
The Complexity of Robust Atomic Storage

Dan Dobre
∗

TU Darmstadt
Darmstadt, Germany

dan@cs.tu-darmstadt.de

Rachid Guerraoui
EPFL

Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Matthias Majuntke
TU Darmstadt

Darmstadt, Germany
majuntke@cs.tu-

darmstadt.de

Neeraj Suri
TU Darmstadt

Darmstadt, Germany
suri@cs.tu-darmstadt.de

Marko Vukolić
EURECOM

Sophia-Antipolis, France
marko.vukolic@eurecom.fr

ABSTRACT

We study the time-complexity of robust atomic read/write
storage from fault-prone storage components in asynchro-
nous message-passing systems. Robustness here means wait-
free tolerating the largest possible number t of Byzantine
storage component failures (optimal resilience) without re-
lying on data authentication. We show that no single-writer
multiple-reader (SWMR) robust atomic storage implemen-
tation exists if (a) read operations complete in less than
four communication round-trips (rounds), and (b) the time-
complexity of write operations is constant. More precisely,
we present two lower bounds. The first is a read lower bound
stating that three rounds of communication are necessary to
read from a SWMR robust atomic storage. The second is a
write lower bound, showing that Ω(log(t)) write rounds are
necessary to read in three rounds from such a storage. Ap-
plied to known results, our lower bounds close a fundamental
gap: we show that time-optimal robust atomic storage can
be obtained using well-known transformations from regular
to atomic storage and existing time-optimal regular storage
implementations.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distri-
buted Systems; D.4.1 [Operating Systems]: Process Man-
agement—concurrency, multiprocessing / multiprogramming
/ multitasking, synchronization; D.4.5 [Operating Sys-
tems]: Reliability—Fault-tolerance

General Terms

Algorithms, Performance, Reliability, Theory

∗Dan Dobre is currently also with NEC Laboratories Eu-
rope, Kurfürsten-Anlage 36, 69115 Heidelberg, Germany

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

Keywords

Lower bounds, Storage emulations, Arbitrary failures, Op-
timal resilience, Time-complexity

1. INTRODUCTION

1.1 Background
Variable sharing is critical to modern distributed and con-

current computing. The atomic read/write register abstrac-
tion [18] is essential to sharing information in distributed
systems; it abstracts away the complexity incurred by con-
current access to shared data by providing processes an illu-
sion of sequential access to data. This abstraction is also re-
ferred to as atomic storage, for its importance as a building-
block in practical distributed storage and file systems (see
e.g., [24, 25]). Besides, its read/write API, despite being
very simple, is today the heart of modern “cloud” key-value
storage APIs (e.g., [5]).

In this paper, we study atomic storage implementations
in asynchronous message-passing systems in which a set of
reader and writer processes (clients) share data leveraging
a set of storage object processes. We consider fault-tolerant,
robust [3] storage implementations characterized by: a) wait-
freedom [17], i.e., the fact that read/write operations in-
voked by correct clients always eventually return, and b)
ensuring correctness despite the largest possible number t of
object failures (optimal resilience). We allow for the most
general type of failures, arbitrary, also called Byzantine [19]
failures1, without assuming authenticated (also called self-
verifying [23]) data to limit the adversary (by relying on e.g.,
digital signatures).

In this model, we ask a fundamental question: what is the
optimal worst-case complexity of robust atomic storage im-
plementations? Our complexity metric is an important one:
time-complexity, or latency, measured in number of com-
munication round-trips (or simply rounds) between a client
and objects. The relevance of the question we ask extends
beyond theoretical. Namely, with the growth in storage out-
sourcing driven by the advent of cloud computing, the arbi-
trary failure model becomes increasingly relevant in absence
of the full trust in the cloud [6]. In addition, the number of

1In the Byzantine failure model, optimal resilience corre-
sponds to using 3t+ 1 objects to tolerate t failures [23].

59

interactions with the remote cloud storage needed to access
the data, maps to our latency metric and is often directly
associated with the monetary cost; this obviously increases
further the practical relevance of the question we ask.

Perhaps surprisingly and despite the wealth of literature
exploring latency-optimal storage implementations, this
question has not been answered. It is known that the worst-
case latency of writing into robust storage is at least 2 rounds
[1]. In this paper, we show that the optimal worst-case la-
tency of reading from scalable robust atomic storage is 4
(four) rounds. Here, the notion of scalability captures two
basic criteria: a) support for any number of readers, and b)
constant write-latency. Our results close a fundamental gap,
showing that latency-optimal scalable and robust atomic
storage, combining 2-round writes and 4-round reads, can be
achieved (in the case of single-writer multi-reader (SWMR)
storage) using standard transformations from weaker, regu-
lar [18] registers to the atomic ones [4,20].

Our contribution goes through proving two lower bounds.
To help fully appreciate our contributions, we first discuss
how the scope of this paper fits into related work.

1.2 Related work
Several papers have explored the time-complexity met-

ric in the context of a read/write register abstraction. A
seminal crash-tolerant robust atomic SWMR register imple-
mentation assuming a majority of correct processes was pre-
sented in [3]. In [3], all write operations complete in a single
round; on the other hand, read operations always take two
rounds between a client and objects.

The problem of modifying [3] to enable single round reads
was explored in [9], which showed that such fast atomic im-
plementations are possible albeit they come with the price of
limited number of readers and suboptimal resilience. More-
over, the reader in [9] needs to write (i.e., modify the ob-
jects’ state) as dictated by the lower bound of [12] which
showed that every atomic read must write into at least t ob-
jects. [10] extends the result of [9] to the Byzantine failure
model assuming authenticated (i.e., digitally signed) data
and established the impossibility of fast crash-tolerant multi-
writer multi-reader (MWMR) atomic register implementa-
tions. This result is in line with classical MWMR implemen-
tations such as [22] that have read/write latency of at least 2
rounds. The limitation on the number of readers of [9], was
relaxed in [13], where a crash-tolerant robust SWMR atomic
register implementation was presented, in which most of the
reads complete in a single round, yet a fraction of reads is
permitted to be slow and complete in 2 rounds.

In the Byzantine context, optimizing latency is partic-
ularly interesting when data is assumed to be unauthen-
ticated, which we also assume here. [1] showed that any
Byzantine-tolerant storage employing at most 4t storage ob-
jects has at least some write operation complete in 2 rounds.
Moreover, [1] showed a tight lower bound of t+1 rounds from
reading from robust SWMR safe [18] storage, with the con-
straint that readers are precluded from writing. However,
allowing readers to write helps improve latency as shown in
[15], through a 2-round tight lower bound on reading from
robust SWMR regular [18] storage. This bound was circum-
vented in [8], assuming secret values used to detect concur-
rent operations, where reads are expedited to complete in
a single round. However, none of these papers dealt with

optimal worst-case latency of reading from robust atomic
storage, which is precisely the scope of our paper.

