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ABSTRACT
We present a new threshold phenomenon in data structure lower
bounds where slightly reduced update times lead to exploding
query times. Consider incremental connectivity, letting tU be
the time to insert an edge and tq be the query time. For
tU = Ω(tq), the problem is equivalent to the well-understood
union–find problem: INSERTEDGE(s, t) can be implemented by
UNION(FIND(s), FIND(t)). This gives worst-case time tU = tq =
O(lg n/ lg lg n) and amortized tU = tq = O(α(n)).

By contrast, we show that if tU = o(lg n/ lg lg n), the query
time explodes to tq ≥ n1−o(1). In other words, if the data structure
doesn’t have time to find the roots of each disjoint set (tree) during
edge insertion, there is no effective way to organize the informa-
tion!

For amortized complexity, we demonstrate a new inverse-
Ackermann type trade-off in the regime tU = o(tq).

A similar lower bound is given for fully dynamic connectiv-
ity, where an update time of o(lg n) forces the query time to
be n1−o(1). This lower bound allows for amortization and Las
Vegas randomization, and comes close to the known O(lg n ·
(lg lg n)O(1)) upper bound.

Categories and Subject Descriptors
E.1 [Data]: Data Structures

General Terms
Algorithms, Performance, Theory

Keywords
Union–Find, Dynamic Connectivity, Lower Bounds, Cell-Probe
Model

1. INTRODUCTION
We present a new threshold phenomenon in data structure lower

bounds where slightly reduced update times lead to exploding
query times. Previous trade-offs where smooth and much weaker.
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The new explosive lower bounds are found hidden in some very
well-studied problems: incremental and fully-dynamic connectiv-
ity. For incremental connectivity, the explosion is only in the worst-
case. For the fully-dynamic case we also get an explosion in the
amortized bounds.

1.1 Incremental connectivity and union-find
The incremental connectivity problems considers a graph G with

vertex set {1, ..., n}. Starting with no edges in G, we support the
following operations:

CONNECTED(u, v) : Tells if u and v are connected in G.
INSERTEDGE(u, v) : Adds the edge (u, v) to G.

The obvious way to implement incremental connectivity is the
classic union–find data structure which supports the following op-
erations on a collection of disjoint sets, starting from n singleton
sets {1}, . . . , {n}:

FIND(v) : Return a “root” representing the set containing v.
UNION(u, v) : Both u and v should be roots of sets,

i.e. FIND(u) = u and FIND(v) = v. The operation
creates the union of the sets and returns its new root.

The terminology for the union–find problem stems from the
usual implementation as a forest of rooted trees where each tree
spans a set. FIND involves walking up to the root of v’s tree, poten-
tially doing useful work like path compression on the way. UNION

simply adds an edge between the roots whose direction is usually
determined by the size or rank of sets.

Given a union–find data structure, we can implement incremen-
tal connectivity as:

CONNECTED(u, v) : Is FIND(u) = FIND(v)?
INSERTEDGE(u, v) : UNION(FIND(u), FIND(v)).

For now our focus is on worst-case bounds, but shall return to
inverse-Ackermann style amortized bounds in Section 5. From a
worst-case perspective, the classic union-by-rank gives union in
constant time and find in O(log n) time. Trade-offs were addressed
by Blum [6], with an improvement by Smid [14]. They show that,
if the time for union is bounded by tU, FIND can be supported in
worst-case O(lg n/ lg tU). This trade-off is known to be optimal
in the powerful cell-probe model [1] (see below for a review of the
lower bounds).

Implementing incremental connectivity with union–find, we do
not benefit if UNION is faster than FIND. The natural solution is to
balance the times, supporting all operations in O(log n/ log log n)
time. But do we really need to take time to find the roots before
entering the union? What happens if we try to reduce the update
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time, e.g., can we as in the plain union–find problem do updates
in constant time and queries in logarithmic time? The answer is a
resounding no: any improvement in the O(log n/ log log n) update
time for insertions will make the connectivity query time explode.

THEOREM 1. Any data structure for incremental connectivity
over n vertices that supports edge insertions in worst-case time
o( lgn

lg lgn
) must have worst-case connectivity query time n1−o(1) in

the cell-probe model with cells of O(lg n) bits.

1.2 Combining union with general links
To describe the full power of our lower bound, we will augment

union–find with a natural link operation. To formally define the
problem, we need a convention on the representatives in union–
find. When we start, all elements are singletons, each being its own
representative. Now define:

LINK(u, v) : Here u and v are arbitrary elements of sets. If these
sets are different (FIND(u) �= FIND(v)), the operation cre-
ates a new set that is the union of the two old sets, whose
representative is the old FIND(u). The two old sets are de-
stroyed. Thus, if r = FIND(u) before the call, then after-
wards FIND(u) = r = FIND(v).

UNION(u, v) : This operation is a special case of LINK(u, v),
where the caller of the function makes a guarantee that be-
fore the call, both u and v are the representatives of their
own sets, i.e., FIND(u) = u and FIND(v) = v. Afterwards,
FIND(u) = u = FIND(v)

This semantics of choosing representatives can be supported by
any union–find data structure with a constant overhead, as one can
maintain a translation table between the representatives chosen by
the data structure and the ones mandated in our definition. Now
LINK is a direct generalization of UNION to the case where the ar-
guments may not be representatives. It has the obvious implemen-
tation LINK(u, v) = UNION(FIND(u), FIND(v)), with the run-
ning time tL ≤ tU + 2tF.

If we choose to support UNION in time tU, the standard union–
find data structures can support FIND in tF = O( lgn

lg tU
) time. This

immediately implies a running time for LINK of tL = O(tU +
tF) = O(tU + lgn

lg tU
).

