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ABSTRACT
Given a rank-1 bimatrix game (A,B), i.e., where rank(A+
B) = 1, we construct a suitable linear subspace of the rank-
1 game space and show that this subspace is homeomorphic
to its Nash equilibrium correspondence. Using this homeo-
morphism, we give the first polynomial time algorithm for
computing an exact Nash equilibrium of a rank-1 bimatrix
game. This settles an open question posed in [8, 19]. In ad-
dition, we give a novel algorithm to enumerate all the Nash
equilibria of a rank-1 game and show that a similar technique
may also be applied for finding a Nash equilibrium of any bi-
matrix game. Our approach also provides new proofs of im-
portant classical results such as the existence and oddness of
Nash equilibria, and the index theorem for bimatrix games.
Further, we extend the rank-1 homeomorphism result to a
fixed rank game space, and give a fixed point formulation
on [0, 1]k for solving a rank-k game. The homeomorphism
and the fixed point formulation are piece-wise linear and
considerably simpler than the classical constructions.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Theory

Keywords
Rank-1 games, Homeomorphism, Nash equilibrium

1. INTRODUCTION
Non-cooperative game theory is a model to understand

strategic interaction of selfish agents in a given organization.
In a finite game, there are finitely many agents, each having
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finitely many strategies. For these games, Nash [13] proved
that there exists a steady state where no player benefits by
a unilateral deviation. Such a steady state is called a Nash
equilibrium of the game.

Finite games with two agents are also called bimatrix
games since they may be represented by two payoff matrices
(A,B), one for each agent. The problem of computing a
Nash equilibrium of a bimatrix game is said to be one of the
most important concrete open questions on the boundary
of P [15]. The classical Lemke-Howson (LH) algorithm [11]
finds a Nash equilibrium of a bimatrix game. However, Sa-
vani and von Stengel [17] showed that it is not a polynomial
time algorithm by constructing an example, for which the
LH algorithm takes an exponential number of steps. Chen
and Deng [2] showed that this problem is PPAD-complete,
a complexity class introduced by Papadimitriou [14]. They
(together with Teng) [3] also showed that the computation of
even a 1

nΘ(1) -approximate Nash equilibrium remains PPAD-
complete. These results suggest that a polynomial time al-
gorithm is unlikely.

There are some results for special cases of the bimatrix
games. Lipton et al. [12] considered games where both pay-
off matrices are of fixed rank k and for these games, they
gave a polynomial time algorithm for finding a Nash equi-
librium. However, the expressive power of this restricted
class of games is limited in the sense that most zero-sum
games are not contained in this class. Kannan and Theobald
[8] defined a hierarchy of bimatrix games using the rank of
(A+ B) and gave a polynomial time algorithm to compute
an approximate Nash equilibrium for games of a fixed rank
k. The set of rank-k games consists of all the bimatrix games
with rank at most k. Clearly, rank-0 games are the same as
zero-sum games and it is known that the set of Nash equi-
libria of a zero-sum game is a connected polyhedral set and
it may be computed in polynomial time by solving a lin-
ear program (LP). Moreover, the problem of finding a Nash
equilibrium of zero-sum games and solving linear programs
are equivalent [4].

The set of rank-1 games is the smallest extension of zero-
sum games in the hierarchy, which strictly generalizes zero-
sum games. For any given constant c, Kannan and Theobald
[8] also construct a rank-1 game, for which the number of
connected components of Nash equilibria is larger than c.
This shows that the expressive power of rank-1 games is
larger than the zero-sum games. Rank-1 games may also
arise in practical situations, in particular the multiplicative
games between firms and workers in [1] are rank-1 games. A
polynomial time algorithm to compute an exact Nash equi-
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librium for rank-1 games is an important open problem [8,
19]. Kontogiannis and Spirakis [10] defined the notion of mu-
tual (quasi-) concavity of a bimatrix game and provided a
polynomial time computation of a Nash equilibrium for mu-
tually concave games (FPTAS for mutually quasi-concave
games). However their classification and the games of fixed
rank are incomparable.

Shapley’s index theory [18] assigns a sign (also called an
index) to a Nash equilibrium of a bimatrix game and shows
that the indices of the two endpoints of a Lemke-Howson
path have opposite signs. The signs of the endpoints of LH
paths provide a direction and in turn a “parity argument”
that puts the Nash equilibrium problem of a bimatrix game
in PPAD [14, 20].

The set of bimatrix games (Ω), with m and n strategies
of the first and the second player respectively, forms a Eu-
clidean space, i.e., Ω = {(A,B) ∈ Rmn × Rmn} = R2mn.
Kohlberg and Mertens [9] showed that Ω is homeomorphic to
its Nash equilibrium correspondence1 EΩ = {(A,B, x, y) ∈
R2mn+m+n | (x, y) is a Nash equilibrium of (A,B)}. This
structural result has been used extensively to understand
the index, degree and the stability of a Nash equilibrium
of a bimatrix game [5, 9]. Moreover, the homeomorphism
result also validates the homotopy methods devised to com-
pute a Nash equilibrium [6, 7]. The structural result has
been extended for more general game spaces [16], however,
to the best of our knowledge, no such result is known for
special subspaces of the bimatrix game space. Such a result
may pave a way to device better algorithms for the Nash
equilibrium computation or to prove the hardness of com-
puting a Nash equilibrium for the games in the subspace.

Our contributions. For a given rank-1 game (A,B) ∈
Rmn × Rmn, the matrix (A + B) may be written as α · βT ,
where α ∈ Rm and β ∈ Rn. Motivated by this fact, in Sec-
tion 2.2, we define an m-dimensional subspace Γ = {(A,C+
α.βT ) | α ∈ Rm} of Ω, where A ∈ Rmn, C ∈ Rmn and β ∈
Rn are fixed and analyze the structure of its Nash equilib-
rium correspondence EΓ = {(A′, B′, x, y) | (x, y) is a Nash
equilibrium of (A′, B′) ∈ Γ}. For a given bimatrix game
(A′, B′), the best response polytopes P and Q may be de-
fined using the payoff matrices A′ and B′ respectively (de-
scribed in Section 2.1). There is a notion of fully-labeled
points of P × Q, which capture all the Nash equilibria of
the game [21]. Note that the polytope P is same for all the
games in Γ since the payoff matrix of the first player is fixed
to A. However the payoff matrix of the second player varies
with α, hence Q is different for every game. We define a new
polytope Q′ in Section 2.2, which encompasses Q for all the
games in Γ. We show that the set of fully-labeled points of
P × Q′, say N , captures all the Nash equilibria of all the
games in Γ and in turn captures EΓ.

Surprisingly, N turns out to be a set of cycles and a single
path on the 1-skeleton of P ×Q′ under the non-degeneracy
assumption. We refer to the path in N as the fully-labeled
path and show that it captures at least one Nash equilibrium
of every game in Γ. The structure of N also proves the exis-
tence and the oddness of the number of Nash equilibria in a
non-degenerate bimatrix game. Moreover, an edge ofN may
be efficiently oriented, and using this orientation, we deter-
mine the index of every Nash equilibria for a bimatrix game.

1The actual result is for N player game space.

Further, in Section 3 we show that if Γ contains only rank-1
games (i.e., C = −A) then N does not contain cycles and
the fully-labeled path exhibits a strict monotonicity. Using
this monotonic nature, we establish a homeomorphism map
between Γ and EΓ. This is the first structural result for a
subspace of the bimatrix game space. The homeomorphism
maps that we derive are very different than the ones given
by Kohlberg and Mertens for the bimatrix game space [9],
and require a structural understanding of EΓ.

Using the above facts on the structure of N , in Section
4 we present two algorithms. For a given non-degenerate
rank-1 game (A,−A+ γ.βT ), we consider the subspace Γ =
{(A,−A + α.βT ) | α ∈ Rm}. Note that Γ contains the
given game and the corresponding set N is a path which
captures all the Nash equilibria of the game. The first algo-
rithm (BinSearch) finds a Nash equilibrium of a rank-1 game
in polynomial time by applying binary search on the fully-
labeled path using the monotonic nature of the path. The
algorithm works for degenerate games as well with a minor
modification. This is the first polynomial time algorithm to
find an exact Nash equilibrium of a rank-1 game.

