 2. Theeffective resistancef an edge(u,v) in an undirected graph G is the effective electrical
resistance between u and v if each edge in G is replaced byemtriebl resistor between its endpoints
whose electrical resistance is equal to the weight of theeedg

2We say that a property holdsith high probability(or whp) for a graph om vertices if its failure probability can be bounded
by the inverse of a fixed polynomial im



1.1 Our Results

We obtain the following results.

The Generic Framework. We provide a general proof framework as follows. For any gigampling
scheme (i.e., assignment to thgs), we show that if this assignment satisfies two sufficiemtditions, then
the sampling scheme results in good sparsifiers. All of thelte stated below are then simple instantiations
of the above framework, i.e. we show that the sufficient dims hold. The resulting algorithms are also
much simpler than those inl[2] or in [22, 1].

Faster Algorithms. Our first result is an efficient algorithm for constructingpasse skeleton.

Theorem 2. Suppose G is an undirected graph with n vertices and m edde=, Tor any fixed < (0,1],
there is an efficient algorithm for finding a skeletop @& G having Q”'??”) edges in expectation such that
G € (1+¢)G whp. The time complexity of the algorithm i$n®+ nlog*n/e?) if the weights of all edges
are bounded by a fixed polynomial in n (including all unwegghgraphs).

This is the first sampling algorithm that runs in time stgidthear inm; all previous algorithms had a time
bound of at Ieas@(mlog2 n) for unweighted graphs, m(ﬁi(mlog3 n) for weighted graphs. This algorithm
improves the time complexity of several problems, wherating a graph sparsifier in the first step. We
mention some of these applications.

e This yields anO(m) + O(n%2/&3)-time algorithm for finding the-approximate maximum flow be-
tween two vertices of an undirected graph using the exacflovealgorithm in [6]. The previous
best algorithm had a running time @{mlog®n) + O(n%2/¢3).

e This yields anO(m) + (5(n3/2)—time algorithm for finding arO(logn)-approximate sparsest cut [12,
20], and arO(m) + O(n®2+%)-time algorithm for finding arD(,/logn)-approximate sparsest cut for
any constan® [20]. The previous best algorithms had running timeQgflog®n) +(5(n3/2) and
O(mlog®n) 4+ O(n%2+%) respectively.

The sampling algorithm in Theorelm 2 is obtained by composimdifferent algorithms described below.
The first algorithm is fast but generates a slightly densefes&n. The second (slower) algorithm then
operates on this skeleton to obtain a smaller skeleton.

Theorem 3. Suppose G is an undirected graph with n vertices and m edde=, Tor any fixed < (0,1],

there is an efficient algorithm for finding a skeletop @ G having Q”'Zgzzn) edges in expectation such that
Gt € (14+¢)G whp. The time complexity of the algorithm isnd) if the weights of all edges are bounded
by a fixed polynomial in n (including all unweighted grapted Qmlog?n) if the edges have arbitrary

weights.

Theorem 4. Suppose G is an undirected graph with n vertices and m edde=, Tor any fixed < (0,1],
there is an algorithm for finding a skeleton, @f G having Q”'??”) edges in expectation such that G

(14 £)G whp. The time complexity of the algorithm iéf@ogn) for unweighted graphs and @log?n) if
the weights of all edges are bounded by a fixed polynomial inatuding all unweighted graphs).




Sampling by Standard Connectivity, Effective Resistanceand Strong Connectivity. In proving Theo-
rem[1, the authors had to use strong connectivity becausadhe natural notion aftandard connectivities
seemed to pose complications.

Definition 3. Thestandard connectivityor simplyconnectivity of an edggu,v) in an undirected graph G
is the maximum flow between u and v in G.

The authors conjectured that using standard connectiviigad of strong connectivity for sampling would
simplify the result substantially, and posed this as thainmopen question. In this correspondence, we
resolve this question by showing that sampling using stahdannectivities also preserves cut weights.

Theorem 5. Suppose G is an undirected graph on n vertices. For any fixed0, 1], let G; be a skeleton
of G formed by sampling edge e in G with probatiite = min(%‘i’y””, 1), where k is the standard
connectivity of edge e in G. If selected in the sample, edg@ieén a weight of / pe in the skeleton. Then,

G¢ has Q”'Z—%Z”) edges in expectation and:@& (1+£)G whp.

Observe that the size of the skeleton constructed usingatdrtonnectivity has an extra lodactor com-
pared to that constructed using strong connectivity. Wgentire that this factor can indeed be removed by
more careful analysis.

We show that exactly the same proof as above holds if we regndard connectivity witbffective
resistanceof an edge. Thus, we show that sampling edges using effeettigtances also produces a sparse
skeleton that approximately preserves all cut weights,salréndependently obtained by Spielman and
Srivastava recently for the larger class of all quadratim®(cuts are a special type of quadratic forms) with
a tighter bound on the size of the skeleton| [22]. Our reduttigh weaker, has a much simpler proof.

We also show that the results obtainedlih [2] using strongieotivity can be obtained as a simple
instantiation of our general sampling framework.

Generalizations of Cut Counting. Theedge connectivitpf an undirected graph is the minimum weight
of a cut in the graph. A key ingredient in the proof of Theofér & celebrated theorem due to Karder [8])
that gives tight bounds on the number of distinct cuts of adfimeight in an undirected graph in terms of
the ratio of the weight of the cuts to the edge connectivitthefgraph.

Theorem 6 (Karger [8]) For an undirected graph with edge connectivity ¢ and for any 1, the number
of cuts of weight at mostc is at most Qn®®).

While this theorem is extremely useful in bounding the numdfesmall cuts in an undirected graph (e.g.
in sampling [9[ 10, 2], network reliability [11], etc.), ibés not shed any light on the distribution of edges
according to their connectivities in cuts. We generalizzahove theorem and show that though there may
be many distinct cuts of a fixed large weight in a graph, thezeassmall number of distinct sets of edges in
these cuts if we restrict our attention to only edges withdaistandard) connectivity. To state our theorem
precisely, we need to introduce the notiorkefieavyandk-light edges, and that of tHeprojectionof a cut.

Definition 4. An edge is said to be k-heavy if it has connectivity at leastrki k-light otherwise. The
k-projection of a cut is the set of k-heavy edges in the cut.

Since every edge has connectivity at leaStheoreni b can be interpreted as bounding the number afictisti
k-projections of cuts of sizek by O(n?®) for k = c. We generalize this result to arbitrary valueskof

8Inn=logen;lgn=log, n.



Theorem 7. For any undirected graph with edge connectivity ¢ and for liyc and anya > 1, the number
of distinct k-projections of cuts of weight at mogt is at most &

We believe this theorem will be of independent interest.