Our basic question is whether LINK “requires” a FIND operation,
i.e. whether one can support tL = o(tF). This question only arises
in the regime tU = o( lgn

lg lgn
), as otherwise tU dominates the run-

ning time of tL (which is necessary, as UNION is a special case of
LINK by definition). As a particular example, if we support UNION

in constant time, both LINK and FIND take O(lg n) time by known
results. An intriguing question is: with UNION in constant time,
can we implement links in sublogarithmic time while preserving
efficient (say, polylogarithmic) query time?

To prove the strongest lower bounds, we prefer to work with a
weaker query than FIND:

CONNECTED(u, v) : Are u and v in the same set, i.e. FIND(u) =
FIND(v)?

The link–connected problem is identical to incremental con-
nectivity. Lower bounds for CONNECTED queries immediately
translate into lower bounds for FIND queries. From now on,
we consider the mixed union–link–connected problem (whose up-
date/query trade-offs turn out to be identical to union–link–find).
We prove that if LINK does not have enough time to run a FIND

query (with the classic running times), the data structure cannot
organize information effectively and the connectivity query time
explodes to essentially linear time:

THEOREM 2. Any data structure supporting UNION in tU =
o( lgn

lg lgn
) worst-case time and LINK in tL = o( lgn

log tU
) worst-case

time, must have worst-case CONNECTED (and FIND) query time
tQ ≥ n1−o(1) in the cell-probe model with cells of O(lg n) bits.

With union and link running in o(log n/ log log n) time, the the-
orem reproves the query lower bound of Theorem 1.

A question of similar flavor appeared in connection with union-
find with deletions. Links and deletions have the common issue
that they apply to arbitrary elements, hence that we do not a pri-
ori know what tree we are in. Kaplan et al. [10] considered the
union-delete-find problem but wanted local bounds were n is the
size of the actual trees involved in an operation. All the above
mentioned worst-case bounds are local, but this would be lost if
we tried implementing deletions with global rebuilding. Kaplan et
al. [10] showed how to augment union-find with a delete operation
if we when deleting an element x, first find the root and then per-
form a local rebuilding step in the tree that x is deleted from. With
union in constant time, they implemented both find and delete in
O(log n) time. Similar to our case, they asked if the deletion time
could be improved while preserving the logarithmic query time. In
the case of deletions, the answer was the strongest possible “yes.”
Alstrup et al. [2] proved that both unions and deletions could be
supported locally in constant time while preserving the local loga-
rithmic query time.

1.3 Fully-dynamic connectivity
We show a similar computational phenomenon for fully dynamic

connectivity with both edge insertions and deletions. In this fully-
dynamic case, we hit the wall even if amortization is allowed.

THEOREM 3. Any data structure for fully dynamic connectivity
in a graph of n vertices with update time tu = o(lg n) must have
query time tq ≥ n1−o(1). This bound allows amortization and Las
Vegas randomization (expected running times), and holds in the
cell-probe model with cells of O(lg n) bits.

Thorup [18] has an almost matching upper bound of tU = O(lg n ·
(lg lg n)3) and tq = o(lg n). This data structure uses both Las
Vegas randomization and amortization.

1.4 Lower Bounds
Many of the early lower bounds for union–find were in (re-

stricted versions of) the pointer machine model [16, 3, 12, 6].
In STOC’89, Fredman and Saks [8] were the first to show dy-

namic lower bounds in the cell-probe model. They studied the par-
tial sums problem and the union–find problem. The partial sums
problem asks to maintain an array A[1 . . n] under pointwise up-
dates and queries for a prefix sum:

∑
i≤k A[i]. For partial sums

and for worst-case union–find, Fredman and Saks showed a lower
bound of tq = Ω(lg n/ lg(tU lg n)). For amortized union–find,
they gave an optimal inverse-Ackermann lower bound. A different
proof of the same bounds was given by Ben-Amram and Galil in
FOCS’91 [4].

In STOC’99, Alstrup, Ben-Amram and Rauhe [1] improved the
trade-off for union–find to tq = Ω(lg n/ lg tU), which was also
the highest known trade-off for any problem. In STOC’02, Ka-
plan, Shafrir and Tarjan [9] showed that the optimal worst-case and
amortized trade-offs for union–find also hold for a weaker Boolean
version where the user specifies set identifiers and where we only
have membership queries. From a lower bound perspective, the
tricky part is that the query output is a single bit. Identifiers can
always be viewed as special elements of sets. Thus they get the
same lower bound trade-off for incremental connectivity: edges
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are only added between current set identifiers, and connectivity
queries are between arbitrary nodes and current set identifiers. This
lower-bound trade-off for incremental connectivity is tight when
tU = Ω(tq), matching the previously mentioned upper-bounds for
link–find. However, by our Theorem 1, the incremental connectiv-
ity queries hit a wall when the update time becomes lower.

The work of Pǎtraşcu and Demaine from STOC’04 [13] gives the
best trade-offs known today, for any explicit problem. They consid-
ered partial sums and fully dynamic connectivity, and showed that,
if max{tU, tq} = O(B lg n), then min{tU, tq} = Ω(logB n). In
particular, their bounds implied max{tU, tq} = Ω(lg n), whereas
previous results implied max{tU, tq} = Ω(lg n/ lg lg n).

These bounds are easily seen to be optimal for the partial sums
problem. The standard solution is to create an ordered binary tree
with leaf set [n]; each internal node maintains the sum of its chil-
dren. Updates and queries are trivially supported in Θ(log n) time.
To get a trade-offs, we can instead use a B-tree with degree B.
The time of an update is the height of the tree, which is O(logB n).
However, to answer a query, we need to add up all left siblings from
the path to the root, so the query time is O(B logB n).

