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Abstract. The area of distributed monitoring requires tracking the
value of a function of distributed data as new observations are made. An
important case is when attention is restricted to only a recent time period,
such as the last hour of readings—the sliding window case. In this paper,
we introduce a novel paradigm for handling such monitoring problems,
which we dub the “forward/backward” approach. This view allows us
to provide optimal or near-optimal solutions for several fundamental
problems, such as counting, tracking frequent items, and maintaining
order statistics. The resulting protocols improve on previous work or give
the first solutions for some problems, and operate efficiently in terms of
space and time needed. Specifically, we obtain optimal O( k

ε
log(εn/k))

communication per window of n updates for tracking counts and heavy
hitters with accuracy ε across k sites; and near-optimal communication
of O( k

ε
log2(1/ε) log(n/k)) for quantiles. We also present solutions for

problems such as tracking distinct items, entropy, and convex hull and
diameter of point sets.

1 Introduction

Problems of distributed tracking involve trying to compute various aggregates
over data that is distributed across multiple observing sites. Each site observes
a stream of information, and aims to work together with the other sites to
continuously track a function over the union of the streams. Such problems
arise in a variety of modern data management and processing settings—for more
details and motivating examples, see the recent survey of this area [6]. To pick
one concrete example, a number of routers in a network might try to collaborate
to identify the current most popular destinations. The goal is to allow a single
distinguished entity, known as the “coordinator”, to track the desired function.
Within such settings, it is natural to only want to capture the recent behavior—
say, the most popular destinations within the last 24 hours. Thus, attention is
limited to a “time-based sliding window”.

For these problems, the primary goal is to minimize the (total) communication
required to achieve accurate tracking. Prior work has shown that in many cases
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this cost is asymptotically smaller than the trivial solution of simply centralizing
all the observations at the coordinator site. Secondary goals include minimizing the
space required at each site to run the protocol, and the time to process each new
observation. These quantities are functions of k, the number of distributed sites, n,
the total size of the input data, and ε, an a user-supplied approximation parameter
to tolerate some imprecision in the computed answer (typically, 0 < ε < 1).

Within this context, there has been significant focus on the “infinite window”
case, where all historic data is included. Results have been shown for monitoring
functions such as counts, distinct counts, order statistics, join sizes, entropy, and
others [1, 4, 7, 14, 19, 20]. More recently there has been interest in only tracking a
window of recent observations, defined by all those elements which arrived within
the most recent w time units. Results in this model have been shown for tracking
counts and frequent items [4], and for sampling [8].

The most pertinent prior work is that of Chan et al. [4], which established
protocols for several fundamental problems with sliding windows. The analysis
used quickly becomes quite complicated, due to the need to study multiple cases
in detail as the distributions change. Perhaps due to this difficulty, the bounds
obtained are not always optimal. Three core problems are studied: basic counting,
which is to maintain the count of items observed within the window; heavy
hitters, which is to maintain all items whose frequency (within the window) is
more than a given fraction; and to maintain the quantiles of the distribution.
Each problem tolerates an error of ε, and is parametrized by k, the number of
sites participating in the computation, and n, the number of items arriving in
a window. [4] shows (per window) communication costs of O(k

ε log εn
k ) bits for

basic counting, O(k
ε log n

k ) words1 for frequent items and O( k
ε2 log n

k ) words for
quantiles. Our main contributions in this paper are natural protocols with a more
direct analysis which obtain optimal or near optimal communication costs. To do
this, we outline an approach for decomposing sliding windows, which also extends
naturally to other problems in this setting. We call this the “forward/backward”
framework, and provide a general claim, that the communication complexity for
many functions in the model with a sliding window is no more than in the infinite
window case (Section 2). We instantiate this to tracking counts (Section 3), heavy
hitters (Section 4) and quantiles (Section 5) to obtain optimal or near optimal
communication bounds, with low space and time costs. Lastly, we extend our
results to functions which have not been studied in the sliding window model
before, such as distinct counts, entropy, and geometric properties in Section 6.