The second algorithm (Enumeration) enumerates all the
Nash equilibria of a rank-1 game. Using the fact that N
contains only the fully-labeled path, the Enumeration algo-
rithm traces this path and locates all the Nash equilibria of
the game. For an arbitrary bimatrix game, we may define
a suitable Γ containing the game. Since the fully-labeled
path of the corresponding N covers at least one Nash equi-
librium of all the games in Γ, the Enumeration algorithm
locates at least one Nash equilibrium of the given bimatrix
game. Theobald [19] also gave an algorithm to enumerate
all the Nash equilibria of a rank-1 game, however it may
not be generalized to find a Nash equilibrium of any bima-
trix game. Moreover, our algorithm is much simpler and a
detailed comparison is given in Section 4.2. There, we also
compare our algorithm with the Lemke-Howson algorithm,
which follows a path of almost fully-labeled points [21].

For a given rank-k game (A,B), the matrix (A+B) may

be written as
Pk

l=1 γ
l.βlT , where ∀l, γl ∈ Rm and βl ∈ Rn.

We define a km-dimensional affine subspace Γk = {(A,−A+Pk
l=1 α

l.βlT ) | αl ∈ Rm, ∀l} of Ω. In Section 5, we estab-

lish a homeomorphism between Γk and its Nash equilibrium
correspondence EΓk using techniques similar to the rank-
1 homeomorphism. Further, to find a Nash equilibrium
of a rank-k game we give a piece-wise linear polynomial-
time computable fixed point formulation on [0, 1]k using the
homeomorphism result and discuss the possibility of a poly-
nomial time algorithm.

2. GAMES AND NASH EQUILIBRIUM

2.1 Preliminaries
Notations. For a matrix A = [aij ] ∈ Rmn of dimension

m×n, let Ai be the ith row and Aj be the jth column of the
matrix. For a vector α ∈ Rm, let αi be its ith coordinate.
Vectors are considered as column vectors.

For a finite two-player game, let the strategy sets of the
first and the second player be S1 = {1, . . . ,m} and S2 =
{1, . . . , n} respectively. The payoff function of such a game
may be represented by the two payoff matrices (A,B) ∈
Rmn×Rmn, each of dimension m×n. If the played strategy
profile is (i, j) ∈ S1 × S2, then the payoffs of the first and
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second players are aij and bij respectively. Note that the
rows of these matrices correspond to the strategies of the
first player and the columns to that of the second player,
hence the first player is also referred to as the row-player
and second player as the column-player.

The strategies in S1 and S2 are called pure strategies. A
mixed strategy is a probability distribution over the available
set of strategies. The set of mixed strategies for the row-
player is ∆1 = {(x1, . . . , xm) | xi ≥ 0, ∀i ∈ S1,

P
i∈S1

xi =

1} and for the column-player, it is ∆2 = {(y1, . . . , yn) | yj ≥
0, ∀j ∈ S2,

P
j∈S2

yj = 1}. If the strategy profile (x, y) ∈
∆1 × ∆2 is played, then the payoffs of the row-player and
column-player are xTAy and xTBy respectively.

A strategy profile is said to be a Nash equilibrium strategy
profile (NESP) if no player achieves a better payoff by a
unilateral deviation [13]. Formally, (x, y) ∈ ∆1 × ∆2 is a
NESP iff ∀x′ ∈ ∆1, x

TAy ≥ x′TAy and ∀y′ ∈ ∆2, x
TBy ≥

xTBy′. These conditions may also be equivalently stated as,

∀i ∈ S1, xi > 0 ⇒ Aiy = maxk∈S1 Aky
∀j ∈ S2, yj > 0 ⇒ xTBj = maxk∈S2 x

TBk (1)

From (1), it is clear that at a Nash equilibrium, a player
plays a pure strategy with non-zero probability only if it
gives the maximum payoff with respect to (w.r.t.) the oppo-
nent’s strategy. Such strategies are called the best response
strategies (w.r.t. the opponent’s strategy). The polytope P
in (2) is closely related to the best response strategies of the
row-player for a given strategy (y) of the column-player [21]
and it is called the best response polytope of the row-player.
Similarly, the polytope Q is called the best response poly-
tope of the column-player. In the following expression, x and
y are vector variables, and π1 and π2 are scalar variables.

P = {(y, π1) ∈ Rn+1 | Aiy − π1 ≤ 0, ∀i ∈ S1;
yj ≥ 0, ∀j ∈ S2;

Pn
j=1 yj = 1}

Q = {(x, π2) ∈ Rm+1 | xi ≥ 0, ∀i ∈ S1;
xTBj − π2 ≤ 0, ∀j ∈ S2;

Pm
i=1 xi = 1}

(2)

Note that for any y′ ∈ ∆2, a unique (y′, π′1) may be ob-
tained on the boundary of P , where π′1 = maxi∈S1 Aiy

′.
Clearly, the pure strategy i ∈ S1 is in the best response
against y′ only if Aiy

′ − π′1 = 0, hence indices in S1 corre-
sponding to the tight inequalities at (y′, π′1) are in the best
response. Note that, in both the polytopes the first set of
inequalities correspond to the row-player, and the second
set correspond to the column player. Since |S1| = m and
|S2| = n, let the inequalities be numbered from 1 to m, and
m+ 1 to m+ n in both the polytopes. Let the label L(v) of
a point v in the polytope be the set of indices of the tight
inequalities at v. A pair (v, w) ∈ P ×Q is called fully-labeled
pair if L(v) ∪ L(w) = {1, . . . ,m+ n}.

Lemma 1. [21] A strategy profile (x, y) is a NESP of the
game (A,B) iff ((y, π1), (x, π2)) ∈ P × Q is a fully-labeled
pair, for some π1 and π2.

A game is called non-degenerate if both the polytopes
are non-degenerate. Note that for a non-degenerate game,
|L(v)| ≤ n and |L(w)| ≤ m, ∀(v, w) ∈ P ×Q, and the equal-
ity holds iff v and w are the vertices of P and Q respectively.
Therefore, a fully-labeled pair of a non-degenerate game has
to be a vertex-pair.

Let Ω = {(A,B) ∈ Rmn × Rmn} = R2mn be the bimatrix
game space and EΩ = {(A,B, x, y) ∈ Rmn × Rmn × ∆1 ×

∆2 | (x, y) is a NESP of the game (A,B)} be it’s Nash equi-
librium correspondence. Kohlberg and Mertens [9] proved
that EΩ is homeomorphic to the bimatrix game space R2mn

(Ω). No such structural result is known for a subspace of
the bimatrix game space R2mn. With the hope of establish-
ing such a result for a subspace, we define an m-dimensional
affine subspace of R2mn and analyze the structure of it’s
Nash equilibrium correspondence in the next section.

2.2 Game Space and the Nash Equilibrium
Correspondence

Let Γ = {(A,C+α·βT ) | α ∈ Rm} be a game space, where
A ∈ Rmn and C ∈ Rmn are m×n dimensional non-zero ma-
trices, and β ∈ Rn is an n-dimensional non-zero vector. Note
that for a game (A,B) ∈ Γ, there exists a unique α ∈ Rm,
such that B = C+α ·βT . Therefore, Γ may be parametrized
by α, and let G(α) be the game (A,C + α · βT ) ∈ Γ.
Clearly, Γ forms an m-dimensional affine subspace of the
bimatrix game space R2mn. Let EΓ = {(α, x, y) ∈ Rm ×
∆1 × ∆2 | (x, y) is a NESP of the game G(α) ∈ Γ} be the
Nash equilibrium correspondence of Γ. We wish to investi-
gate:Is EΓ homeomorphic to the game space Γ (≡ Rm)?