Roadmap. In sectiorf 2, we describe our generic sampling frameworlt,pmavide one example of instan-
tiating this framework that proves Theoréin 3 for the unwigdhcase. In sectidd 3, we prove Theofedm 7
and use it to prove Theorem 8, the main framework theorenedstiat sectiol 2. In sectionl 4, we give
two sampling algorithms for graphs with polynomial edgegids: the first algorithm constructs skeletons

containingo(’"‘;—%z”) edges in expectation and has time complegityn), thus proving Theorem| 3 for the

polynomial weights case; the second algorithm construatetons containing)(”'gg’”) edges in expecta-
tion and has time complexi®(mlogn) for unweighted graphs, ar(ﬂ(mlog2 n) for graphs with polynomial

edge weights, thus proving Theoréin 4. Combining these t@orims proves Theorem 2. In sectidn 5,
we prove Theorerh]5 and show that results on sampling by efemtsistances and sampling by strong

connectivities can also be derived from our framework. lna section 6, we give a sampling algorithm

2
for graphs with arbitrary edge weights that constructsetkels containing)(”'(;% ) edges in expectation

and has time complexit®(mlog?n), thus proving Theoreid 3 for the arbitrary weights case.

2 The Generic Framework

We describe a generic sampling framework—each of our iddali sampling schemes is obtained by a
particular setting of parameters of this generic framework

Supposés = (V,E) is an undirected graph where edge E has weightve. We will assume throughout
thatwe is a positive integer. LeBy = (V, Ey) denote the multi-graph constructed by replacing each edge
by we unweighted parallel edges, e,,...,ey,. Consider ang € (0,1]. We construct a skeletd®; where
each edgey, € Ey is present in grapl, independently with probabilitye, and if present, it is given a
weight of 1/pe. (For algorithmic efficiency, observe that an identicallst@n can be created by assigning
to edgee a weight ofRe/ pe WhereRe is generated from the binomial distributi@twe, pe); this can be done
in time O(wepe) rather than tim&(we) (see e.g.[7])).

What values ofpe result in a spars&; that satisfiess; € (1+£)G? Letpe = min((fgg){’e‘enz,l), where
a is independent of and A is some parameter @ satisfyingAe < 2" — 1. The exact choice of values for
a and theAg's will vary from application to application. However, westgibe below a sufficient condition
that characterizes a good choicecofindA¢’s.

To describe this sufficient condition, partition the edge$i, according to the value of¢ into sets
Fo,Fi,...,Fx wherek = [lgmaxce{Ae}] <n—1 ande € Fj iff 2] < A <211 —1. Now, let¥ =
Go,G1,Gy,...,G = (V,E),...,Gk be a set of subgraphs @y (we allow edges of5y to be replicated
multiple times in theG;s) such thaf; C E; for everyi. ¢ is said to be &1, a)-certificatecorresponding to
the above choice af andA¢'s if the following properties are satisfied:

1-connectivity Fori > 0, any edges, € F is r-heavy inG;.
a-overlap For any cuC containingc edges inGy, let el(C> be the number of edges that cr&@m G;. Then,

(C)oi—1
g2
= < ac.

for all cutsC, TX

Theorem 8 describes the sufficient condition; its proof appédater in sectiof]3. The intuition for this
proof is as follows. Consider all cu@Gin Gy; restrict each cut to just the edgeskn(we do this because

5



edges inF have roughly the same sampling probabilities, which ersableeasy application of Chernoff
bounds). How many such distin€i-restricted cuts are there? Organize all ddts Gy into doubling

categories, each comprising cuts with roughly equal vahiéc); now using Theorernl7 as applied &

and therr-connectivity property above, we can conclude that thisntdmno(‘%@/ ™ per category. Next, for
a particular cuC and itsF-restriction, we need to apply an appropriate Chernoff blowith a carefully

chosen deviation-from-expectation parameter so thatiigation has probability at moat (€ /™: this
probability offsets the above count, thereby allowing usléim that this deviation holds for all cuts in one
doubling category (and the number of categories is not tooynsm the same fact extends across categories

© i
as well). The actual value of this deviation comes out teife) - q? . 271 The a-overlap property now

allows us to bound the sum of this deviation over gl < i <k, by €c, as required.

Theorem 8. If there exists & 1T, a)-certificate for a particular choice ofr and A¢’s , then the skeleton
G; € (14 €)G with probability at leastL — 4/n. Further G has Q “';’29” Y ek 5¢) edges in expectation.

2.1 A Simple Algorithm for Unweighted Graphs

We show how we can instantiate the above framework with fipe@ilues ofa, A¢'s to obtain a very simple

sampling algorithm that runs i@(m) time and obtains a skeleton of si@é”":—%z”). This proves Theorem 3
for the unweighted case.

In order to present our sampling algorithm, we need to defiaabtion ofspanning forestsAs earlier,
G denotes a graph with integer edge weighitsor edgee andGy, is the unweighted multi-graph wheee
is replaced withwe parallel unweighted edges.

Definition 5. A spanning foresT of Gy (or equivalently of G) is an (unweighted) acyclic subgraftGo
satisfying the property that any two vertices are conneated if and only if they are connected in G.

We partition the set of edges @y into a set of forest$;, T», ... using the following ruleT; is a spanning
forest of the graph formed by removing all edgesqiny, ..., Ti_; from Gy such that for any edgeeG, all
its copies in Gy appear in a set of contiguous forestg, Ti 11, . .., Ti.4w.—1. This partitioning technique was
introduced by Nagamochi and Ibaraki in [19], and these ferase known adlagamochi-lbaraki forest&r
NI forests). The following is a basic property of NI forests.

Lemma 1 (Nagamochi-lbarakil [19, 18])For any pair of vertices v, they are connected in NI forests
T1, T2, .+, Tk, for some Ku,v) and not connected in any forest, Tor j > k(u,v).

Nagamochi and Ibaraki also gave an algorithm for constigdiil forests that runs i@(m+ n) time if Gy
is a simple graph (i.G is unweighted) an@®(m+ nlogn) time otherwise[[19, 18]. Note that our sampling
schemes are relevant only wher> nlogn; therefore, the NI forests can be constructe®im) time for
all relevant input graphs.

We set), to the index of the NI forest that appears in, and set = 2 andrm= 2-1. For anyi > 0,
let G; contain all edges in NI forestg,-1, Tyi-1,4,..., Thir1_g; let Go = Fgp = T1. Each edge i appears
exactly once irG;j, once inGj,1, and does not appear at all in any of the otG¢s, j #i,i+ 1. This proves
a-overlap. Further, for any edgec F, i > 0, Lemmd_l ensures that the endpointeaire connected in
each ofTyi-1, Tyi-1,4,..., Toi_;. It follows thateis 2-1-heavy inG;, thereby provingt-connectivity. We can
now invoke Theorem]8 and conclude that this sampling scheméts inG; € (1+ )G with probability at
least 1— 4/n. It remains to bound the number of edge$3n as follows.



Sincew, = 1 for each edge and the total number of NI foresks is at mosin?, we have
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It follows from Theoreni B thaG, hasO(nlog ") edges.
The time complexity for constructing the NI forests@m) and that for sampling i©(1) per edge
giving anotherO(m); so overall, the algorithm take3(m) time.

