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ABSTRACT
We propose and analyze a multi-server model that captures
a performance trade-off between centralized and distributed
processing. In our model, a fraction p of an available re-
source is deployed in a centralized manner (e.g., to serve a
most-loaded station) while the remaining fraction 1 − p is
allocated to local servers that can only serve requests ad-
dressed specifically to their respective stations.

Using a fluid model approach, we demonstrate a surpris-
ing phase transition in the steady-state delay, as p changes:
in the limit of a large number of stations, and when any
amount of centralization is available (p > 0), the average
queue length in steady state scales as log 1

1−p

1
1−λ when the

traffic intensity λ goes to 1. This is exponentially smaller
than the usual M/M/1-queue delay scaling of 1

1−λ , obtained
when all resources are fully allocated to local stations (p = 0).
This indicates a strong qualitative impact of even a small
degree of centralization.

We prove convergence to a fluid limit, and characterize
both the transient and steady-state behavior of the finite
system, in the limit as the number of stations N goes to in-
finity. We show that the sequence of queue-length processes
converges to a unique fluid trajectory (over any finite time
interval, as N →∞), and that this fluid trajectory converges
to a unique invariant state vI , for which a simple closed-form
expression is obtained. We also show that the steady-state
distribution of the N -server system concentrates on vI as N
goes to infinity.
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1. INTRODUCTION
The tension between distributed and centralized process-

ing seems to have existed ever since the inception of com-
puter networks. Distributed processing allows for simple
implementation and robustness, while a centralized scheme
guarantees optimal utilization of computing resources at the
cost of implementation complexity and communication over-
head. A natural question is how performance varies with
the degree of centralization. Such understanding is of great
interest in the context of, for example, infrastructure plan-
ning (static) or task scheduling (dynamic) in large server
farms or cloud clusters, which involve a trade-off between
performance (e.g., delay) and cost (e.g., communication in-
frastructure, energy consumption, etc.). In this paper, we
address this problem by formulating and analyzing a multi-
server model with an adjustable level of centralization. We
begin by describing informally two motivating applications.

1.1 Primary Motivation: Server Farm with Lo-
cal and Central Servers

Consider a server farm consisting of N stations, depicted
in Figure 1. Each station is fed by an independent stream
of tasks, arriving at a rate of λ tasks per second, with 0 <
λ < 1.1 Each station is equipped with a local server with
identical performance; the server is local in the sense that it
only serves its own station. All stations are also connected
to a single centralized server which will serve a station with
the longest queue whenever possible.

We consider an N -station system. The system designer is
granted a total amount of N divisible computing resources
(e.g., a collection of processors). In a loose sense (to be
formally defined in Section 2.1), this means that the sys-
tem is capable of processing N tasks per second when fully
loaded. The system designer is faced with the problem of
allocating computing resources to local and central servers.
Specifically, for some p ∈ (0,1), each of the N local servers
is able to process tasks at a maximum rate of 1 − p tasks
per second, while the centralized server, equipped with the
remaining computing power, is capable of processing tasks
at a maximum rate of pN tasks per second. The parameter
p captures the amount of centralization in the system. Note

1Without loss of generality, we normalize so that the largest pos-
sible arrival rate is 1.



that since the total arrival rate is λN , with 0 < λ < 1, the
system is underloaded for any value p ∈ (0,1).

When the arrival process and task processing times are
random, there will be times when some stations are empty
while others are loaded. Since a local server cannot help
another station process tasks, the total computational re-
sources will be better utilized if a larger fraction is allo-
cated to the central server. However, a greater degree of
centralization (corresponding to a larger value of p) entails
more frequent communications and data transfers between
the local stations and the central server, resulting in higher
infrastructure and energy costs.

How should the system designer choose the coefficient p?
Alternatively, we can ask an even more fundamental ques-
tion: is there any significant difference between having a
small amount of centralization (a small but positive value
of p), and complete decentralization (no central server and
p = 0)?

1.2 Secondary Motivation: Partially Central-
ized Scheduling

Consider the system depicted in Figure 2. The arrival
assumptions are the same as in the Section 1.1. However,
there is no local server associated with a station; all stations
are served by a single central server. Whenever the central
server becomes free, it chooses a task to serve as follows.
With probability p, it processes a task from a most loaded
station. Otherwise, it processes a task from a station se-
lected uniformly at random; if the randomly chosen station
is empty, the current round is in some sense “wasted” (to be
formalized in Section 2.1).

This second interpretation is intended to model a scenario
where resource allocation decisions are made at a central-
ized location on a dynamic basis, but communications be-
tween the decision maker (central server) and local stations
are costly or simply unavailable from time to time. Hence,
while it is intuitively obvious that longest-queue-first (LQF)
scheduling is more desirable, it may not always be possible
to obtain up-to-date information on the system state (i.e.,
the queue lengths at all stations). Thus, the central server
may be forced to allocate service blindly. In this setting,
a system designer is interested in setting the optimal fre-
quency (p) at which global state information is collected so
as to balance performance and communication costs.

As we will see in the sequel, the system dynamics in the
two applications are captured by the same mathematical
structure under appropriate stochastic assumptions on task
arrivals and processing times, and hence will be addressed
jointly in the current paper.

1.3 Overview of Main Contributions
We provide here an overview of the main contributions.

Exact statements of our results will be provided in Section
3 after the necessary terminology has been introduced.

Our goal is to study the performance implications of vary-
ing degrees of centralization, as expressed by the coefficient
p. To accomplish this, we use a so-called fluid approxima-
tion, whereby the queue length dynamics at the local sta-
tions are approximated, as N →∞, by a deterministic fluid
model, governed by a system of ordinary differential equa-
tions (ODEs).

Fluid approximations typically lead to results of two fla-
vors: qualitative results derived from the fluid model that

Figure 1: Server Farm with Local and Central
Servers

Figure 2: Centralized Scheduling with Communica-
tion Constraints

give insights into the performance of the original finite
stochastic system, and technical convergence results (often
mathematically involved) that justify the use of such ap-
proximations. We summarize our contributions along these
two dimensions:

1. On the qualitative end, we derive an exact expres-
sion for the invariant state of the fluid model, for any
given traffic intensity λ and centralization coefficient
p, thus characterizing the steady-state distribution of
the queue lengths in the system as N → ∞. This en-
ables a system designer to use any performance metric
and analyze its sensitivity with respect to p. In par-
ticular, we show a surprising exponential phase transi-
tion in the scaling of average system delay as the load
approaches capacity (λ → 1) (Corollary 3): when an
arbitrarily small amount of centralized computation is
applied (p > 0), the average queue length in the system
scales as 2

E(Q) ∼ log 1
1−p

1

1 − λ
, (1)

as the traffic intensity λ approaches 1. This is dras-
tically smaller than the 1

1−λ scaling obtained if there

is no centralization (p = 0).3 In terms of the question
raised at the end of Section 1.1, this suggests that for

2The ∼ notation used in this paper is to be understood as asymp-
totic closeness in the following sense: f (x) ∼ g (x) , as x → 1⇔

limx→1
f(x)
g(x) = 1.

3When p = 0, the system degenerates into N independent queues.
The 1

1−λ scaling comes from the mean queue length expression

for M/M/1 queues.



large systems, even a small degree of centralization in-
deed provides significant improvements in the system’s
delay performance, in the heavy traffic regime.

2. On the technical end, we show:

(a) Given any finite initial queue sizes, and with high
probability, the evolution of the queue length pro-
cess can be approximated by the unique solution
to a fluid model, over any finite time interval, as
N →∞.

(b) All solutions to the fluid model converge to a
unique invariant state, as time t → ∞, for any
finite initial condition (global stability).

(c) The steady-state distribution of the finite system
converges to the invariant state of the fluid model
as N →∞.

The most notable technical challenge comes from the
fact that the longest-queue-first policy used by the cen-
tralized server causes discontinuities in the drift in the
fluid model (see Section 3.1 for details). In partic-
ular, the classical approximation results for Markov
processes (see, e.g., [3]), which rely on a Lipschitz-
continuous drift in the fluid model, are hard to ap-
ply. Thus, in order to establish the finite-horizon ap-
proximation result (a), we employ a sample-path based
approach: we prove tightness of sample paths of the
queue length process and characterize their limit points.
Establishing the convergence of steady state distribu-
tions in (c) also becomes non-trivial due to the pres-
ence of discontinuous drifts. To derive this result, we
will first establish the uniqueness of solutions to the
fluid model and a uniform speed of convergence of
stochastic sample paths to the solution of the fluid
model over a compact set of initial conditions.

1.4 Related Work
To the best of our knowledge, the proposed model for

the splitting of computing resources between distributed and
central servers has not been studied before. However, the
fluid model approach used in this paper is closely related to,
and partially motivated by, the so-called supermarket model
of randomized load-balancing. In that literature, it is shown
that by routing tasks to the shorter queue among a small
number (d ≥ 2) of randomly chosen queues, the probability
that a typical queue has at least i tasks (denoted by si) de-

cays as λ
di−1
d−1 (super-geometrically) as i → ∞ ([4],[5]); see

also the survey paper [9] and references therein. A varia-
tion of this approach in a scheduling setting with channel
uncertainties is examined in [6], but si no longer exhibits
super-geometric decay and only moderate performance gain
can be harnessed from sampling more than one queue.

In our setting, the system dynamics causing the exponen-
tial phase transition in the average queue length scaling are
significantly different from those for the randomized load-
balancing scenario. In particular, for any p > 0, the tail
probabilities si become zero for sufficiently large finite i,
which is significantly faster than the super-geometric decay
in the supermarket model.

On the technical side, arrivals and processing times used
in supermarket models are often memoryless (Poisson or
Bernoulli) and the drifts in the fluid model are typically con-
tinuous with respect to the underlying system state. Hence

convergence results can be established by invoking classi-
cal approximation results, based on the convergence of the
generators of the associated Markov processes. An excep-
tion is [8], where the authors generalized the supermarket
model to arrival and processing times with general distribu-
tions. Since the queue length process is no longer Markov,
the authors reply on an asymptotic independence property
of the limiting system and use tools from statistical physics
to establish convergence.

Our system remains Markov with respect to the queue
lengths, but a significant technical difference from the su-
permarket model lies in the fact that the longest-queue-first
service policy introduces discontinuities in the drifts. For
this reason, we need to use a more elaborate set of tech-
niques to establish the connection between stochastic sam-
ple paths and the fluid model. Moreover, the presence of
discontinuities in the drifts creates challenges even for prov-
ing the uniqueness of solutions for the deterministic fluid
model. (Such uniqueness is needed to establish convergence
of steady-state distributions.) Our approach is based on a
state representation that is different from the one used in
the popular supermarket models, which turns out to be sur-
prisingly more convenient to work with for establishing the
uniqueness of solutions to the fluid model.

Besides the queueing-theoretic literature, similar fluid mo-
del approaches have been used in many other contexts to
study systems with large populations. Recent results in
[7] establish convergence results for finite-dimensional sym-
metric dynamical systems with drift discontinuities, using
a more probabilistic (as opposed to sample path) analysis,
carried out in terms of certain conditional expectations. We
believe it is possible to prove our results using the meth-
ods in [7], with additional work. However, the coupling ap-
proach used in this paper provides strong physical intuition
on the system dynamics, and avoids the need for additional
technicalities from the theory of multi-valued differential in-
clusions.