For a game G(α) ∈ Γ, let the best response polytopes
of row-player and column-player be P (α) and Q(α) respec-
tively. Since the row-player’s matrix is fixed to A, P (α) is
the same for all α and we denote it by P . However, Q(α)
varies with α. We define a new polytope Q′ in (3), which
encompasses Q(α), for all G(α) ∈ Γ.

Q′ = {(x, λ, π2) ∈ Rm+2 | xi ≥ 0, ∀i ∈ S1;
xTCj + βjλ− π2 ≤ 0, ∀j ∈ S2;

Pm
i=1 xi = 1} (3)

Note that the inequalities of Q′ may also be numbered
from 1 to m + n in a similar fashion as in Q. For a game
G(α), the polytope Q(α) may be obtained by replacing λ byPm

i=1 αixi in Q′. In other words, Q(α) is the projection of
Q′ ∩ {(x, λ, π2) |

Pm
i=1 αixi − λ = 0} on the (x, π2)-space.

Let N = {(v, w) ∈ P ×Q′ | L(v) ∪ L(w) = {1, . . . ,m+ n}}
be the set of fully-labeled pairs in P ×Q′. Let Ψ : EΓ → N
be such that,

Ψ(α, x, y) = ((y, π1), (x, λ, π1)), where π1 = xTAy,
λ =

Pm
i=1 αixi, π2 = xT (C + α · βT )y

Lemma 2. The map Ψ is well defined and surjective.

Proof. For a point (α, x, y) ∈ EΓ, the corresponding
Ψ(α, x, y) is fully-labeled (clear from Lemma 1) and hence
lies in N .

Let (v, w) ∈ N be a fully-labeled pair with v = (y, π1) and
w = (x, λ, π2). Let α ∈ Rm be such that

Pm
i=1 αixi−λ = 0,

then clearly (v, (x, π2)) ∈ P (α)×Q(α) is a fully-labeled pair.
Therefore, (α, x, y) ∈ EΓ and (v, w) = Ψ(α, x, y).

We further strengthen the connection between EΓ and N
with the following lemma.

Lemma 3. EΓ is connected iff N is a single connected
component.

Proof. (⇒) Since Ψ is a continuous surjective function
from EΓ to N (Lemma 2), if EΓ is connected then N is
connected as well.

(⇐) For a (v, w) ∈ N , where w = (x, λ, π2), all the points
in Ψ−1(v, w) satisfy

Pm
i=1 xiαi = λ, hence Ψ−1(v, w) is

homeomorphic to Rm−1. Since N is connected, Ψ is con-
tinuous and the fact that the fibers Ψ−1(v, w), ∀(v, w) ∈ N
are connected imply that EΓ is connected.
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Lemma 2 and 3 imply that EΓ and N are closely related.
Henceforth, we assume that the polytopes P and Q′ are non-
degenerate. Recall that when the best response polytopes
(P and Q) of a game are non-degenerate, all the fully-labeled
pairs are vertex pairs. However Q′ has one more variable λ
than Q, which gives one extra degree of freedom to form the
fully-labeled pairs. We show that the structure of N is very
simple by proving the following proposition.

Proposition 1. The set of fully-labeled points N admits
the following decomposition into mutually disjoint connected
components: N = P ∪C1 ∪ · · · ∪ Ck, k ≥ 0, where P and Cis
respectively form a path and cycles on 1-skeleton of P ×Q′.

In order to prove Proposition 1, first we identify the points
in P and Q′ separately, which participate in the fully-labeled
pairs and then relate them. For a v ∈ P , let Ev = {w′ ∈
Q′ | (v, w′) ∈ N}, and similarly for a w ∈ Q′, let Ew =
{v′ ∈ P | (v′, w) ∈ N}. Let NP = {v ∈ P | Ev 6= ∅} and

NQ′ = {w ∈ Q′ | Ew 6= ∅}.
For neighboring vertices u and v in either polytopes, let

u, v be the edge between u and v. Recall that P and Q′

are non-degenerate, therefore ∀v ∈ P, |L(v)| ≤ n and ∀w ∈
Q′, |L(w)| ≤ m+ 1. Using this fact, it is easy to deduce the
following observations for points in P . Similar results hold
for the points in Q′.

O1. If (v, w) ∈ N , then both v and w lie on either 0 or 1-
dimensional faces of P and Q′ respectively, and at least
one of them is a 0-dimensional face, i.e., a vertex.

O2. If v ∈ P is a vertex, then Ev is either empty or an edge
of Q′. If v is on an edge, then Ev, if non-empty, is
exactly one vertex of Q′.

O3. If v ∈ P is neither a vertex nor on an edge, then Ev = ∅.

O4. Let (v, w) ∈ N and both v and w be vertices. Since
|L(v)| = n, |L(w)| = m+ 1 and |L(v)∪L(w)| = m+n,
|L(v) ∩ L(w)| = 1 and the element in the intersection
is called the duplicate label of the pair (v, w).

O5. Let v ∈ P be a vertex and Ev be an edge of Q′. If
w ∈ Ev is a vertex, then (v, w) has a duplicate label
(see O4). Let the duplicate label be i, then there exists
a unique vertex v′ ∈ P adjacent to v such that v, v′ ∈
NP , where v′ is obtained by relaxing the inequality i
at v. This also implies that Ew = v, v′ and Ev∩Ev′ = w.

The above observations, bring out the structure of N sig-
nificantly. Every point in N is a pair (v, w) where v ∈ P
and w ∈ Q′. From O1, one of them is a vertex (say v), and
the other is on the corresponding edge (w ∈ Ev). Hence N
contains only 0 and 1-dimensional faces of P ×Q′. Clearly,
an edge of N is of type (v, Ev) or (Ew, w), where v and w
are the vertices of P and Q′ respectively.

Note that a vertex (v, w) of N corresponds to a fully-
labeled vertex-pair of P × Q′, and hence it has a duplicate
label (by O4). Relaxing the inequality corresponding to the
duplicate label in P and Q′ separately, we get the edges
(Ew, w) and (v, Ev) of N respectively. Clearly, these are the
only adjacent edges of the vertex (v, w) in N . Hence, in a
component of N , edges alternate between type (v, Ev) and
(Ew, w), and the degree of every vertex of N is exactly two.

Therefore, N consists of infinite paths and cycles on the 1-
skeleton of P × Q′. Note that a path in N has unbounded
edges on both the sides.

Using the above analysis, we only need to show that there
is exactly one path in N to prove Proposition 1. Let the
support-pair of a vertex (y, π2) ∈ P be (I, J) where I = {i ∈
S1 | Aiy − π2 = 0} and J = {j ∈ S2 | yj > 0}. Note that
|L(y, π2)| = n, hence |I| = |J |. Let βjs = minj∈S2 βj , is =
arg maxi∈S1

aijs , βje = maxj∈S2 βe, and ie = arg maxi∈S1
aije .

In other words, the indices js and je correspond to the mini-
mum and maximum entries in β respectively, and the indices
is and ie correspond to the maximum entry in Ajs and Aje

respectively. It is easy to see that js 6= je, since Q′ is non-
degenerate.

Lemma 4. There exist two vertices vs and ve in P , with
support-pairs ({is}, {js}) and ({ie}, {je}) respectively.

Proof. Let y ∈ ∆2 be such that yjs = 1 and yj =
0, ∀j 6= js. Clearly, vs = (y, aisjs) ∈ P and |L(vs)| = n.
Similarly, the vertex ve ∈ P may be obtained by setting
yje = 1 and the remaining yjs to zero.

Next we show that there are exactly two unbounded edges
of type (v, Ev) in N , all other edges have two bounding ver-
tices.

Lemma 5. An edge (v, Ev) ∈ N has exactly one bounding
vertex if v is either vs or ve, otherwise it has two bounding
vertices.