Other related work. Much of the previous work relies on monotonic properties
of the function being monitored to provide cost guarantees. For example, since a
count (over an infinite window) is always growing, the cost of most approximate
tracking algorithms grows only logarithmically with the number of updates
[7]. But the adoption of a time-based sliding window can make a previously
monotonic function non-monotonic. That is, a function which is monotonic over
an infinite window (such as a count) can decrease over a time-based window,

1 Here, words is shorthand for machine words, in the standard RAM model
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due to the implicit deletions. Sharfman et al. [19] gave a generic method for
arbitrary functions, based on a geometric view of the input space. This approach
relies on keeping full space at each monitoring site, and does not obviously
extend to functions which do not map on to single values (such as heavy hitters
and quantiles). Arackaparambil et al. [1] study (empirical) entropy, which is
non-monotonic. The protocols rely on a slow changing property of entropy: a
constant change in the value requires a constant factor increase in the number
of observations, which keeps the communication cost logarithmic in the size
of the input. This slow-changing property does not hold for general functions.
Distributed sliding window computations have also received much attention in
the non-continuous-tracking case [3, 11], where the goal is to keep a small amount
of information over the stream at each site, so that the desired aggregate can be
computed upon request; here, we have the additional challenge of tracking the
aggregate at all times with small communication.

· · ·S1 S2 S3 Sk

time

Ccoordinator

sites

Fig. 1. Schematic of the distribute streaming model

1.1 Problem definitions and our results.

Now we more formally define the problems studied in this paper. Figure 1
shows the model schematically: k sites each observe a stream Si of item arrivals,
and communicate with a single distinguished coordinator node to continuously
compute some function of the union of the update streams.

The basic counting problem is to track (approximately) the number of items
which have arrived across all sites within the last w time units. More precisely,
let the stream of items observed at site i be Si, a set of (x, t(x)) pairs, which
indicates that an item x arrives at time t(x). Then the exact basic count at time
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t is given by

C(t) =
∑

1≤i≤k

|{(x, t(x)) ∈ Si | t− t(x) ≤ w}|.

Tracking C(t) exactly requires alerting the coordinator every time an item arrives
or expires, so the goal is to track C(t) approximately within an ε-error, i.e., the
coordinator should maintain a C̃(t) such that (1− ε)C(t) ≤ C̃(t) ≤ (1 + ε)C(t)
at all times t. We will assume that at each site, at most one item arrives in one
time unit. This is not a restriction, since we can always subdivide the time units
into smaller pieces so that at most one item arrives within one unit. This rescales
w but does not fundamentally change our results, since the bounds provided do
not depend on w.

The heavy hitters problem extends the basic counting problem, and generalizes
the concept of finding the mode [15]. In the basic counting problem we count the
total number of all items, while here we count the frequency of every distinct
item x, i.e., the coordinator tracks the approximate value of

nx(t) =
∑

1≤i≤k

|(x, t(x)) ∈ Si | t− t(x) ≤ w}|.

Since it is possible that many nx(t) are small, say 0 or 1 for all x, requiring a
multiplicative approximation for all x would require reporting all items to the
coordinator. Consequently, the commonly adopted approximation guarantee for
heavy hitters is to maintain a ñx(t) that has an additive error of at most εC(t),
where C(t) is the total count of all items. This essentially makes sure that the
“heavy” items are counted accurately while compromising on the accuracy for the
less frequent items. In particular, all items x with nx(t) ≤ εC(t) can be ignored
altogether as 0 is considered a good approximation for their counts.2 This way,
at most 1/ε distinct items will have nonzero approximated counts.

The quantiles problem is to continuously maintain approximate order statistics
on the distribution of the items. That is, the items are drawn from a total order,
and we wish to retain a set of items q1, . . . , q1/ε such that the rank of qi (number of
input items within the sliding window that are less than qi) is between (i−1)εC(t)
and (i + 1)εC(t) [18]. It is known that this is equivalent to the “prefix-count”
problem, where the goal is to maintain a data structure on the sliding window
such that for any given x, the number of items smaller than x can be counted
within an additive error of at most εC(t).

Figure 2 summarizes our main results. The communication cost is measured as
the total amount of communication between all k sites and the central coordinator
site, as a function of n, the number of observations in each window, and ε, the
approximation parameter. All communication costs are optimal or near-optimal
up to polylogarithmic factors. We also list the space required by each site to run
the protocol.