Our results significantly improve the known trade-offs in the
regime of fast query times. Note that the previous strongest bounds
from [13] could at most imply tq = Ω(nε) even for constant up-
date time. Here ε depends on the constant in the update time. For
example, allowing only 4 cell probes for the updates, [13, careful
inspection] gets a query lower bound of Ω(n

1
16 ). Our Theorem 3

says for another problem that we with o(log n) probes get a query
lower bound ≥ n1−o(1) queries.

The trade-offs of [13] are optimal in the full range for the partial
sums problem. For incremental and fully dynamic connectivity, the
previous mild trade-offs [9, 13] are optimal in the regime tU � tq;
it is only the regime of fast updates that causes the abrupt transitions
in Theorems 1 and 3.

Lower bounds beyond the balanced tree.
The previous lower-bounds we discussed are essentially all

showing that the we cannot do much better than maintaining infor-
mation in a balanced tree. All operations follow well-understood
paths to the roots. Trade-offs were obtained by increasing the de-
gree, decreasing the height: the faster of updates and queries would
just follow the path to the root while the slower would have to con-
sider siblings on the way. The lower bounds from [13] are best
possible in this regard.

Our stronger trade-offs for incremental and fully-dynamic con-
nectivity shows that there is no such simple way of organizing
information; that the links between arbitrary vertices changes the
structure too much if the update times is not long enough, we can-
not maintain the balanced information tree.

2. SIMULATIONS BY COMMUNICATION
GAMES

Generally, for the data structure problems considered, we are go-
ing to find an input distribution that will make any deterministic al-
gorithm perform badly on the average. This also implies expected
lower bounds for randomized algorithms.

Consider an abstract dynamic problem with operations
UPDATE(ui) and QUERY(qi). Assume the sequence of operations
is of fixed length, and that the type of each operation (query versus
update) is fixed a priori. The “input” ui or qi of the operation is
not fixed yet. Let IA and IB be two adjacent intervals of opera-
tions, and assume that every input ui or qi outside of IA ∪ IB has
been fixed. What remains free are the inputs XA during interval

IA and XB during interval IB . These inputs (XA, XB) follow a
given distribution D.

It is natural to convert this setting into a communication game be-
tween two players: Alice receives XA, Bob receives XB , and their
goal is to answer the queries in XB (which depend on the updates
in XA). In our applications below, the queries will be Boolean, and
it will even be hard for the players to compute the and of all queries
in the IB interval. Each player is deterministic, and the two play-
ers can exchange bits of information. The last bit communicated
should be the final answer of the game, which here is the and of the
queries in IB . The complexity of the game is defined as the total
communication (in bits) between the players, in expectation over
D.

We will work in the cell-probe model with w-bit cells; in the
applications below, w will be Θ(lg n). Let WA be the sets of cells
written / read during time interval IA. We consider all cells touched
by the algorithm during interval IB in order. If a cell is read before
being written, we include it in the set RB ; if a cell is first written,
include it in the set WB .

LEMMA 4. For any p ≥ 0, the communication game can
be solved by a zero-error protocol with complexity ED

[|WA| ·
O(lg 1

p
) +O(w) · (|RB ∩ (WA \WB)|+ p|RB |

)]
.

PROOF. Alice first simulates the data structure on the interval
IA. The memory state at the beginning of IA is fixed. After this
simulation Alice constructs a Bloom filter [5] with error (false pos-
itive) probability p for the cells WA. The hash functions needed
by the Bloom filter can be chosen by public coins, which can later
be fixed since we are working under a distribution. Alice’s first
message is the Bloom filter, which requires |WA| ·O(lg 1

p
) bits.

Bob will now attempt to simulate the data structure on IB . The
algorithm may try to read a cell of the following types:

• a cell previously written during IB : Bob already knows its
contents.

• a cell that is positive in the Bloom filter: Bob sends the ad-
dress of the cell to Alice, who replies with its contents; this
exchange takes O(w) bits.

• a cell that is negative in the Bloom filter: Bob knows for sure
that the cell was not written during IA. Thus, he knows its
contents, since it comes from the old fixed memory snapshot
before the beginning of IA.

With this simulation, Bob knows all the his answers and can trans-
mit the final bit telling if they are all true. The number of messages
from Bob is |RB ∩ (WA \WB)| (true positives) plus an expected
number of false positives of at most p|RB |.

We will use the simulation to obtain lower bounds for |WA ∩
RB |, comparing the complexity of the protocol with a communica-
tion lower bound. This simulation works well when |WA ∩RB | ≈
|WA ∪ RB |/ lgn

lg lgn
, since we can use p ≈ 1

lgn
, and make the term

|WA∩RB | dominate. Unfortunately, it does not work in the regime
|WA∩RB | ≈ |WA∪RB |/ lg n, since one of the terms proportional
to |WA| or |RB | will dominate, for any p.

To give a tighter simulation, we use a stronger communication
model: nondeterministic complexity. In this model, a prover sends
a public proof Z to both Alice and Bob. Alice and Bob indepen-
dently decide whether to accept the message, and they can only
accept if the output of the communication game is “true” (i.e. all
queries in IB return true). In this model Alice and Bob do not
communicate with each other. Alice’s answer is a deterministic
function fA(XA, Z) of her own input and the public proof. Sim-
ilarly, we have Bob’s answer fB(XB , Z). For the protocol to be
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correct, fA(XA, Z) and fB(XB , Z) may only both be true if this
is the answer to the game.

Our goal for the prover is to define a short public proof
Z(XA, XB) that will lead Alice and Bob to the desired answer
fA(XA, Z(XA, XB)) ∧ fB(XB , Z(XA, XB)). The complexity
of the protocol is the of the game should be the and of all queries in
IB . Since we are working under a distribution, the bit length of the
prover’s message Z(XA, XB) is a random variable, and we define
the complexity of the protocol as its expectation.