%: (nlogK) = O(nlogn).

3 Proofs of Main Theorems

In this section, we will first prove Theorem 7, and then use pitove Theorerhl8. Let us start by defining
k-heavy andk-light vertices.

Definition 6. A vertex in an undirected graph is said to be k-heavy if attleag edge incident on the vertex
is k-heavy; otherwise, the vertex is said to be k-light.

We need the following property é¢heavy vertices.
Lemma 2. The sum of weights of edges incident on a k-heavy vertexéasit k.

Proof. For anyk-heavy vertew, there exists some other vertexsuch that the maxflow betweerandv is
at leastk. Thus, any cut separatingandv must have weight at leakt in particular, this holds for the cut
containing onlyv on one side. O

Supposes is an any weighted undirected graph. We scale up the weidlaté @dges inG uniformly until
the weight of every edge is an even integer; call this gi@ph/Ne replace each edge-= (u,v) of weightwe
in Gg with we parallel unweighted edges betwaeandv to form an unweighted multi-grap8y,. Clearly,
any cut inGy has an even number of edges. Theorém 7 holds for any vakiends if and only if it holds
for any even integek in Gy. Therefore, it suffices to prove Theoréin 7 for all even integ@n unweighted
multigraphs where the weight of every cut is even. We alsorasghaiGy, is connected; if not, the theorem
holds for the entire graph since it holds for each conneatadponent.

We introduce two operations on undirected multigragmstting-offandedge contractionThe splitting-
off operation was introduced by Lovasz in [13] 14] (ex. §:53

Definition 7. A pair of edgegs,u) and (u,t) are said to besplit-off in an undirected multigraph if they are
replaced by a single edgst).

Various properties of the splitting-off operation have thheeplored[15, 16,15, 25]. We need the following
property.

Definition 8. For any k> 0O, a splitting-off operation is said to bereservingif all edges in the graph
(except those being split-off) that were k-heavy beforesghigting-off continue to be k-heavy after the
splitting-off.

The following lemma is a corollary of a deep result of Madés][for splitting-off edges while maintaining
the maxflows of pairs of vertices; however, we give a much Emgtirect proof of this lemma here.



Lemma 3. Suppose § is an undirected multigraph where every cut contains an engnber of edges. Let
k > 0 be any even integer. Then, for any k-light non-isolatedexett in Gy, there exists a pair of edges
(s,u) and(u,t) such that splitting-off this pair is k-preserving.

Proof. We will prove that for every edgés,u), there exists an edde,t) such that splitting-off this pair of
edges retains the following propertginy pair of vertices )y that were k-connected (i.e. had a maxflow of
at least k) before the splitting-off continue to be so after $plitting-off We define &-separatorto be any
cut that separates at least one paik-cbnnected vertices, and calkaseparator with exactlig edges dight
cut. Since all cuts have even number of edges and the weightof can decrease by at most 2 due to a
splitting-off operation, we only need to ensure that we dbdezrease the number of edges in any tight cut
when we split-off a pair of edges.

Suppose there exists no edget) such that splitting-offs,u) and(u,t) retains the&k-heavy property for
all k-heavy edges. Then, for every neighlbgother thars) of u, there exists at least one tight cut havig
on one side and on the other. Consider a minimume-sized collection of tightsXi, X, ..., X, whereX; is
the subset of vertices on the side of the cut not containinf/ = 1, movingu to the side ofX; produces a
k-separator containing less thiaedges, which is a contradiction. Thiz 2. Now,let

A= X NX2;B = X1\ X2;C = Xo\ X;D =V \ (Xg UXo).

Then,se A andu € D. SinceX; andX; arek-separators, either (B3 andD arek-separators, or (2 and

C arek separators. In either case, this pairke$eparators must be tight cuts since they contain at least
k edges each beinktseparators and at mostedges each because their total number of edges is at most
that of X; andX,. If AandD are tight cuts, we can replace cidsand X, by D in the collection of tight
cuts, contradicting minimality of this collection. On thther hand, ifB andC are tight cuts, the counting
argument also shows that there is no edge betwesmdD, contradicting the existence of edggu). O

Let us now extend the notion of splitting-off to vertices.

Definition 9. A vertex with even degree in an undirected graph is said te@i-off if a pair of edges
incident on it is repeatedly split-off until the vertex bews isolated. Splitting-off of a vertex is said to be
k-preservingf each constituent edge splitting-off is k-preserving.

Note that the number of edges in a cut either stays unchangkxteases by 2 after a splitting-off operation.
Thus, if every cut in the graph had an even number of edgesitowsith, then each cut continues to have
an even number of edges after a sequence of splitting-offatipas. Therefore, the following lemma is
obtained by repeatedly applying Lemfa 3 tk-light vertex.

Lemma 4. Suppose ¢ is an undirected multigraph where the number of edges inyesatris even. Let k
be an even integer. Then, there exists a k-preservingisghtiff of any non-isolated k-light vertex u inG

Our second operation edge contraction

Definition 10. Contractionof edge e= (u,v) in an undirected multigraph G is defined as merging u and v
into a single vertex (i.e. all edges incident on either u orer@ow incident on the new vertex instead). Any
self-loops produced by edges between u and v are discarded.

We will now prove Theoreml7.

Proof of Theorerl]7 We run the following randomized algorithm on multigra@y:



1. Split-off all k-light vertices ensuring thie-preserving property (Lemnia 4).
2. Contract an edge chosen uniformly at random in the regsugiraph.

3. If the contraction produceskalight vertex, split it off4

4. If < 2a vertices are left, output a random cut; otherwise, go toBtep

Consider a cut that has at mostk edges; let itk-projection beS. In any of the splitting-off operations, no
edge inScan be split-off since these edges continue tk-heavy throughout the execution of the algorithm.
So, if no edge crossing c@ (either an edge 5y or one produced by the splitting-off operations) is
contracted during the execution of the algorithm, then dfjes inS survive till the end. To estimate the
probability that no edge crossing ddtis contracted, leh; be the number of vertices left at the beginning
of the jth iteration. Thush; is the number ok-heavy vertices irGy (note that allk-light vertices are
split-off initially), andhj .1 is eitherh; — 1 orh; — 2 depending on whether a vertex was split-off in $tep 3 of
iteration j. Observe that the number of edges crossirgannot increase due to the splitting-off operations.
Further, Lemmal2 asserts that at the beginning of iteragjdhere are at leastjk/2 edges in the graph.
Thus, the probability that no edge @is selected for random contraction in skép 2 of iteratias at least
1- h,aTl;Z =1- %—‘j’ Then, the probability that no edge cross@gs contracted in the entire execution of the

algorithm is at least
2a 20+1 2a n\ *
me-5)=n ) -G)

Since there are??~1 cuts in a graph with @ vertices, the probability that the random cut output by the
algorithm contains only edges crossing €ufand therefore5 is exactly the set ok-heavy edges ity
output by the algorithm) is at Iea@’;)&Zl*Z“ > n~22, This is true for every distindt-projection of cuts
having at mostrk edges; hence, the total number of skegbrojections is at most?® . O

In addition to the above theorem, we need the following noifieam version of Chernoff bounds (for
Chernoff bounds, see e.q.[17]) to prove Theokém 8. (A prdtiiie theorem is given in the appendix.)