On the other hand, few papers have explored the best-case
complexity of Byzantine-tolerant optimally resilient atomic
storage. Here, “best-case” encompasses synchrony, no or few
object failures and the absence of read/write concurrency. In
this context, [14] presented the first robust atomic storage
implementation in which both reads and writes are fast in
the best-case (i.e., complete in a single round-trip). Further-
more, [16] considered robust atomic storage implementations
with the possibility of having fast reads and writes gracefully
degrade to 2 or 3 rounds, depending on the size of the avail-
able quorum of correct objects. Unlike these papers, we are
interested here with the unconditional, worst-case latency
of atomic storage.

Finally, the worst-case read latency in existing Byzantine-
tolerant robust atomic storage implementations for unau-
thenticated data (e.g., [2, 14,16,23]) is either unbounded or
Ω(t) rounds at best [2].

1.3 Contributions
We present two lower bounds (impossibility results) on

time-complexity of reading from robust atomic storage for
unauthenticated data, implemented from storage objects
prone to Byzantine faults. Together, our lower bounds imply
that there is no scalable robust atomic storage implemen-
tation in the Byzantine unauthenticated model in which all
reads complete in less than 4 rounds.

• The first lower bound, referred to as the read lower
bound, demonstrates the impossibility of reading from
robust SWMR atomic storage in two rounds. More
precisely, we show that if the number of storage objects
S is at most 4t and if the number of readers R is greater
than 3, then no SWMR atomic implementation may
have all reads complete in two rounds.

Our proof scheme resembles that of [9] and relies on se-
quentially appending reads on a write operation, while
progressively deleting the steps of a write and preced-
ing read operations, exploiting asynchrony and possi-
ble failures. This deletion ultimately allows reusing
readers and reaching an impossibility with as few as
R = 4 readers. As none of these appended opera-
tions are concurrent under step contention, the impos-
sibility also holds in the stronger data model of [8],
in which the adversary is unable to simulate step con-
tention among operations, making use of secret values.

• Our second lower bound, referred to as the write lower
bound, shows that if read operations are required to
complete in three communication rounds, then the
number of write rounds k is Ω(log(t)). More precisely,
we show that if the number of storage objects is at
most 3t+bt/tkc and R ≥ k, then no implementation of
a SWMR atomic storage may have all reads complete
in three rounds and all writes in k ≤ blog(d 3tk+1

2
e)c

rounds. In a sense, our lower bound generalizes the
write lower bound of [1], which proves our result for
the special case of k = 1.

While using a similar approach, the write lower bound
proof is much more involved and differs from our read

60

lower bound proof in several key aspects. Due to the
additional third read round, read steps cannot be en-
tirely deleted, which prohibits the reuse of readers.
Consequently, the number of supported readers R and
the number of write rounds k are related (R ≥ k). Fur-
thermore, the proof relies on a set of malicious objects
that forges critical steps of the write and of prior reads
with respect to subsequent reads. This set grows with
the number of appended reads, relating the number of
faulty objects t and the number of readers (which is at
least k). At the heart of the proof we use a recurrent
formula that relates t and k, similar to a Fibonacci
sequence, which describes the exact relation between
the two parameters. In its closed form, the formula
transforms to the log function (k = Ω(log(t))).

The rest of the paper is organized as follows. In Section 2
we give our model and definitions. Sections 3 and gives the
proof of our read lower bound. 2 Section 4 gives the proof
of our write lower bound. Section 5 concludes the paper by
discussing modular implementations that match our lower
bounds.

2. MODEL

2.1 Basics
The distributed system we consider consists of three dis-

joint sets of processes: a set objects of size S containing
processes {s1, ..., sS} and representing the base register el-
ements; a singleton writer containing a single process {w};
and a set readers of size R containing processes r1, ..., rR.
The set clients is the union of the sets writer and read-
ers. We assume that every client may communicate with
any process by message passing using point-to-point reliable
communication channels. However, objects cannot commu-
nicate among each other, nor send messages to clients other
than in reply to clients’ messages.

Here we define only the notions we use in our proofs;
model details can be found in [20]. A distributed algorithm
A is a collection of automata [21], where automaton Ap is
assigned to process p. Computation proceeds in steps of A;
each step is denoted by a pair of process id and a set of mes-
sages received in that step 〈p,M〉 (M might be ∅). A run is
an infinite sequence of steps of A. A partial run is a finite
prefix of some run. A (partial) run r extends some partial
run pr if pr is a prefix of r. At the end of a partial run, all
messages that are sent but not yet received are said to be
in transit. In any run, any client can fail by crashing and
up to t objects may be malicious faulty, exhibiting arbitrary
behavior. The non-faulty objects are also called correct. An
algorithm that assumes S = 3t + 1 is said to be optimally
resilient.

2.2 Atomic Storage
A register abstraction is a read/write data structure. It

provides two operations: write(v), which stores v in the reg-
ister, and read(), which returns the value from the register.
We assume that each client invokes at most one operation
at a time (i.e., does not invoke the next operation until it

2An extension to the model of [26] using distinct thresholds
for malicious and crash objects’ faults can be found in our
full paper [7].

receives the response for the current operation). Only read-
ers invoke read operations and only the writer invokes write
operations. We further assume that the initial value of a
register is a special value ⊥, which is not a valid input value
for a write operation. We say that an operation op is com-
plete in a (partial) run if the run contains a response step
for op. In any run, we say that a complete operation op1
precedes operation op2 (or op2 succeeds op1) if the response
step of op1 precedes the invocation step of op2 in that run. If
neither op1 nor op2 precedes the other, then the operations
are said to be concurrent.

An algorithm implements a register if every run of the
algorithm satisfies wait-freedom and atomicity properties.
Wait-freedom states that if a process invokes an operation,
then eventually, unless that process crashes, the operation
completes (even if all other client processes have crashed).
Here we give a definition of atomicity for the single-writer
registers. In the single-writer setting, the writes in a run
have a natural ordering which corresponds to their physical
order. Denote by wrk the kth write in a run (k ≥ 1), and
by valk the value written by the kth write. Let val0 = ⊥.
We say that a partial run satisfies atomicity if the following
properties hold: (1) if a read returns x then there is k such
that valk = x, (2) if a read rd is complete and it succeeds
some write wrk (k ≥ 1), then rd returns vall such that
l ≥ k, (3) if a read rd returns valk (k ≥ 1), then wrk either
precedes rd or is concurrent with rd, and (4) if some read
rd1 returns valk (k ≥ 0) and a read rd2 that succeeds rd1
returns vall, then l ≥ k.