Proof. Let v = vs. The points in Ev satisfy

xis = 1 and ∀i 6= is, xi = 0, π2 = cisjs + βjsλ (4)

∀j 6= js, cisj + βjλ ≤ cisjs + βjsλ

Since βj ≥ βjs , we get λ ≤ cisjs − cisj

βj − βjs

. Let λs =

min
j 6=js

cisjs − cisj

βj − βjs

, then Ev = {(x, λ, π2) | λ ∈ (−∞, λs], x and

π2 satisfy (4)}. Note that on Ev, x is a constant and λ varies
from −∞ to λs. Moreover the point corresponding to λ = λs

is a vertex, because one more inequality becomes tight there.

Similarly for v = ve, λ varies from λe = max
j 6=je

ciej − cieje

βje − βj
to

∞ on Ev, and λ = λe corresponds to a vertex of Ev.
Let a vertex v ∈ P be such that v 6= vs, v 6= ve and
Ev 6= ∅. We show that Ev has exactly two bounding vertices.
Let (I, J) be the support-pair corresponding to v. There are
two cases.

Case 1 - |I| = |J | = 1: Let I = {i1} and J = {j1}. Then
for all the points in Ev, xi1 = 1 and all other xis are zero.
Let Jl = {j | βj < βj1} and Jg = {j | βj > βj1}. Clearly
js ∈ Jl and je ∈ Jg. All the points in Ev must satisfy the
inequalities ci1j + βjλ ≤ ci1j1 + βj1λ, ∀j /∈ J , and using
them, we get the following upper and lower bounds on λ.

max
j∈Jg

ci1j1 − ci1j

βj − βj1

≤ λ ≤ max
j∈Jl

ci1j − ci1j1

βj1 − βj

Therefore, the values of λ on Ev, form a closed and bounded
interval, and for each extreme point of this interval, there is
a vertex in Ev.

Case 2 - |I| = |J | > 1: Note that exactly m inequali-
ties of Q′ are tight at Ev because |L(v)| = n and Q′ is
non-degenerate. These m tight inequalities with

Pm
i=1 xi =
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1 form a 1-dimensional line L in the (x, λ, π2)-space, and
clearly Ev = L ∩Q′. Let w = (x, λ, π2) ∈ L and d be a unit
vector along the line L. For a w′ ∈ L, there exists a unique
ε ∈ R such that w′ = w+ εd. Let d(xi) be the coordinate of
d corresponding to xi. Note that

Pm
i=1 d(xi) = 0, because

L satisfies
Pm

i=1 xi = 1. Further ∃i ∈ I such that d(xi) 6= 0,
otherwise x becomes constant on L, which in turn imply
that λ and π2 are also constants on L. Hence ∃i1, i2 ∈ I
s.t. d(xi1) > 0 and d(xi2) < 0. For all the points in Ev, the
inequalities xi ≥ 0, ∀i ∈ I hold. Using these, we get

xi1 + εd(xi1) ≥ 0, xi2 + εd(xi2) ≥ 0⇒ xi1

d(xi1)
≤ ε ≤ xi2

d(xi2)

From the above observations, we may easily deduce that
the set {ε | w + εd ∈ Ev} is a closed and bounded interval
[bl, bu]. Moreover, at the extreme points wu = w+ bud and
wl = w + bld of Ev, one more inequality is tight. Therefore,
wu and wl are the vertices in Ev.

Now we are in a position to prove Proposition 1.

Proof of Proposition 1:

For a vertex w = (x, λ, π2) ∈ NQ′ , ∃r ≤ m such that xr > 0
since

Pm
i=1 xi = 1. In that case, Ary = π1 holds on the

corresponding edge Ew ∈ NP (O2). This implies that the
edge Ew is bounded from both the sides, since ∀j ∈ S2, 0 ≤
yj ≤ 1 and Amin ≤ π1 ≤ Amax on the edge Ew, where
Amin = min(i,j)∈S1×S2

aij and Amax = max(i,j)∈S1×S2
aij .

Therefore, there are exactly two unbounded edges in the set
N namely (vs, Evs) and (ve, Eve) (Lemma 5). This proves
that N contains exactly one path P, with unbounded edges
(vs, Evs) and (ve, Eve) at both the ends. All the other com-
ponents of N form cycles (Cis).

From Proposition 1, it is clear that N contains at least
the path P. We show the importance of P in the next two
lemmas.

Lemma 6. For every a ∈ R, there exists a point ((y, π1),
(x, λ, π2)) ∈ P such that λ = a.

Proof. Since P is a continuous path in P ×Q′ (Proposi-
tion 1), therefore λ changes continuously on P. Moreover, in
the proof of Lemma 5, we saw that on the edge (vs, Evs) ∈ P,
λ varies from −∞ to λs and on the edge (ve, Eve) ∈ P it
varies from λe to ∞. Therefore for any a ∈ R, there is a
point ((y, π1), (x, λ, π2)) in P such that λ = a.

Consider a game α ∈ Γ, and the corresponding hyper-
plane H : λ −

Pm
i=1 αixi = 0. Note that, every point in

N ∩H corresponds to a NESP of the game G(α) and vice-
versa.

Lemma 7. The path P of N covers at least one NESP of
the game G(α).

Proof. If there are points in P on opposite sides of H,
then the set P∩H has to be non-empty. Let w1 = (x1, λ1, π

1
2)

and w2 = (x2, λ2, π
2
2) in P be s.t. λ1 = mini∈S1 αi and

λ2 = maxi∈S1 αi. Note that w1 and w2 exist (Lemma 6) and
they satisfy λ1−

Pm
i=1 αix

1
i ≤ 0 and λ2−

Pm
i=1 αix

2
i ≥ 0.

Remark 1. The proof of Lemma 7 in fact shows the ex-
istence of a Nash equilibrium for a bimatrix game. It is
also easy to deduce that the number of Nash equilibria of a

non-degenerate bimatrix game is odd from the fact that N
contains a set of cycles and a path (Proposition 1), simply
because a cycle must intersect the hyper-plane H an even
number of times, and the path must intersect H an odd
number of times.

From the proof of Proposition 1, it is clear that every ver-
tex of N has a duplicate label and the two edges incident on
a vertex may be easily obtained by relaxing the inequality
corresponding to the duplicate label in P and in Q′. There-
fore, given a point of some component of N , it is easy to
trace the full component by leaving the duplicate label in P
and Q′ alternately at every vertex. The next lemma shows
that the components of N may be easily oriented.

Lemma 8. Let E be the set of edges of N , and E′ =

{
−−→
u, u′,

←−−
u, u′ | u, u′ ∈ N} be the set of directed edges. There

exists a (efficiently computable) function →: E → E′ such
that it maps a cycle of N to a directed cycle and the path P
to a path oriented from (vs, Evs) to (ve, Eve).

The direction of the edges of N , defined by function →,
may be used to determine the index (see [20] for definition)
of every Nash equilibrium for a game in Γ. Let H− and
H+ be the half-spaces corresponding to the hyper-plane H
(λ−

Pm
i=1 αixi = 0) of G(α).

Proposition 2. Let an edge u, u′ ∈ N intersect H at a

NESP (x, y) of G(α), and let → (u, u′) =
−−→
u, u′. If u ∈ H−

and u′ ∈ H+ then index of (x, y) is +1, otherwise it is −1.

From Proposition 2, it is easy to see that in a component,
the index of Nash equilibria alternates. Further, both the
first and the last Nash equilibria, on the path P, have index
+1. This proves that the number of Nash equilibria with
index +1 is one more than the number of Nash equilibria
with index −1, which is an important known result [20, 18].

Recall that if N is disconnected, then EΓ is also discon-
nected (Lemma 3). Example 1 shows that EΓ may be dis-
connected in general by illustrating a disconnected N .

Example 1. Consider the following A, C and β.