Theorem 9. Consider any subset C of unweighted edges, where each ed@e®sampled independently
with probability p. for some p € [0,1] and given weightl/pe if selected in the sample. Let the random
variable X denote the weight of edge e in the sample; if e is not selentdkisample, thengé= 0. Then,
for any p such that g< pe for all edges e, ang € (0,1], and any N> |C|, the following bound holdg:

P

| Xe—[Cl| > eN] < 2e7038PN,
|

We will now use Theorerl7 to prove Theoreim 8. (We re-use thatioot defined in sectidn 2.) For any cut
Cin Gy, letF© =Fncandg® =Eincforo<i<kfilet {9 = |F“| ande® = |E)|. Also, let f©)
be the expected weight of all edgequhC) in the skeleton grapfs.. We first prove a key lemma.

4If an edge betweenandv is contracted in stdf 2, all edges that were previoksdtgavy continue to be so after the contraction,
except the edges betweemndv. So, at most one vertex (the new vertex) becokibght as a result of this contraction.

SFor any event, P[£] represents the probability of evefit

8For any cuC and any set of edge®s ZNC denotes the set of edgesZrthat cross cu€.



Lemma 5. For any fixed i, with probability at least — %

— (C)si—1
,f_(c) _ fi(c)‘ < Emax<q 2 7fi(C)>
2 a

for all cuts C in Gy.

Proof. By the r-connectivity property, any edgec F, is r-heavy inG; for anyi > 0. Therefore;—:«,(c) > T
Let %ij be the set of all cut€ such that2l < ei(c) < mit1—1,j > 0. We will prove that with probability
at least - 2n—2"" all cuts inGj; satisfy the property of the lemma. Then, the lemma followsising the
union bound ovej (keepingi fixed) since 2 2+2n"4+ ... +2n"2 ... <4n2

We now prove the above claim for cusc ;. LetXi(C) denote the set of edgeshfﬁc) that are sampled
with probability strictly less than 1; correspondinglyt }éc )\ and Ietxi(C> be the total weight of
edges inXi( in the skeleton grapfls.. Since edges nPF \XI have a weight of exactly 1 i5, it is

(C) gi—
X9 _x9) < (5) maX<qn—fxl7>ﬁ(C>> for all

cutsC € %jj. Since each edge ¢ )(,(C> hasAe < 21, we can use Theoref 9 with the lower bound on

sufficient to show that with probability at least-12n—2"",

probabilitiesp = % There are two cases. In the first case, supplb%e< a° 2' . Then, for amb(l

whereC € jj, by TheoreniB, we have

P [
smceeI ) > mi for anyC € 4jj. In the second case, suppoég
C € %ij, by Theorem B, we have

(C)ni—1 2 (C)yi-1
- (5) " ]<2e°-38%<—n0.5;;'r:)% <26 " < gersim
ma - -

NE)
_Xi()

©)

%;

)

. Then, for any)(I where

<C) Inn

e~ 2 nn (C)
P{ x| > (%)&(C)] < 2603 (st )07 L 0o < ge 62
q(C)zl 1 2|+J
smcexI N > for anyC € %ij. Thus, we have proved that

— ©) 2i -1

o[- (S)mee(* 5

for any cutC < %jj. Now, by therr-connectivity property, we know that edgesl-‘libc), and therefore those
in Xi(C>, arer-heavy inG;. Therefore, by Theoref 7, the number of distib(é(f) sets for cut € 4jj is

’Xi(0)>] < 2% 62/ Inn 2n‘62'

at mostn ( T ) =n*?, Using the union bound over these dlstm/qff:) edge sets, we conclude that with
probability at least 1- 2n~2"" all cuts ingj; satisfy the property of the lemma. O

We now use the above lemma to prove Thedrém 8.

Proof of Theorerhl8For any cutC in Gy, let ¢ be the number of edges @ correspondingly, let be the
total weight of the edges crossing €uin the skeleton grap®.. Sincek < n— 1, we apply the union bound
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to the property from Lemmia 5 over the different values tf conclude that with probability at least-12,

we haveyk o — £ < 5% (5 )max(q 2 ,fi(c)> for all cutsC in Gy. Then, with probability at

least 1- 4,
| 1 C 8 2| 1 k
|€— c|_|20f Zof |<Zh|f |< ijax f; E Zﬁ — +Z}f <&,
eack 8927 k ¢ e ©) "
sincey o ;— < cby thea-overlap property and ;" f; " < csinceF" s form a partition of the edges
inC.

We now prove the size bound @}. The expected number of distinct edge$nis

EEl_ (1—pe)?e < zWepe-
ec e

The bound follows by substituting the value mf. O

4 Sampling in Graphs with Polynomial Edge Weights

In this section, we will give an algorithm for sampling in uretted weighted graphs, where the weight of
every edge is an integer boundedryfor a fixed constand > 0. The algorithm constructs a skeleton graph

contalnlngo(”"’g”) edges in expectation and has time complegityn+- ”'Og 199 M), Our strategy, as outlined

in the introduction, has two steps: first we run an algorithat tonstructs a skeleton graph WGIJI(I”'OQ )

edges in expectation and has time complexyn); then, we run a different algorithm that constructs a

sparser skeleton contamlr(g(”'og”) edges in expectation on the skeleton graph constructedeirfirgt

nlo%“n
&

step. The second algorithm takes ti@émlog?n) on a graph wittm edges and therefor@( ) time
on the skeleton graph produced in the first step. To ensuteh@dinal skeleton graph is ifl + €)G, we
chooset /3 as the error parameter for each algorithm. As an additiobsérvation, we show that the time
complexity of the second algorithm improves@gmlogn) if its input graph is unweighted.

We will describe both these algorithms for an input gré&ahwhere the weightve of every edgee is
an integer bounded hy" for a fixed constantl > 0. Note that the input graph to the second algorithm in
the above two-step sampling scheme may have fractionalhigeigiowever, we can scale up all weights
uniformly until they are integral, and the scaled weightatowe to be bounded by some fixed polynomial
in n. Once the skeleton graph is obtained, we scale all weights dmiformly to obtain the final skele-
ton graph. The unweighted multigraph constructed by répdaeach edge with we parallel unweighted
edgese, ey, ...,8,, betweenu andv is denoted byGy. Also, Ty, To,... denotes a set of NI forests of
Gu; edgee; appears in foresT,j_1, where 1< j < we. Thus, the copies of edgeappear in NI forests
Tigs Tig+1, - - -» Tierwe—1. FOr both algorithms, we will use the generic sampling saheescribed in sectidn 2.