2 We may subsequently drop the (t) notation on variables when it is clear from the
context.
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Problem Communication Cost Communication lower bound Space Cost

Basic Counting O( k
ε

log(εn/k)) bits Ω( k
ε

log(εn/k)) bits O( 1
ε

log εn)
Heavy Hitters O( k

ε
log(εn/k)) Ω( k

ε
log(εn/k)) bits O( 1

ε
log εn)

Quantiles O( k
ε

log2(1/ε) log(n/k)) Ω( k
ε

log(εn/k)) bits O( 1
ε

log2(1/ε) logn)

Fig. 2. Summary of Results. All bounds are in terms of words unless specified otherwise.

t2w 3ww0 t−w

Fig. 3. Item arrivals within fixed windows

2 The Forward/Backward Framework

To introduce our framework, we observe that the problems defined in Section 1.1
all tolerate an error of εC(t), where C(t) is the total number of items in the
sliding window from all k sites. If we can track the desired count for every site
within an error of εC(i)(t), where C(i)(t) is the number of items at site i in the

sliding window, then the total error will be
∑k

i=1 εC
(i)(t) = εC(t). So we can

focus on accurately tracking the data of one site, and combine the results of all
sites to get the overall result.

Next, assuming the time axis starts at 0, we divide it into fixed windows
of length w: [0, w), [w, 2w), . . . , [jw, (j + 1)w), . . . . Then at at time t, the
sliding window [t− w, t) overlaps with at most two of these fixed windows, say
[(j − 1)w, jw) and [jw, (j + 1)w). This splits the sliding window into two smaller
windows: [t−w, jw) and [jw, t). We call the first one the expiring window and the
second the active window. Figure 3 shows this schematically: item arrivals, shown
as dots, are partitioned into fixed windows. At the current time, t, which in this
example is between 3w and 4w, it induces the expiring window [t− w, 3w) (with
two items in the example) and the active window [3w, t) (with a further three
items). As the window [t− w, t) slides, items expire from the expiring window,
while new items arrive in the active window. The problem is again decomposed
into tracking the desired function in these two windows, respectively. Care must
be taken to ensure that the error in the approximated count is with respect to the
number of items in the active (or expiring) window, not that of the fixed window.
However, a key simplification has happened: now (with respect to the fixed time
point jw), the counts of items in the expiring window are only decreasing, while
the counts of items in the active window are only increasing. As a result we make
an (informal) claim about the problem:

Claim. For tracking a function in the sliding window continuous monitoring
setting, the asymptotic communication complexity per window is that of the
infinite window case.

To see this, observe that, using the above simplification, we now face two
subproblems: (i) forward: tracking the active window and (ii) backward: tracking
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the expiring window. Tracking the active window is essentially the same as the
infinite window case, hence the cost (per window) is that of running a protocol for
the infinite window case. However, for the expiring window we also face essentially
the same problem: we need a protocol which ensures that the coordinator always
knows a good approximation to the function for the window as items expire
instead of arrive. When we view this in the reverse time direction, the expirations
become arrivals. If we ran the infinite window protocol on this time-reversed
input, we would meet the requirements for approximating the function. Therefore,
we can take the messages that are sent by this protocol, and send them all to the
coordinator in one batch at the end of each fixed window. The site can send a bit
to the coordinator at each time step when it would have sent the next message
(in the time-reversed setting). Thus, the coordinator always has the state in the
forward direction that it would have had in the time-reversed direction. ut

This outline requires the site to record the stream within each window so it
can perform this time-reversal trick. The problem gets more challenging if we
also require small space at the site. For this we adapt small-space sliding window
algorithms from the streaming literature to compactly “encode” the history. Next
we show how to instantiate the forward/backward framework in a space efficient
way for each of the three problems defined earlier. The forward problem (i.e., the
full stream case) has been studied in prior work (for example, [20] gave results for
heavy hitters and quantiles), but we are able to present simpler algorithms here.
The lower bounds for the forward problem apply to the forward/backward case,
and so we are able to confirm that our solutions are optimal or near-optimal.

3 Warm-up: Basic Counting

The forward problem. For basic counting, the forward problem is to track the
number of items that have arrived since a landmark t0, up to a multiplicative
error of (1+ε). This is straightforward: the site simply sends a bit every time this
number has increased by a (1 + ε) factor. This results in a communication cost
of O(1/ε · log n(i)) bits, where n(i) is the number of items in the fixed window at
the site i when this forward tracking problem takes place. This can be tightened
to O(1/ε · log(εn(i))) by observing that the site actually sends out 1/ε bits for
the first 1/ε items. Summing over all k sites and using the concavity of the log
function gives O(k

ε log εn
k ), matching the bound of [4]. The space required is

minimal, just O(1) for each site to track the current count in the active window.