A =

24 0 9 9
6 6 5
9 7 2

35 , C =

24 6 8 6
5 8 8
4 3 0

35 , β =

24 9
7
8

35
The set N of the corresponding game space Γ contains a
path P and a cycle C1. From Proposition 1, it is clear that
a component of N may be obtained from a component of

NP and the corresponding component of NQ′ . Therefore
we demonstrate the path PP and the cycle CP

1 of NP , and
using them P and C1 of N may be easily obtained. The
path PP is vs, v1, v1, ve, where vs = ((0, 1, 0), 9), v1 =
((0.18, 0.82, 0), 7.36) and ve = ((1, 0, 0), 9). The cycle CP

1

is v2, v3, v3, v4, v4, v2, where v2 = ((0.5, 0, 0.5), 5.5), v3 =
((0.38, 0.18, 0.44), 5.56) and v4 = ((0.4, 0, 0.6), 5.4). Note
that vs and ve correspond to the minimum and maximum
βj respectively (Lemma 5).

Since Γ (≡ Rm) is connected, if EΓ is disconnected then
it is not homeomorphic to Γ.
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3. RANK-1 SPACE: HOMEOMORPHISM
From the discussion of the last section, we know that Γ

and EΓ are not homeomorphic in general (illustrated by Ex-
ample 1). Surprisingly, they turn out to be homeomorphic
if Γ consists of only rank-1 games, i.e., C = −A. Recall that
EΓ forms a single connected component iff N has only one
component (Lemma 3). First we show that when C = −A,
the set N consists of only a path.

For a given matrix A ∈ Rmn and a vector β ∈ Rn, we fix
the game space to Γ = {(A,−A + α · βT ) | α ∈ Rm}. We
assume that A and β are non-zero and the corresponding
polytopes P and Q′ are non-degenerate. Lemma 9 shows
that the set N may be easily identified on the polytope
P ×Q′.

Lemma 9. For all (v, w) = ((y, π1), (x, λ, π2)) in P ×Q′,
we have λ(βT · y) − π1 − π2 ≤ 0, and the equality holds iff
(v, w) ∈ N .

Proof. Recall that C = −A, hence from (2) and (3), we
get xT ·(A ·y−π1) ≤ 0 and (xT ·(−A)+βTλ−π2) ·y ≤ 0. By
summing up these two inequalities, we get λ(βT · y)− π1 −
π2 ≤ 0. If (v, w) ∈ N , then ∀i ≤ m, xi > 0⇒ Ai ·y−π1 = 0
and ∀j ≤ n, yj > 0 ⇒ xT (−Aj) + βjλ − π2 = 0, hence
λ(βT · y)− π1 − π2 = 0.

If (v, w) /∈ N , then at least one label 1 ≤ r ≤ m + n is
missing from L(v) ∪ L(w). Let r ≤ m (wlog), then xr > 0
and Ar · y − π1 < 0, which imply that xT · (A · y − π1) < 0.
Therefore, λ(βT · y)− π1 − π2 < 0.

Motivated by the above lemma, we define the following
parametrized linear program LP (δ).

LP (δ) : max δ(βT · y)− π1 − π2

(y, π1) ∈ P ; (x, λ, π2) ∈ Q′; λ = δ
(5)

Note that the above linear program may be broken into
a parametrized primal linear program and it’s dual, with δ
being the parameter. The primal may be defined on poly-
tope P with the cost function maximize: δ(βT · y)− π1 and
it’s dual is on polytope Q′ with additional constraint λ = δ
and the cost function minimize: π2.

Remark 2. LP (δ) may look similar to the parametrized
linear program, say TLP (ξ), by Theobald [19]. However the
key difference is that TLP (ξ) is defined on the best response
polytopes of a given game (i.e., P (α) × Q(α) for the game
G(α)), while LP (δ) is defined on a bigger polytope (P ×Q′)
encompassing best response polytopes of all the games in Γ.
A detailed comparison is given in Section 4.2.

Let OPT (δ) be the set of optimal points of LP (δ). In the
next lemma, we show that ∀δ ∈ R, OPT (δ) is exactly the
set of points in N , where λ = δ.

Lemma 10. ∀a ∈ R, OPT (a) = {((y, π1), (x, λ, π2)) ∈
N | λ = a} and OPT (a) 6= ∅.

Proof. Clearly the feasible set of LP (a) consists of all
the points of P × Q′, where λ = a. Therefore the set
{((y, π1), (x, λ, π2)) ∈ N | λ = a} is a subset of the feasible
set of LP (a). The set {((y, π1), (x, λ, π2)) ∈ N | λ = a} is
non-empty (Lemma 6). From Lemma 9, it is clear that the
maximum possible value, the cost function of LP (a) may
achieve is 0, and it is achieved only at the points of N .
Therefore, OPT (a) = {((y, π1), (x, λ, π2)) ∈ N | λ = a} and
OPT (a) 6= ∅.

Next we show that N in fact consists of only one compo-
nent.

Proposition 3. N does not contain cycles.

Proof. From Proposition 1, it is clear that there is al-
ways a path P in the setN . Moreover, for every a ∈ R, there
exists a point ((y, π1), (x, λ, π2)) ∈ P with λ = a (Lemma
6). Further, OPT (a) is connected, since it is the solution
set of LP (a). Therefore, ∀a ∈ R, OPT (a) is contained in
the path P. Therefore N consists of only the path.

From Proposition 3, it is clear that N consists of only the
path P, henceforth we refer to N as a path. To construct
homeomorphism maps between EΓ and Γ, we need to en-
code a point (α, x, y) ∈ EΓ (of size 2m + n) into a vector
α′ ∈ Γ (of size m), such that α′ uniquely identifies the point
(α, x, y) (i.e., a bijection). First we show that there is a
bijection between N and R and using this, we derive a bi-
jection between Γ and EΓ. Consider the function g : N → R
such that

g((y, π1), (x, λ, π2)) = βT · y + λ (6)

Lemma 11. Each term of g, namely βT · y and λ, mono-
tonically increases on the directed path N , and the function
g strictly increases on it.

Proof. From the proof of Proposition 1, we know that
the edges of type (v, Ev) (where v ∈ NP is a vertex) and of

type (Ew, w) (where w ∈ NQ′ is a vertex) alternate in N .
Clearly βT · y is a constant on an edge of type (v, Ev) and λ
is a constant on an edge of type (Ew, w). Now, consider the
two consecutive edges (Ew, w) and (v, Ev), where Ew = v′, v
and Ev = w,w′. It is enough to show that λ and βT · y are
not constants on (v, Ev) and (Ew, w) respectively, and βT · y
increases from (v′, w) to (v, w) (i.e., on (Ew, w)) iff λ also
increases from (v, w) to (v, w′) (i.e., on (v, Ev)).

Let w = (x, γ, π2), w′ = (x′, γ′, π′2), v = (y, π1) and v′ =
(y′, π′1). Clearly, OPT (γ) = (Ew, w) and (v, w′) ∈ OPT (λ′)
(Lemma 10). Further γ 6= γ′, since OPT (γ) contains only
one edge.

Claim. βT · y′ 6= βT · y, and βT · y′ < βT · y ⇔ γ < γ′.

Proof. Since the feasible set of LP (γ′) contains all the
points of P ×Q′ with λ = γ′, the point (v′, w′) is a feasible
point of LP (γ′). Note that (v′, w′) is a suboptimal point of
LP (γ′) otherwise Ew′ = v, v′ and Ev′ = w′, w, which creates
a cycle in N . Further, (v, w′) ∈ OPT (γ′), hence γ′(βT ·y)−
π1−π′2 > γ′(βT ·y′)−π′1−π′2. Since both (v′, w) and (v, w)
are in OPT (γ), we get γ(βT ·y′)−π′1−π2 = γ(βT ·y)−π1−π2.
Summing up these two, we get γ(βT · y′) + γ′(βT · y) >
γ(βT · y) + γ′(βT · y′)⇒ (βT · y − βT · y′)(γ′ − γ) > 0.

The above claim shows that βT · y is strictly monotonic
on (Ew, w) and λ is strictly monotonic on (v, Ev). Further,
if βT · y increases on (Ew, w) from (v′, w) to (v, w) then λ
increases on (v, Ev) from (v, w) to (v, w′) and vice-versa.