Algorithm for Step 1. For any edgee = (u,v), we choose\e = ic + We — 1, i.e. the index of the last NI
forest where a copy of appears; also set = 2 andr= 2. For anyi > 1, defineG; to be the graph
containing all edges in NI forest®i-1, T,i-1,4,..., Toi_; (call this set of edge¥)) and all edges ir, i.e.
all edgese with 2 < A < 241 —1. LetGp only contain edges iff,. For anyi # j, N Fi=YinY; =0,
thus, each edge appeardGnfor at most two different values @f proving a-overlap. Further, for any edge

11



ec F, Lemmd.l ensures that the endpointeafe connected in each &1, Tyi1,4,...,Toi_3. It follows
thateis 2-1-heavy inG;, thereby provingt-connectivity.

We now prove the size bound. For any e@ge Ey, lett(€') be the index of the NI forest it appears in.
Then,

K

We We K
We 1 1 1 g(n—l); %:O(nlogK):O(nlogn),
=1

Zhe w1 RN 1 &0 A

where the last step follows from the observation that thal tottmber of NI forestK is at mostnd+2,
whered is a constant. Using Theordr 8, we conclude that the sketgtphG; constructed by the above

algorithm has()(”'z—g;”) edges in expectation and is(h+ £)G whp.

|

Time Complexity. The time complexity for constructing the NI forests, andréfiere figuring outpe
values isO(m+ nlogn). We sample each edgeby setting its weight in the skeletdB; to re/pe, Wherere
is drawn randomly from the Binomial distribution with pararerswe and pe. This is clearly equivalent to
the sampling scheme described above, and can be dongdrexpected time for each edgdsee e.gl]7]),

and therefor@(’"i—%zn) time overall. Sincem > ”'2—922” for this algorithm to be invoked, the overall time
complexity of the algorithm i©(m).

Algorithm for Step 2. Before describing our second sampling algorithm, we defiegallowing opera-
tion on graphs. (Recall the definition of edge contractioregiin sectio 3.)

Definition 11. Let G= (V,E) be an undirected graph, and lej >, ... ,Vk be a partition of the vertices
in G such that for each;Ythe induced graph of G on; V6 connected. Thershrinking G with respect to
V1,Vo, ..., Vk produces the graph formed by contracting all edges betwedicgs in the same, Yor all i.

Our sampling algorithm uses our generic sampling schemeemaas determined using the following al-
gorithm. HereH. = (V¢, Ec) is a graph variable representing a weighted graph. Theittigois described
recursively; we calBetLambda(G,0) to execute it.

SetLambda(H,i)
1. SetH.=H
2. If total weight of edges i is at mostV| - 2+, then

(@) Sethe =2 for all edgese € E.
(b) Remove all edges iB; from H; supposeH splits into connected componertis, Ho, . .., Hy
(c) For eaclH; containing at least 2 vertices, ca#tLambda(Hj,i + 1)

Else,

(@) Construct 2+ 1 NI forestsT;, To, ... , Toi 1 for He
(b) ShrinkH. wrt the connected componentsTis, ;; updateV, andE; accordingly
(c) Goto stefp2

12



Also, seta = 4 andrr= 2¢ wherek = |lgmax.g {Ae} |. For anyr, recall that=, contains allwe unweighted

copies of edge from Gy, wheree satisfies 2< Ae < 21— 1. For anyi > 1, letG; contain all edges in
F forallr >i—1, where each edge H is replicated ®"+1 times inG;; let G contain edges dfy where

each edge is replicatedf fmes. We need the following lemma to prove timatonnectivity is satisfied.

Lemma 6. For any j> 1, consider any edge € Fj, i.e. an edge e for which the above algorithm sets
Ae=2l. Then, e i2/~1-heavy in the graphJ;>j_1F;.

Proof. Forany edgein Fj, letGe = (Ve, Ee) be the component @ containinge such thaBetLambda(Ge, | —
1) was executed. We will show thais 21—1-heavy inGe; sinceGe is a subgraph o6, the lemma follows.
In the execution ofetLambda(Ge, j — 1), there are multiple shrinking operations, each of thempising
the contracting of a set of edges. We claim that any suchactet! edge isi21-heavy inGe; it follows that
any two verticesi andv that got shrunk into a single vertex are ®-connected irGe.

Let Ge havek shrinking phases; let the graph produced after shrinkirap@hbe Ge,. We now prove
that all edges contracted in phasenust be 2-1-connected inGe by induction onr. Forr = 1, sincee
appears in th¢21—1 4+ 1)st NI forest of phase Igis 2~1-connected irGe. For the inductive step, assume
that the property holds for phases2l..,r. Any edge that is contracted in phase- 1 appears in the
(21-1 4 1)st NI forest of phase + 1; thereforegis 2/~ 1-connected irGe, . By the inductive hypothesis, all
edges ofG contracted in previous phases afe2heavy inGg; therefore, an edge that i$ 2-heavy INGe
must have beeni2!-heavy inGe. O

Consider any cu€ in G containing an edge € K for anyi > 0. Let the corresponding cut (i.e. with the
same bipartition of vertices) i6; beC;. We need to show that the number of edge€iis at least ® to
prove r-connectivity. Ifi =0, eis replicated ® times inGg thereby proving the property. Fop 1, let the
maximumA, of an edgea in C beke, where 2 < ke < 2i*1 — 1 for somej > i. By the above lemma;
contains at leasti2? distinct edges o6, each of which is replicated at leadt2+! times. ThusC; contains
at least ® edges.

We now provea-overlap. For any cu€, recall thatfi(c) and ei(c) respectively denote the number of
edges i NC and inG; (whereCi is as defined in the previous paragraph) respectively. Then,

(C)zi—l 1 f(c)zk k f(C) ok—r+1oi—1 f c ©

oy C)oi- : é) ko kgl
B ST

k r+1

< +szzrl_3f +Zfr ZF<M +4fo < 4c.

DefineD; to be the set of connected components in the g@pliFoUF U ... UF_1) for anyi > 1; let
Do be the single connected componenGinFor anyi > 0, if any connected componentl remains intact
in D1, then there is no edge from that connected compondst i@in the other hand, if a componentin
splits inton components iD; 1, then the algorithm explicitly ensures that the number gfesdnF from
that connected component is at mg@+1. Since each such edge has= ; the contribution of these
edges to the surgeeE isat most 2) < 4(n —1) (sincen > 2). But,n — 1 is the increase in the number
of components arising “from this single component. Theeefibd; = |D;|, then

We &
Z A < i;4(di+1 —di) <4n

since ultimately we hava singleton components. Using Theoreim 8, we conclude thatkbketon graph
G¢ constructed by the above algorithm Iﬁ@%) edges in expectation and is(h+ £)G whp.
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Time Complexity. We show below that the algorithm to find valuesigtan be implemented i@(mlogn)
time for unweighted graphs, a@ mlog?n) time for graphs with polynomial edge weights. Once we have
obtained the sampling probabilities, we use the same tsdk ¢he previous algorithm, i.e. sample from a
Binomial distribution, to produce the skeleton(]?r(”'??”) additional time. Since the algorithm is invoked

only if m> ”'229”, the total running time i©(mlogn) if G is unweighted an@®(mlog?n) otherwise.