LEMMA 5. The communication game can be solved by a non-
deterministic protocol with complexity ED

[
O(w) · |WA ∩ RB | +

O(|WA ∪RB |)
]
.

PROOF. We will use a retrieval dictionary (a.k.a. a Bloomier fil-
ter, or a dictionary without membership). Such a dictionary must
store a set S from universe U with k bits of associated data per
element of S. When queried for some x ∈ S, the dictionary must
retrieve x’s associated data. When queried about x /∈ S, it may
return anything. One can construct retrieval dictionaries with space
O(k|S|+ lg lg |U |); see e.g. [7].

The message Z(XA, XB) of the prover will consist of the ad-
dresses and contents of the cells X = |WA ∩ RB |, taking O(w)
bits each. In addition, he will provide a retrieval dictionary for the
symmetric difference WAΔRB = (WA \ RB) ∪ (RB \WA). In
this dictionary, every element has one associated bit of data: zero if
the cell is from WA\RB and one if from RB \WA. The dictionary
takes O(lgw + |WA ∪RB |) bits.

Alice first simulates the data structure on IA. Then she verifies
that all cells X were actually written (X ⊆ WA), and their content
is correct. Furthermore, she verifies that for all cells from WA \X ,
the retrieval dictionary returns zero. If some of this fails, she rejects
with a false.

Bob simulates the data structure on IB . The algorithm may read
cells of the following types:

• cells previously written during IB : Bob knows their con-
tents.

• cells from X: Bob uses the contents from public proof (Alice
verified these contents).

• cells for which the retrieval dictionary returns one: Bob uses
the contents from the fixed memory snapshot before the be-
ginning of IA (Alice verified she didn’t write such cells).

• cells for which the retrieval dictionary return zero: Bob re-
jects. The prover is trying to cheat, since in a correct simula-
tion all cells of RB \X has a one bit in the dictionary.

If neither player rejects, we know that RB \ X is disjoint from
WA \X , so the simulation of Bob is correct. Finally Bob rejects if
any of his answers are false.

3. LOWER BOUND FOR UNION–LINK–
FIND AND INCREMENTAL CONNEC-
TIVITY

This section proves Theorem 2:

Any data structure supporting UNION in tU =
o( lgn

lg lgn
) worst-case time and LINK in tL = o( lgn

log tU
)

worst-case time, must have worst-case CONNECTED

query time tQ ≥ n1−o(1) in the cell-probe model with
cells of w = O(lg n) bits.

With hindsight, define:

ε = max

{(
tU lg lg n

lg n

)1/2

,

(
tL lg tU
lg n

)1/4
}

= o(1).

Also define B = t
1/ε
U . We will later need:

tU ≤ ε2 lg n

lg lg n
(1)

tL ≤ ε3 lg n

lgB
=

ε4 lg n

lg tU
(2)

Finally, we define two parameters C = nε and M = n1−ε.
The starting point of our hard instance is essentially taken from

Fredman and Saks’ seminal paper [8]. The hard instance will ran-
domly construct a forest of M trees. Each tree will be a perfect tree
of degree B and height logB(n/M). On layer 0 of the forest we
have the M roots. On layer i, we have exactly M ·Bi vertices with
Bi vertices from each tree.

We can describe the edges between level i and i − 1 as a func-
tion fi : [M · Bi] → [M · Bi−1] that is balanced: for each
x ∈ [MBi−1], |(fi)−1(x)| = B. We will use the following conve-
nient notation for composition: f≥i = fi◦fi+1◦· · · . For example,
the ancestor on level i− 1 of leaf x is f≥i(x).

Our hard instance will insert the edges describing fi’s in bottom-
up fashion (i.e. by decreasing i, from the largest level up to the
roots). We call “epoch i” the period of time when the edges fi are
inserted. Let Wi (respectively Ri) be the cells written (respectively,
read) in epoch i. All the above edges are added in union–find style
from roots of current trees, i.e. the hard instance only runs UNION

operations for this part of the construction. More precisely, before
epoch i the future roots vi−1,· on level i − 1 are singletons, and
for each level i node vi,j , we execute UNION(vi−1,fi(j), vi,j). It
follows that |Wi| + |Ri| ≤ M · BitU. We will use the following
convenient notation for set union: W≤i =

⋃
j≤i Wj . The cells

Wi \W<i are those last written in epoch i.
The above constitutes the hard case for union–find from [8]. At

this point [8] show that running FIND on a random leaf requires
reading cells from most epochs, hence forcing the expected time of
FIND to be Ω(lg n/ lgB).

Our goal is to show that linking arbitrary vertices may lead to
much more expensive queries (even if we only allow Boolean con-
nectivity queries). We will describe some very powerful metaque-
ries that combines links to roots and leaves with a few connectivity
queries to reveal far more information than if we only had the reg-
ular connectivity queries. The metaqueries will be provably hard
to answer, so if the links are done too quickly, the queries must be
very slow.

Our graph contains C additional special vertices a1, ..., aC , con-
ceptually colored with the colors 1 . . C. Each colored vertex ai is
now linked to M/C nodes on level 0 (the final roots of our trees).
This is done in a fixed pattern: colored vertex 1 is connected to
roots 1, . . . ,M/C; colored vertex 2 to the next M/C roots; etc.

We say the root color of a vertex is the color that its root is
connected to. Conceptually, the hard distribution colors a random
set Q of exactly M leaves and verifies that these are the root col-
ors. To implement this test, we run LINK between each query leaf
and the proposed colored vertex. Then, for i = 2 . . C, we run a
CONNECTED query asking whether colored vertex i is connected
to colored vertex i−1, followed by inserting an edge between these
two color vertices. The metaquery returns “true” iff all connectivity
queries return negative answers.