Recall that on the directed path N , (vs, Evs) is the first
edge and (ve, Eve) is the last edge (Lemma 8). Further, λ
varies from −∞ to λs on the first edge (vs, Evs), and it varies
from λe to ∞ on the last edge (ve, Eve) (proof of Lemma
5). Therefore, λ and βT · y increase monotonically on the
directed path N , and in turn g strictly increases from −∞
to ∞ on the path.
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Lemma 11 implies that g is a continuous, bijective func-
tion with a continuous inverse g−1 : R → N . Now consider
the following candidate function f : EΓ → Γ for the homeo-
morphism map.

f(α, x, y) = (βT · y + αT · x, α2 − α1, . . . , αm − α1)T (7)

Using the properties of g, next we show that f indeed
establishes a homeomorphism between Γ and EΓ.

Theorem 1. EΓ is homeomorphic to Γ.

Proof. The function f of (7) is continuous because it is
a quadratic function. To show the homeomorphism we need
to show that it has a continuous inverse. Define function
f−1 : Γ → EΓ using g of (6) as follows. Given α′ ∈ Γ, let
(v, w) = ((y, π1), (x, λ, π2)) = g−1(α′1) be the corresponding
point in N . This gives the values of x, y and λ. Using these
values, we solve the following equalities with the variable
vector a = (a1, . . . , am).

∀i > 1, ai = α′i + a1;

mX
i=1

xiai = α′1 − βT · y

It is easy to see that the above equations have a unique
solution, which gives a unique value for the vector a and a
unique point (a, x, y) ∈ EΓ. Let, f−1(α′) = (a, x, y), then
clearly f−1 ◦ f and f ◦ f−1 are identity maps.

Clearly, f−1 is continuous as well. Hence, f and f−1

establishes homeomorphism between Γ and EΓ.

4. ALGORITHMS
In this section, we present two algorithms to find Nash

equilibria of a rank-1 game using the structure and mono-
tonicity of N . First we discuss a polynomial time algorithm
to find a Nash equilibrium of a non-degenerate rank-1 game
and later extend it for degenerate games. It does a binary
search on N using the monotonicity of λ. Later we give a
path-following algorithm which enumerates all Nash equilib-
ria of a rank-1 game, and finds at least one for any bimatrix
game (Lemma 7).

Recall that the best response polytopes P and Q (of (2))
of a non-degenerate game are non-degenerate, and hence it’s
Nash equilibria set is finite. Consider a non-degenerate rank-
1 bimatrix game (A,B) ∈ R2mn such that A + B = γ · βT ,
where γ ∈ Rm and β ∈ Rn. We assume that β is a non-zero
and non-constant2 vector, and both A and B are rational
matrices. Let c be the LCM of the denominators of the
aijs, βis and γis. Note that multiplying both A and B by
c2 makes A, γ and β integers, and the total bit length of
the input gets multiplied by at most O(m2n2), which is a
polynomial increase. Since scaling both the matrices of a
bimatrix game by a positive integer does not change the set
of Nash equilibria, we assume that entries of A, γ and β are
integers.

Now consider the game space Γ = {(A,−A+α ·βT ) | α ∈
Rm}. Clearly, G(γ) = (A,B) ∈ Γ and the corresponding
polytopes P and Q′ of (3) are non-degenerate. Let N be
the set of fully-labeled points of P ×Q′ as defined in Section
2.2. By Lemma 2, we know that for every Nash equilibrium
of the game G(γ), there is a unique point in N .

2If β is a constant vector, then the game (A,B) may be
converted into a zero-sum game without changing it’s Nash
equilibrium set, by adding constants in the columns and
rows of A and B respectively.

Consider the hyper-plane H : λ−
Pm

i=1 γixi = 0 in (y, π1,
x, λ, π2)-space and the corresponding half spaces H+ : λ −Pm

i=1 γixi ≥ 0 and H− : λ −
Pm

i=1 γixi ≤ 0. It is easy
to see that the intersection of N with the hyper-plane H
gives all the Nash equilibria of G(γ). If the hyper-plane H
intersects an edge of N , then it intersects the edge exactly
at one point, because G(γ) is a non-degenerate game.

Let γmin = mini∈S1 γi and γmax = maxi∈S1 γi. Since
∀x ∈ ∆1, γmin ≤

Pm
i=1 γixi ≤ γmax, a point w ∈ N corre-

sponds to a Nash equilibrium of G(γ), only if the value of
λ at w is between γmin and γmax. From Proposition 3, we
know that N contains only a path. If we consider the path
N from the first edge (vs, Evs) to the last edge (ve, Eve), then
λ monotonically increases from −∞ to ∞ on it (Lemmas 5
and 11). Therefore all the points, corresponding to the Nash
equilibrium of G(γ) on the path N , lie between OPT (γmin)
and OPT (γmax) (Lemma 10).

4.1 Rank-1 NE: Polynomial Time Algorithm
Recall that finding a Nash equilibrium of the game G(γ)

is equivalent to finding a point in the intersection of N and
the hyper-plane H. Since λ increases monotonically on N ,
and all the points in the intersection are between λ = γmin

and λ = γmax, the BinSearch algorithm of Table 1 applies
binary search on N between λ = γmin and λ = γmax to
locate a point in the intersection.

BinSearch(γmin, γmax)
a1 ← γmin; a2 ← γmax;
if IsNE(a1) = 0 or IsNE(a2) = 0 then return;
while true

a← a1+a2
2

; flag ← IsNE(a);
if flag = 0 then break;
else if flag < 0 then a1 ← a;
else a2 ← a;

endwhile
return;

IsNE(δ)
Find OPT (δ) by solving LP (δ);
u, v ← The edge containing OPT (δ);
H ← {w ∈ u, v | w ∈ H};
if H 6= ∅ then Output H; return 0;
else if u, v ∈ H+ then return 1;
else return −1;

Table 1: BinSearch Algorithm

The IsNE procedure of Table 1 takes a δ ∈ R as the in-
put, and outputs a NESP if possible, otherwise it indicates
the position of OPT (δ) with respect to the hyper-plane H.
First it finds the optimal set OPT (δ) of LP (δ) and the cor-
responding edge u, v containing OPT (δ). Next, it finds a set
H, which consists of all the points in the intersection of u, v
and the hyper-plane H if any, i.e., Nash equilibria of G(γ).
Since the game G(γ) is non-degenerate, H is either a single-
ton or empty. In the former case, the procedure outputs H
and returns 0 indicating that a Nash equilibrium has been
found. However in the latter case, it returns 1 if u, v ∈ H+

and returns −1 otherwise, indicating the position of OPT (δ)
w.r.t. the hyper-plane H.

The BinSearch algorithm maintains two pivot values a1
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and a2 of λ such that the corresponding OPT (a1) ∈ H−

and OPT (a2) ∈ H+, i.e., always on the opposite sides of
the hyper-plane H. Clearly N crosses H at least once be-
tween OPT (a1) and OPT (a2). Since OPT (γmin) ∈ H− and
OPT (γmax) ∈ H+, the pivots a1 and a2 are initialized to
γmin and γmax respectively. Initially it calls IsNE for both
a1 and a2 separately and terminates if either returns zero
indicating that a NESP has been found. Otherwise the al-
gorithm repeats the following steps until IsNE returns zero:
It calls IsNE for the mid point a of a1 and a2 and termi-
nates if it returns zero. If IsNE returns a negative value,
then OPT (a) ∈ H− implying that OPT (a) and OPT (a2)
are on the opposite sides of H, and hence the lower pivot a1

is reset to a. In the other case OPT (a) ∈ H+, the upper
pivot a2 is set to a, as OPT (a1) and OPT (a) are on the
opposite sides of H.

Note that, the index of the Nash equilibrium obtained
by BinSearch algorithm is always +1, since a1 < a2 is an
invariant (Proposition 2). For X ∈ Rkl, let X̃ = max

i,j

|xij |.