We now determine the time complexity for finding the valueadofConsider one call tBetLambda (H, i)
which begins wittH = (V,E) and letH. = (V, E:) denote the graphl as it evolves over the various iter-
ations in this procedure. Each iteration of steps (a) andn(lthe else block take®(|V|logn+ |E¢|)
time. We show that the number of vertices halves in eachtitergsave the last) and therefore the to-
tal time over all iterations i©(|V|logn+ |E|logn). Since we are dealing with the case of polynomial
edge weights, the depth of recursionQ@g¢logn). Therefore, over all recursive calls, the time comes to
O(nlog?n -+ mlog?n) = O(mlog®n).

To see that the number of vertices halves from one iteratidhe next, consider an iteration that begins
with E¢ having weight at leagh/| - 2+, E. for the next iteration (denoted k) comprises only edges in
the first 2 NI forests constructed in the current iteration. So thd tetaght of edges irE. is at mosi\V,| - 2'.

If this is not the last iteration, then this weight exce@ds - 2+2. It follows that|V/| < |V¢|/2, as required.

From the above description, note that for the unweighted, 8§ < |E.|/2, and therefore the time taken
over all iterations in one recursive call@® |V |+ |E|). Over all recursive calls this comes@mlogn).

5 Sampling Schemes using various Connectivity Parameters

In this section, we present several sampling schemes uaimue measures of connectivity. Some of these
results were previously known; however, we will show thatsea results follow as simple corollaries of our
generic sampling scheme whereas the original proofs wegfgpto each scheme and substantially more
complicated. The algorithms for implementing these scleeane less efficient than the algorithms that we
have previously presented; therefore we restrict oursetvetructural results in this section. As earl{@iis

the weighted input graph (with arbitrary integer weigh@Gyj is the corresponding unweighted multigraph;
T1, Ty, ..., Tk is a set of NI forests oGy .

5.1 Sampling using Standard Connectivities

For any edge = (u,V), SetAe to the standard connectivity of the edge; alsocset 3+ Ignandm= 2. F
is defined as the set of all edgewith 2 < A, < 2t1—1 for anyi > 0. For anyi > 1+Ign, letG; contain all
edges in NI forest3,i-1-ign, Toi-1-109n 1, ..., Toi+1_; and all edges ifi5. Fori <lIgn, G; contains all edges in
T1,To,..., Ty and all edges iif;. For anyi > 0, letY; denote the set of edges@® but not inF. For anyi # |,
F NFj = 0 and each edge appearsyjrfor at most 2t-logn different values of; this proveso-overlap. To
prove r-connectivity, we note that Lemnia 1 ensures that for any gfaerticesu, v with maximum flow
f(u,v) and for anyk > 1, u,v are at least mifif (u,v),k)-connected in the union of the firstNI forests, i.e.
in T,UT,U...T. Thus, any edge € F; is at least 2heavy in the union of the NI fores®, T», ... , Toit1_q.
Since there are at most2 edges overall ify, T, ..., Ti-1-ign_4, any edgee € F; is 2~ 1-heavy inG;. This
provesri-connectivity.

We now prove the size bound. The next lemma is similar to iteesponding lemma for strong connec-
tivity in [2].
Lemma 7. Suppose G is an undirected graph where edge e has weigahavstandard connectivityk
Then,ze% <n-1.

14



Proof. We use induction on the number of vertices in the graph. Famplgwith a single vertex and no
edge, the lemma holds vacuously. Now, suppose the lemma fwldll graphs with at most— 1 vertices.
Let C be a minimum cut irG, and letA be its weight. For any edgec C, ke = A. Thus,Y ¢ % =1.
We remove all edges i@ from G; this splitsG into two connected componen® andG, with n; andny
vertices respectively, wherg,n, < n— 1. Further, the standard connectivity of each edg&4rG; is at
most that inG. Using the inductive hypothesis, we conclude thatg, % <m—1andyecg, % <np,—1.
We conclude that W

Y= <m-l4mp-14l=n-1

e ke

O

Using Theoreml8, we conclude that the expected number obédgle skeleton grapB; is O(”"zgzzn) and
Ge € (1£¢)Gwhp.

5.2 Sampling using Effective Resistances

For any edge = (u,Vv), setA. to the effective conductance of the edge, Ae= Rie whereRe is the effective
resistance of edge The next two lemmas imply that the skele@p € (1+ £)G whp.

Lemma 8. Suppose that a sampling scheme (that uses the generic sgnsphieme) haa, < k. for each
edge e in graph G, where, ks the standard connectivity of e in G. Then, the skeletorstcocted is in
(1+€)G whp.

Proof. We use the same definition aof, 7TrandG;s as in the sampling scheme with standard connectivities,
and verify thatrr-connectivity andx-overlap continue to be satisfied. O

Lemma 9. Suppose edge e in an undirected graph G has standard cowiteéti and effective resistance
Re. Then,Rie < ke.

Proof. Consider a cu€ of weightke separating the terminals of edgeWe contract each side of this cut
into a single vertex. In other words, we reduce the resistamceach edge, other than thoseCinto 0.
By Rayleigh’s monotonicity principle (e.d.l[4]), the effe® resistance of does not increase due to this
transformation. Since the effective resistance after the transformation is/ke, Re > 1/ke in the original
graph. O

The size bound follows from the following well-known faceése.g. [22]@

Fact 1. If Re is the effective resistance of edge e with weightvan undirected graph, thefieWeRe < n—1.

It follows from Theoreni B that the expected number of edgeskétetonG; is O(”'Zgzzn).

5.3 Sampling using Strong Connectivities

For any edge, setA, to the strong connectivity of the edge; set 1 andr= 2, wherek = [Igmaxecg {Ae} |-
Let G; contain all edges i, for all r > i, where each edge iR is replicated ® " times. We use the fol-
lowing property of strong connectivities that also appéafg].

"There are many proofs of this fact, e.g. use linearity of eiqteon coupled with the fact that effective resistancerpédge is
the probability that the edge is in a random spanning trebeftaphl([3].
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Lemma 10. In any undirected graph G, if an edge e has strong connegtiiitthen e continues to have
strong connectivity k even after all edges with strong cotinigy strictly less than k have been removed
from G.

Consider any cut with an edgee € F. Let the corresponding cut (i.e. with the same bi-partibbmertices)
in G; beC;. We need to show that the number of edge€iiis at least ® to proverr-connectivity. Let the
maximum strong connectivity of an edgeGrbeke, where 2 < ke < 21+1—1 for somej > i. By the above
lemma,C; contains at least/Xistinct edges 06, each of which is replicated at leadt 2 times. ThusgC;
contains at least‘2edges.

We now provea-overlap. For any cu€, recall thatfi(c) and e«,(C) respectively denote the number of
edges inf NC and inC; (whereC; is as defined in the previous paragraph) respectively. Then,

(C)Zi—l k k f( >2k roi-1 k k C

i;el n _i;r;ri_%ZZr i1 Z)%Zr |+1_Z)fr er I+1<Zfr =c.