Time-complexity.
We measure the time-complexity of an atomic register

implementation in terms of communication round-trips (or
simply rounds). A round is defined similar to [9,11,13,22]:

Definition 1. Client c performs a communication round
during operation op if the following conditions hold:

1. The client c sends messages to all objects. (This is
without loss of generality because we can model the fact
that messages are not sent to certain objects by having
these objects not change their state or reply.)

2. Objects, on receiving such a message, reply to the client
before receiving any other messages (as dictated by our
model).

3. When the invoking client receives a sufficient number
of such replies, the round (rnd) terminates, and the op-
eration op either completes or moves to the next round.

Note that, since any number of clients can crash, we can
construct partial runs in which no client receives any mes-
sage from any other client. In our proofs in Section 3 and 4
we focus, without loss of generality, on such partial runs.

Since up to t objects might be faulty, ideally, in every
round rnd the invoking client can only wait for reply mes-
sages from correct objects (at least S−t). In fact, we require
that if in a partial run pr, a round rnd terminates without
the reply from some object si, then either (a) si is faulty or
(b) there is partial run pr′ indistinguishable from pr, and in
which si is faulty.

Each round attempts to invoke operations on all objects.
If on some correct object si there is a pending invocation
(of an earlier round), then the new invocation awaits the

61

completion of the pending one. Note that this is equivalent
to the round model of [1].

3. THE READ LOWER BOUND
In this section we prove the following proposition.

Proposition 1. : If S ≤ 4t and R > 3, then no read
implementation I of a multi-reader (SWMR) atomic register
exists that completes in two rounds.

Overview.
The idea behind the proof is to start with a complete write

that writes 1 into the storage, after which a complete read
is appended. By atomicity, the read returns 1. Then, fur-
ther reads by distinct readers are appended one after the
other such that the last appended read returns 1. At the
same time, steps of the write and the previous reads are
progressively deleted. After appending the fourth read, the
final round of the write is deleted from the storage. More-
over, similar to a circular buffer, all steps of the first read
are erased, and the read ca be “recycled”. By atomicity, the
last appended read returns 1. The next iteration starts by
reusing the first read, which in turn frees the second read.
The proof proceeds through a sequence of such iterations.
In each iteration, the last appended read frees the first ap-
pended read, and deletes another round of the write. After
the last iteration, all steps of the write are deleted, meaning
that no write is invoked. However, the last appended read
returns 1, violating atomicity.

Preliminaries.
In the proof w denotes the writer, ri for 1 ≤ i ≤ 4 denote

the readers, and si for 1 ≤ i ≤ S denote objects. Suppose
by contradiction that R = 4 and there is an atomic register
implementation I that uses at most 4t objects, such that in
every partial run of I every read operation completes in two
rounds.

We partition the set objects into four disjoint subsets
(which we call blocks), denoted B1,B2,B3 and B4. Blocks
B1, B2 and B3 are of size exactly t ≥ 1 and the size of B4

is at least 1 and at most t. We refer to the initial state of
every correct block Bj as σj

0. For simplicity we simply write
σ0, where the block name is implicit.

We say that a round rnd of an operation op skips a set of
blocks BS in a partial run, (where BS ⊆ {B1, . . . , B4}), if
(1) no object in any block BL ∈ BS receives any message
in round rnd from op in that partial run; (2) all other ob-
jects receive all messages in round rnd from op and reply to
the messages, and (3) in case round rnd is terminated, the
invoking client has received all these reply messages or, in
case rnd is not terminated, all these reply messages are in
transit. We say that an operation op skips a set of blocks
BS in a partial run if every round of op skips BS.

To show a contradiction, we construct a partial run of the
implementation I that violates atomicity: a partial run of I
in which no value is ever written and some read returns 1.

Partial writes.
Throughout the proof there is only one write operation

write(1) by w that writes value 1. Consider a partial run
wr in which w completes write(1) on the register and let k
be the number of rounds invoked by w in wr. We denote

the state of every correct block Bj after it has replied to the
messages of the write during round 1 to i where 1 ≤ i ≤ k
as σi, where j is again implicit. The write operation skips
blocks B4. We define a series of partial runs containing
an incomplete write(1) invocation, each being a prefix of
wr. For 1 ≤ i ≤ k and 1 ≤ j ≤ 4, we define wrij as the
partial run in which (1) rounds 1 to i−1 are terminated and
skip B4; (2) round i is not terminated and skips all blocks
{Bl | 1 ≤ l ≤ j − 1} ∪ {B4}, and (3) all objects are correct.
We make two observations: (1) partial run wrk1 differs from
wr only at w and (2) partial run wr14 differs from a run in
which write(1) is never invoked only at w.

Block diagrams.
We illustrate the proof in Figure 1 (a)-(n). We depict a

round rnd of an operation op through a set of rectangles
arranged in a single column. In the column corresponding
to some round rnd of op we draw a rectangle in a given row,
if all objects in the corresponding block BL have received
the message from the client in round rnd of op and have
sent reply messages, i.e., if round rnd of op does not skip
BL. We write “@” in the row corresponding to BL iff BL is
malicious.

Appending reads.
Partial run pr1 extends wr by appending a complete read

rd1 by r1 that skips B2 in round one and B1 in round two
(see Figure 1 (a)). Note that when the second round is
started, there is a pending first round invocation on B2.
Therefore in the second round, rd1 waits for both first and
second round replies from B2. For ease of presentation, the
late first round replies are not illustrated.

In pr1, all objects in block B1 are malicious, and forge
their state to σk−1 before replying to rd1. By atomicity rd1
returns 1. Observe that r1 cannot distinguish pr1 from some
partial run ∆pr1 that extends wrk2 by appending rd1, and
where all objects are correct (see Figure 1 (b)). Note that
∆pr1 is obtained from pr1 by deleting the crossed steps.

Partial run pr2 extends ∆pr1 by appending a complete
read rd2 by r2 that skips B3 and B2 in round one and two
respectively (see Figure 1 (c)). In pr2, all objects in block B2

are malicious, and forge their state to σk−1 before replying
to rd2. By atomicity rd2 returns 1. Observe that r2 cannot
distinguish pr2 from some partial run ∆pr2, that extends
wrk3 by appending an incomplete rd1 and a complete rd2,
and where all objects are correct (Figure 1 (d)). ∆pr2 is
obtained from pr2 by deleting the crossed steps.

Partial run pr3 extends ∆pr2 by appending a complete
read rd3 by r3 that skips B4 in round one and B3 in round
two (Figure 1 (e)). In pr3, all objects in block B3 are mali-
cious, and forge their state to σk−1 before replying to rd3.
By atomicity rd3 returns 1. Let σr

1 denote the state of the
objects in block B4 in run pr3 before replying to rd2. Ob-
serve that r3 cannot distinguish pr3 from some partial run
∆pr3, that extends wrk4 by appending incomplete reads rd1
and rd2 and a complete read rd3 and in which (1) all ob-
jects in B4 are malicious and (2) they forge their state to σr

1

before replying to rd2 (Figure 1 (f)).
Note that in pr3, rd3 completes the second round based

on replies from all correct objects, and similarly in ∆pr3,
the first round misses replies only from faulty objects. Since
r3 cannot distinguish pr3 and ∆pr3, it cannot wait for ad-
ditional replies (in any of the two runs).