Since the column-player’s payoff matrix is represented by
−A+ γ · βT of the game G(γ), let |B| = max{Ã, β̃, γ̃}. Let

∆ = (m+ 2)! (|B|)(m+2).

Theorem 2. Let L be the bit length of the input. The
BinSearch terminates in time poly(L,m, n).

Proof. Clearly, the algorithm terminates when the call
IsNE(a) outputs a NESP of G(γ). Let the range of λ for an
edge (v, Ev) ∈ N be [λ1 λ2].

Claim. λ2 − λ1 ≥ 1
∆2 .

Proof. Note that λ1 and λ2 correspond to the two ver-
tices of Ev ∈ Q′. Since Q′ is in a (m+ 2)-dimensional space,
there are m+ 2 equations tight at every vertex of it. Hence
both λ1 and λ2 are rational numbers with denominator at
most ∆. Therefore λ2 − λ1 is at least 1

∆2 .

When a2 − a1 ≤ 1
∆2 , OPT (a1) and OPT (a2) are either

part of the same edge or adjacent edges. In either case, the
algorithm terminates after one more call to IsNE.

Clearly a2 − a1 =
γmax − γmin

2l
after l iterations of the

while loop. Let k be such that

γmax − γmin

2k
=

1

∆2
⇒ k = 2 log ∆ + log(γmax

−γmin) ≤ O(m logm+m log |B|+ log(γmax − γmin))

BinSearch makes at most dke calls to the procedure IsNE,
which is polynomial in L,m, and n. The procedure IsNE
solves a linear program and computes a set H, both may be
done in poly(L,m, n) time. Therefore the total time taken
by BinSearch is polynomial in L,m, and n.

Degeneracy. For a degenerate rank-1 game (A,B) the
corresponding polytope P × Q′ may be degenerate as well.
However, the BinSearch algorithm, with a small modifica-
tion, works with the same polynomial time bound. First we
make a few observations and then state a minor modification
to the algorithm.

Note that Lemma 10 (i.e. ∀a ∈ R, OPT (a) = N (a))
holds in case of degeneracy as well. Therefore, the set of
fully-labeled points N ∈ P × Q′ is a connected set, and λ
varies continuously on this set.

Lemma 12. Let f ∈ NQ′ be a maximal face, then λ does
not take a unique value on f .

Proof. Suppose λ takes a unique value a on f . Let S =
∩w∈fEw (note that S is a vertex of P ). Clearly, there exists
a vertex v ∈ f such that S ⊂ Ev. In that case, {v × Ev} ∪
{f × S} ∈ OPT (a), which makes OPT (a) non-convex.

It is clear from the above lemma that on every alternate
maximal face of N (i.e., similar to (v, Ev) edges in non-
degenerate case), increase in λ is lower bounded by 1

∆2 . It
is easy to check that BinSearch algorithm with the IsNE
procedure given in Table 2 works for degenerate case as well.

IsNE(δ)
Find OPT (δ) by solving LP (δ);
f ← The minimal face of P ×Q′ containing OPT (δ);

(Note that f is a maximal face of N )
H ← {w ∈ f | w ∈ H};
if H 6= ∅ then Output H; return 0;
else if f ∈ H+ then return 1;
else return −1;

Table 2: IsNE Procedure for the Degenerate Case

4.2 Enumeration Algorithm for Rank-1 Games
The Enumeration algorithm of Table 3 simply follows the

path N between OPT (γmin) and OPT (γmax), and out-
puts the NESPs whenever it hits the hyper-plane H : λ −Pm

i=1 γixi = 0.

Enumeration(u1, v1, u2, v2)
u, u′ ← u1, v1;
if u, u′ of type (v, Ev) then flag ← 1;
else flag ← 0;
while true
H = {w ∈ u, u′ | w ∈ H}; Output H;
if u, u′ = u2, v2 then break;
if flag = 1 then u, u′ ← (Eu′ , u

′); flag ← 0;
else u, u′ ← (u′, Eu′); flag ← 1;

endwhile
return;

Table 3: Enumeration Algorithm

Let the edges u1, v1 and u2, v2 contain OPT (γmin) and
OPT (γmax) respectively. The call Enumeration(u1, v1, u2, v2)
enumerates all the Nash equilibria of the game G(γ).

The Enumeration algorithm initializes u, u′ to the edge
u1, v1. Since the edges alternate between the type (v, Ev)
and (Ew, w) on N , the value of flag indicates the type of edge
to be considered next. It is set to one if the next edge is of
type (Ew, w), otherwise it is set to zero. In the while loop,
it first outputs the intersection of the edge u, u′ with the
hyper-plane H, if any. Further, u, u′ is set to the next edge
and the flag is toggled. Recall that the edges incident on a
vertex u′ in N may be obtained by relaxing the inequality
corresponding to the duplicate label of u′, in P and in Q′

(Section 2.2). Let the duplicate label of the vertex u′ be i.
We may obtain the edge (Eu′ , u

′) by relaxing the inequality
i of P and the edge (u′, Eu′) by relaxing the inequality i of
Q′. The algorithm terminates when u, u′ = u2, v2.

Every iteration of the loop takes time polynomial in L,
m and n. Therefore, the time taken by the algorithm is
equivalent to the number of edges between u1, v1 and u2, v2.
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For a general (non-degenerate) bimatrix game (A,B), we
may obtain C, γ and β such that B = C+γ ·βT , and define
the corresponding game space Γ and the polytopes P and
Q′ accordingly (Section 2.2). There is a one-to-one corre-
spondence between the Nash equilibria of the game (A,B)
and the points in the intersection of the fully-labeled set N
and the hyper-plane λ−

Pm
i=1 γixi = 0. Recall that the set

N contains one path (P) and a set of cycles (Proposition
1). The extreme edges (vs, Evs) and (ve, Eve) of P may be
easily obtained as described in the proof of Lemma 5. Since
P contains at least one Nash equilibrium of every game in
Γ (Lemma 7), hence the call Enumerate((vs, Evs), (ve, Eve))
outputs at least one Nash equilibrium of the game (A,B).
Note that the time taken by the algorithm again depends on
the number of edges on the path P.

Comparison with Earlier Approaches. The Enumera-
tion algorithm may be compared to two previous algorithms.
One is the Theobald algorithm [19], which enumerates all
Nash equilibria of a rank-1 game, and the other is the Lemke-
Howson algorithm [11], which finds a Nash equilibrium of
any bimatrix game. The Enumeration algorithm enumerates
all the Nash equilibria of a rank-1 game and for any general
bimatrix game it is guaranteed to find one Nash equilib-
rium. All three algorithms are path following algorithms.
However, the main difference is that both the previous algo-
rithms always trace a path on the best response polytopes
of a given game (i.e., P (γ) × Q(γ)), while the Enumera-
tion algorithm follows a path on a bigger polytope P × Q′
which encompasses best response polytopes of all the games
of an m-dimensional game space. Therefore, for every game
in this m-dimensional game space, the Enumeration follows
the same path. Further, all the points on the path followed
by Enumeration algorithm are fully-labeled, and it always
hits the best response polytope of the given game at one of
it’s NESP points. However the path followed by previous
two algorithms is not fully-labeled and whenever they hit a
fully-labeled point, it is a NESP of the game.

In every intermediate step, the Theobald algorithm calcu-
lates the range of a variable (ξ) based on the feasibility of
primal and dual, and accordingly decides which inequality
to relax (in P or Q) to locate the next edge. While Enu-
meration algorithm simply leaves the duplicate label in P
or Q′ (alternately) at the current vertex to locate the next
edge. Further, for a general bimatrix game, the Enumera-
tion algorithm locates at least one Nash equilibrium, while
Theobald algorithm works only for rank-1 games.