The backward problem. As noted above, if we can buffer all the input, then
we can solve the problem by storing the input, and compute messages based on
item expiries. To solve the backward problem with small space (without buffering
the current window) is more challenging. To do so, we make use of the exponential
histogram introduced in [9]. Let the active window be [t0, t). Besides running the
forward algorithm from t0, each site also maintains an exponential histogram
starting from t0. It records the ε−1 most recent items (and their timestamps),
then every other item for another stored ε−1 items, then every fourth item, and
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so on. This is easily maintained as new items arrive: when there are more than
ε−1 + 1 items at a particular granularity, the oldest two can be “merged” into
a single item at the next coarser granularity. Let t be the current time. When
t = t0 + w, the site freezes the exponential histogram. At this time, we set
t0 ← t0 + w, and the active window becomes the expiring window while a new
active window starts afresh. It follows from this description that the size of the
exponential histogram is O(ε−1 log(εn(i))).

With an exponential histogram for the window [t0 − w, t0), one can approx-
imately count the items in the interval [t− w, t0), i.e., the expiring window at
time t. We find in the exponential histogram two adjacent timestamps t1, t2 such
that t1 < t − w ≤ t2. Note that from the data structure we can compute the
number of items in the time interval [t2, t0) exactly, which we use as an estimate
for the number of items in [t− w, t0). This in the worst case will miss all items
between t1 and t2, and there are 2a of them for some a. The construction of the
exponential histogram ensures that Ci(t2, t0) ≥ ε−12a, where Ci(t2, t0) denotes
the number of items that arrived between time t2 and t0. So the error is at most
εCi(t2, t0) ≤ εCi(t− w, t0), as desired.

There are two ways to use the exponential histogram in a protocol. Most
directly, each site can send its exponential histogram summarizing [t0 − w, t0)
to the coordinator at time t0. From these, the coordinator can approximate
the total count of the expiring window accurately. However, this requires the
coordinator to store all k windows, and is not communication optimal. Instead,
the space and communication cost can be reduced by having each site retain its
exponential histogram locally. At time t0, each site informs the coordinator of the
total number of timestamps stored in its histogram of [t0 −w, t0). Then each site
sends a bit to the coordinator whenever any timestamp recorded in the histogram
expires (i.e., reaches age w). This information is sufficient for the coordinator to
recreate the current approximate count of the expiring window for each site. The
communication cost is the same as the forward case, i.e., O(1/ε · log(εn(i))) bits.

Theorem 1. The above protocol for basic counting has a total communication
cost of O( 1ε log(εn(i))) bits for each site, implying a total communication cost of

O(kε log εn
k ) per window. The space required at each site is O( 1ε log(εn(i))) words,

and O(k) at the coordinator to keep track of the current estimates from each site.

This bound is optimal: the lower bound for an infinite window is Ω(kε log εn
k )

bits of communication. We see the power of the forward/backward framework:
the analysis matches the bound in [4], but is much more direct. The dependence
on O(log n) is unavoidable, as shown by the lower bounds. However, note that
we do not require explicit knowledge of n (or an upper bound on it). Rather, the
communication used, and the space requires, scales automatically with log n, as
the stream unfolds.
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Algorithm 1: HeavyHittersArrivals

1 ∀x, n(i)
x = 0 ;

2 A(i) = 1;
3 foreach arrival of x do

4 n
(i)
x ← n

(i)
x + 1 ;

5 n(i) ← n(i) + 1 ;

6 if n
(i)
x modA(i) = 0 then

7 Send (x, n
(i)
x ) to coordinator;

8 if n(i) ≥ 2ε−1A(i) then

9 A(i) ← 2A(i);

4 Heavy Hitters

The forward problem. For simplicity, we first present an algorithm for the
forward problem that assumes that each site has sufficient space to retain all
“active” (non-expired) items locally. Then we discuss how to implement the
algorithm in less space below.