We claim that if the metaquery answers true, the coloring of Q
must be consistent with the coloring of the roots. Indeed, if some
leaf is colored i and its root is colored j �= i, this inconsistency
is caught at step max{i, j}. At this step, everything with color
≤ max{i, j}−1 has been connected into a tree, so the connectivity
query will return true.
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Let χ(Q) be the coloring of leaves in Q that matches their root
colors. In the hard distribution, the metaquery always receives
proposed colors from χ(Q), so it should answer true. Neverthe-
less, the data structure will need to do a lot of work to verify
this. Let RQ be the cells read during the metaquery. We have
|RQ| ≤ C · tQ + 2M · tL. The main claim of our proof is:

LEMMA 6. For any i ∈ {1, . . . , logB(n/M)}, we have
E[|RQ ∩ (Wi \W<i)|] = Ω(εM).

Before we prove the lemma, we show how it implies our
lower bound. The sets Wi \ W<i are disjoint by construction
(they contain the cells last written in epoch i), so E[|RQ|] ≥∑

i E[|RQ∩(Wi\W<i)|]. Remember that we have logB(n/M) =

O(logB(n
ε)/ lgB) = O(ε logB n) epochs. Thus E[|RQ|] =

Ω(M · ε2 logB n). We compare this to the worst-case upper bound
|RQ| ≤ C · tQ + 2M · tL. By assumption of Theorem 2, tL =
o( lgn

log tU
). By (2) we have tL ≤ ε3 logB n = o(ε2 logB n), ensur-

ing that the second term of the upper bound is negligible. It follows
that C ·tQ = Ω(M ·ε2 logB n), hence tQ = Ω(ε2M/C logB n) =

n1−2ε · ω(tL) ≥ n1−o(1).

Proof of Lemma 6.
Fix i. We will prove the stronger statement that the lower bound

holds no matter how we fix the edges outside epoch i (all fj’s for
j �= i).

To dominate the work of later epochs i − 1, . . . , 1, we con-

sider Bi i.i.d. metaqueries. Choose sets Q1, Q2, . . . , QBi

inde-
pendently, each containing M uniformly chosen leaves. Starting
from the memory state where all trees are completely built and the
roots have been colored, we simulate each metaquery (Qj , χ(Qj))
in isolation. We do not need to write any cells in this simulation,
for the cell-probe model has unbounded state to remember inter-
mediate results and in our hard distribution there is no operation
after the metaquery. Thus the simulations of the different metaque-
ries do not influence each other. Let R� be the cells read by all Bi

metaqueries. By linearity of expectation,

E[|R� ∩ (Wi \W<i)|] ≤ Bi ·E[|RQ ∩ (Wi \W<i)|]. (3)

Let Q� =
⋃

j Q
j . Since we have fixed all f>i, asking about the

root color of a leaf q ∈ Q� is equivalent to asking about the root
color of node f>i(q) on level i.

CLAIM 7. We have E[|f>i(Q
�)|] ≥ (1− 1

e
)MBi.

PROOF. Each leaf x in some Qj is chosen uniformly, so its an-
cestor f<i(x) is also uniform. The M · Bi trials are independent
(for different Qj , Qk), or positively correlated (inside the same
Qj , since the leaves must be distinct). Thus, we expect to collect
(1− 1/e)MBi distinct ancestors.

By the Markov bound |f>i(Q
�)| ≥ 1

2
MBi with probability at

least 1 − 2/e. Thus we may fix the sequence (Q1, Q2, . . . , QBi

)
to a value that achieves |f>i(Q

�)| ≥ 1
2
MBi while increasing

E[|R� ∩ (Wi \W<i)|] by at most (1− 2/e)−1 = O(1).
The only remaining randomness in our instance are the edges

fi from epoch i and the proposed colorings χ(Qj) given to each
metaquery Qj . To be valid, these colorings are functions of fi, for
as soon as we know fi, we know the whole forest including the root
colors of all the leaves in the different Qj . The metaquery colors
have to agree on common leaves, so they provide us a coloring
χ(Q∗). With fi yet unknown, we claim that χ(Q�) has a lot of
entropy:

CLAIM 8. H(χ(Q�)) = Ω(MBi lgC).

PROOF. Let X be the unknown coloring of all vertices on level
i. We claim it has entropy H(X) = MBi · log2 C − O(C lg n).
We have not fixed anything impacting this coloring so X is a ran-

dom balanced vector from [C]MBi

. Indeed, any balanced coloring
is equiprobable, because the coloring of the roots is balanced, all
trees have the same sizes, and fi is a random balanced function.
We claim that it has entropy H(X) = MBi · log2 C −O(C lg n).
The number of balanced colorings is given by the multinomial co-

efficient
(

MBi

MBi/C, MBi/C, ...

)
. This is the central multinomial co-

efficient, so it is the largest. It must therefore be at least a frac-
tion (MBi)−C ≥ n−C of the sum of all multinomial coefficients.

This sum is CMBi

(the total number of possible colorings), so

H(X) ≥ log2(C
MBi

/nC) = MBi log2 C − C log2 n.
We argue that H(χ(Q�)) = Ω(MBi lgC). Indeed, χ(Q�)

reveals the coloring of vertices f<i(Q
�) on level i, which num-

ber at least 1
2
MBi. Given χ(Q�), to encoding X , we just write

all other colors explicitly using 1
2
MBi log2 C bits. Therefore

H(χ(Q�)) ≥ H(X)− 1
2
MBi log2 C ≥ MBi log2 C−C lg2 n−

1
2
MBi log2 C = Ω(MBi lgC).

We consider the communication game in which Alice represents
the time of epoch i (her private input is XA = fi), and Bob rep-
resents the time of epochs i − 1, . . . , 1 and the metaqueries (his
private input is XB = χ(Q�)). Their goal is to determine whether
all the metaqueries return true.

CLAIM 9. Any zero-error protocol must have average case bit
complexity Ω(MBi lgC).