5. RANK-K SPACE: HOMEOMORPHISM
It turns out that the approach used to show the home-

omorphism between the subspace of rank-1 games and it’s
Nash equilibrium correspondence may be extended to the
subspace with rank-k games. Given a bimatrix game (A,B) ∈
R2mn of rank-k, the matrix A+B may be written as

Pk
l=1 γ

l·
βlT , using the linearly independent vectors γl ∈ Rm, βl ∈
Rn, 1 ≤ l ≤ k. Therefore, the column-player’s payoff ma-

trix B may be written as B = −A +
Pk

l=1 γ
l · βlT , where

{βl}kl=1 are linearly independent. Consider the correspond-

ing game space Γk = {(A,−A+
Pk

l=1 α
l ·βlT ) ∈ R2mn | ∀l ≤

k, αl ∈ Rm}. This space is an affine km-dimensional sub-
space of the bimatrix game space R2mn, and it contains
only rank-k games. Let α = (α1, . . . , αk), and G(α) de-

note the game (A,−A +
Pk

l=1 α
l · βlT ). The Nash equilib-

rium correspondence of the space Γk is EΓk = {(α, x, y) ∈
Rkm ×∆1 ×∆2 | (x, y) is a NESP of G(α) ∈ Γk}.

For all the games in Γk, again the row-player’s payoff ma-
trix remains constant, hence for all G(α) ∈ Γk the best
response polytope of the row-player P (α) is P of (2). How-
ever, the best response polytope of the column player Q(α)
varies, as the payoff matrix of the column-player varies with
α. Consider the following polytope (similar to (3)).

Q′k = {(x, λ, π2) ∈ Rm+k+1 | xi ≥ 0, ∀i ∈ S1; xT (−Aj)

+
Pk

l=1 β
l
jλl − π2 ≤ 0, ∀j ∈ S2;

Pm
i=1 xi = 1} (8)

Note that λ = (λ1, . . . , λk) is a variable vector. The
column-player’s best response polytope Q(α), for the game
G(α), is the projection of the set {(x, λ, π2) ∈ Q′k | ∀l ≤
k,

Pm
i=1 α

l
ixi −λl = 0} on (x, π2)-space. We assume that

the polytopes P and Q′k are non-degenerate. Let the set
of fully-labeled pairs of P × Q′k be N k = {(v, w) ∈ P ×
Q′k | L(v) ∪ L(w) = {1, . . . ,m + n}}. The following facts
regarding the set N k may be easily derived.

• For every point in EΓk there is a unique point in N k,
and for every point in N k there is a point in EΓk

(Lemma 2). Further the set of points of EΓk map-
ping to a point (v, w) ∈ N k, is equivalent to k(m− 1)-
dimensional space.

• Since there are k more variables in Q′k, namely λ1, . . . ,
λk compared to Q of (2), N k is a subset of the k-
skeleton of P × Q′k. If a point v ∈ P is on a d-
dimensional face (d ≤ k), then the set Ev is either
empty or it is a (k − d)-dimensional face, where Ev =
{w ∈ Q′k | (v, w) ∈ N k} (Observations of Section 2.2).

• ∀(v, w) = ((y, π1), (x, λ, π2)) in P ×Q′k,
Pk

l=1 λl(β
lT ·

y)− π1 − π2 ≤ 0, and equality holds iff (v, w) ∈ N k.

For a vector δ ∈ Rk, consider the following parametrized
linear program LP k(δ).

LP k(δ) : max
Pk

l=1 δl(β
lT · y)− π1 − π2

(y, π1) ∈ P ; (x, λ, π2) ∈ Q′k; λl = δl, ∀l ≤ k
(9)

Let OPT k(δ) be the set of optimal points of LP k(δ). Note
that for any a ∈ Rk, all the points on N k with λ = a may be
obtained by solving LP k(a). In other words, {((y, π1), (x, λ,
π2)) ∈ N k | λ = a} = OPT k(a) (Lemma 10). Using this

fact we show that the tuple (λ1 + β1T

· y, . . . , λk + βkT

· y)
uniquely identifies a point of N k. For a vector a ∈ Rk, let

S(a) = {((y, π1), (x, λ, π2)) ∈ N k | ∀l ≤ k, λl +βlT ·y = al}.

Lemma 13. For a vector a ∈ Rk, the set S(a) contains
exactly one element, i.e., |S(a)| = 1.

Consider the function gk : N k → Rk such that,

gk((y, π1), (x, λ, π2)) = (λ1 + (β1T

· y), . . . , λk + (βkT

· y))

The function gk is continuous and bijective (Lemma 13),

and the inverse gk−1
: Rk → N k is also continuous, since

N k is a closed and connected set. Now consider a function
fk : EΓk → Γk similar to (7).

fk(α, x, y) = (α′1, . . . , α′k), where α′l = ((αlT · x)+

(βlT · y), αl
2 − αl

1, . . . , α
l
m − αl

1)T , ∀l ≤ k
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It is easy to construct the continuous inverse of fk using gk−1

and establish the homeomorphism between Γk and EΓk .

Theorem 3. Function fk establishes a homeomorphism
between NE correspondence EΓk and the game space Γk.

Next we give a fixed point formulation to find a Nash equi-
librium of a rank-k game G(γ) ∈ Γk. Let γmin = (γ1

min, . . . ,
γk

min) and γmax = (γ1
max, . . . , γ

k
max), where ∀l ≤ k, γl

min =
mini∈S1

γl
i and γl

max = maxi∈S1
γl

i. Consider the box B ∈
Rk s.t. B = {a ∈ Rk | γmin ≤ a ≤ γmax}3. For the rank-1
case, B is an interval.

Lemma 14. Finding a Nash equilibrium of G(γ) reduces
to finding a fixed point of a polynomially computable piece-
wise linear function f : B → B.

Proof. Clearly, ∀x ∈ ∆1, (
Pm

i=1 γ
1
i xi, . . . ,

Pm
i=1 γ

k
i xi) ∈

B. Now, consider the function f : B → B such that,

f(a) = (
Pm

i=1 γ
1
i xi, . . . ,

Pm
i=1 γ

k
i xi), where

(x, λ, π2) = {w ∈ Q′k | (v, w) ∈ OPT k(a), v ∈ P}

The function f is a piece-wise linear function. For every
a ∈ B, the corresponding x is well defined in the above
expression (Lemma 13), and may be obtained in polynomial
time by solving LP k(a). It is easy to see that fixed points
of f correspond to the Nash equilibria of game G(γ) and
vice-versa.

It seems that for a given a ∈ Rk, there is a way to trace the
points in the intersection of N k and λl = al, l 6= i, such that
λi increases monotonically (analysis similar to Lemma 11).
Is there a way to locate a fixed point of f in polynomial time
using this observation and the simple structure of N k, even
though finding a fixed point in general is PPAD-complete
[14]?

6. CONCLUSION
In this paper, we establish a homeomorphism between an

m-dimensional affine subspace Γ of the bimatrix game space
and it’s Nash equilibrium correspondence EΓ, where Γ con-
tains only rank-1 games. To the best of our knowledge, this
is the first structural result for a subspace of the bimatrix
game space. The homeomorphism maps that we derive are
very different than the ones given by Kohlberg and Mertens
for the bimatrix game space [9] and it builds on the struc-
ture of EΓ. Further, using this structural result we design
two algorithms. The first algorithm finds a Nash equilibrium
of a rank-1 game in polynomial time. This settles an open
question posed by Kannan and Theobald [8] and Theobald
[19]. The second algorithm enumerates all the Nash equilib-
ria of a rank-1 game and finds at least one Nash equilibrium
of a general bimatrix game.

Further, we extend the above structural result by estab-
lishing a homeomorphism between km-dimensional affine
subspace Γk and it’s Nash equilibrium correspondence EΓk ,
where Γk contains only rank-k games. We hope that this
homeomorphism result will help in designing a polynomial
time algorithm to find a Nash equilibrium of a fixed rank
game.

3For any two vectors a, b ∈ Rn, by a ≤ b we mean ai ≤
bi, ∀i ≤ n.
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