Finally, there has been some work on the impact of service
flexibilities in routing problems motivated by applications
such as multilingual call centers. These date back to the
seminal work of [10], with a more recent numerical study in
[11]. These results show that the ability to route a portion
of customers to a least-loaded station can lead to a constant-
factor improvement in average delay under diffusion scaling.
This line of work is very different from ours, but in a broader
sense, both are trying to capture the notion that system per-
formance in a random environment can benefit significantly
from even a small amount of centralized coordination.

1.5 Organization of the Paper
Section 2 introduces the precise model to be studied, our

assumptions, and the notation to be used throughout. The
main results are summarized in Section 3, where we also
discuss their implications along with some numerical results.
The remainder of the paper is devoted to proofs, and the
reader is referred to Section 4 for an overview of the proof
structure. Due to space limitations, some of the proofs are
sketched, omitted, or relegated to the Appendix.

2. MODEL AND NOTATION

2.1 Model
We present our model using terminology that corresponds



to the server farm application in Section 1.1. Time is as-
sumed to be continuous.

1. System. The system consists of N parallel stations.
Each station is associated with a queue which stores
the tasks to be processed. The queue length (i.e., num-
ber of tasks) at station n at time t is denoted by Qn(t),
n ∈ {1,2, . . . ,N}, t ≥ 0. For now, we do not make any
assumptions on the queue lengths at time t = 0, other
than that they are finite.

2. Arrivals. Stations receive streams of incoming tasks
according to independent Poisson processes with a com-
mon rate λ ∈ [0,1).

3. Task Processing. We fix a centralization coefficient
p ∈ [0,1].

(a) Local Servers. The local server at station n is
modeled by an independent Poisson clock with
rate 1 − p (i.e., the times between two clock ticks
are independent and exponentially distributed with
mean 1

1−p ). If the clock at station n ticks at time

t, we say that a local service token is generated
at station n. If Qn(t) ≠ 0, exactly one task from
station n “consumes” the service token and leaves
the system immediately. Otherwise, the local ser-
vice token is “wasted” and has no impact on the
future evolution of the system.4

(b) Central Server. The central server is modeled
by an independent Poisson clock with rate Np.
If the clock ticks at time t at the central server,
we say that a central service token is gen-
erated. If the system is non-empty at t (i.e.,
∑Nn=1Qn(t) > 0), exactly one task from some sta-
tion i, chosen uniformly at random out of the sta-
tions with a longest queue at time t, consumes the
service token and leaves the system immediately.
If the whole system is empty, the central service
token is wasted.

Equivalence between the two motivating applica-
tions. We comment here that the scheduling application in
Section 1.2 corresponds to the same mathematical model.
The arrival statistics to the stations are obviously identi-
cal in both models. For task processing, note that we can
equally imagine all service tokens as being generated from
a single Poisson clock with rate N . Upon the generation
of a service token, a coin is flipped to decide whether the
token will be directed to process a task at a random station
(corresponding to a local service token), or a station with
a longest queue (corresponding to a central service token).
Due to the Poisson splitting property, this produces identi-
cal statistics for the generation of local and central service
tokens as described above.

4The generation of a token can also be thought of as a completion
of a previous task, so that the server “fetches” a new task from
the queue to process, hence decreasing the queue length by 1.
The same interpretation holds for the central service tokens. See
Section 2.1 of [13] for a discussion on the physical interpretation
of service tokens.

2.2 System State
Let us fix N . Since all events (arrivals of tasks and ser-

vice tokens) are generated according to independent Poisson
processes, the queue length vector at time t, (Q1(t),Q2(t),
. . . ,QN(t)), is Markov. Moreover, the system is fully sym-
metric, in the sense that all queues have identical and inde-
pendent statistics for the arrivals and local service tokens,
and the assignment of central service tokens does not de-
pend on the specific identity of stations besides their queue
lengths. Hence we can use a Markov process {SNi (t)}∞

i=0 to
describe the evolution of a system with N stations, where

SNi (t) △= 1

N

N

∑
n=1

I[i,∞) (Qn(t)) , i ≥ 0. (2)

Each coordinate SNi (t) represents the fraction of queues
with at least i tasks. Note that SN0 (t) = 1 for all t and
N according to this definition. We call SN (t) the normal-
ized queue length process. We also define the aggregate
queue length process as

VN
i (t) △=

∞
∑
j=i

SNj (t) , i ≥ 0. (3)

Note that

SNi (t) = VN
i (t) −VN

i+1(t). (4)

In particular, this means that VN
0 (t) −VN

1 (t) = SN0 (t) = 1.
Note also that

VN
1 (t) =

∞
∑
j=1

SNj (t) (5)

is equal to the average queue length in the system at time t.
When the total number of tasks in the system is finite (hence
all coordinates of VN(t) are finite), there is a straightfor-
ward bijection between SN(⋅) and VN(⋅). Hence VN(t)
is Markov and also serves as a valid representation of the
system state. While the SN representation admits a more
intuitive interpretation as the “tail” probability of a typical
station having at least i tasks, it turns out the VN(⋅) rep-
resentation is significantly more convenient to work with,
especially in proving uniqueness of solutions to the associ-
ated fluid model (see Section 7.1). For this reason, we will
be working mostly with the VN representation, but will in
some places state results in terms of SN , if doing so provides
a better physical intuition.

2.3 Notation
Let Z+ be the set of non-negative integers. The following

sets will be used throughout the paper (whereM is a positive
integer):

S △= {s ∈ [0,1]Z+ ∶ 1 = s0 ≥ s1 ≥ ⋯ ≥ 0} , (6)

SM △= {s ∈ S ∶
∞
∑
i=1

si ≤M} , S∞ △= {s ∈ S ∶
∞
∑
i=1

si < ∞} , (7)

VM △=
⎧⎪⎪⎨⎪⎪⎩
v ∶ vi =

∞
∑
j=i

sj , for some s ∈ SM
⎫⎪⎪⎬⎪⎪⎭
, (8)

V∞ △=
⎧⎪⎪⎨⎪⎪⎩
v ∶ vi =

∞
∑
j=i

sj , for some s ∈ S∞
⎫⎪⎪⎬⎪⎪⎭
, (9)



QN △= {x ∈ RZ+ ∶ xi =
K

N
, for some K ∈ Z+,∀i} . (10)

We define the weighted L2 norm ∥ ⋅ ∥w on RZ+ as

∥x − y∥2
w =

∞
∑
i=0

∣xi − yi∣2

2i
, x,y ∈ RZ+ . (11)

In general, we will be using bold letters to denote vectors
and ordinary letters for scalars, with the exception that a
bold letter with a subscript (e.g., vi) is understood as a
(scalar-valued) component of a vector. Upper-case letters

are generally reserved for random variables (e.g., V(0,N))
or scholastic processes (e.g., VN(t)), and lower-case letters
are used for constants (e.g., v0) and deterministic functions
(e.g., v(t)). Finally, a function is in general denoted by x(⋅),
but is sometimes written as x(t) to emphasize the type of
its argument.

3. SUMMARY OF MAIN RESULTS

3.1 Definition of Fluid Model
Before introducing the main results, we first define the

fluid model, with some intuitive justification.

Definition 1. (Fluid Model) Given an initial condition

v0 ∈ V∞, a function v(t) ∶ [0,∞) → V∞ is said to be a
solution to the fluid model (or fluid solution for short)
if:

(1) v(0) = v0;

(2) for all t ≥ 0,

v0(t) − v1(t) = 1, (12)

and 1 ≥ vi(t) − vi+1(t) ≥ vi+1(t) − vi+2(t) ≥ 0, ∀i ;(13)

(3) for almost all t ∈ [0,∞), and for every i ≥ 1, vi(t) is
differentiable and satisfies

v̇i (t) = λ (vi−1 − vi) − (1 − p) (vi − vi+1) − gi (v) , (14)

where

gi (v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p, vi > 0,
min{λvi−1, p} , vi = 0,vi−1 > 0,
0, vi = 0,vi−1 = 0.

(15)

We can write Eq. (14) more compactly as

v̇ (t) = F (v) , (16)

where

Fi (v) △= λ (vi−1 − vi) − (1 − p) (vi − vi+1) − gi (v) . (17)

We call F (v) the drift at point v.

Interpretation of the fluid model.The solution to the
fluid model, v(t), can be thought of as a deterministic ap-
proximation to the sample paths of VN(t) for large values of
N . Conditions (1) and (2) correspond to initial and bound-
ary conditions, respectively. Before rigorously establishing
the validity of approximation, we provide some intuition for
each of the drift terms in Eq. (14):

I. λ (vi−1 − vi): This term corresponds to arrivals. When
a task arrives at a station with i−1 tasks, the system has one
more queue with i tasks, and SNi increases by 1

N
. However,

the number of queues with at least j tasks, for j ≠ i, does

not change. Thus, SNi is the only one that is incremented.

Since VN
i

△= ∑∞
k=i S

N
k , this implies that VN

i is increased by
1
N

if and only if a task arrives at a queue with at least i− 1
tasks. Since all stations have an identical arrival rate λ,
the probability of VN

i being incremented upon an arrival to
the system is equal to the fraction of queues with at least
i − 1 tasks, which is VN

i−1(t) −VN
i (t). We take the limit as

N → ∞, and multiply by the total arrival rate, Nλ, times
the increment due to each arrival, 1

N
, to obtain the term

λ (vi−1 − vi).
II. (1 − p) (vi − vi+1): This term corresponds to the com-

pletion of tasks due to local service tokens. The argument
is similar to that for the first term.

III. gi (v): This term corresponds to the completion of
tasks due to central service tokens.

1. gi (v) = p, if vi > 0. If i > 0 and vi>0, then there
is a positive fraction of queues with at least i tasks.
Hence the central server is working at full capacity,
and the rate of decrease in vi due to central service
tokens is equal to the maximum rate of the central
server, namely p.

2. gi (v) = min{λvi−1, p} , if vi = 0,vi−1 > 0. This case
is more subtle. Note that since vi = 0, the term λvi−1
is equal to λ(vi−1 − vi), which is the rate at which vi
increases due to arrivals. Here the central server serves
queues with at least i tasks whenever such queues arise
to keep vi at zero. Thus, the total rate of central
service tokens dedicated to vi matches exactly the rate
of increase of vi due to arrivals.5

3. gi (v) = 0, if vi = vi−1 = 0. Here, both vi and vi−1 are
zero and there are no queues with i − 1 or more tasks.
Hence there is no positive rate of increase in vi due to
arrivals. Accordingly, the rate at which central service
tokens are used to serve stations with at least i tasks
is zero.

Note that, as mentioned in the introduction, the disconti-
nuities in the fluid model come from the term g(v), which
reflects the presence of a central server.

3.2 Analysis of the Fluid Model
The following theorem characterizes the invariant state for

the fluid model. It will be used to demonstrate an exponen-
tial improvement in the rate of growth of the average queue
length as λ→ 1 (Corollary 3).

Theorem 2. The drift F(⋅) in the fluid model admits a

unique invariant state vI (i.e., F(vI) = 0). Letting sIi
△=

vIi −vIi+1 for all i ≥ 0, the exact expression for the invariant
state as follows:

(1) If p = 0, then sIi = λi, ∀i ≥ 1.

(2) If p ≥ λ, then sIi = 0, ∀i ≥ 1.