Starting from time t0, each site executes HeavyHitterArrivals (Algorithm
1) on the newly arriving items until t = t0 + w. This tracks counts of each item

in the active window (n
(i)
x for the count of item x at site i), and ensures that

the coordinator knows the identity and approximate count of any item with an
additive error of at most A(i) − 1. Note that A(i) is always at most εn(i), where
n(i) is the total number of items in the active window at site i, so correctness
follows easily from the algorithm.

We next bound the communication cost. While n(i) is between 2aε−1 and
2a+1ε−1, A(i) = 2a. For each distinct x, line 7 of the algorithm is called whenever
A(i) new copies of x have arrived, except possibly the first call. Ignoring the
first call to every distinct x, line 7 is executed at most 2aε−1/A(i) = ε−1 times.

Note that for an item x to trigger line 7 at least once, n
(i)
x has to be at least

A(i), and there are at most 2a+1ε−1/A(i) = O(ε−1) such distinct items, so the
number of first calls is at most O(ε−1). Hence, the total amount of information
sent during this phase of the algorithm is O(ε−1) items and counts. In total,
there are O(log(εn(i))) such phases corresponding to the doubling values of A(i),
and the total communication cost is O(ε−1 log(εn(i))). Summed over all sites the
protocol costs O(kε−1 log(εn/k)) per window.

The backward problem. In the case where we can afford to retain all the
stream arrivals during the current window, we use a similar algorithm to solve
the backward problem. Each site executes HeavyHitterExpiries in parallel on
the expiring window (Algorithm 2). Conceptually, it is similar to running the
previous algorithm in reverse. It maintains a parameter B(i) which denotes the
local tolerance for error. The initial value of B(i) is equivalent to the final value
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Algorithm 2: HeavyHittersExpiries

1 Send n(i) to the coordinator;

2 B(i) ← 2blog εn(i)c ;

3 while n(i) > 0 do
4 foreach x do

5 if n
(i)
x ≥ B(i) then send x, n

(i)
x

6 while n
(i)
x > ε−1B(i) or (B(i) ≤ 1 and n(i) > 0) do

7 foreach expiry of x do

8 n(i) ← n(i) − 1 ;

9 n(i) ← n
(i)
x − 1;

10 if n
(i)
x modB(i) = 0 then

11 Send x, n
(i)
x to the coordinator

12 B(i) ← B(i)/2 ;

of A(i) from the active window which has just concluded. Letting n(i) denote
the number of items from [t− w, t0) (i.e., those from the expiring window which
have not yet expired), B(i) remains in the range [ 12εn

(i), εn(i)]. Whenever B(i) is
updated by halving, the algorithm sends all items and counts where the local
count is at least B(i). Since B(i) is O(εn), there are O(ε−1) such items to send.
As in the forward case, these guarantees ensure that the accuracy requirements
are met.

The communication cost is bounded similarly to the forward case. There are
log(εn(i)) iterations of the outer loop until B(i) reaches 1. In each iteration, there
are O( 1

ε ) items sent in line 5 that exceed B(i). Then at most O( 1
ε ) updates can

be sent by line 11 before B(i) decreases. When B(i) reaches 1, there are only 1/ε
unexpired items, and information on these is sent as each instance expires. This
gives a total cost of O( 1

ε log(εn(i))), which is O(k
ε log(εn)) when summed over

all k sites.

At any time, the coordinator has information about a subset of items from
each site (from both the active and expiring windows). To estimate the count
of any item, it adds all the current counts for that item together. The error
bounds ensure that the total error for this count is at most εn. To extract the
heavy hitters, the coordinator can compare the estimated counts to the current
(estimated) value of n, computed by a parallel invocation of the above basic
counting protocol.

Reducing the space needed at each site. To reduce space used at the site for
the forward problem, it suffices to replace the exact tracking of all arriving items
with a small space algorithm to approximate the counts of items. For example,
the SpaceSaving algorithm [17] tracks O(1/ε) items and counts, so that item
frequencies are reported with error at most εn(i). This adds another εn(i) to the
error at the coordinator side, making it 2εn(i), but a rescaling of ε suffices to bring



10

it back to εn(i). The communication cost does not alter: by the guarantee of the
algorithm, there can still be only O(ε−1) items whose approximate count exceeds
A(i). While these items exceed A(i), their approximate counts are monotone
increasing, so the number of messages does not increase.