PROOF. We turn our attention to the communication game. The
set of inputs of Alice and Bob that lead to a fixed transcript of the
communication protocol forms a combinatorial rectangle. More
precisely, a transcript t represents a sequence of transmissions be-
tween Alice and Bob. On Alice’s side, there will be a certain set X t

A

of inputs making her follow t provided that Bob follows t, and we
have a corresponding input set X t

B from Bob. Inputs XA and XB

will lead to t if and only if (XA, XB) ∈ X t
A×X t

B . Since the play-
ers must verify XB = χ(Q�) and the protocol has zero error, the
rectangle cannot contain two inputs of Bob with different χ(Q�),
that is, |X t

B | = 1 for all valid t. Thus H(t) ≥ H(χ(Q�).

We will use Lemma 4 to obtain a communication protocol, set-
ting the rate of false positives in the Bloom filter to p = 1

lg2 n
. The

cells written in Alice’s interval are precisely Wi; the cells read in
Bob’s interval are R<i∪R� where R� is the union of the cells read
by all the metaqueries. By Lemma 4, the communication complex-
ity is:

E
[|(R<i ∪R�) ∩ (Wi \W<i)| ·O(w)

+ |Wi| ·O(lg 1
p
) + p|R<i ∪R�| ·O(w)

]
≤ E

[|R� ∩ (Wi \W<i)|+ |R<i|
] ·O(w)

+ O(|Wi| lg lg n) + |R�| ·O(pw)

≤ E
[|R� ∩ (Wi \W<i)|

] ·O(w) + O(MBi−1tUw)

+ O(MBi · tU lg lg n) + O(MBi · tLw
lg2 n

) (4)

We compare this to the lower bound of Ω(MBi lgC) = Ω(MBi ·
ε lg n) from Claim 9. We will now argue all the terms of (4) except
the first are asymptotically negligible compared to the lower bound.
Inspecting the terms in order:
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• Since ε = o(1), we have B = t
1/ε
U = ω(tU/ε), implying

MBi−1 · tUw = o(MBi · ε lg n),
• By (1),

MBi · tU lg lg n ≤ MBi ε
2 lg n

lg lg n
lg lg n = o(MBi · ε lg n)

• the last term is always o(MBi), since tL = o(lg n) and
w = O(lg n).

As these terms of (4) are dominated by the lower bound, we ob-
tain E[|R� ∩ (Wi \ W<i)|] = Ω(εMBi). From (3), linearity of
expectation implies E[|RQ ∩ (Wi \ W<i)|] ≥ E[|R� ∩ (Wi \
W<i)|]/Bi, so we have completed the proof of Lemma 6 by show-
ing E[|RQ∩ (Wi \W<i)|] = Ω(εM). As shown earlier, Lemma 6
implies the desired lower bound of Theorem 2.

4. LOWER BOUND FOR DYNAMIC CON-
NECTIVITY

THEOREM 10. Any data structure for dynamic connectivity in
graphs of n vertices that has (amortized) update time tU = o(lg n)

must have (amortized) query time tq ≥ n1−o(1).

Let ε be such that tU = o(ε2 lg n), and define M = n1−ε and
C = nε. The shape of our graphs is depicted in Figure 1. The
vertices are points of a grid [M ]× [n/M ]. The edges of our graph
are matchings between consecutive columns. Let π1, . . . , πn/M−1

be the permutations that describe these matchings. We let π≤j =
πj ◦ πj−1 ◦ · · · ◦ π1. Node i in the first column is connected in
column j + 1 to π≤j(i).

The graph also contains C special vertices, which we imagine
are colored with the colors 1, . . . , C. At all times, a colored ver-
tex is connected to a fixed set of M/C vertices in the first col-
umn. (For concreteness, colored vertex 1 is connected to vertices
1, . . . ,M/C; colored vertex 2 to the next M/C vertices; etc.)

We will allow two meta-operations on this graph: UPDATE and
QUERY. Initially, all permutations are the identity (i.e. all edges
are horizontal). UPDATE(j, πnew) reconfigures the edges between
columns j and j + 1: it sets πj to the permutation πnew. This
entails deleting M edges and inserting M edges, so UPDATE takes
time 2M · tU.

QUERY(j, x) receives a vector χ ∈ [C]M , which it treats as a
proposed coloring for vertices on column j. The goal of the query
is to test whether this coloring is consistent with the coloring of the
vertices in the first column. More specifically, a node i of color a
in the first column must have χ[π<j(i)] = a. A QUERY can be
implemented efficiently by connectivity operations. First each ver-
tex i in column j is connected to the colored vertex χ[i]. Then, for
i = 2 . .M , we run a connectivity query to test whether colored
vertex i is connected to colored vertex i − 1. If so, QUERY return
false. Otherwise, it inserts an edge between colored vertices i and
i − 1 and moves to the next i. At the end, QUERY deletes all ver-
tices it had inserted. The total cell-probe complexity of QUERY is
O(M) · tU + C · tq . It is easy to observe that this procedure cor-
rectly tells whether the colorings are consistent (as in our instance
of incremental connectivity).

We will now describe the hard distribution over problem in-
stances. We assume n

M
− 1 is a power of two. Let σ be the bit-

reversal permutation on {0, . . . , n
M

− 2}: σ(i) is the reversal of i,
treated as a vector of log2(

n
M

− 1) bits. For i = 0, . . . , n
M

− 1,
we execute an UPDATE to position j = σ(i) + 1, and a QUERY to

the same position j. The update sets πj to a new random permuta-
tion. The query always receives the consistent coloring, and should
answer true. The total running time is

T ≤ n/M(2MtU +O(M)tU + Ctq) = O(ntU + (n/M)Ctq).

If we can prove a lower bound T = ω(ntU), then this will yield a
high lower bound for tq .