62

write(1) rd1

...

...

...B3

B2

B4

B1@

k − 1 k

σk−1

(a) pr1 extends wr

write(1) rd1

...

...

...B3

B2

B4

k − 1 k

σk−1B1

(b) ∆pr1 ∼ pr1

write(1) rd2rd1

kk − 1

B3

B1
...

B2
...

...

B4

σk−1@

σk−1

(c) pr2 extends ∆pr1

rd2

kk − 1

B3

B1
...

...

...

B4

σk−1

σk−1

write(1)

B2

rd1

(d) ∆pr2 ∼ pr2

kk − 1

B3

B1
...

B2
...

...

B4

@

σk−1

σ
r
1

σk−1

rd3write(1) rd1 rd2

σk−1

(e) pr3 extends ∆pr2

kk − 1

B1
...

B2
...

...

B4

σk−1

σ
r
1

σk−1

rd3write(1) rd1 rd2

σk−1

B3

@

(f) ∆pr3 ∼ pr3

rd1 rd2 rd3

B1
...

B2
...

...

B4

B3

@ σ
r

4i−3

σk−i

write(1)

σk−i

σ
r

4i−2
σk−i

σ0

k − i

rd4

(g) pr4i extends ∆pr4i−1

B1
...

B2
...

...

B4

B3

σk−i

write(1)

@

rd3rd2 rd4

σ
r

4i−2

σk−i

k − i

(h) ∆pr4i ∼ pr4i

B1
...

B2
...

...B3

B4

@

write(1)

σ
r

4i−2

σk−i

rd4 rd1

σk−i−1

σk−i σ
r

4i−1

k − i

rd2 rd3

(i) pr4i+1 extends ∆pr4i

...

B2
...

...B3

B4

write(1)

σk−i

rd4 rd1

σk−i−1

σ
r

4i−1

B1

@

k − i

rd3

(j) ∆pr4i+1 ∼ pr4i+1

σk−i

σ
r

4i−1

σ
r

4i

...

B2
...

...B3

B4

write(1) rd1 rd2

B1

@

k − i

rd3 rd4

σk−i−1

σk−i−1

(k) pr4i+2 extends ∆pr4i+1

σ
r

4i

...

B2
...

...B3

B4

write(1) rd1 rd2

B1

k − i

rd4

@

σk−i−1

σk−i−1

(l) ∆pr4i+2 ∼ pr4i+2

...

B2
...

...B3

B4

write(1) rd2 rd3

B1

k − i

rd4 rd1

@ σ
r

4i

σ
r

4i+1

σk−i−1

σk−i−1

σk−i−1

(m) pr4i+3 extends ∆pr4i+2

...

B2
...

...B3

B4

write(1) rd2 rd3

B1

k − i

rd1

σ
r

4i+1
@

σk−i−1

σk−i−1

σk−i−1

(n) ∆pr4i+3 ∼ pr4i+3

Figure 1: Illustration of the runs used in the proof of Proposition 1 (1 ≤ i ≤ k − 1)

63

Partial run pr4 (illustrated in Figure 1 (g)) extends ∆pr3
by appending a complete read rd4 by r4 that skips B1 in
round one and B4 in round two. In pr4, all objects in block
B4 are malicious and forge their state (1) to σr

1 before reply-
ing to rd2 and (2) to σ0 before replying to rd4. By atomicity
rd4 returns 1. Let σr

2 denote the state of the objects in block
B1 before replying to rd3. Observe that r4 cannot distin-
guish pr4 from some partial run ∆pr4, that extends wrk−1

1

by appending incomplete reads rd2, rd3 and a complete read
rd4, and in which (1) all objects in B1 are malicious and (2)
they forge their state to σr

2 before replying to rd3 (Figure 1
(h)). Note that in partial run pr4, rd4 receives second round
replies from all correct objects. Similarly in ∆pr4, rd4 re-
ceives first round replies from all objects except the faulty
ones. Since r4 cannot distinguish pr4 and ∆pr4, rd4 cannot
wait for additional replies without violating termination.

After appending rd4 and constructing ∆pr4 by deleting
all steps from pr4 which are not visible to rd4, we notice
that we have erased all steps in column k of write(1) as
well as, deleted all steps of rd1. Thus, we can recycle r1 by
appending rd1 again and start deleting the steps in column
k − 1.

Starting from ∆pr4 we iteratively define the following par-
tial runs for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ 4 (see Figure 1 (g)-
(n)). Partial run pr4i+(j mod 4) extends ∆pr4i+(j mod 4)−1

by appending rdj . In pr4i+(j mod 4), all objects in block Bj

are malicious and they forge their state (1) to σr
4i+(j mod 4)−3

before replying to rdj−2
3 and (2) to σ((j mod 4)/j)(k−i−1) be-

fore replying to rdj . Let σ
r
4i+(j mod 4)−2) denote the state of

the objects in block B(j mod 4)+1 before replying to rdj−1.
Observe that rj cannot distinguish pr4i+(j mod 4) from some

partial run ∆pr4i+(j mod 4), that extends wrk−i
(j mod 4)+1 by

appending incomplete reads rdj−2 and rdj−1 and a complete
read rdj , and in which (1) all objects in B(j mod 4)+1 are
malicious, and (2) they forge their state to σr

4i+(j mod 4)−2

before replying to rdj−1 (Figure 1 (h),(j),(l),(n)). In run
∆pr4i+(j mod 4) and pr4i+(j mod 4), rdj receives first and
second round replies from all correct objects respectively.
As rj cannot distinguish ∆pr4i+(j mod 4) and pr4i+(j mod 4),
rdj cannot wait for additional replies without blocking.

Read rd4 in ∆pr4 returns 1. Since pr5 extends ∆pr4 by
appending rd1, by atomicity, rd1 in pr5 returns 1. However,
as r1 cannot distinguish pr5 from ∆pr5, rd1 in ∆pr5 returns
1. In general, since pr4i+(j mod 4) extends ∆pr4i+(j mod 4)−1

by appending rdj (for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ 4), and
rj cannot distinguish pr4i+(j mod 4) from ∆pr4i+(j mod 4), it
follows by induction that rdj in ∆pr4i+(j mod 4) returns 1.
In particular, rd3 reads 1 in ∆pr4k−1. By our construction,
∆pr4k−1 extends wr14 and wr14 is indistinguishable from a
run in which write(1) is never invoked. Hence, rd3 returns
1 even if no write is invoked, violating atomicity.