5Technically, the minimization involving p is not necessary: if
λvi−1(t) > p, then vi(t) cannot stay at zero and will immediately
increase after t. We keep the minimization just to emphasize that
the maximum rate of increase in vi due to central service tokens
cannot exceed the central service capacity p.



(3) If 0 < p < λ, and λ = 1 − p, then6

sIi =
⎧⎪⎪⎨⎪⎪⎩

1 − ( p
1−p) i, 1 ≤ i ≤ ĩ∗ (p, λ) ,

0, i > ĩ∗ (p, λ) ,

where ĩ∗ (p, λ) △= ⌊ 1−p
p

⌋.

(4) If 0 < p < λ, and λ ≠ 1 − p, then

sIi =
⎧⎪⎪⎨⎪⎪⎩

1−λ
1−(p+λ) ( λ

1−p)
i
− p

1−(p+λ) , 1 ≤ i ≤ i∗ (p, λ) ,
0, i > i∗ (p, λ) ,

where

i∗ (p, λ) △= ⌊log λ
1−p

p

1 − λ
⌋ , (18)

Proof. The proof consists of simple algebra to compute
the solution to F(vI) = 0. The proof is given in Appendix
A.1. ◻

Case (4) in the above theorem is particularly interesting,
as it reflects the system’s performance under heavy load (λ
close to 1). Note that since sI1 represents the probability of
a typical queue having at least i tasks, the quantity

vI1
△=

∞
∑
i=1

sIi (19)

represents the average queue length. The following corollary,
which characterizes the average queue length in the invariant
state for the fluid model, follows from Case (4) in Theorem
2 by some straightforward algebra.

Corollary 3. (Phase Transition in Average Queue
Length Scaling) If 0 < p < λ and λ ≠ 1 − p, then

vI1
△=

∞
∑
i=1

sIi = (1 − p) (1 − λ)
(1 − p − λ)2

⎡⎢⎢⎢⎣
1 − ( λ

1 − p
)
i∗(p,λ)⎤⎥⎥⎥⎦

− p

1 − p − λ
i∗ (p, λ) , (20)

with i∗ (p, λ) = ⌊log λ
1−p

p
1−λ⌋. In particular, this implies that

for any fixed p > 0, vI1 scales as

vI1 ∼ i∗ (p, λ) ∼ log 1
1−p

1

1 − λ
, as λ→ 1. (21)

The scaling of the average queue length in Eq. (21) with
respect to arrival rate λ is contrasted with (and is exponen-
tially better than) the familiar 1

1−λ scaling when no central-
ized resource is available (p = 0).

Intuition for Exponential Phase Transition. The
exponential improvement in the scaling of vI1 is surprising,
because the expressions for sIi look ordinary and do not con-
tain any super-geometric terms in i. However, a closer look
reveals that for any p > 0, the tail probabilities sI have a
finite support: sIi “dips”down to 0 as i increases to i∗(p, λ),
which is even faster than a super-geometric decay. Since

0 ≤ sIi ≤ 1 for all i, it is then intuitive that vI1 = ∑i
∗(p,λ)
i=1 sIi

is upper-bounded by i∗(p, λ), which scales as log 1
1−p

1
1−λ as

λ → 1. Note that a tail probability with “finite-support”
implies that the fraction of stations with more than i∗(p, λ)
6Here ⌊x⌋ is defined as the largest integer that is less than or
equal to x.
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Figure 3: Values of sIi , as a function of i, for p = 0
and p = 0.05, with traffic intensity λ = 0.99.

tasks decreases to zero asN →∞. For example, we may have
a strictly positive fraction of stations with, say, 10 tasks, but
stations with more than 10 tasks hardly exist. While this
may appear counterintuitive, it is a direct consequence of
centralization in the resource allocation schemes. Since a
fraction p of the total resource is constantly going after the
longest queues, it is able to prevent long queues (i.e., queues
with more than i∗(p, λ) tasks) from even appearing. The
thresholds i∗(p, λ) increasing to infinity as λ → 1 reflects
the fact that the central server’s ability to annihilate long
queues is compromised by the heavier traffic loads; our result
essentially shows that the increase in i∗(λ, p) is surprisingly
slow. ◇

Numerical Results: Figure 3 compares the invariant
state vectors for the case p = 0 (stars) and p = 0.05 (dia-
monds). When p = 0, sIi decays exponentially as λi, while
when p = 0.05, sIi decays much faster, and reaches zero at
around i = 40. Figure 4 demonstrates the exponential phase
transition in the average queue length as the traffic inten-
sity reaches 1, where the solid curve, corresponding to a
positive p, increases significantly slower than the usual 1

1−λ
delay scaling (dotted curve). Simulations show that the the-
oretical model offers good predictions for even a moderate
number of servers (N = 100). The detailed simulation setup
can be found in Appendix B. Table 1 gives examples of the
values for i∗(p, λ); note that these values in some sense cor-
respond to the maximum delay an average customer could
experience in the system. ◇

Theorem 2 characterizes the invariant state of the fluid
model, without saying if and how a solution of the fluid
model reaches it. The next two results state that given any
finite initial condition, the solution to the fluid model is
unique and converges to the unique invariant state as time
goes to infinity.

Theorem 4. (Uniqueness of Solutions to Fluid Model)

Given any initial condition v0 ∈ V∞, the fluid model has a
unique solution v(v0, t), t ∈ [0,∞).

Proof. See Section 7.1. ◻

Theorem 5. (Global Stability of Fluid Solutions) Given

any initial condition v0 ∈ V∞, and with v(v0, t) the unique
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Figure 4: Illustration of the exponential improve-
ment in average queue length from O( 1

1−λ) to

O(log 1
1−λ) as λ→ 1, when we compare p = 0 to p = 0.05.

p = / λ = 0.1 0.6 0.9 0.99 0.999
0.002 2 10 37 199 692
0.02 1 6 18 68 156
0.2 0 2 5 14 23
0.5 0 1 2 5 8
0.8 0 0 1 2 4

Table 1: Values of i∗(p, λ) for various combinations
of (p, λ).

solution to the fluid model, we have

lim
t→∞

∥v (v0, t) − vI∥
w
= 0, (22)

where vI is the unique invariant state of the fluid model
given in Theorem 2.

Proof. See Section 7.3. ◻

3.3 Convergence to a Fluid Solution - Finite
Horizon and Steady State

The two theorems in this section justify the use of the fluid
model as an approximation for the finite stochastic system.
The first theorem states that as N →∞ and with high prob-
ability, the evolution of the aggregated queue length process
VN(t) is uniformly close, over any finite time horizon [0, T ],
to the unique solution of the fluid model.

Theorem 6. (Convergence to Fluid Solutions over
a Finite Horizon) Consider a sequence of systems as the
number of servers N increases to infinity. Fix any T > 0. If
for some v0 ∈ V∞,

lim
N→∞

P (∥VN (0) − v0∥w > γ) = 0, ∀γ > 0, (23)

then

lim
N→∞

P( sup
t∈[0,T ]

∥VN (t) − v (v0, t) ∥w > γ) = 0, ∀γ > 0.

(24)
where v (v0, t) is the unique solution to the fluid model given

initial condition v0.

Proof. See Section 7.2. ◻

Note that if we combine Theorem 6 with the convergence
of v(t) to vI in Theorem 5, we see that the finite system
(VN(⋅)) is approximated by the invariant state of the fluid
model vI after a fixed time period. In other words, we now
have

lim
t→∞

lim
N→∞

VN(t) = vI , in distribution. (25)

If we switch the order in which the limits over t and N
are taken in Eq. (25), we are then dealing with the limiting
behavior of the sequence of steady-state distributions (if they
exist) as the system size grows large. Indeed, in practice it
is often of great interest to obtain a performance guarantee
for the steady state of the system, if it were to run for a long
period of time. In light of Eq. (25), we may expect that

lim
N→∞

lim
t→∞

VN(t)=vI , in distribution. (26)

The following theorem shows that this is indeed the case, i.e.,
that a unique steady-state distribution of vN(t) (denoted by
πN ) exists for all N , and that the sequence πN concentrates
on the invariant state of the fluid model (vI) as N grows
large.

Theorem 7. (Convergence of Steady-state Distribu-

tions to vI) Denote by FV∞ the σ-algebra generated by V∞.

For any N , the process VN(t) is positive recurrent, and it
admits a unique steady-state distribution πN . Moreover,

lim
N→∞

πN = δvI , in distribution, (27)

where δvI is a probability measure on FV∞ that is concen-

trated on vI , i.e., for all X ∈ FV∞ ,

δvI (X) = { 1, vI ∈X,
0, otherwise.

Proof. The proof is based on the tightness of the se-
quence of steady-state distributions πN , and a uniform rate
of convergence of VN(t) to v(t) over any compact set of
initial conditions. The proof is given in Appendix B. ◻

Figure 5 summarizes the relationships between the con-
vergence to the solution of the fluid model over a finite time
horizon (Theorem 5 and Theorem 6) and the convergence of
the sequence of steady-state distributions (Theorem 7).

Figure 5: Relationships between convergence re-
sults.

4. PROOF OVERVIEW
The remainder of the paper will be devoted to proving

the results summarized in Section 3. We begin by cou-
pling the sample paths of processes of interest (e.g., VN(⋅))



with those of two fundamental processes that drive the sys-
tem dynamics (Section 5). This approach allows us to link
deterministically the convergence properties of the sample
paths of interest to the convergence of the fundamental pro-
cesses, on which probabilistic arguments are easier to ap-
ply (such as the Functional Law of Large Numbers). Us-
ing this coupling framework, we show in Section 6 that
almost all sample paths of VN(⋅) are “tight” in the sense
that they are uniformly approximated by a set of Lipschitz-
continuous trajectories, which we refer to as the fluid limits,
as N → ∞, and that all such fluid limits are valid solutions
to the fluid model. This makes the connection between the
finite stochastic system and the deterministic fluid solutions.
Section 7 studies the properties of the fluid model, and pro-
vides proofs for Theorem 4 and 5. Note that Theorem 6
(convergence of VN(⋅) to the unique fluid solution, over a
finite time horizon) now follows from the tightness results
in Section 6 and the uniqueness of fluid solutions (Theorem
4). The proof of Theorem 2 stands alone, and due to space
constraints, is included in Appendix A.1. Finally, the proof
of Theorem 7 (convergence of steady state distributions to
vI), which is more technical, is given in Appendix B.

5. PROBABILITY SPACE AND COUPLING
The goal of this section is to formally define the proba-

bility spaces and stochastic processes with which we will be
working in the rest of the paper. Specifically, we begin by
introducing two fundamental processes, from which all other
processes of interest (e.g., VN(t)) can be derived on a per
sample path basis.

5.1 Definition of Probability Space

Definition 8. (Fundamental Processes and Initial Con-
ditions)

(1) The Total Event Process, {W (t)}t≥0, defined on a
probability space (ΩW ,FW ,PW ), is a Poisson process
with rate λ + 1, where each jump marks the time when
an “event” takes place in the system.

(2) The Selection Process, {U(n)}n∈Z+ , defined on a prob-

ability space (ΩU ,FU ,PU), is a discrete-time process,
where each U(n) is independent and uniformly distributed
in [0,1]. This process, along with the current system
state, determines the type of each event (i.e., whether
it is an arrival, a local token generation, or a central
token generation).