For the lower bound proof, we consider a perfect ordered binary
tree with n/M − 1. The leaves are associated with the pairs of
UPDATE and QUERY operations in time order. Let W (v) (respec-
tively R(v)) be the set of cells written (respectively, read) while ex-
ecuting the operations in the subtree of v. Note that W (v) ⊆ R(v),
since we have assumed a cell must be read before it is written. Our
main claim is:

LEMMA 11. Let v be a node with 2k leaves in its subtree, and
let vL, vR be its left and right children. Then E[|W (vL)∩R(vR)|+
1

lgn
|W (vL) ∪R(vR)|] = Ω(k · εM).

Before we prove the lemma, we use it to derive the desired
lower bound. We claim that the total expected running time is
T ≥ ∑

v E[|W (vL)∩R(vR)|], where the sum is over all nodes in
our lower bound tree. Consider how a fixed instance is executed by
the data structure. We will charge each read operation to a node in
the tree: the lowest common ancestor of the time when the instruc-
tion executes, and the time when the cell was last written. Thus,
each W (vL) ∩ R(vR) corresponds to (at least) one read instruc-
tion, so there is no double-counting in the sum.

We now sum the lower bound of Lemma 11 over all
nodes; observe that

∑
v kv = Θ( n

M
lg n

M
), since the tree has

n/M − 1 leaves. We obtain
∑

v E[|W (vL) ∩ R(vR)|] +
1

lgn

∑
v E[|W (vL)∪R(vR)|] = Ω( n

M
lg n

M
· εM). The first term

is at most T , as explained above. In the second term is also bounded
by T . This is because

∑
v E[|W (vL) ∪ R(vR)|] ≤ T lg n

M
since

every cell probe is counted once for every ancestor of the time it
executes. Thus 2T ≥ Ω( n

M
lg n

M
· εM) = Ω(ε2n lg n). In our

construction, the total running time was T = O(ntU + n
M
Ctq).

Since tU = o(ε2 lg n), the second term must dominate: nC
M

tq =

Ω(ε2n lg n), so tq > M/C = n1−2ε = n1−o(1).

Proof of Lemma 11.
We will prove the stronger statement that the lower bound holds

no matter how we fix the updates outside node vL.
We transform the problem into the natural communication game:

Alice receives the update permutations in the subtree vL and Bob
receives the colorings of the queries in the subtree vR (the updates
are fixed). They have to check whether all queries are positive in
the sequence of UPDATE and QUERY operations defined by their
joint input.

We apply Lemma 5 to construct a nondeterministic communi-
cation protocol for this problem, with complexity E[|W (vL) ∩
R(vR)| · O(lg n) + O(|W (vL) ∪ R(vR)|)]. The conclusion of
Lemma 11 follows by comparing this protocol to the following
communication lower bound:

LEMMA 12. The game above has nondeterministic (average-
case) communication complexity Ω(kM lgC).

PROOF. Let XA and XB be the inputs of the two players. For
any choice of XA, there is a unique sequence of colorings XB that
Bob should accept. As in the proof of Lemma 9, we conclude that
the public proof is an encoding of XB so we can lower bound the
complexity via H(XB).
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Figure 1: The shape of our graphs.

Let JA and JB be the columns touched (updated and queried)
in Alice’s input and in Bob’s input. Bob’s input consists of the
coloring of column j, for each j ∈ JB . This is π<j applied to the
fixed coloring in the first column.

Since JA and JB are defined by the bit-reversal permutation, we
know that they interleave perfectly: between every two values in
the sorted order of JB , there is a unique value in JA. Thus, the
coloring for different j ∈ JB are independent random variables,
since an independent uniform permutation from JA is composed
into π<j compared to all indices from JB below j. Each coloring is
uniformly distributed among balanced colorings, so it has entropy
M lgC − O(C lgM) (c.f. proof of Claim 8). We conclude that
H(XB) = Ω(kM lgC).

5. AMORTIZED LINK-FIND BOUNDS
The union–find problem has been studied into excruciating detail

and is now essentially understood. From an amortized perspective,
Tarjan [15] showed that a sequence of n−1 unions and m finds can
be supported in time O(n+mα(m,n)). See [17, 11] for different
analyses and trade-offs between amortized running times. From
a worst-case perspective, the classic union-by-rank gives union in
constant time and find in O(log n) time. Trade-offs were addressed
by Blum [6], with an improvement by Smid [14]. They show that,
if the time for union is bounded by tUNION, FIND can be supported
in worst-case O(lg n/ lg tUNION). Finally, Alstrup et al. [1] showed
that the amortized and worst-case trade-offs can be achieved simul-
taneously. These bounds are known to be optimal in the powerful
cell-probe model (see below for a review of the lower bounds).

A similar phenomenon appeared in connection with union-find
with deletions. Kaplan et al. [10] considered this problem but
wanted bounds where n represented the size of the actual tree(s)
involved in an operation. All worst-case bounds are trivially local,
and [10] proved refined the standard amortized analysis to work
locally, though the bound becomes a bit weird with the standard
notation: α(n) is OK, but otherwise, it becomes α(n · �M/N�, n)
amortized time per find where M and N are the global number of
finds and unions, respectively. With the notation from [2], the lo-
cal amortized find bound is O(α�M/N�(n)). They showed how to
augment union-find with a delete operation if we when deleting an
element x, first find the root and then perform a local rebuilding
step in the tree that x is deleted from. For tU = O(1), this gave
them both find-root and delete in O(log n) time. Similar to our
case, they asked if the deletion time could be made better than this
find time. For the deletions, the answer was yes. Alstrup et al. [2]
proved that deletions could be supported locally in constant time
without affecting the O(log n) bound on the query time.