4. THE WRITE LOWER BOUND
In this section we prove the following proposition.

Proposition 2. : If S ≤ 3t + bt/tkc and every read
completes in three rounds then no write implementation I
of a multi-reader atomic register exists that completes in
min{R, blog(d(3tk + 1)/2e)c} rounds.

3By rdj−c, we denote the c
th last read prior to rdj . Formally,

rd4−((c−j) mod 4).

We first prove the following key lemma. In the effort of
making its involved proof easier to follow we first proceed
through a careful proof setup that we found worthwhile. To
further help follow the proof, we also visualize runs we use
in the proof in Figure 2.

Lemma 1. Let k ≥ 1, t−1 = t0 = 0 and tk = tk−1 +
2tk−2 + 1. There is no implementation I of a k-reader
atomic storage with 3tk + 1 objects and tk faults such that
the write completes in k rounds and the read completes in
three rounds.

Overview.
The idea of the proof consists of having a complete write

that writes 1 into the storage, after which we append a se-
quence of read operations. We use patterns of concurrency
and failures such that the first read in the sequence cannot
distinguish if it overlaps with or succeeds the write. In each
case, by atomicity, it must return 1. For each of the fol-
lowing reads we use the same indistinguishability argument
such that the last read in the sequence cannot tell if it is
concurrent with or follows after the preceding read. In both
cases, by atomicity, the last appended read has to return 1.

To derive a contradiction, for each appended read, we pro-
gressively delete one of the k rounds of the write and rounds
of the previous reads. As a consequence, the kth appended
read returns 1 in a run in which 1 is never written. To
reduce the information about the write propagated via the
3rd read round, as more reads are appended, a monotoni-
cally increasing set of base object present forged informa-
tion. Consecutive read operations increasingly skip these
faulty objects together and therefore overlap in an increas-
ing number of correct objects. If two rounds of consecutive
reads, both skip the same set of x faulty objects, then they
overlap in 2x+ 1 correct objects. To derive a contradiction
for the kth appended read, the set of faulty objects consists
of those needed to derive a contradiction for the k−1st read
plus the 2x + 1 objects in the intersection of the 3rd round
of the k − 1st read and the first round of the kth read. In
fact, x equals the number of faulty objects needed to derive
a contraction for the k − 2nd read. Together, this leads to
the recursive formula used throughout the proof.

Preliminaries.
Recall that w denotes the writer, ri for 1 ≤ i ≤ k denote

the readers, and si for 1 ≤ i ≤ S denote the objects. The
initial value of the register is ⊥. In the proof, there is only
one write operation write(1) by w that writes value 1. We
know from [1] that the lemma is true for k = 1; hence,
we assume k ≥ 2. Suppose by contradiction that there is an
implementation I that uses at most 3tk+1 objects, such that
in every partial run of I every write (resp., read) completes
in k (resp. 3) rounds.

We partition the set objects into 2k + 2 distinct blocks,
B0, . . . , Bk+1 and C1, . . . , Ck such that |

⋃k+1
j=0 Bj | = 2tk +1

and |
⋃k

j=1 Cj | = tk. Block B0 contains a single object. For
1 ≤ l ≤ k, the size of Bl is tl − tl−2 and the size of Bk+1 is
2tk + 1− |

⋃k
j=0 Bj | = tk − tk−1. For 1 ≤ l ≤ k − 1, the size

of Cl is tl−1 − tl−2 and the size of Ck is tk − |
⋃k−1

j=1 Cj | =
tk− tk−2. It is important to note that C1 is empty. Towards
a uniform presentation of the result, we will refer to C1

64

wherever appropriate. Also, we use the abbreviation BLi,j

to denote the set {BLi, BLj}, for some BL ∈ {B,C}.
We also define three sets of blocks called superblocks: the

“malicious” superblock Ml, the “parity” superblock Pl and
the “correct” superblock Cl. Superblock Ml contains all
blocks with index at most l. Formally, for −1 ≤ l ≤ k − 1
we define Ml := {Bj | 0 ≤ j ≤ l} ∪ {Cj | 1 ≤ j ≤ l}. For
instance, M−1 = ∅ and M2 = {B0, B1, C1, C2}. Superblock
Pl contains all blocks Bj with index j ≥ l ≥ 1 such that j
and l have the same parity. More formally, for 1 ≤ l ≤ k,
we define Pl := {Bj | l ≤ j ≤ k+ 1 ∧ j ≡ (l mod 2)}. For
instance, if k is even then P1 = {B1, B3, . . . , Bk−1, Bk+1}
and P2 = {B2, B4, . . . , Bk−2, Bk}. Finally, superblock Cl :=
{Cj | l ≤ j ≤ k}.

Given the size of the individual blocks, we can determine
the cardinality of the union of all elements of a superblock.
Namely, if S ∈ {Ml,Pl, Cl}, then we define the union of its
elements as

⋃
S = {s ∈ BL | BL ∈ S}. Having in mind

that tk = tk−1+2tk−2+1 (Def.) and t−1 = t0 = 0, we have:

|
⋃

Ml| = tl+2tl−1+1
(Def.)
= tl+1 for 0 ≤ l ≤ k−1 (1)

|
⋃

Pl| = tk − tl−2 for 1 ≤ l ≤ k + 1 (2)

|
⋃

Cl| = tk − tl−2 for 1 ≤ l ≤ k (3)

Block diagrams.
Figure 2 illustrates the proof for R = k = 4. Reader ri

invokes read rdl, 1 ≤ l ≤ k. In the column corresponding to
some round rnd of op we draw a rectangle in a given row,
iff round rnd of op does not skip4 the corresponding block
BL. We write “@” in the row of BL iff BL is malicious.

Read patterns.
We first characterize a complete read rdl for 1 ≤ l ≤ k−1.

A complete rdl skips (1) Ml−2 ∪ Pl+1 in round one and
two, and (2) Ml−2 ∪ Cl+1 in round three. Read rdk skips
Mk−2 ∪ Pk+1. Observe that by equations (1), (2) and (3),
a read skips exactly tk objects in each round.

Consider the example in Figure 2. Complete reads rd1,
rd2 and rd3 skip (respectively): (1) {B2,4}, {B0} ∪ {B3,5}
and {B0,1} ∪ {B4} in rounds one and two, and (2) {C2,3,4},
{B0} ∪ {C3,4} and {B0,1} ∪ {C4} in round three. Read rd4
skips {B0,1,2, C2} ∪ {B5}.