(3) The (Finite) Initial Conditions, {V(0,N)}N∈N, is a
sequence of random variables defined on a common prob-
ability space (Ω0,F0,P0), with V(0,N) taking values7 in

V∞ ∩ QN . Here, V(0,N) represents the initial queue
length distribution.

For the rest of the paper, we will be working with the
product space

(Ω,F ,P) △= (ΩW ×ΩU×Ω0,FW ×FU×F0,PW ×PU×P0). (28)

7For a finite system of N stations, the measure induced by
VN
i (t) is discrete and takes positive values only in the set

of rational numbers with denominator N .

With a slight abuse of notation, we use the same sym-
bols W (t), U(n) and V(0,N) for their corresponding exten-

sions on Ω, i.e. W (ω, t) △= W (ωW , t), where ω ∈ Ω and

ω = (ωW , ωU , ω0). The same holds for U and V(0,N).

5.2 A Coupled Construction of Sample Paths
Recall the interpretation of the fluid model drift terms in

Section 3.1. Mimicking the expression of v̇i(t) in Eq. (14),
we would like to decompose VN

i (t) into three non-decreasing
right-continuous processes,

VN
i (t) = VN

i (0) +AN
i (t) −LNi (t) −CN

i (t), i ≥ 1, (29)

so that AN
i (t), LNi (t), and CN

i (t) correspond to the cumu-
lative changes in VN

i due to arrivals, local service tokens,
and central service tokens, respectively. We will define pro-
cesses AN(t),LN(t), CN(t), and VN(t) on the common
probability space (Ω,F ,P), and couple them with the sam-
ple paths of the fundamental processes W (t) and U(n), and

the value of V(0,N), for each sample ω ∈ Ω. First, note that
since the N -station system has N independent Poisson ar-
rival streams, each with rate λ, and an exponential server
with rate N , the total event process for this system is a Pois-
son process with rate N(1+λ). Hence, we define WN(ω, t),
the Nth normalized event process, as

WN(ω, t) △= 1

N
W (ω,Nt), ∀t ≥ 0, ω ∈ Ω. (30)

Note that WN(ω, t) is normalized so that all of its jumps
have a magnitude of 1

N
.

The coupled construction is intuitive: whenever there is a
jump in WN(ω, ⋅), we decide the type of event by looking at
the value of the corresponding selection variable U(ω,n) and
the current state of the system VN(ω, t). Fix ω in Ω, and
let tk, k ≥ 1, denote the time of the kth jump in WN(ω, ⋅).

We first set all of AN , LN , and CN to zero for t ∈ [0, t1).
Starting from k = 1, repeat the following steps for increasing
values of k. The partition of the interval [0,1] used in the
procedure is illustrated in Figure 6.

Figure 6: Illustration of the partition of [0,1] for
constructing VN(ω, ⋅).

(1) If U(ω, k) ∈ λ
1+λ [0,VN

i−1(ω, tk−) −VN
i (ω, tk−)) for some

i ≥ 1,8 the event corresponds to an arrival to a station
with at least i− 1 tasks. Hence we increase AN

i (ω, t) by
1
N

at all such i.

(2) If U(ω, k) ∈ λ
1+λ +

1−p
1+λ [0,VN

i (ω, tk−) −VN
i+1(ω, tk−)) for

some i ≥ 1, the event corresponds to the completion of
a task at a station with at least i tasks due to a local
service token. We increase LNi (ω, t) by 1

N
at all such i.

Note that i = 0 is not included here, reflecting the fact

8Throughout the paper, we use the short-hand notation f(t−) to
denote the left limit lims↑t f(s).



that if a local service token is generated at an empty
station, it is immediately wasted and has no impact on
the system.

(3) Finally, if U(ω, k) ∈ λ
1+λ+

1−p
1+λ+[0,

p
1+λ) = [1 − p

1+λ ,1), the
event corresponds to the generation of a central ser-
vice token. Since the central service token is alway sent
to a station with the longest queue length, we will have a
task completion in a most-loaded station, unless the sys-
tem is empty. Let i∗(t) be the last positive coordinate
of VN(ω, t−), i.e., i∗(t) = sup{i ∶ VN

i (ω, t−) > 0}. We
increase CN

j (ω, t) by 1
N

for all j such that 1 ≤ j ≤ i∗(tk).

To finish, we set VN(ω, t) according to Eq. (29), and keep
the values of all processes unchanged between tk and tk+1.

We set VN
0

△= VN
1 + 1, so as to stay consistent with the

definition of VN
0 .

6. FLUID LIMITS OF STOCHASTIC SAM-
PLE PATHS

In the sample-path-wise construction in Section 5.2, all
randomness is attributed to the initial condition V(0,N) and
the two fundamental processes W (⋅) and U (⋅). Everything
else, including the system state VN(⋅) that we are interested
in, can be derived from a deterministic mapping, given a
particular realization of V(0,N), W (⋅), and U(⋅). With this
in mind, the approach that we will take to prove convergence
to a fluid limit, over a finite time interval [0, T ], can be
summarized as follows:

(1) Find a subset C of the sample space Ω, such that P (C) =
1 and the sample paths ofW and U are sufficiently“nice”
for every ω ∈ C.

(2) Show that for all ω in this nice set, the derived sample
paths VN(⋅) are also “nice”, and contain a subsequence
converging to a Lipschitz-continuous trajectory v(⋅), as
N →∞.

(3) Characterize the derivative at any regular point9 of v(⋅)
and show that it is identical to the drift in the fluid
model. Hence v(⋅) is a solution to the fluid model.

The proof will be presented according to the above order.

6.1 Tightness of Sample Paths over a Nice Set
We begin by proving the following lemma which charac-

terizes a “nice” set C ⊂ Ω whose elements have desirable
convergence properties.

Lemma 9. Fix T > 0. There exists a measurable set C ⊂ Ω
such that P (C) = 1 and for all ω ∈ C,

lim
N→∞

sup
t∈[0,T ]

∣WN (ω, t) − (1 + λ) t∣ = 0, (31)

lim
N→∞

1

N

N

∑
i=1

I[a,b) (U (ω, i)) = b − a, ∀[a, b) ⊂ [0,1]. (32)

Proof. Eq. (31) is based on the Functional Law of Large
Numbers and Eq. (32) is a consequence of the Glivenko-
Cantelli theorem. See Appendix A.2 for a proof. ◻
9Regular points are points where the derivative exists. Since
the trajectories are Lipschitz-continuous, almost all points are
regular.

Definition 10. We call the 4-tuple, XN △= (VN ,AN ,LN ,CN),
the Nth system. Note that all four components are infinite-
dimensional processes. 10

Consider the space of functions from [0, T ] to R that are
right-continuous-with-left-limits (RCLL), denoted byD[0, T ],
and let it be equipped with the uniform metric, d (⋅, ⋅):

d (x, y) △= sup
t∈[0,T ]

∣x (t) − y (t)∣ , x, y ∈D[0, T ]. (33)

Denote by D∞[0, T ] the set of functions from [0, T ] to RZ+

that are RCLL on every coordinate. Let dZ+(⋅, ⋅) denote the
uniform metric on D∞[0, T ]:

dZ+ (x,y) △= sup
t∈[0,t]

∥x (t) − y (t)∥w , x,y ∈DZ+[0, T ], (34)

with ∥ ⋅ ∥w defined in Eq. (11).
The following proposition is the main result of this section.

It shows that for sufficiently large N , the sample paths are
sufficiently close to some absolutely continuous trajectory.

Proposition 11. Assume that there exists some v0 ∈ V∞

such that

lim
N→∞

∥VN (ω,0) − v0∥w = 0, (35)

for all ω ∈ C. Then for all ω ∈ C, any subsequence of
{XN (ω, ⋅)} contains a further subsequence, {XNi (ω, ⋅)}, that
converges to some coordinate-wise Lipschitz-continuous func-
tion x (t) = (v (t) ,a (t) , l (t) ,c (t)), with v (0) = v0, a(0) =
l(0) = c(0) = 0 and

∣xi (a) − xi (b)∣ ≤ L∣a − b∣, ∀a, b ∈ [0, T ], i ∈ Z+, (36)

where L > 0 is a universal constant, independent of the
choice of ω, x and T . Here the convergence refers to
dZ+(VNi ,v), dZ+(ANi ,a), dZ+(LNi , l), and dZ+(CNi ,c) all
converging to 0, as i→∞.

For the rest of the paper, we will refer to such a limit point
x, or any subset of its coordinates, as a fluid limit.

Proof outline: We give the main steps of the proof here,
and the complete proof can be found in Appendix A.1 of [13].
We first show that for all ω ∈ C, and for every coordinate
i, any subsequence of {XN

i (ω, ⋅)} has a convergent further
subsequence with a Lipschitz-continuous limit. We then use
this coordinate-wise convergence result to construct a limit
point in the space DZ+ . To establish coordinate-wise conver-
gence, we use a tightness technique previously used in the
literature of multiclass queuing networks (see, e.g., [2]). A
key realization in this case, is that the total number of jumps
in any derived process AN , LN , and CN cannot exceed that
of the event process WN(t) for a particular sample. Since
AN ,LN , and CN are non-decreasing, we expect their sam-
ple paths to be “smooth” for large N , due to the fact that
the sample path of WN(t) does become “smooth” for large
N , for all ω ∈ C (Lemma 9). More formally, it can be shown
that for all ω ∈ C and T > 0, there exist diminishing positive
sequences MN ↓ 0 and γN ↓ 0, such that the sample path
along any coordinate of XN is γN -approximately-Lipschitz
continuous with a uniformly bounded initial condition, i.e.,

10If necessary, XN can be enumerated by writing it explicitly as
XN

= (VN
0 ,A

N
0 ,L

N
0 ,C

N
0 ,V

N
1 ,A

N
1 , . . .) .



for all i,

∣XN
i (ω,0) − x0

i ∣ ≤MN and

∣XN
i (ω, a) −XN

i (ω, b)∣ ≤ L∣a − b∣ + γN , ∀a, b ∈ [0, T ]

where L is the Lipschitz constant, and T < ∞ is a fixed time
horizon. Using a linear interpolation argument, we then
show that sample paths of the above form can be uniformly
approximated by a set of L-Lipschitz-continuous function
on [0, T ]. We finish by using the Arzela-Ascoli theorem
(sequential compactness) along with closedness of this set, to
establish the existence of a convergent further subsequence
along any subsequence (compactness) and that any limit
point must also L-Lipschitz-continuous (closedness). This
completes the proof for coordinate-wise convergence.