Back to original.
In this section we consider the amortized complexity of the link-

find problem which is like the union-find problem except that we
can link arbitrary nodes, not just roots. In link-find, we may not
necessarily have an obvious notion of a root that we can find. The
fundamental requirement to a component is that if we call find from
any vertex in it, we get the same root as long as the component is
not linked with other components.

Let u be the number of updates and q the number of queries.
With union-find, the complexity over the whole sequence is
Θ(α(q, u)q) if q ≥ u, and Θ(α(q, q)q + u) if q ≤ u. With
link-find, we get the same complexity when q ≥ u, but a higher
complexity of Θ(α(q, u)u) when q ≤ u. Thus, with link-find, we
get a symmetric formula in q and u of

Θ(α(max{q, u},min{q, u})max{q, u}). (5)

We get the upper-bound in (5) via a very simple reduction to union-
find.

5.1 The link-find data structure
Nodes have three types: free, leaf, and union nodes. A leaf node

has a pointer to a neighboring union node, and the union nodes will
participate in a standard union-find data structure. The parent of a
leaf is the union node it points to. The parent of a union node is as
in the union-find structure and the parent of a root is the root itself.

All nodes start as free nodes. We preserve the invariant that if
a component has a free node, then all nodes in the component are
free.

To perform a find on a free node v, we scan the component of
v. If it is a singleton, we just return it. Otherwise, assuming some
initial tie-breaking order, we make the smallest node in the compo-
nent a union node and all other nodes leaf nodes pointing to is. The
union node which is its own root is returned. All this is paid for by
the nodes that lost their freedom.

To perform a find on a non-free node, we perform it on the parent
which is in the union-find data structure.

We now consider the different types of links. When we perform
link between two free nodes, nothing happens except that an edge
is added in constant time.

If we link a free node v with a non-free node w, we make all
nodes in the components of v leaves pointing to the parent of w.
This is paid for by the new leaves.

If we link two non-free nodes, we first perform a find from their
parents which are union nodes. If they have different roots we unite
them.

This completes the description of our link-find data structure
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which spends linear time reducing to a union-find data structure.
A union node requires a find on a non-singleton node, so the num-
ber of union nodes is at most min{q, u}. Concerning finds in the
union-find data structure, we get one for each original find on a
non-free node. In addition, we get two finds for each link of two
non-free nodes, adding up to at most q + 2u finds. Our total com-
plexity is therefore

O(u+ q + α(q + 2u,min{q, u})(q + 2u))

= O(α(max{q, u},min{q, u})max{q, u}).
We are going to present a matching lower bound.

5.2 The link-find data structure for a forest
We will now show that it is the links between nodes in the same

components that makes link-find harder than union-find in the sense
that if no such links appear, we get the same O-bound as with
union-find.

The modification to the above link-find reduction is simple. Us-
ing standard doubling ideas, we can assume that u and q are known
in advance. If q ≥ u, we are already matching the union-find
bound, so assume q ≤ u.

To do a find on a free node, we again scan its component. How-
ever, if it has less than α(q, q) nodes, we just return the smallest
but leaving the component free. Otherwise, as before, we make the
smallest node a union node and all other nodes leaf nodes pointing
to it. This is the only change to our link-find algorithm.

In the case where the component has α(q, q) nodes, we clearly
pay only O(α(q, q)) for a find. The advantage is that we now cre-
ate at most u/α(q, q) union nodes. Links involving a free node
have linear total cost, and now, when we perform a link of non-free
nodes, we know they are from different components to be united,
so this will reduce the number of union roots by one. Hence we get
at most 2u/α(q, q) finds resulting from these links. Thus, in the
union-find data structure, we end up with q+2u/α(q, q) finds and
u/α(q, q) unions. The total cost is

O(u+ q + α(q + 2u/α(q, q), u/α(q, q))(q + 2u/α(q, q))

= O(α(q, q)q + n)

time. The simplification uses that α is increasing in its first and
decreasing in its second argument, and that the whole time bound
is linear if q ≤ u/α(q, q).
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APPENDIX

Appendix α. Lower Bounds for Amortized
Link–Find
We will now sketch a proof for the lower-bound in (5) with u link
updates and q find queries. When q ≥ u, we get this from the
union-find lower bound of Ω(α(q, u)q) from [8]. However, for
q � u, we need to prove a higher lower-bound than that for union-
find. The lower bound we want in this case is Ω(α(u, q)u).

We would get the desired lower bound if we could code a union-
find problem with Ω(q) updates and Ω(u) queries. We cannot make
such a black-box reduction, but we can do it inside the proof con-
struction from [8]. We will only present the idea in the “reduction”.
For a real proof one has to carefully examine the whole proof from
[8] to verify that nothing really breaks.

The lower bound construction from [8] proceeds in rounds. We
start with singleton roots. In a union round, we pair all current
roots randomly, thus halving the number of roots. In a find round,
we perform a number of finds on random leaves. The number of
finds are adjusted depending on the actions of the data structure.
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From [9] we know that the lower bound also holds if the finds just
have to verify the current root of a node.

In our case, we will start with n roots. In a union-round, we just
link roots as in union-find. However, in a find round, instead of
calling find from a leaf v, we link v to its current root r. We want
to turn this leaf-root link into a verification. We will not do that for
the individual links, but we will do it for the find-round as a whole
(one needs to verify that this batching preserves the lower-bound).

At the end of the find-round, we simply perform a find on each
root. All these finds should return the root itself. If one of the links
(v, r) had gone to the wrong root and r′ was the correct root, then
r and r′ would be connected in the same tree, which means that
they cannot both be roots. One of the finds would therefore return a
different root. If the union-find problem we code used f finds, then
our link-find solution ends up with u = n− 1+ f link updates and
q = n−1 find verifications, hence with the desired lower bound of

Ω(α(f, n)f) = Ω(α(u, q)u).
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