We further define three types of incomplete reads inc1,
inc2 and inc3, depending on the read’s progress. For 1 ≤ l ≤
k, read rdl is of type inc1 if the first round is not terminated
and skips all blocks except Pl. For 1 ≤ l ≤ k − 1, read rdl
is of type (1) inc2 if the first round is terminated, and the
second round is not terminated and skips all blocks except
Cl, and (2) inc3 if the second round is terminated and the
third round is not terminated and skips Ml−2∪Cl+1∪Pl+1.

Consider our example in Figure 2 (c) that illustrates par-
tial run ∆pr2 (after deleting the crossed out steps). Observe
that (1) rd2 is incomplete of type inc3 (its third round skips
{B0} ∪ {C3,4} ∪ {B3,5}), (2) rd1 is incomplete of type inc2
(its second round skips all blocks except {C2,3,4}) and (3)
rd3 (resp., rd4) is incomplete of type inc1 ; its first round
skips all blocks except {B3,5} (resp., {B4}).

4The definition of skipping extends here from Sec. 3.

Towards a contradiction, we construct a partial run of
the atomic register implementation I that violates atomicity.
More specifically, we exhibit a partial run in which some read
returns a value that was never written.

Initialization.
Consider a partial run prinit in which (1) all blocks are

correct and (2) prinit extends the empty run by appending
incomplete reads rdl by rl of type inc1, for 1 ≤ l ≤ k,
one after the other. In prinit, there is no write operation.
We refer to the state of each correct block BL ∈ Pl after
replying to rdl as σl

0. Thus, the state of Bl at the end of
prinit corresponds to σl

0 for 1 ≤ l ≤ k. Further, Bk+1 is in
state σk−1

0 . To see why, note that Bk−1 and Bk+1 have the
same parity and there are only k reads.

Consider our example Figure 2 (a). At the end of prinit,
block B1 (resp., B2; B3,5; B4) replied to rd1 (resp., rd2; rd1
and rd3; rd2 and rd4); thus, at the end of the run its state
is σ1

0 (resp., σ2
0 ; σ

3
0 ; σ

4
0).

Partial writes.
We extend prinit to a partial run wrk by appending a

complete write(1) that completes in k rounds and skips su-
perblock C1. Moreover, we define a series of partial runs
each being a prefix of wrk. For 1 ≤ i ≤ k, let wrk−i be the
partial run which extends prinit by appending an incomplete
write(1) such that (i) round 1 to k − i are terminated and
(ii) round k − i + 1 is not terminated and skips C1 and all
Bj ’s such that j > 0 and i and j have the same parity, i.e.,
C1∪P2−(i mod 2) (Fig. 2 (a) and (c)). We refer to the state of

the blocks Bl ∈ P2−(i mod 2) at the end of wrk−i as σl
k−i for

1 ≤ l ≤ k. If Bk+1 ∈ P2−(i mod 2), then we refer to its state

at the end of wrk−i as σk−1
k−i . Note here that σl

k−i results

from σl
0 by appending k − i rounds of the write. When the

context is clear, for simplicity we refer to these states using
the implicit notation σ∗

k−1. Finally, we refer to the state of

B0 at the end of runs wrk and wrk−1 as σk.
We refer to our example in Figure 2 (a),(c),(e) and (g) for

illustrations of the runs wr3 to wr0 and the corresponding
states. For instance Figure 2 (a), illustrates wr3 as an ex-
tension of prinit. The states of the blocks B0, B1 and B3,5

at the end of wr3 are σ4 (4 rounds of write), σ1
3 and σ3

3 (3
rounds of write).

Appending Reads.
Partial run pr1 extends wrk−1 by appending the missing

steps of a complete read rd1. In pr1 all objects are correct
and thus rd1 receives replies from S − tk correct objects.
After receiving the third round replies, rd1 completes and
returns value x. We now show that x = 1. We define a par-
tial run @pr0, (Fig. 2(b)) which is identical to wrk except
that in @pr0 (1) no read by r1 occurs and (2) superblock
P1 is malicious and mimics the occurrence of rd1 by forg-
ing its initial state to σ1

0 . By equation (1), the malicious
objects in @pr0 amount to tk. Partial run prC1 (Fig. 2(b))
is defined as an extension of @pr0 by appending a complete
read rd1. Read rd1 cannot distinguish prC1 from pr1 because
P1, which is malicious in prC1 , mimics pr1. Specifically, P1

forges its state to σ0 before replying to rd1’s first round, and
then to σ∗

k−1 before replying to rd1’s second round. In prC1 ,

by atomicity rd1 returns 1. Since prC1 and pr1 are indistin-
guishable to reader r1, x = 1.

65

C2,3,4

rd1

rd2

rd3

rd4

write(1)
σ
r
1

σ
1

0

σ4

σ
1

3
B1

B0

write(1)

wr
3

prinit

rd1 → 1rd1234

σ
2

0
B2

σ
1

0
σ
3

0
σ
3

3
B3,5

σ
2

0
σ
4

0
B4

Legend

(a) pr1 extends wr3 (∆pr1 from pr1 by deleting crossed steps)

σ
2

0
B2

σ
2

0
σ
4

0
B4

C2,3,4

σ
r
1

σ4

σ
1

3
σ
1

0
σ0B1

B0

write(1) rd1 → 1

@

σ
1

0
σ
3

0
σ
3

3
σ0B3,5@

rd234

@pr0 ∼ wr
4

(b) prC1 (extends @pr0 ∼ wrk)

σ
2

0
B2

σ
2

0
σ
4

0
σ
4

2
B4

σ
1

0
σ
3

0
σ
3

3
B3,5

C3,4

σ
r
1

σ
r
2

σ
1

0
B1

B0

σ
2

2

write(1) rd2 → 1rd1

σ4@
wr

2

rd1234

σ
1

3

C2

(c) pr2 extends ∆pr1 (∆pr2 from pr2 by deleting crossed steps)

C2

σ
1

0
σ
3

0
σ
3

3
B3,5

C3,4

σ
r
2

σ
1

0

σ4

σ
r
1

B1

B0

write(1) rd1 → 1

σ
2

0
σ
2

2
σ0B2 @

σ
2

0
σ
4

0
σ
4

2
σ0B4 @

rd2 → 1

@pr1

rd134

σ
1

3

(d) prC2 (extends @pr1 ∼ pr1)

σ
2

0
σ
2

2
B2

C2

σ
4

0
B4 σ

4

2
σ
2

0

C4

C3

σ
r
2

σ
3

1
σ
3

0
σ
1

0
B3

σ
3

1
σ
3

0
σ
1

0
B5

σ
r
3

σ4

σ
r
1

B0

B1 σ
1

0
@

@
wr

1

write(1) rd1 rd3 → 1rd2rd1234

(e) pr3 extends ∆pr2 (∆pr3 from pr3 by deleting crossed steps)