Using this coordinate-wise convergence, we now construct
the limit points of XN in the space DZ+[0, T ]. Let v1(⋅)
be any L-Lipschitz-continuous limit point of VN

1 , so that

a subsequence V
N1
j

1 (ω, ⋅) → v1(⋅), as j → ∞, with respect
to d(⋅, ⋅). Then, we proceed recursively by letting vi+1(⋅)

be a limit point of a subsequence of {V
Nij
i+1(ω, ⋅)}

∞

j=1
, where

{N i
j}∞j=1 are the indices for the ith subsequence. We claim

that v is indeed a limit point of VN under the norm dZ+(⋅, ⋅).
Note that since v1(0) = v0

1, 0 ≤ VN
i (t) ≤ VN

1 (t), and v1(⋅)
is L-Lipschitz-continuous, we have that

sup
t∈[0,T ]

∣vi(t)∣ ≤ sup
t∈[0,T ]

∣v1(t)∣ ≤ ∣v0
1∣ +LT, ∀i ∈ Z+. (37)

Set N1 = 1, and let, for k ≥ 2,

Nk = min{N ≥ Nk−1 ∶ sup
1≤i≤k

d(VN
i (ω, ⋅),vi) ≤

1

k
} . (38)

Note that the construction of v implies that Nk is well de-
fined and finite for all k. From Eqs. (37) and (38), we have,
for all k ≥ 2,

dZ+ (VNk(ω, ⋅),v) = sup
t∈[0,T ]

¿
ÁÁÁÀ

∞
∑
i=0

∣VNk
i (ω, t) − vi(t)∣

2

2i

≤ 1

k
+

¿
ÁÁÀ(∣v0

1 ∣ +LT )2
∞
∑
i=k+1

1

2i

= 1

k
+ 1

2k/2
(∣v0

1∣ +LT ) . (39)

Hence dZ+ (VNk(ω, ⋅),v) → 0, as k → ∞. The existence of
the limit points a(t), l(t) and c(t) can be established by an
identical argument. This completes the proof. ◻

6.2 Derivatives of the Fluid Limits
The previous section established that any sequence of“good”

sample paths ({XN(ω, ⋅)} with ω ∈ C) eventually stays close
to some Lipschitz-continuous, and therefore absolutely con-
tinuous, trajectory. In this section, we will characterize the
derivatives of v(⋅) at all regular (differentiable) points of
such limiting trajectories. We will show, as we might ex-
pect, that they are the same as the drift terms in the fluid
model. This means that all fluid limits of VN(⋅) are in fact
solutions to the fluid model.

Proposition 12. (Fluid Limits and Fluid Model) Fix
ω ∈ C and T > 0. Let x be a limit point of some subse-
quence of XN(ω, ⋅), as in Proposition 11. Let t be a point of

differentiability of all coordinates of x. Then, for all i ∈ N,

ȧi(t) = λ(vi−1 − vi), (40)

l̇i(t) = (1 − p)(vi − vi+1), (41)

ċi(t) = gi(v), (42)

where g was defined in Eq. (15), with the initial condition
v(0) = v0 and boundary condition v0(t) − v1(t) = 1,∀t ∈
[0, T ]. In other words, all fluid limits of VN(⋅) are solutions
to the fluid model.

Proof. We fix some ω ∈ C and for the rest of this proof we
will suppress the dependence on ω in our notation. The exis-
tence of Lipschitz-continuous limit points for the given ω ∈ C
is guaranteed by Proposition 11. Let {XNk(⋅)}∞

k=1 be a con-

vergent subsequence such that limk→∞ d
Z+(XNk(⋅),x) = 0.

We now prove each of the three claims (Eqs. (40)-(42)) sep-
arately, and index i is always fixed unless otherwise stated.

Claim 1: ȧi(t) = λ(vi−1(t) − vi(t)). Consider the se-

quence of trajectories {ANk(⋅)}∞
k=1. By construction, AN

i (t)
receives a jump of magnitude 1

N
at time t if and only if an

event happens at time t and the corresponding selection ran-
dom variable, U(⋅), falls in the interval
λ

1+λ [0,VN
i−1(t−) −VN

i (t−)). Therefore, we can write:

ANk
i (t + ε) −ANk

i (t) = 1

Nk

NkW
Nk (t+ε)

∑
j=NkWNk (t)

IIj (U(j)), (43)

where Ij
△= λ

1+λ [0,VNk
i−1(t

Nk
j −) −VNk

i (tNkj −)) and tNj is de-

fined to be the time of the jth jump in WN(⋅), i.e.,

tNj
△= inf {t ≥ 0 ∶WN(t) ≥ j

N
} . (44)

Note that by the definition of a fluid limit, we have that

lim
k→∞

(ANk
i (t + ε) −ANk

i (t)) = ai(t + ε) − ai(t). (45)

The following lemma bounds the change in ai(t) on a small
time interval.

Lemma 13. Fix i and t. For all sufficiently small ε > 0

∣ai(t + ε) − ai(t) − ελ(vi−1(t) − vi(t))∣ ≤ 2ε2L (46)

Proof outline: The proof is based on the fact that ω ∈ C.
Using Lemma 9, Eq. (46) follows from Eq. (43) by applying
the convergence properties of WN(t) (Eq. (31)) and U(n)
(Eq. (32)). See Appendix A.3 for a proof. ◻

Since by assumption a(⋅) is differentiable at t, Claim 1

follows from Lemma 13 by noting ȧi(t) △= limε↓0
ai(t+ε)−ai(t)

ε
.

Claim 2: l̇i(t) = (1 − p)(vi(t) − vi+1(t)). Claim 2 can be
proved using an identical approach to the one used to prove
Claim 1. The proof is hence omitted.

Claim 3: ċi(t) = gi (v). We prove Claim 3 by considering
separately the three cases in the definition of v.

(1) Case 1: ċi(t) = 0, if vi−1 = 0,vi = 0. Write

ċi(t) = ȧi(t) − l̇i(t) − v̇i(t). (47)

We calculate each of the three terms on the right-hand
side of the above equation. By Claim 1, ȧi(t) = λ(vi−1−
vi) = 0, and by Claim 2, l̇i(t) = λ(vi − vi+1) = 0. To
obtain the value for v̇i(t), we use the following trick:



since vi(t) = 0 and vi is non-negative, the only possi-
bility for vi(t) to be differentiable at t is that v̇i(t) = 0.

Since ȧi(t), l̇i(t), and v̇i(t) are all zero, we have that
ċi(t) = 0.

(2) Case 2: ċi(t) = min{λvi−1, p}, if vi = 0,vi−1 > 0.

In this case, the fraction of queues with at least i tasks is
zero, hence vi receives no drift from the local portion of
the service capacity by Claim 2. First consider the case
vi−1(t) ≤ p

λ
. Here the line of arguments is similar to the

one in Case 1. By Claim 1, ȧi(t) = λ(vi−1 −vi) = λvi−1,

and by Claim 2, l̇i(t) = λ(vi − vi+1) = 0. Using again
the same trick as in Case 1, the non-negativity of vi
and the fact that vi(t) = 0 together imply that we must
have v̇i(t) = 0. Combining the expressions for ȧi(t),
l̇i(t), and v̇i(t), we have

ċi(t) = −v̇i(t) + ȧi(t) − l̇i(t) = λvi−1. (48)

Intuitively, here the drift due to random arrivals to queues
with i− 1 tasks, λvi−1, is “absorbed” by the central por-
tion of the service capacity.

If vi−1(t) > p
λ

, then the above equation would imply that
ċi(t) = λvi−1(t) > p, if ċi(t) exists. But clearly ċi(t) ≤ p.
This simply means vi(t) cannot be differentiable at time
t, if vi(t) = 0,vi−1(t) > p

λ
. Hence we have the claimed

expression.

(3) Case 3: ċi(t) = p, if vi > 0,vi+1 > 0.

Since there is a positive fraction of queues with more
than i tasks, it follows that VN

i is decreased by 1
N

when-
ever a central token becomes available. Formally, for
some small enough ε, there exists K such that VNk

i (s) >
0 for all k ≥K, s ∈ [t, t+ε]. Given the coupling construc-
tion, this implies for all k ≥K, s ∈ [t, t + ε]

VNk
i (s) −VNk

i (t) = 1

Nk

NkW
Nk (s)

∑
j=NkWNk (t)

I[1− p
1+λ ,1)

(U(j)) .

Using the same arguments as in the proof of Lemma 13,
we see that the right-hand side of the above equation
converges to (s − t)p + o(ε) as k → ∞. Hence,v̇i(t) =

limε↓0 limk→∞
V
Nk
i

(t+ε)−VNk
i

(t)
ε

= p.

Finally, note that the boundary condition v0(t) − v1(t) = 1

is a consequence of the fact that VN
0 (t)−VN

1 (t) △= SN1 (t) = 1
for all t. This concludes the proof of Proposition 12. ◻

7. PROPERTIES OF THE FLUID MODEL

7.1 Uniqueness of Fluid Limit & Continuous
Dependence on Initial Conditions

We now prove Theorem 4, which states that given an ini-
tial condition v0 ∈ V∞, a solution to the fluid model exists
and is unique. As a direct consequence of the proof, we ob-
tain an important corollary, that the unique solution v(t)
depends continuously on the initial condition v0.

The uniqueness result justifies the use of the fluid approx-
imation, in the sense that the evolution of the stochastic
system is close to a single trajectory. The uniqueness along
with the continuous dependence on the initial condition will
be used to prove convergence of steady-state distributions
to vI (Theorem 7).

Proof. (Theorem 4) The existence of a solution to the
fluid model follows from the fact that VN has a limit point
(Proposition 11) and that all limit points of VN are solu-
tions to the fluid model (Proposition 12). We now show

uniqueness. Define ip(v) △= sup{i ∶ vi > 0}.11 Let v(t),w(t)
be two solutions to the fluid model such that v(0) = v0 and

w(0) = w0, with v0,w0 ∈ V∞. At any regular point t ≥ 0,
where all coordinates of v(t),w(t) are differentiable, with-
out loss of generality, assume that ip(v(t)) ≤ ip(w(t)), with
equality if both are infinite. Let av(⋅) and aw(⋅) be the
arrival trajectories corresponding to v(⋅) and w(⋅), respec-
tively, and similarly for l and c. Since v0(t) = v1(t) + 1 for

all t ≥ 0 by the boundary condition, and v̇1 = ȧv
1 − l̇v1 − ċv

1 ,
for notational convenience we will write

v̇0 = ȧv
0 − l̇v0 − ċv

0 , (49)

where

ȧv
0
△= ȧv

1 , l̇v0
△= l̇v1 , and ċv

0
△= ċv

1 . (50)

The same notation will be used for ẇ(t).
We have,

d

dt
∥v −w∥2

w

△= d

dt

∞
∑
i=0

∣vi −wi∣2

2i

(a)=
∞
∑
i=0

(vi −wi) (v̇i − ẇi)
2i−1

=
∞
∑
i=0

(vi −wi) [(ȧv
i − l̇vi ) − (ȧw

i − l̇wi )]
2i−1

−
∞
∑
i=0

(vi −wi) (ċv
i − ċw

i )
2i−1

(b)
≤ C ∥v −w∥2

w −
∞
∑
i=0

(vi −wi) (ċv
i − ċw

i )
2i−1

= C ∥v −w∥2
w −

ip(v)

∑
i=0

1

2i−1
(vi −wi) (p − p)

− 1

2ip(v) (0 −wip(v)+1)(min{λvip(v), p} − p)

−
ip(w)

∑
i=ip(v)+2

1

2i−1
(0 −wi)(0 − p)

−
∞
∑

j=ip(w)+1

1

2i−1
(0 − 0) (ċv

i − ċw
i )

≤ C ∥v −w∥2
w , (51)

where C = 6(λ + 1 − p). We first justify the existence of

the derivative d
dt

∥v −w∥2
w and the exchange of limits in (a).