For the backward part, the details are slightly more involved. We require
an algorithm for tracking approximate counts within a window of the last w
time steps with accuracy εn(i). For each site locally, the data structure of Lee
and Ting can track details of the last W arrivals (for a fixed parameter W )
using O(ε−1) space [16]3. We begin the (active) window by instantiating such
a data structure for W = 2(ε/3)−1. After we have observed n(i) = 2a items,
we also instantiate a data structure for W = 2a(ε/3)−1 items, and run it for
the remainder of the window: the omitted n(i) = O(εW ) items can be ignored
without affecting the O(εW ) error guarantee of the structure. Over the life of
the window, O(log n(i)/ε) = O(log n(i)) (since n(i) > ε−1) such data structures
will be instantiated. When the window is expiring, during the phases where n(i)

is in the range 2a(ε/3)−1 . . . 2a−1(ε/3)−1, the local site uses the instance of the
data structure to monitor items and approximate counts, accurate to εn(i)/3.
The structure allows the identification of a set of items which are frequent when
this range begins (lines 4-5 in Algorithm 2). The structure also indicates how
their approximate counts decrease as old instances of the items expire, and so
when their (approximate) counts have decreased sufficiently, the coordinator can
be updated (line 11). In this case, the estimated counts are monotone decreasing,
so the communication cost does not alter. The space at each site is therefore
dominated by the cost of these data structures, which is O(ε−1 log n(i)).

Theorem 2. The above protocol for heavy hitters has a total communication cost
of O(kε log εn

k ) words per window. The space required at each site is O( 1ε log n(i)),

and O(kε ) at the coordinator to keep track of the current heavy hitters from each
site.

This protocol is optimal: it meets the communication lower bound for this
problem stated in [4], and improves the upper bound therein. It similarly improves
over the bound for the infinite window case in [20].

5 Quantiles

In this section, we study the problem of tracking the set of quantiles for a
distribution in the sliding window model. Yi and Zhang [20] study this problem
in the infinite window model, and provide a protocol with communication cost
O(k

ε log n log2 1
ε ). As a byproduct, our solution slightly improves on this. The

improvement over the best known solution for the sliding window model is more
substantial.

3 The λ-counter data structure defined therein can be extended to store timestamps in
addition to items, which makes it sufficient for our purpose.
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In order to achieve small space and communication, we make use of the data
structure of Arasu and Manku [2], referred to as the AM structure. The AM
structure stores the ε-approximate quantiles over a sequence of W items, for
W fixed in advance. The W items are divided along the time axis into blocks
of size εW , and summaries are built of the blocks. Specifically, at level 0, an
ε0-approximate quantile summary (of size 1/ε0) is built for each block, for some
ε0 to be determined later. An ε-approximate quantile summary for a set of m
items can be computed by simply storing every tth item in the sorted order,
for t = εm: from this, the absolute error in the rank of any item is at most t.
Similarly, summaries are built for levels ` = 1, . . . , log(1/ε) with parameter ε` by
successively pairing blocks in a binary tree: level ` groups the items into blocks of
2`εW items. Using this block structure, any time interval can be decomposed into
O(log(1/ε)) blocks, at most two from each level, plus two level-0 blocks at the
boundaries that partially overlap with the interval. Ignoring these two boundary
level-0 blocks introduces an error of O(εW ). The blocks at level ` contribute an
uncertainty in rank of ε`2

`εW . Hence if we choose ε` = 1/(2` log(1/ε)), the total
error summed over all L = log(1/ε) levels is O(εW ).

The total size of the structure is
∑

`(1/ε` · 1/(2`ε)) = O(1/ε · log2(1/ε)).
Rather than explicitly storing all items in each block and sorting them to extract
the summary, we can instead process the items in small space and a single pass
using the GK algorithm [12] to summarize the active blocks. This algorithm
needs space O(1/ε` · log ε22`W ) for level `. When a block completes, i.e., has
received 2`εW items, we produce a compact quantile summary of size 1/ε` for
the block using the GK summary, and discard the GK summary. The space
required is dominated by the GK algorithm at level ` = log(1/ε), which is
O(1/ε · log(1/ε) log(εW )).