σ
2

0
σ
2

2
B2

C2

C3

σ
4

0
B4 σ

4

2
σ
2

0

C4

σ
3

3
σ
3

1
σ
1

0
σ
1

0
B5 σ

3

0
@

σ
3

3
σ
3

1
σ
1

0
σ
1

0
B3 σ

3

0
@

σ
r
2

σ
r
3

σ4

σ
r
1

B1 σ
1

0
σ
1

3

@
@pr2

B0

write(1) rd1 rd2 → 1 rd3 → 1rd124

(f) prC3 (extends @pr2 ∼ pr2)

σ4

σ
r
1

σ
r
2

B0

B1 σ
1

0

@

σ
2

0
B2

C2

σ
3

1
σ
1

0
σ
3

0
B3

write(1) rd1 rd2

C3

C4

σ
3

1
σ
1

0
σ
3

0
B5

@

@

rd3 rd4 → 1

wr
0

B4 σ
2

0
σ
4

0

rd1234

σ
r
3

σ
4

0

(g) pr4 extends ∆pr3 (∆pr4 from pr4) by deleting crossed steps

σ
2

0
σ
2

2
B2

C2

C3

C4

σ4

σ
r
1

σ
r
2

B0

B1 σ
1

0
@

@

σ
3

1
σ
3

0
σ
1

0

σ
3

1
σ
3

0
σ
1

0

B3

B5

write(1) rd1 rd3 → 1rd2

B4 σ
4

2
σ
4

0
σ
2

0
@

@pr3

rd4 → 1rd123

σ
r
3

σ
4

0
σ
2

0

(h) prC4 (extends @pr3 ∼ pr3)

Figure 2: Instance of the proof with k = 4.

Next, we define partial run ∆pr1 obtained from pr1 by
deleting the steps of the read and the write as illustrated
in Figure 2 (a). More specifically, ∆pr1 extends wrk−2 by
appending the missing steps of an incomplete read rd1 of
type inc3, after which rd1 crashes. In ∆pr1, M0 = {B0} is
malicious and forges its state to σk before replying to rd1.

Observe that at the end of pr1 and ∆pr1, every correct block
is in the same state, except P2 . We refer to the state of B1

at the end of ∆pr1 as σr
1 .

Starting from ∆pr1 we iteratively define the following par-
tial runs for 2 ≤ l ≤ k (see Fig. 2). Partial run prl ex-
tends ∆prl−1 by appending the missing steps of a complete

66

read rdl. In prl, superblock Ml−2 is malicious and all other
blocks are correct. Since rdl does not receive any messages
from Ml−2, it completes only on the basis of replies from
correct objects (at least S − tk by equation (1)). At the
end of prl, rdl completes and returns value x. To show
that x = 1, we define a partial run @prl−1 which is iden-
tical to prl−1 except that in @prl−1 (1) there is no read
by rl and (2) and (in addition to Ml−3), superblock Pl is
malicious and forges its state to σl

0, simulating the occur-
rence of rdl as in prl−1. The count of malicious objects
in @prl−1 is exactly tk. To see why, notice that by equa-
tion (1) and (2) the malicious objects in @prl−1 amount to
|
⋃

Pl|+ |
⋃

Ml−3| = tk − tl−2 + tl−2 = tk.
Then, partial run prCl extends @prl−1 by appending rdl.

Note that rdl cannot distinguish prCl from prl because su-
perblock Pl, which is malicious in prCl , mimics prl. In par-
ticular, Pl forges its state to σ0 before replying to rdl’s
first round and then to σ∗

k−l before replying to rdl’s sec-

ond round. By atomicity, rdl returns 1 in prCl . Since prCl
and prl are indistinguishable to reader rl, x = 1.

Next, we define partial run ∆prl. For 2 ≤ l < k, ∆prl
is obtained from prl by deleting steps of rdl, rdl−1 and the
write (see Fig. 2 (c) and (e)). In ∆prl, superblock Ml−1

is malicious, all other block are correct, and blocks {Bl−1,
Cl−1} ∈ Ml−1 forge their state to σr

j before replying to

rdl.
5 In more detail, ∆prl extends wrk−l−1 by appending

the missing steps (1) of incomplete reads rd1, . . . , rdl−1 of
type inc2, and (2) of an incomplete rdl of type inc3. B0

forges its state to σk before replying to rd1 and for 1 ≤
j ≤ l − 1, {Bj , Cj} forge their state to σr

j before replying
to rdj+1. Observe that at the end of prl and ∆prl, every
correct block is in the same state, except Pl+1. We refer to
the state of {Bl, Cl} at the end of ∆pr1 as σr

l .
Finally, partial run ∆prk is obtained analogously from

prk, except that in ∆prk, (a) no write is invoked and (b)
read rdk is complete and skips Mk−2 ∪Pk+1 (see Fig. 2 (g)
for k = 4). In particular, in ∆prk, Mk−1 is malicious and
blocks {Bk−1, Ck−1} ∈ Mk−1 forge their state to σr

k−1 be-
fore replying to rdk. By equation (1) the malicious objects
amount to |

⋃
Mk−1| = tk. Partial runs prk and ∆prk differ

only at Pk+1, and rdk completes without receiving any mes-
sage from Pk+1. Thus, rdk cannot distinguish ∆prk from
prk and returns 1 in ∆prk, a contradiction, as no write was
invoked.

Lemma 2. : If S ≤ 3t + 1 and every read completes in
three rounds then no write implementation I of a multi-
reader (SWMR) atomic register exists that completes in
min{R, blog(d(3t+ 1)/2e)c} rounds.

Proof. Let k = min{R, blog(d(3t + 1)/2e)c}, i.e., R ≥ k
and k ≤ blog(d(3t + 1)/2e)c. By Lemma 1, there exists
no optimally resilient k-reader atomic register implemen-
tation with tk = tk−1 + 2tk−2 + 1 faulty objects, where
the read completes in three rounds and the write completes
in k rounds. Observe that this is valid even with R ≥ k
readers and t ≥ tk faults. Writing tk in closed form re-
sults in tk = 1

6
(2k+2 − (−1)k − 3). Thus, we have that

t ≥ 1
6
(2k+2 − (−1)k − 3). Solving for k results in k ≤

blog(d(3t+ 1)/2e)c.

5The states are different and are indexed by the object’s id,
which for simplicity of presentation is made implicit.

Finally, we generalize our result to a resilience of 3t +
bt/tkc for t ≥ tk, proving Proposition 2.

Proof. Without loss of generality we can assume that
t ≥ tk because every implementation is subject to the re-
silience lower bound of S ≥ 3t + 1. The observation is that
if we multiply each of the blocks in the proof of Lemma 1
with a constant c, then the result holds for S′ = cS = 3ctk+c
objects and ctk faults. By carefully choosing c = t/tk, we ob-
tain a lower bound proof for S′ = 3t+bt/tkc and t faults.