Because vi(t) and wi(t) are L-Lipschitz-continuous for all
i, it follows that there exists L′ > 0 such that for all i,

h(i, s) △= ∣vi(s) −wi(s)∣2 is L′-Lipschitz-continuous in the
second argument, within a small neighborhood around s = t.
In other words,

∣h(i, t + ε) − h(i, t)
ε

∣ ≤ L′ (52)

11ip(v) can be infinite; this happens if all coordinates of v are
positive.



for all i and all sufficiently small ε. Write:

d

dt
∥v −w∥2

w = lim
ε↓0

∞
∑
i=0

2−i
h(i, t + ε) − h(i, t)

ε

= lim
ε↓0 ∫i∈Z+

h(i, t + ε) − h(i, t)
ε

dµN, (53)

where µN is a measure on Z+ defined by µN(i) = 2−i, i ∈ Z+.
By Eq. (52) and the dominated convergence theorem, we can
exchange the limit and integration in Eq. (53) and obtain

d

dt
∥v −w∥2

w = lim
ε↓0 ∫i∈Z+

h(i, t + ε) − h(i, t)
ε

dµN

= ∫
i∈Z+

lim
ε↓0

h(i, t + ε) − h(i, t)
ε

dµN

=
∞
∑
i=0

(vi −wi) (v̇i − ẇi)
2i−1

, (54)

which justifies step (a) in Eq. (51). Step (b) follows from the

fact that ȧ and l̇ are both continuous and linear in v (see
Eqs. (40) – (42)). The specific value of C can be derived
after some simple algebra (see Section 6.2 of [13]).

Now suppose that v0 = w0. By Gronwall’s inequality and
Eq. (51), we have

∥v(t) −w(t)∥2
w ≤ ∥v(0) −w(0)∥2

w e
Ct = 0, ∀t ∈ [0,∞), (55)

which establishes uniqueness of the fluid limit on [0,∞). ◻

The following corollary is an easy, but important, conse-
quence of the uniqueness proof.

Corollary 14. (Continuous Dependence on Initial Con-
ditions) Denote by v(v0, ⋅) the unique solution to the fluid

model given initial condition v0 ∈ V∞. If wn ∈ V∞ for all
n, and ∥wn − v0∥w → 0 as n→∞, then for all t ≥ 0,

lim
n→∞

∥v(wn, t) − v(v0, t)∥w = 0. (56)

Proof. The continuity with respect to the initial condi-
tion is a direct consequence of the inequality in Eq. (55): if
v(wn, ⋅) is a sequence of fluid limits with initial conditions

wn ∈ V∞ and if ∥wn − v0∥2
w → 0 as N → ∞, then for all

t ∈ [0,∞),

∥v(v0, t) − v(wn, t)∥2

w
≤ ∥v0 −wn∥2

w
eCt → 0, as n→∞.

This completes the proof. ◻

VN(t) versus SN(t). The above uniqueness proof (The-
orem 4) demonstrates the power of using VN(t) and v(t)
as a state representation. The proof technique exploits a
property of the drifts, also known as the one-sided-Lipschitz
condition in the dynamical systems literature (see, e.g., [12]).
In fact, if we instead use s(t) to construct the fluid mode,
the resulting drift terms, given by the relation si(t) = vi(t)−
vi+1(t), fail to be one-sided-Lipschitz-continuous. The unique-
ness result should still hold, but the proof would be much
more difficult, requiring an examination of all points of dis-
continuity in the space. The intuitive reason is that the
total drifts of the si’s provided by the centralized service re-
mains constant as long as the system is non-empty; hence, by
adding up all the coordinates of si, we eliminate many of the
drift discontinuities. The fact that a simple linear transfor-
mation can create one-sided-Lipschitz continuity and greatly
simplify the analysis may be of independent interest. The
reader is referred to Section 6.2.1 of [13] for a more elaborate
discussion on this topic.

7.2 Proof of Theorem 6
Proof. (Theorem 6) The proof follows from the sample-

path tightness in Proposition 11 and the uniqueness of the
fluid limit from Theorem 4. By assumption, the sequence
of initial conditions V(0,N) converges to some v0 ∈ V∞, in
probability. Since the space V∞ is separable and complete
under the ∥ ⋅ ∥w metric, by Skorohod’s representation theo-
rem, we can find a probability space (Ω0,F0,P0) on which

V(0,N) → v0 almost surely. By Proposition 11 and Theo-
rem 4, for almost every ω ∈ Ω, any subsequence of VN(ω, t)
contains a further subsequence that converges to the unique
fluid limit v(v0, t) uniformly on any compact interval [0, T ].
Therefore for all T < ∞,

lim
N→∞

sup
t∈[0,T ]

∥VN(ω, t) − v(v0, t)∥
w
= 0, P−almost surely, (57)

which implies convergence in probability, and Eq. (24) holds.◻

7.3 Convergence to the Invariant State vI (Proof
of Theorem 5)

In this section, we will switch to the alternative state rep-
resentation, s(t), where

si(t) △= vi+1(t) − vi(t), ∀i ≥ 0 (58)

to study the evolution of a fluid solution as t→∞. It turns
out that a nice monotonicity property of the evolution of
s(t) induced by the drift structure will help establish the
convergence to an invariant state. We note that s0(t) = 1
for all t, and that for all points where v is differentiable,

ṡi(t) = v̇i(t)− v̇i+1(t) = λ(si−1−si)−(1−p)(si−si+1)−gsi (s),

for all i ≥ 1, where gsi (s)
△= gi(v) − gi+1(v). Throughout

this section, we will use both representations v(t) and s(t)
to refer to the same fluid solution, with their relationship
specified in Eq. (58).

The approach we will be using is essentially a variant of
the convergence proof given in [4]. The idea is to parti-

tion the space S∞ into dominating classes, and show that
(i) dominance in initial conditions is preserved by the fluid
model, and (ii) any solution s(t) to the fluid model with an
initial condition that dominates or is dominated by the in-
variant state sI converges to sI as t→∞. Properties (i) and
(ii) together imply the convergence of the fluid solution s(t)
to sI , as t→∞, for any finite initial condition. It turns out
that such dominance in s is much stronger than a similarly
defined relation for v. For this reason we cannot use v but
must rely on s to establish the result.

Definition 15. (Coordinate-wise Dominance) For any

s, s′ ∈ S∞, we write s ⪰ s′ if si ≥ s′i, for all i ≥ 0.

The following lemma states that ⪰-dominance in initial
conditions is preserved by the fluid model.

Lemma 16. Let s1(⋅) and s2(⋅) be two solutions to the fluid
model such that s1(0) ⪰ s2(0). Then s1(t) ⪰ s2(t),∀t ≥ 0.

The proof of Lemma 16 consists of checking the drift terms
of the fluid model. It is straightforward and is omitted (see
Section 6.4 of [13] for a proof).

We are now ready to prove Theorem 5.

Proof. (Theorem 5) Let s(⋅), su(⋅), and sl(⋅) be three

fluid limits with initial conditions in S∞ such that su(0) ⪰



s(0) ⪰ sl(0) and su(0) ⪰ sI ⪰ sl(0). By Lemma 16, we must
have su(t) ⪰ sI ⪰ sl(t) for all t ≥ 0. Hence it suffices to show
that limt→∞ ∥su(t) − sI∥

w
= limt→∞ ∥sl(t) − sI∥

w
= 0. Recall,

for any regular t > 0,

v̇i(t) = λ(vi−1(t) − vi(t)) − (1 − p)(vi(t) − vi+1(t)) − gi(v(t))
= λsi−1(t) − (1 − p)si(t) − gi(v(t))

= (1 − p) (λsi−1(t) − gi(v(t))
1 − p

− si) . (59)

Recall, from the expressions for sIi in Theorem 2, that sIi+1 ≥
λsIi −p
1−p , ∀i ≥ 0. From Eq. (59) and the fact that su0 = sI0 = 1,

we have

v̇u1 (t) = (1−p) (λ − g1(v
u(t))

1 − p
− su1 (t)) ≤ (1−p) (sI1 − su1 (t)) ,

(60)
for all regular t ≥ 0. To see why the above inequality holds,
note that

λ − g1(vu(t))
1 − p

= λ − p
1 − p

≤ sI1, (61)

whenever su1 (t) > 0, and

λ − g1(vu(t))
1 − p

= su1 (t) = 0, (62)

whenever su1 (t) = sI1 = 0. We argue that Eq. (60) implies
that

lim
t→∞

∣sI1 − su1 (t)∣ = 0. (63)

To see why this is true, let h1(t) △= sI1 − su1 (t), and suppose
instead that

lim sup
t→∞

∣sI1 − su1 (t)∣ = δ > 0. (64)

Because su(t) ⪰ sI for all t, this is equivalent to having

lim inf
t→∞

h1(t) = −δ. (65)

Since s(t) is a fluid limit and is L-Lipschitz-continuous along
all coordinates, h1(t) is also L-Lipschitz-continuous. There-
fore, we can find an increasing sequence {tk}k≥1 ⊂ R+ with
limk→∞ tk = ∞, such that for some γ > 0 and all k ≥ 1,

h1(t) ≤ −
1

2
δ, ∀t ∈ [tk − γ, tk + γ]. (66)

Because v1(0) < ∞ and h1(t) ≤ 0 for all t, it follows from
Eqs. (60) and (66) that there exists some T0 > 0 such that

vu1 (t) = ∫
t

s=0
v̇u1 (s)ds ≤ ∫

t

s=0
(1 − p)h1(s)ds < 0, (67)

for all t ≥ T , which clearly contradicts with the fact that
v1(t) ≥ 0 for all t. This shows that we must have

lim
t→∞

∣su1 (t) − sI1∣ = 0. (68)

We then proceed by induction. Suppose limt→∞ ∣sui (t) − sIi ∣ =
0 for some i ≥ 1. By Eq. (59), we have

v̇ui+1(t) = (1 − p) (λsui (t) − gi(vu(t))
1 − p

− sui+1(t))

= (1 − p)(λsIi − gi(vu(t))
1 − p

− sui+1(t) + εui )

≤ (1 − p) (sIi+1 − sui+1(t) + εui (t)) , (69)

where εui (t)
△= λ

1−p (sui (t) − sIi ) → 0 as t→∞ by the induction

hypothesis. With the same argument as the one for s1, we
obtain limt→∞ ∣sui+1(t) − sIi+1∣ = 0. This establishes the con-
vergence of su(t) to sI along all coordinates, which implies
that

lim
t→∞

∥su(t) − sI∥
w
= 0. (70)

Using the same set of arguments we can show that

lim
t→∞

∥sl(t) − sI∥
w
= 0. (71)

This completes the proof. ◻

8. CONCLUSIONS
The overall theme of this paper is to study how the de-

gree of centralization in allocating computing or processing
resources impacts performance. This investigation was mo-
tivated by applications in server farms, cloud centers, as
well as more general scheduling problems with communica-
tion constraints. Using a fluid model and associated conver-
gence theorems, we showed that any small degree of central-
ization induces an exponential performance improvement in
the steady-state scaling of system delay, for sufficiently large
systems. Simulations show good accuracy of the model even
for moderate-sized finite systems (N = 100).