The forward problem. Recall that in the forward problem, the coordinator
needs to estimate ranks of items from site i with error at most εn(i), where
n(i) is the current number of items received since time t0. To achieve this,
we build multiple instances of the above structure for different values of W .
When the n(i)-th item arrives for which n(i) is a power of 2, the site starts
building an AM structure with W = n(i)/ε. Whenever a block from any level of
any of the AM structures completes, the site sends it to the coordinator. This
causes communication O(1/ε · log2(1/ε) log n(i)) for the entire active window
(the communication is slightly less than the space used, since only summaries of
complete blocks are sent). After the n(i)-th item has arrived, all AM structures
with W < n(i) can be discarded.

We argue this is sufficient for the coordinator to track the quantiles of the
active window at any time. Indeed, when the n(i)-th item arrives, the site has
already started building an AM structure with some W that is between n(i) and
2n(i),4 and the completed portion has been communicated to the coordinator.
This structure gives us quantiles with error O(εW ) = O(εn(i)), as desired. Note
that the site only started building the structure after εW items passed, but
ignoring these contributes error at most εW .

4 The special case n(i) ≤ 1/ε is handled by simply recording the first 1/ε items exactly.
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The backward problem. To solve the backward problem, we need a series of
AM structures on the last W items of a fixed window so that we can extract
quantiles when this fixed window becomes the expiring window. Fortunately the
AM structure can be maintained easily so that it always tracks the last W items.
Again for each level, new items are added to the latest (partial) block using the
GK algorithm [12]; when all items of the oldest block are outside the last W , we
remove the block.

For the current fixed window starting from t0, we build a series of AM
structures, as in the forward case. The difference is that after an AM structure is
completed, we continue to slide it so as to track the last W items. This remains
private to the site, so there is no communication until the current active window
concludes. At this point, we have a collection of O(log(n(i))) AM structures
maintaining the last W items in the window for exponentially increasing W ’s.
Then the site sends the summaries for windows of size between ε−1 and 2n(i)

to the coordinator, and the communication cost is the same as in the forward
case. To maintain the quantiles at any time t, the coordinator finds the smallest
AM structure (in terms of coverage of time) that covers the expiring window
[t− w, t0), and queries that structure with the time interval [t− w, t0). This will
give us quantiles with error O(εW ) = O(εCi(t−w, t0)) since W ≤ 2Ci(t−w, t0).

Theorem 3. The above protocol for quantiles has a total communication cost
of O(k/ε log2(1/ε) log(n/k)) words per window. The space required at each site
is O( 1

ε log2(1/ε) log(εn(i))), and O(k
ε log2(1/ε) log(εn/k)) at the coordinator to

keep copies of all the data structures.

Yi and Zhang [20] show a lower bound of Ω(k
ε log εn

k ) messages of communi-
cation (for the infinite window case), so our communication cost is near-optimal
up to polylogarithmic factors. Meanwhile, [4] provided an O(k/ε2 · log(n/k)) cost
solution, so our protocol represents an asymptotic improvement by a factor of
O( 1

ε log2(1/ε)
). We leave it open to further improve this bound: removing at least

one log(1/ε) term seems feasible but involved, and is beyond the scope of this
paper.

6 Other Functions

The problems discussed so far have the nice property that we can separately
consider the monitored function for each site, and use the additivity properties
of the function to obtain the result for the overall function. We now discuss some
more general functions that can also be monitored under the same model.

Distinct counts. Given a universe of possible items, the distinct counts problem
asks to find the number of items present within the sliding window (counting
duplicated items only once). The summary data structure of Gibbons and Tirtha-
pura can solve this problem for a stream of items under the infinite window
semantics [10]. A hash function maps each item to a level, such that the prob-
ability of being mapped to level j is geometrically decreasing. The algorithm
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tracks the set of items mapped to each level, until O(1/ε2) distinct items have
been seen there, at which point the level is declared “full”. Then the algorithm
uses the number of distinct items present in the first non-full level to estimate
the overall number of distinct items.

This leads to a simple solution for the active window: each site independently
maintains an instance of the data structure for the window, and runs the algorithm.
Each update to the data structure is echoed to the coordinator, ensuring that
the coordinator has a copy of the structure. The communication cost is bounded
by O(1/ε2 log n(i)). The coordinator can merge these summaries together in the
natural way (by retaining the set of items mapped to the same level from all
sites) to get the summary of the union of all streams. This summary therefore
accurately summarizes the distinct items across all sites.