5. CONCLUSION
In this paper, we show that no single-writer multiple-

reader (SWMR) robust atomic storage implementation ex-
ists if (a) read operations complete in less than four commu-
nication round-trips (rounds), and (b) the time-complexity
of write operations is constant.

However, we observe that a matching implementation can
simply be obtained by a) reusing the SWMR regular storage
implementation of [15] which features the worst-case time
complexity of 2 rounds for both reads and writes, and b)
transforming it to the SWMR atomic implementations using
a standard SWMR regular – SWMR atomic transformation
technique [4, 20].6 This yields a sought SWMR atomic im-
plementation in which write operations complete in 2 rounds
whereas reads complete in 4 rounds.

Furthermore, in the stronger authentication model that
allows for secret values [8], regular storage of [15] can be re-
placed in the above transformation with the corresponding
time-optimal regular implementation [8], yielding a 2-round
write 3-round read atomic storage, which is optimal in this
model. In both models, multi-writer atomic storage can be
implemented by applying the standard transformations fur-
ther [4,20].

In summary, we present two lower bounds. The first is
a read lower bound stating that three rounds of communi-
cation are necessary to read from a SWMR robust atomic
storage. The second is a write lower bound, showing that
Ω(log(t)) write rounds are necessary to read in three rounds
from such a storage. Our results close a fundamental gap: we
show that time-optimal, 2-round write 4-round read (resp.
3-round read in the secret value model) robust atomic stor-
age can be obtained using well-known transformations from
regular to atomic storage and existing time-optimal regular
storage implementations.

6. REFERENCES

[1] Ittai Abraham, Gregory Chockler, Idit Keidar, and
Dahlia Malkhi. Byzantine disk paxos: optimal
resilience with byzantine shared memory. Distributed
Computing, 18(5):387–408, 2006.

[2] Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A.
Bazzi. Bounded wait-free implementation of optimally
resilient byzantine storage without (unproven)
cryptographic assumptions. In Proceedings of the 21st
International Symposium on Distributed Computing,
pages 7–19, September 2007.

6In short, this transformation employs R + 1 regular reg-
isters, one dedicated to the writer and R additional ones,
one per reader, in which a given reader writes back the read
value.

67

[3] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev.
Sharing memory robustly in message-passing systems.
Journal of the ACM, 42(1):124–142, 1995.

[4] Hagit Attiya and Jennifer Welch. Distributed
Computing. Fundamentals, Simulations, and Advanced
Topics. McGraw-Hill, 1998.

[5] AWS Simple Storage Service.
http://aws.amazon.com/s3/.

[6] Christian Cachin, Idit Keidar, and Alexander Shraer.
Trusting the cloud. SIGACT News, 40(2):81–86, 2009.

[7] Dan Dobre, Rachid Guerraoui, Matthias Majuntke,
Neeraj Suri, and Marko Vukolić. The Complexity of
Robust Atomic Storage. Technical Report
TR-TUD-DEEDS-06-01-2010, 2010.

[8] Dan Dobre, Matthias Majuntke, Marco Serafini, and
Neeraj Suri. Efficient robust storage using secret
tokens. In Proceedings of the 11th International
Symposium on Stabilization, Safety, and Security of
Distributed Systems, pages 269–283, 2009.

[9] Partha Dutta, Rachid Guerraoui, Ron R. Levy, and
Arindam Chakraborty. How fast can a distributed
atomic read be? In Proceedings of the 23rd annual
ACM symposium on Principles of distributed
computing, pages 236–245, July 2004.

[10] Partha Dutta, Rachid Guerraoui, Ron R. Levy, and
Marko Vukolic. Fast access to distributed atomic
memory. SIAM J. Comput., 39(8):3752–3783, 2010.

[11] Burkhard Englert, Chryssis Georgiou, Peter M.
Musial, Nicolas C. Nicolaou, and Alexander A.
Shvartsman. On the efficiency of atomic multi-reader,
multi-writer distributed memory. In Proceedings of the
13th International Conference on Principles of
Distributed Systems, pages 240–254, 2009.

[12] Rui Fan and Nancy Lynch. Efficient replication of
large data objects. In Proceedings of the 17th
International Symposium on Distributed Computing,
pages 75–91, October 2003.

[13] Chryssis Georgiou, Nicolas C. Nicolaou, and
Alexander A. Shvartsman. Fault-tolerant semifast
implementations of atomic read/write registers. J.
Parallel Distrib. Comput., 69(1):62–79, 2009.

[14] Rachid Guerraoui, Ron R. Levy, and Marko Vukolić.
Lucky read/write access to robust atomic storage. In
Proceedings of the International Conference on
Dependable Systems and Networks, pages 125–136,
2006.

[15] Rachid Guerraoui and Marko Vukolić. How fast can a
very robust read be? In Proceedings of the twenty-fifth
annual ACM symposium on Principles of distributed
computing, pages 248–257, New York, NY, USA, 2006.
ACM.

[16] Rachid Guerraoui and Marko Vukolić. Refined quorum
systems. In Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed
computing, pages 119–128, 2007.

[17] Maurice Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 13(1):124–149, January 1991.

[18] Leslie Lamport. On interprocess communication.
Distributed computing, 1(1):77–101, May 1986.

[19] Leslie Lamport, Robert E. Shostak, and Marshall C.

Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and
Systems, 4(3):382–401, 1982.

[20] Nancy A. Lynch. Distributed Algorithms.
Morgan-Kaufmann, 1996.

[21] Nancy A. Lynch and Mark R.Tuttle. An introduction
to input/output automata. CWI Quarterly,
2(3):219–246, 1989.

[22] Nancy A. Lynch and Alexander A. Shvartsman.
Rambo: A reconfigurable atomic memory service for
dynamic networks. In Proceedings of the 16th
International Conference on Distributed Computing,
pages 173–190, London, UK, 2002. Springer-Verlag.

[23] Jean-Philippe Martin, Lorenzo Alvisi, and Michael
Dahlin. Minimal Byzantine storage. In Proceedings of
the 16th International Conference on Distributed
Computing, pages 311–325, October 2002.

[24] Yasushi Saito, Svend Frolund, Alistair Veitch, Arif
Merchant, and Susan Spence. Fab: building
distributed enterprise disk arrays from commodity
components. SIGOPS Oper. Syst. Rev., 38(5):48–58,
2004.

[25] Frank Schmuck and Roger Haskin. GPFS: A
shared-disk file system for large computing clusters. In
Proceedings of the 1st USENIX Conference on File
and Storage Technologies, pages 231–244, Berkeley,
CA, USA, 2002. USENIX Association.

[26] Philip M. Thambidurai and You-Keun Park.
Interactive consistency with multiple failure modes. In
Symposium on Reliable Distributed Systems, pages
93–100, 1988.

68