The size bound follows from the following lemma due to Bamcand Karger.

Lemma 11 (Benczlr-Kargerl[2]) If ke is the strong connectivity of edge e with weightisvan undirected
graph, thenze"ve <n-1

It follows from Theoreni B that the expected number of edgekerskeleton grapts; is O(”'SS’”) and that

Ge € (1£¢)Gwhp.

6 Sampling in Graphs with Arbitrary Edge Weights

Unfortunately, the algorithms presented earlier for samggh a graph with polynomial edge weights fail if
the edge weights are arbitrary. In particular, we can nodoggiarantee that the expected number of edges
in a skeleton graph constructed by these algorithné(h;/sz), even though it continues to approximately
preserve the weight of all cuts whp. Therefore, we need toifynodr techniques to restore the size bounds,
as described below.

We sort the edges in decreasing order of their weight, bneatiés arbitrarily. We add edges to the NI
forests in this sorted order, i.e. when edgs being added, the NI forests contain all edges of weigldtgre
thane. To inserte = (u,v), we find the NI forest with the minimum index wheseandv are not connected;
call this indexie. Then,eis inserted in NI forestSi,, Ti+1,. .., Ti.4w.—1. Note that this does not produce any
cycle in the NI forests since Lemrha 1 ensures thatvufare disconnected ifj,, then they are not connected
in T for anyk > ie.

For any edgee = (u,Vv), setA to the index of the first NI forest where edgés inserted, i.eAe = ig;
also setn = 2 andrr= 2"-. For anyi > 1, letG; contain all edges in NI forest®i-1, Toi-1,4,..., T 1 (call
this set of edge¥) and all edges i, i.e. all edge® with 2' < A < 21— 1. LetGg = Fy. For anyi # j,

F NFj =YiNY; =0, thus, each edge appeardpfor at most two different values of proving a-overlap.
On the other hand, for any edgec F, Lemmall ensures that the endpointeafre connected in each of
To-1,Thi-1,q,..., Thi_;. It follows thateis 2-1-heavy inG;, thereby provingT-connectivity.

We now prove the size bound on the skeleton. Partition edgesubsets, S, ... whereS; contains

all edgesswith j < Jv—i < j+ 1. The following lemma states that none of these subsetgjis.la

Lemma 12. For any |, |Sj| <n—1.
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Proof. We prove that the edges in any subSgtorm an acyclic graph. Suppose not;(be a cycle formed
by the edge irf5;, ande = (u,v) be the edge that was inserted last in the NI forests amongdthesenC.
Let € be any other edge i@. Then,weg > We, and hence

g +Weg —1>We(j+1)—1>We(j+1)—1>ie— 1

Since both the first and last terms are integrrs; we — 1 > ie. Therefore’ andv were connected iff;,
for eache = (U,V) in C. So,u andv were connected if;, sinceC is a cycle, before was added td;..

But, thene would not have been added T, a contradiction. O
Thus,
Si 1
%g Qg(n—l) Z — =0(nlogn)
e le &0 | 2§30

since at mostm < n? of the Sj’s are non-empty. Using Theorem 8, we conclude that the &kel®; has
O(”'Z—gzzn) edges in expectation and that € (1+ €)G whp.

Finally, we need to show that the construction of NI foreskere edges are added in decreasing order
of weight can be done i®(mlog?n) time. We use a data structure (call ipartition tree & to succinctly
encode the NI forests. The leaf nodesdf exactly correspond to the vertices in gra@hi.e. there is a
one-one mapping between these two sets. On the other hardnea-leaf node of the partition tree has
a numbem(v) associated with it that satisfies the following propeftyr: any two vertices )y in the graph,
if z be theleast common ancestbof their corresponding leaf nodes in P, then x and y are cotaten
exactly the first (z) NI forests Then,n(z) + 1 is the index of the first NI forest where edgey) is to be
inserted. Initially, all then leaf nodes in#? representing the graph vertices are children of the rooé npd
andn(r) = 0. As edges are inserted in the NI forests, the partitionevedves, but we make sure that the
above property holds throughout the construction. Addilly, we also maintain the invariant thatdis a
child ofyin 27, thenn(x) > n(y).

We need to show that we can maintain the above propertiesgidhition tree as it evolves, and also
retrieve the Ica of any pair of vertices efficiently for thi®tving partition tree. Letx,y) be the edge being
inserted, lez = Ica(x,y) in the partition tree, and letandv be the children ot that are ancestors afand
y respectively. Observe that adding an edgg) to trees with indices fronms + 1 to ns+ ¢ increases the
connectivity of a pair of verticew, W iff they were previously connected m+i trees for some & i < ¢,
Wy, X were connected ing+ j trees for somg > i andws,y were connected ing+ k trees for somds > i
(or vice-versa). In this casei;,w, are now connected ins+ min(j,k, ¢) trees after adding the edgey).
Further, ifn(u) —n(z) < w(x,y), then an edge of weight less thaaix,y) must have been added to the trees
according to the second invariant, which violates the fa&t €dges are added in decreasing order of weight.
Thus,n(u) —n(z) > w(x,y); similarly n(v) —n(z) > w(x,y).

There are three cases:

1. n(u) —n(z) = n(v) —n(z) = w(x,y). We mergeu andv into a single nodes that remains a child of
zandn(s) = n(u). The first invariant is clearly maintained. For the seconaiiant, observe that
the only pairs of vertices/;, w, whose connectivity changed were those vih(wi,w») = z, where
wi, W, are descendants afv respectively. Their connectivity increasesnfa), which is reflected in
the partition tree.

8Theleast common ancestor Ica of two nodes,y in a tree is the deepest node that is an ancestor ofsbaitialy.
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2. n(u) —n(z) = w(x,y) andn(v) —n(z) > w(x,y) (symmetrically forn(u) —n(z) > w(x,y) andn(v) —
n(z) = w(x,y)). We makev a child ofu (from being a child ofz), andn(u) = n(z) +w(x,y). For
notational convenience in the proofs later, we replaeadv by a pair of new nodes andt where
n(s) andn(t) are respectively equal to the updated values(of andn(v). The firstinvariant is clearly
maintained. For the second invariant, observe that thegaihg of verticesvy, wo whose connectivity
changed were those witlea(w;,w») = z, wherew;,w, are descendants of v respectively. Their
connectivity increases 1(z) +w(x,y), which is reflected in the partition tree.

3. n(u)—n(z) > w(x,y) andn(v) —n(z) >w(x,y). We introduce a new nodeas a child ozand parent of
uandyv, andn(r) = n(z) +w(x,y). For notational convenience in the proofs later, we replesedv by
a pair of new nodesandt wheren(s) = n(u) andn(t) = n(v). The firstinvariant is clearly maintained.
For the second invariant, observe that the only pairs ofosstv;, w, whose connectivity changed
were those withica(wz,w») = z, wherews, w, are descendants afv respectively. Their connectivity
increases tm(z) + w(x,y), which is reflected in the partition tree.