For future work, some current modeling assumptions could
be restrictive for practical applications. For example, the
transmission delays between the local and central stations
are assumed to be negligible compared to processing times;
this may not be true for data centers that are separated by
significant geographic distances. Also, the arrival and pro-
cessing times are assumed to be Poisson, while in reality
more general traffic distributions (e.g., heavy-tailed traffic)
are observed. Finally, the speed of the central server may not
be able to scale linearly inN for largeN . Further work to ex-
tend the current model by incorporating these realistic con-
straints could be of great interest, although obtaining the-
oretical characterizations seems quite challenging. Lastly,
the surprisingly simple expressions in our results make it
tempting to ask whether similar performance characteriza-
tions can be obtained for other stochastic systems with par-
tially centralized control laws; insights obtained here may
find applications beyond the realm of queueing theory.
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APPENDIX
A. OTHER PROOFS

A.1 Proof of Theorem 2
Proof. In this proof we will be working with both vI

and sI , with the understanding that sIi
△= vIi − vIi+1,∀i ≥ 0.

It can be verified that the expressions given in all three cases
are valid invariant states, by checking that F(vI) = 0. We
show that they are indeed unique.

First, note that if p ≥ λ, then F1(v) < 0 whenever v1 > 0.
Since vI1 is nonnegative, we must have vI1 = 0, which by the
boundary conditions implies that all other vIi must also be
zero. This proves case (2) of the theorem.

Now suppose that 0 < p < λ. We will prove case (4).
We observe that F1(v) > 0 whenever v1 = 0. Hence vI1
must be positive. By Eq. (15) this implies that g1(vI) = p.
Substituting g1(vI) in Eq. (14), along with the boundary
condition vI0 − vI1 = sI0 = 1, we have

0 = λ ⋅ 1 − (1 − p)sI1 − p, (72)

which yields

sI1 =
λ − p
1 − p

. (73)

Repeating the same argument, we obtain the recursion

sIi =
λsIi−1 − p

1 − p
, (74)

for as long as sIi (and therefore, vIi ) remains positive. Com-
bining this with the expression for sI1, we have

sIi =
1 − λ

1 − (p + λ)
( λ

1 − p
)
i

− p

1 − (p + λ)
, 1 ≤ i ≤ i∗ (p, λ) , (75)

where i∗ (p, λ) △= ⌊log λ
1−p

p
1−λ⌋ marks the last coordinate

where sIi remains non-negative. This proves uniqueness of
sIi up to i ≤ i∗ (p, λ). We can then use the same argument
as in case (2), to show that sIi must be equal to zero for
all i > i∗ (p, λ). Cases (1) and (3) can be established using
similar arguments as those used in proving case (4). This
completes the proof. ◻

A.2 Proof of Lemma 9
Proof. Based on the Functional Law of Large Numbers

for Poisson processes, we can find CW ⊂ ΩW , with PW (CW ) =
1, over which Eq. (31) holds. For Eq. (32), we invoke the
Glivenko-Cantelli theorem, which states that the empirical
measures of a sequence of i.i.d. random variables converge
uniformly almost surely, i.e.,

lim
N→∞

sup
x∈[0,1]

∣ 1

N

N
∑
i=1

I[0,x) (U (i)) − x∣ = 0, almost surely. (76)

This implies the existence of some CU ⊂ ΩU , with PU (CU) =
1, over which Eq. (32) holds. (This is stronger than the
ordinary Strong Law of Large Numbers for i.i.d. uniform
random variables on [0,1], which states convergence for a
fixed set [0, x).) We finish the proof by taking C = CW ×CU ×
Ω0. ◻

A.3 Proof of Lemma 13
Proof. While the proof involves heavy notation, it is

based on the fact that ω ∈ C: using Lemma 9, Eq. (46) fol-
lows from Eq. (43) by applying the convergence properties
of WN(t) (Eq. (31)) and U(n) (Eq. (32)).

For the rest of the proof, fix some ω ∈ C. Also, fix i ≥ 1,
t > 0, and ε > 0. Since the limiting function x is L-Lipschitz-
continuous on all coordinates by Proposition 11, there exists
a non-increasing sequence γn ↓ 0 such that for all s ∈ [t, t+ε]
and all sufficiently large k,

VNk
j (s) ∈ [vj(t)−(εL+γNk),vj(t)+(εL+γNk)), j ∈ {i−1, i, i+1},

(77)
The above leads to:12

[0,VNk
i−1(s) −VNk

i (s)) ⊃ [0, [vi−1(t) − vi(t) − 2(εL + γNk)]
+ ),

[0,VNk
i−1(s) −VNk

i (s)) ⊂ [0,vi−1(t) − vi(t) + 2(εL + γNk)),
(78)

for all sufficiently large k.
Define the sequence of set-valued functions {ηn(t)} as

ηn(t) △= λ

1 + λ
[0,vi−1(t) − vi(t) + 2(εL + γn)) . (79)

Note that since γn ↓ 0,

ηn(t) ⊃ ηn+1(t) and
∞
⋂
n=1

ηn(t) = λ

1 + λ
[0,vi−1(t) − vi(t) + 2εL] .

(80)
We have for all sufficiently large k, and any l such that
1 ≤ l ≤ Nk,

ANk
i (t + ε) −ANk

i (t)

≤ 1

Nk

NkW
Nk (t+ε)

∑
j=NkWNk (t)+1

IηNk (t) (U(j))

≤ 1

Nk

NkW
Nk (t+ε)

∑
j=NkWNk (t)+1

Iηl(t) (U(j))

= 1

Nk

⎛
⎝

NkW
Nk (t+ε)

∑
j=1

Iηl(t) (U(j)) −
NkW

Nk (t)

∑
j=1

Iηl(t) (U(j))
⎞
⎠

(81)

12Here [x]+ △= max{0, x}.



where the first inequality follows from the second contain-
ment in Eq. (78), and the second inequality follows from the
monotonicity of {ηn(t)} in Eq. (80).

We would like to show that for all sufficiently small ε > 0,

ai(t + ε) − ai(t) − ελ(vi−1(t) − vi(t)) ≤ 2ε2L (82)

To prove the above inequality, we first claim that for any
interval [a, b) ⊂ [0,1],

lim
N→∞

1

N

NWN (t)

∑
i=1

I[a,b) (U(i)) = (λ + 1)t(b − a), (83)

To see this, rewrite the left-hand side of the equation above
as

lim
N→∞

1

N

NWN (t)

∑
i=1

I[a,b) (U(i))

= lim
N→∞

(λ + 1)t 1

(λ + 1)Nt

(λ+1)Nt

∑
i=1

I[a,b) (U(i))

+ lim
N→∞

(λ + 1)t 1

(λ + 1)Nt
⎛
⎝

NWN (t)

∑
i=1

I[a,b) (U(i))

−
(λ+1)Nt

∑
i=1

I[a,b) (U(i))
⎞
⎠
. (84)

Because the magnitude of the indicator function I{⋅} is bounded
by 1, we have

RRRRRRRRRRRR

NWN (t)

∑
i=1

I[a,b) (U(i)) −
(λ+1)Nt

∑
i=1

I[a,b) (U(i))
RRRRRRRRRRRR

≤ N ∣(λ + 1)t −WN(t)∣ . (85)

Since ω ∈ C, by Lemma 9 we have that

lim
N→∞

∣(λ + 1)t −WN(t)∣ = 0, (86)

lim
N→∞

1

(λ + 1)Nt

(λ+1)Nt

∑
i=1

I[a,b) (U(i)) = b − a, (87)

for any t < ∞. Combining Eqs. (84)−(87), we have

lim
N→∞

1

N

WN (t)

∑
i=1

I[a,b) (U(i))

= (λ + 1)t lim
N→∞

1

(λ + 1)Nt

(λ+1)Nt

∑
i=1

I[a,b) (U(i))

+ lim
N→∞

1

(λ + 1)t
∣(λ + 1)t −WN(t)∣

= (λ + 1)t(b − a), (88)

which establishes Eq. (83). By the same argument, Eq. (88)
also holds when t is replaced by t + ε. Applying this result
to Eq. (81), we have

ai(t + ε) − ai(t)
= lim

k→∞
(ANk

i (t + ε) −ANk
i (t))

≤ (t + ε − t)(λ + 1) λ

λ + 1
[vi(t) − vi−1(t) + 2(εL + γl)]

= ελ(vi−1(t) − vi(t)) + λ(2ε2L + 2εγl)
< ελ(vi−1(t) − vi(t)) + 2ε2L + 2εγl, (89)

for all l ≥ 1, where the last inequality is due to the fact that
λ < 1. Taking l →∞ and using the fact that γl ↓ 0, we have
established Eq. (82).

Similarly, changing the definition of ηn(t) to

ηn(t) △= λ

1 + λ
[0, [vi−1(t) − vi(t) − 2(εL + γn)]+ ), (90)

we can obtain a similar lower bound

ai(t + ε) − ai(t) − ελ(vi−1(t) − vi(t)) ≥ −2ε2L, (91)

which together with Eq. (82) proves the claim. Note that
if vi(t) = vi−1(t), the lower bound trivially holds because

ANk
i (t) is a cumulative arrival process and is hence non-

decreasing in t by definition. ◻

B. CONVERGENCE OF STEADY STATE DIS-
TRIBUTIONS

We first give an important proposition which strengthens
the finite-horizon convergence result stated in Theorem 6, by
showing a uniform speed of convergence over any compact
set of initial conditions. This proposition will be critical
to the proof of Theorem 7 which will appear later in the
section.

Let the probability space (Ω1,F1,P1) be the product space
of (ΩW ,FW ,PW ) and (ΩU ,FU ,PU). Intuitively, (Ω1,F1,P1)
captures all exogenous arrival and service information. Fix-

ing ω1 ∈ Ω1 and v0 ∈ VM ∩QN , denote by VN(v0, ω1, t) the
resulting sample path of VN(⋅) given the initial condition
VN(0) = v0. Also, denote by v (v0, t) the solution to the

fluid model for a given initial condition v0. We have the
following proposition.

Proposition 17. (Uniform Rate of Convergence) Fix

T > 0 and M ∈ N. Let KN △= VM ∩QN . We have

lim
N→∞

sup
v0∈KN

dZ+ (VN(v0, ω1, ⋅),v(v0, ⋅)) = 0, P1-almost surely,

(92)
where the metric dZ+(⋅, ⋅) was defined in Eq. (34).

Proof. The proof highlights the convenience of the sample-
path based approach. By the same argument as in Lemma 9,
we can find sets CW ⊂ ΩW and CU ⊂ ΩU such that the con-
vergence in Eqs. (31) and (32) holds over CW and CU , respec-

tively, and that PW (CW ) = PU(CU) = 1. Let C1 △= CW × CU .
Note that P1(C1) = 1.

To prove the claim, it suffices to show that

lim
N→∞

sup
v0∈KN

dZ+ (VN(v0, ω1, ⋅),v(v0, ⋅)) = 0, ∀ω1 ∈ C1. (93)

We start by assuming that the above convergence fails for
some ω̃1 ∈ C1, which amounts to having a sequence of “bad”
sample paths of VN(⋅) that are always a positive distance
away from the corresponding fluid solution with the same
initial condition, as N → ∞. We then find nested subse-
quences within this sequence of bad sample paths, and con-
struct two solutions to the fluid model with the same initial
condition, contradicting the uniqueness of fluid model solu-
tions.