The solution for the expiring window is similar. Each site retains for each
level the O(1/ε2) most recent distinct arrivals that were mapped to that level,
along with their timestamps. This information enables the distinct count for any
suffix of the window to be approximated. This data structure can then be shared
with the coordinator, who can again merge the data structures straightforwardly.
The total communication required is O( k

ε2 log n
k ) over all k sites.

Entropy. The (empirical) entropy of a frequency distribution is
∑

j
fj
n log n

fj
,

where fj denotes the frequency of the jth token. As more items arrive, the entropy
does not necessarily vary in a monotone fashion. However, the amount by which
it can vary is bounded based on the number of arriving items: specifically, for
m new arrivals after n current arrivals, it can change by at most m

n log(2n) [1].
This leads to a simple protocol for the forward window case to track the entropy
up to additive error ε: given n current items, each site waits to see εn

log(2n) new

arrivals, then communicates its current frequency distribution to the coordinator.
Within a window of ni arrivals, there are at most O( 1

ε log2 ni) communications.

For the backward case, the protocol has to send the frequency distribution
when the number of items remaining reaches various values. This can be arranged
by use of the exponential histogram outlined in Section 3: for each timestamp
stored, it keeps the frequency distribution associated with that timestamp. When
a timestamp is “merged”, and dropped, the corresponding distribution is dropped
also. Thus, the space required is O( 1

ε log(εn(i))) entries in the histogram. The
histogram introduces some uncertainty into the number of items remaining, but
after rescaling of parameters, this does not affect the correctness.

When the domain is large, the size of the frequency distributions which must
be stored and sent may dominate the costs. In this case, we replace the exact
distributions with compact sketches of size Õ( 1

ε2 ) [13]. The coordinator can
combine the sketches from each site to obtain a sketch of the overall distribution,
from which the entropy can be approximated.

Geometric Extents: Spread, Diameter and convex hull. Given a set of
points in one dimension pi, their spread is given by (maxi pi − mini pi). The
forward case is easy: send the first two points to the coordinator, then every
time a new point causes the spread to increase by a 1 + ε/2 factor, send the
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new point to the coordinator. This ensures that spread is always maintained
up to a (1 + ε) factor, and the communication is O( 1

ε logR), where R is the
ratio between the closest and furthest points in the input, a standard factor in
computational geometry. For the backward case, we can use the algorithm of
Chan and Sadjad [5] to build a summary of size O( 1

ε logR) as the points arrive
in the active window, and communicate this to the coordinator to use for the
expiring window. Lastly, observe that spread of the union of all points can be
approximated accurately from the union of points defining the (approximate)
spread for each site.

The diameter of a point set in two (or higher) dimensions is the maximum
spread of the point set when projected onto any line. A standard technique is
to pick O(1/ε(d−1)/2) uniformly spaced directions in d dimensions, and project
each input point onto all of these directions: this preserves the diameter up to
a (1 + ε) factor, since there is some line which is almost parallel to the line
achieving the diameter. This immediately gives a protocol for diameter with cost

O( 1
ε

(d+1)/2
logR), by running the above protocol for each of the O(1/ε(d−1)/2)

directions in parallel. A similar approach also maintains the approximate convex
hull of the point set, by observing that the convex hull of the maximal points in
each direction is approximately the convex hull of all points.

7 Concluding Remarks

The forward/backward framework allows a variety of functions to be monitored
effectively within a sliding window, and improves over the results in prior work
[4]. The underlying reason for the complexity of the the analysis of the protocols
previously proposed is that they focus on the current count of items at each
site. This count rises (due to new arrivals) and falls (due to expiry of old items).
Capturing this behavior for heavy hitters and quantiles requires the analysis
of many cases: when an item becomes frequent through arrivals; when an item
becomes frequent because the local count has decreased; when an item becomes
infrequent due to arrivals of other items; when an item becomes infrequent due to
expiry; and so on. By separating streams into streams of only arrivals and streams
of only expirations, we reduce the number of cases to consider, and remove any
interactions between them. Instead, we just have to track the function for two
different cases. This allowed a much cleaner treatment of this problem, and opens
the door for similar analysis of other monitoring problems.
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