We use thalynamic treedata structure [21] for updating the partition tree. Thitadstructure can be
used to maintain a dynamically changing foresnafodes, while supporting the following operatiriB
O(logn) time per operation:

Cut(v) Cutthe subtree under nogtdrom the tree containing it, and make it a separate tree withw.

Link(v,w) (w needs to be the root node of a tree not containing Join the tree rooted at and that
containingv by makingw a child ofv.

LCA(v,w) (vandw need to be in the same tree.) Defined previously.

We maintain a dynamic tree data structure for the partitiee.tRecall that the partition tree can be modified
in three different ways. The last two modifications requixel) cut and link operations each. Therefore,
the overall time complexity of these modificationgdémlogn). On the other hand, the first modification
requiresO(d) cut and link operations, whemis the lesser number of children amoagndv. We will
prove the following lemma bounding the total number of opers due to the first type of modification.

Lemma 13. The total number of cut and link operations due to modificetiof the first type in the partition
tree is Qmlogn).

Theoreni_1D follows immediately.

Theorem 10. The time complexity of constructing NI forests where edgesaerted in decreasing order
of weight is @mlog?n) for graphs with arbitrary edge weights.

We now prove Lemmia13.

Proof of Lemm&1l3We set up a charging argument for the cut and link operatiargstd the first type
of modification. Define a functiorf on the nodes of the partition tree where each nedhas f(v) = 1
initially. In the first type of modification, we assigh(s) = f(u) + f(v); in the second type of modification,
f(s) = f(u)+ f(v) and f(t) = 1; in the third type of modificationf(r) = f(u)+ f(v) andf(s) = f(t) = 1.
Observe that the sum df(-) over all nodes in the partition tree increases by at most 2rigrof the above
modifications.

9The dynamic tree data structure supports other operationgl; we only define the operations that we require.
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Let Cy be the set of children of node then, letFc(u) = 3¢, f(v). We charge the cut and link
operations for the first type of modification to the childrdnudresp.,v) if Fc(u) > Fe(v) (resp.,Fe(v) >
Fc(u)); each child ofu (resp.,v) is chargedD(1) operations. Now, le§, be the set of siblings of any node
in the partition tree; correspondingly, IB$(u) = 5 g, f(v). Observe that whenever a nades charged due
the first type of modificationfs(u) at least doubles. Furthdfs(u) never decreases for any nodelue to
any of the three types of modifications. Since the surh(gfover all nodes in the partition tree increases by
at most 2 for any of the modifications, and there mrmodifications overall, each node is charged at most
O(logm) = O(logn) times. Further, each modification introdud@&l) new nodes; so the total number of
operations due to modifications of the first typ&ignlogn). O
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A Proof of Theorem[9

We need the following inequality.
Lemma 14. Let f(xX) =x— (14+X)In(1+x) anda =1—2In2 Then,

() < ax? if xe (0,1)
“lax ifx>1.

Proof. First, considex € (0,1). Define

g(x) = ) _L <%+ x_12> IN(1+Xx).

X2 X

We can verify thag(x) is an increasing function of for x € (0,1]. Further, atx =1, g(x) = a. Thus,
f(x) < ax?forxe (0,1).
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Now, consideix > 1. Define
h(x) = @ =1- <1+ )—l(> IN(1+Xx).

We can verify thah(x) is a decreasing function affor x > 1. Further, ak =1, h(x) = a. Thus, f(x) < ax
for x> 1. O
We use the above inequality to prove the following lemmas.

Lemma 15. Suppose X X, ..., X, is a set of independent random variables such that eadeX 1,2, ..., n},
has valuel/p; with probability p for some fixed < p; < 1 and has value 0 with probability — p;. For any
p < min; p; and for anye > 0,

P [ZX. > (1+¢€)n

_ e 038’ jfo <1
g 038pn jf £>1

Proof. For anyt > 0

P = P [etm > et<1+€>“]

ZX; > (1+¢)n

E [etZiXa]
d(l+e)n

IIjE

] oy
Sron (by independence of, Xa, ..., Xn)

1 et(1+£)n
N 14 pi(e/P—1)

- ﬂ d(l+e)n

< exp(il pi(€/P —1)—t(14+¢&)n) (since I4+x< €, Vx> 0).

(by Markov boundsee &g. [17]))

Sincep; > pforallie {1,2,...,n},
n

> (@ ~1) < 3 (p¢/7~1) = np(e "~ 1)

Thus,

P [ZX. > (1+€)n| < exp(np(é/P—1)—t(1+¢)n).

Settingt = pIn(1+ ¢€), we get

P ZX; > (1+¢€)n

(o)

10F0r any random variablk, E[X] denotes the expectation Xf
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Since 1-2In2 < —0.38, we can use Lemnhall4 to conclude that

IP’[ZXi>(1+s)n O

_ e 038 jfo g1
e 038pn jf ¢ > 1

Lemma 16. Suppose X Xy, ..., X, is a set of independent random variables such that eadreX1,2,...,n},
has valuel/ p; with probability p for some fixed® < p; < 1 and has value 0 with probability— p;. For any
p < min; p; and for anye > 0,

<e 05 jfo<ce<1
P i< (1l—¢€)n
Sxcaon {2 00
Proof. Fore > 1,

P

prca-on] <ofpxcd] o

Now, suppose € (0,1). For anyt > 0,

P [ZX. < (l—e)n] - P [e*tZiN S eft(lfs)n]

E [et5%]

et(l-&)n
nE[e]

= rleft(H)n (by independence ofy, Xz, ..., Xn)

(by Markov bound

L pe/P+l-p
L et(l-¢&)n
N 1—p(1—e¥/P)

- il:l et(l-&)n

n
< exp(zl—pi (eV/P—1)+t(1—¢&)n) (since I-x< e, Vx> 0).
i=

Sincep; > pforallie {1,2,...,n},

n

3(pL—e /M) < 5 (p1—e %) ~np1—e )

Thus,
P [ZX. <(1- s)n] <exp(np(l—eV/P)+t(1—¢g)n).

Settingt = —pIn(1—¢), we get

P

D> Xi< (1—s)n] < <(1_85W> pnée—oingpn' 0
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We now prove Theorein 9 using the above lemmas.

Proof of Theorerhl9Let & = f—(':\f First, consider the case whede= (0,1). From Lemma$ 15 arld 16, we
conclude that

P [| Y Xe—[Cl| > s|C|} = P [| Y Xe—[C|| > 5|C|} < 2¢70385°p(C]
e e
= 2e70387pN(N/IC) < 2g-038*PN  (ginceN > [C)).
Now, consider the case whede> 1. From Lemmak 15 and 116, we conclude that

P {’ > Xe—[Cl| > SN] =P {! > Xe—[Cl| > 6!C@ < @7 0380p(Cl _ g038pN - o-038*PN  (ginces < 1).
€ €
O
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