Assume there exists ω̃1 ∈ C1 such that

lim sup
N→∞

sup
v0∈KN

dZ+ (VN(v0, ω̃1, ⋅),v(v0, ⋅)) > 0. (94)



This implies that there exists ε > 0, {Ni}∞i=1 ⊂ N, and

{v(0,Ni)}∞
i=1 with v(0,Ni) ∈KNi , such that

dZ+ (VN(v(0,Ni), ω̃1, ⋅),v(v(0,Ni), ⋅)) > ε, (95)

for all i ∈ N. We make the following two observations:

1. The set VM is closed and bounded, and the fluid so-
lution v(v(0,Ni), ⋅) is L-Lipschitz-continuous for all i.

Hence the sequence of functions {v(v(0,Ni), ⋅)}∞i=1 are
equicontinuous and uniformly bounded on [0, T ]. We
have by the Arzela-Ascoli theorem that there exists a
subsequence {N2

i }
∞
i=1 of {N1

i }
∞
i=1 such that

dZ+ (v (v(0,N2
i ), ⋅) , ṽa(⋅)) → 0, (96)

as i→∞, for some Lipschitz-continuous function ṽa(⋅)
with ṽa(0) ∈ VM . By the continuous dependence of
fluid solutions on initial conditions (Corollary 14), ṽa(⋅)
must be the unique solution to the fluid model with ini-
tial condition ṽa(0), i.e.,

ṽa(t) = v (ṽa(0), t) , ∀t ∈ [0, T ]. (97)

2. Since ω1 ∈ C1, by Propositions 11 and 12, there exists
a further subsequence {N3

i }
∞
i=1 of {N2

i }
∞
i=1 such that

VN3
i (v(0,N3

i ), ⋅) → ṽb(⋅) uniformly over [0, T ] as i →
∞, where ṽb(⋅) is a solution to the fluid model. Note

that since {N3
i }

∞
i=1 ⊂ {N2

i }
∞
i=1, we have ṽb(0) = ṽa(0).

Hence,

ṽb(t) = v (ṽa(0), t) ,∀t ∈ [0, T ]. (98)

By the definition of ω̃1 (Eq. (94)) and the fact that ω̃1 ∈ C1,
we must have supt∈[0,T ] ∥ṽ

a(t) − ṽb(t)∥
w
> ε, which, in light

of Eqs. (97) and (98), contradicts the uniqueness of the fluid
limit (Theorem 4). This completes the proof. ◻

The following corollary, stated in terms of convergence in
probability, follows directly from Proposition 17. The proof
is straightforward and is omitted.

Corollary 18. Fix T > 0 and M ∈ N. Let KN △= VM ∩QN .
We have that for all δ > 0,

lim
N→∞

P1 (ω1 ∈ Ω1 ∶ sup
v0∈KN

dZ+ (VN (v0, ω1, ⋅) ,v(v0, ⋅)) > δ) = 0.

(99)

B.1 Proof of Theorem 7
Proof. (Theorem 7) The positive recurrence of VN(⋅)

in a finite system is established using stochastic dominance,
by coupling with the case p = 0, where the system degen-
erates into a collection of M/M/1 queues with indepen-
dent arrivals and departures (but possibly correlated initial
queue lengths). We omit the proof, which is tedious, since
the intuition is clear. This dominance relation also implies
that the sequence of distributions πN is tight, in the sense
that for any ε > 0, there exists M(ε) ∈ N such that for all

M ≥M(ε), πN (VM ∩QN) ≥ 1 − ε, for all N . For more de-

tails, see Proposition 23, Section 7.2, [13].
The rest of the proof is based on a classical technique

using continuous test functions (see Chapter 4 of [3]). The

continuous dependence on initial conditions and the uniform
rate of convergence established previously will be used here.
Let C be the space of bounded continuous functions from
V∞ to R. Define the mappings TN(t) and T (t) on C by:

(TN(t)f) (v0) △= E [f (VN(t)) ∣ VN(0) = v0] ,

and (T (t)f) (v0) △= E [f (v(t)) ∣ v(0) = v0] = f(v(v0, t)),

for f ∈ C. With this notation, πN being a steady-state
distribution for the Markov process VN(t) is equivalent to
having for all t ≥ 0, f ∈ C,

∫
v0∈V∞∩QN

TN(t)f(v0)dπN = ∫
v0∈V∞∩QN

f(v0)dπN . (100)

Since {πN} is tight, it is sequentially compact under the
topology of weak convergence, by Prokhorov’s theorem. Let
π be the weak limit of some subsequence of {πN}. We will

show that for all t ≥ 0, f ∈ C,

∣∫
v0∈V∞

T (t)f(v0)dπ(v0) − ∫
v0∈V∞

f(v0)dπ(v0)∣ = 0.

(101)
In other words, π is also a steady-state distribution for the
deterministic fluid limit. Since by Theorem 2, the invariant
state of the fluid limit is unique, Eq. (101) will imply that
π (vI) = 1, and this proves the theorem.

To show Eq. (101), we write

∣∫ T (t)fdπ − ∫ fdπ∣ ≤ lim sup
N→∞

∣∫ T (t)fdπ − ∫ T (t)fdπN ∣

+ lim sup
N→∞

∣∫ T (t)fdπN − ∫ TN(t)fdπN ∣

+ lim sup
N→∞

∣∫ TN(t)fdπN − ∫ fdπ∣ (102)

We will show that all three terms on the right-hand side
of Eq. (102) are zero. Since v(v0, t) depends continuously
on the initial condition v0 (Corollary 14), we have T (t)f ∈
C,∀t ≥ 0, which along with πN ⇒ π implies that the first
term is zero. For the third term, since πN is the steady-state
distribution of VN , we have that ∫ TN(t)fdπN = ∫ fdπN ,

∀t ≥ 0, f ∈ C. Since πN ⇒ π, this implies that the last term
is zero.

To bound the second term, fix some M ∈ N and let K =
VM . We have

lim sup
N→∞

∣∫ T (t)fdπN − ∫ TN(t)fdπN ∣

≤ lim sup
N→∞

∣∫
K
T (t)fdπN − ∫

K
TN(t)fdπN ∣

+ lim sup
N→∞

∣∫
Kc

T (t)fdπN − ∫
Kc

TN(t)fdπN ∣

(a)
≤ lim sup

N→∞
∫
K

∣TN(t)f − T (t)f ∣dπN + lim sup
N→∞

2 ∥f∥πN(Kc)

(b)= lim sup
N→∞

2 ∥f∥πN(Kc) , (103)

where Kc △= V∞ − K and ∥f∥ △= supv∈V∞ ∣f(v)∣. The in-

equality (a) holds because T (t) and TN(t) are both con-
ditional expectations and are hence contraction mappings
with respect to the sup-norm ∥f∥. Equality (b) (lim supN→∞
∫K ∣TN(t)f − T (t)f ∣dπN = 0) can be shown using an ar-
gument involving interchanges of the order of integration,



which essentially follows from the uniform rate of conver-
gence to the fluid limit over the compact set K of initial
conditions (Corollary 18). We isolate equality (b) in the
following claim:

Claim 19. Let K be a compact subset of V∞, we have

lim sup
N→∞

∫
K

∣TN(t)f − T (t)f ∣dπN = 0 (104)

Proof. Fix any δ > 0, there exists N(δ) > 0 such that for
all N ≥ N(δ), we have

∣∫
K
T (t)fdπN − ∫

K
TN(t)fdπN ∣

≤ ∫
K

∣T (t)f − TN(t)f ∣dπN

= ∫
v0∈K

∣f(v(v0, t)) − E [f (VN(t)) ∣VN(0) = v0] ∣dπN(v0)

≤ ∫
v0∈K

∫
vt∈V∞∩QN

∣f (v(v0, t)) − f (vt)∣

dPVN (t)∣VN (0) (vt∣v0)dπN(v0)
(a)
≤ ∫

v0∈K
sup

vt∈V∞,∥vt−v(v0,t)∥
w
≤δ

∣f(v(v0, t)) − f(vt)∣dπN(v0)

≤ ωf(Kδ, δ),

where Kδ is the δ-extension of K,

Kδ △= {x ∈ V∞ ∶ ∥x − y∥w ≤ δ for some y ∈K} , (105)

and ωf(X,δ) is defined to be the modulus of continuity of
f restricted to set X:

ωf(K,δ)
△= sup

x,y∈X,∥x−y∥w≤δ
∣f(x) − f(y)∣ . (106)

To see why inequality (a) holds, recall that by Corollary
18, starting from a compact set of initial conditions, the
sample paths of a finite system stay uniformly close to that
of the fluid limit on a compact time interval with high prob-
ability. Inequality (a) then follows from Eq. (99) and the
fact that f is bounded. Because K is a compact set, it is

not difficult show that Kδ0 is also compact for some fixed

δ0 > 0. Hence f is uniformly continuous on Kδ0 , and we
have

lim sup
N→∞

∣∫
K
T (t)fdπN − ∫

K
TN(t)fdπN ∣ ≤ lim sup

δ→0
ωf(Kδ0 , δ) = 0,

(107)
which establishes the claim. ◻

Going back, since Eq. (103) holds for any K = VM ,M ∈ N,
we have, by the tightness of πN , that the middle term in
Eq. (102) is also zero. This shows that any limit point π of
{πN} is indeed the unique invariant state of the fluid model

(vI). This completes the proof of Theorem 7. ◻

C. SIMULATION SETUP
The simulation results shown in Figure 4 for a finite sys-

tem with 100 stations were obtained by simulating the em-
bedded discrete-time Markov chain, {Q[n]}n∈N, where the
vector Q[n] ∈ Z+

100 records the queue lengths of all 100
queues at time step n. Specifically, we start with Q[1] = 0,
and during each time step one of the following takes place:

1. With probability λ
1+λ , a queue is chosen uniformly at

random from all queues, and one new task is added
to this queue. This corresponds to an arrival to the
system.

2. With probability 1−p
1+λ , a queue is chosen uniformly at

random from all queues, and one task is removed from
the queue if the queue is non-empty. If the chosen queue
is empty, no change is made to the queue length vector.
This corresponds to the generation of a local service
token.

3. With probability p
1+λ , a queue is chosen uniformly at

random from the longest queues, and one task is re-
moved from the chosen queue if the queue is non-empty.
If all queues are empty, no change is made to the queue
length vector. This corresponds to the generation of a
central service token.

To make the connection between the above discrete-time
Markov chain Q[n] and the continuous-time Markov process
Q(t) considered in this paper, one can show that Q(t) is uni-
formized and hence the steady-state distribution of Q(t) co-
incides with that of the embedded discrete-time chain Q[n].

To measure the steady-state queue length distribution seen
by a typical task, we sampled from the chain Q[n] in the
following fashion: Q[n] was first run for a burn-in period of
1,000,000 time steps, after which 500,000 samples were col-
lected with 20 time steps between adjacent samples, where
each sample recorded the current length of a queue chosen
uniformly at random from all queues. Denote by S the set
of all samples. The average queue length, as marked by the
symbol “×” in Figure 4, was computed by taking the average
over S. The upper (UE) and lower (LE) ends of the 95%
confidence intervals were computed by:

UE
△= min{x ∈ S ∶ there are no more than 2.5%

of the elements of S that are strictly greater than x},

LE
△= max{x ∈ S ∶ there is no more than 2.5%

of the elements of S that are strictly less than x}.

Note that this notion of confidence interval is meant to cap-
ture the concentration of S around the mean, and is some-
what different from that used in the statistics literature for
parameter estimation.

A separate version of the above experiment was run for
each value of λ marked in Figure 4, while the the level of
centralization p was fixed at 0.05 across all experiments.


