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1. INTRODUCTION AND BACKGROUND
Accurate and timely performance data are of vital impor-

tance for network administration. However, modern net-
works are so large and transmit such enormous quantities of
data that a single backbone link could fill a terabyte drive
in about 3 minutes. Taking and processing all the desirable
performance measurements can be wildly impractical. Aside
from matters of scale there may be other difficulties, such
as unreliable measurement that mean network administra-
tors cannot make all the performance measurements they
desire. Consequently, it is necessary to make the most of
the measurements that are available. Network Tomography
does just that, by inferring underlying performance statistics
from the available measurements.

This paper considers the problem of link loss tomogra-
phy: inference of link parameters from a series of end-to-end
probes through a network. We specifically estimate average
link loss rates. Typical problems in this setting are highly
underconstrained, and so the measurements often admit in-
finitely many solutions. Some method is needed to select
the correct solution from this possible set, and in this paper
we shall use sparsity.

Network tomography is a well developed field [1, 4, 7].
However, the vast majority of performance tomography has
concentrated on trees. In that setting, it is possible to de-
velop fast, recursive algorithms [2, 4], and to employ side
information such as sparsity relatively easily [3].

However, many networks are not trees. Some work has
looked at combining measurements from multiple tree-like
views of the network [6], however, the approach meets im-
mediate difficulties. Intuitively we can see that it would be
hard to use sparsity in the same way because there is no
longer a “top” of the tree towards which we can push “bad”
links.

In this paper we attack the problem on a general net-
work. We exploit sparsity, but without reducing the prob-
lem to a binary problem. We test the idea of applying the
field of Compressive Sensing to this link tomography prob-
lem. Compressive Sensing exploits the fact that many large
data-sets are comprised of only a few significant elements.
In practice, this means that either the data itself, or some
simple transform of the data, is sparse in the sense that only
a few of the values are non-zero. Compressive Sensing is a
rapidly growing area of research, and there are many pow-
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erful results. However, the underlying assumption in most
Compressive Sensing is that the experimenter controls the
measurement matrix, but here the measurement matrix is
called a routing matrix and it is not chosen to suit the in-
ference problem (its choice is mandated by the design and
optimisation of the network). What’s more, routing matri-
ces don’t satisfy key properties such as RIP that would allow
us to apply the theory of Compressive Sensing. The central
question of this paper is “Can we still use the concepts and
methods of Compressive Sensing despite the deficiencies of
the routing matrices as measurement matrices?”

We show here that we can apply Compressive Sensing,
with a reasonable degree of accuracy. More importantly,
the structural features of typical routing matrices that make
them unsuitable for standard Compressive Sensing theorems
(highly correlated rows, variable lengths of paths) can be ex-
ploited. We develop here a new algorithm — Coherent To-
mographic Deduction (CTD) — for solving the tomography
problem and show that it is orders of magnitude faster than
a standard Compressive Sensing technique, `1-norm minimi-
sation, with the same level of accuracy. Apart from being
much faster, our algorithm has one other very significant
advantage. It knows where it is definitely right, and where
it could be wrong.

1.1 Notation and assumptions
We consider the problem of inferring the loss probabilities

on links across a network from path measurements. Let li =
link loss probability for i = 1, . . . , n, and pj = path loss
probability for j = 1, . . . ,m. When losses on different links
are independent the two are related by

ρ = Aτ . (1)

where τi = − log(1 − li), i = 1, . . . n; and ρj = − log(1 −
pj); j = 1, . . . ,m. and A is the m×n routing matrix defined
by Aj,i = 1 if link i is on path j and 0 otherwise. We assume
that the routing matrix A is known, and we wish to find the
sparsest τ such that ρ = Aτ , i.e.,

min
τ
||τ ||0 subject to ρ = Φτ . (2)

where ||x||0 is the number of non-zero elements of x.

2. ALGORITHM (CTD)

2.1 Part A
Iterated Bounding Step: If we examine the origins of

τ we can see that τ ≥ 0. We can use this lower bound as a
starting place to derive tighter bounds for each τi.



Let lt be the length n vector of lower bounds attained
after t steps. Similarly, let ut be the upper bounds attained
after t steps. Start with l0 = 0. Then define the rest of

the sequence by ut+1
j = mini:Ai,j=1

“
ρi −

P
k:Ai,k=1,i 6=k ltk

”
;

lt+1
j = maxi:Ai,j=1

“
ρi −

P
k:Ai,k=1,i 6=k ut+1

k

”
These two steps are using the previous bounds to find the

new bounds. Halt this process when ||lt − lt−1|| < ε for
some sufficiently small ε > 0. In the final step, each link
i that has a lower bound li the same as its upper bound
ui we consider solved, and eliminate it from the remaining
measurement equations.

Length 2 paths step: Thanks to the iterated bounding
step, at this stage all paths with unsolved links have at least
2 unsolved links, and have some measured loss. We consider
paths with only 2 links. Now one of two things is true:
either we can find a unique solution for the entirety of this
subproblem, or we can find a set of solutions with only one
degree of freedom (we omit the proof here). The length 2
paths step and the iterated bounding step can be repeated
alternately until no more progress is made.

2.2 Part B
While our algorithm CTD can derive solutions for part of

τ with absolute confidence, there may be some components
about which it is unsure. To estimate the remainder of the
solution after running CTD, we use a standard Compressive
Sensing technique, `1-minimisation.

3. SIMULATION
In this section we evaluate the performance of the CTD

algorithm on simulated topologies. To generate the topolo-
gies, we use ideas from Li et al. [5] who highlight that the
Internet is a designed network, and is therefore likely to
be optimised subject to the physical and social constraints
placed upon it.

We compare the performance of (i) `1-minimisation by it-
self with (ii) CTD on heuristically optimised networks with
80 nodes: 10 nodes chosen as sources and a variable number
of destinations. As far as estimation goes, the loss estimates
provided by CTD and raw `1-minimisation are accurate for
an identical, high proportion of the links (Figure 3). How-
ever, CTD Part A also labels some of the loss values as being
accurate, and some as having uncertainty. The average pro-
portion of links determined with certainty is shown as the
solid line in Figure 3.

CTD doesn’t just provide more information than `1- min-
imisation. As an additional advantage, CTD as a whole is
much faster than `1-minimisation in finding the estimate for
τ . With 40 destination nodes, there is almost an order of
magnitude difference in run times; and with more destina-
tion nodes the difference becomes even greater (plot omitted
due to space constraints).

4. CONCLUSION
We present here a justification of why Compressive Sens-

ing techniques, while appearing suited, are not guaranteed
to work when applied to the problems of Link Tomogra-
phy; routing matrices poorly satisfy the typical conditions
required for Compressive Sensing. We present an efficient
algorithm: the first half of this algorithm determines the so-
lution on some subset of links for which we have sufficient in-
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Figure 1: Average proportion of the links deter-
mined (in the case of CTD Part A), or estimated
correctly (in the other cases) plotted against num-
ber of destinations. Note that the lines for CTD
estimation and raw `1-min estimation are identical.

formation; the second half then applies a Compressive Sens-
ing algorithm to find an approximation to the sparsest so-
lution on the remainder of the links. We test this algorithm
on simulated topologies and find that it is both faster and
gives more information than applying Compressive Sensing
techniques directly. Future work will involve extending the
method to include the treatment of noise and measurement
errors.
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