Transforming Worst-case Optimal Solutions for
Simultaneous Tasks into All-case Optimal Solutions

Maurice P. Herlihy
Brown University
mph@cs.brown.edu

ABSTRACT

Decision tasks require that nonfaulty processes make deci-
sions based on their input values. Simultaneous decision
tasks require that nonfaulty processes decide in the same
round. Most decision tasks have known worst-case lower
bounds. Most also have known worst-case optimal protocols
that halt in the number of rounds given by the worst-case
lower bound, and some have early-stopping protocols that
can halt earlier than the worst-case lower bound (sometimes
in as early as two rounds). We consider what might be
called earliest-possible protocols for simultaneous decision
tasks. We present a new technique that converts worst-case
optimal decision protocols into all-case optimal simultane-
ous decision protocols: For every behavior of the adversary,
the all-case optimal protocol decides as soon as any protocol
can decide in a run with the same adversarial behavior. Ex-
amples to which this can be applied include set consensus,
condition-based consensus, renaming and order-preserving
renaming. Some of these tasks can be solved significantly
faster than the classical simultaneous consensus task. A
byproduct of the analysis is a proof that improving on the
worst-case bound for any simultaneous task by even a single
round is as hard as reaching simultaneous consensus.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems— Distributed applications; D.4.5 [Operating Sys-
tems]: Reliability—Fault-tolerance; D.4.7 [Operating Sys-
tems]: Organization and Design— Distributed systems

General Terms
Theory, Algorithms, Reliability

Keywords

Synchronous message passing model, crash failure model,
consensus, k-set agreement, condition-based consensus, re-
naming, common knowledge, topology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PODC’11, June 6-8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

Yoram Moses
Technion Intel
moses@ee.technion.ac.il

Mark R. Tuttle

tuttle@acm.org

1. INTRODUCTION

Decision tasks are fundamental problems in distributed
computation. Each nonfaulty process begins with an input
value and chooses an output value (decides), subject to con-
ditions given by the task, even if t of the n processes fail by
crashing. Some famous examples of decision tasks are

e consensus [PSL80, LSP82, FL81, DS82, FLP&5]
e k-set agreement [HS99, BG93, SZ00, CHLTO00]
o condition-based consensus [MRR03, MRRO6]

e renaming [ABND'90, HS99, AR02, HT90]

Simultaneous decision tasks [DM90, MT88, MMO8| are
decision tasks in which all nonfaulty processes decide in the
same round. Simultaneity is important when processes must
coordinate their behavior in time. Such coordination may
be needed, for example, to cleanly end the execution of one
protocol or one protocol phase and begin the next. Indeed,
in many protocols the behavior of processes is a function of
the round number, which depends on a simultaneous start.

Most decision tasks have known worst-case lower bounds,
and most have known optimal protocols matching these lower
bounds. Some protocols are worst-case optimal in the sense
that every execution halts in the number of rounds given
by the worst-case lower bound. Some are early stopping in
the sense that they may occasionally halt earlier than this
worst-case lower bound, sometimes as early as two rounds.
Some are all-case optimal in the sense that, in every exe-
cution (and not just the worst-case execution), no protocol
stops faster: For every behavior of the adversary (control-
ling input values and process failures), the all-case optimal
protocol halts as early as any other protocol would in an
execution with the same adversarial behavior.

Among our results, two stand out. Given a decision task P
with a tight worst-case lower bound L,

1. Any worst-case optimal protocol for P can be trans-
formed into an all-case optimal protocol for the simul-
taneous version of P.

2. Beating the worst-case lower bound is as hard as solv-
ing consensus: For every behavior of the adversary, if
some simultaneous solution to P decides at time k < L
in this behavior, then simultaneous consensus can be
obtained at time k in this behavior as well. In fact, the
key to deciding early is agreeing that the adversary did
not behave in the worst-case manner.

The novelty of our work is, after a decade of distillation,
an elegant, almost too-simple combination of known results

from knowledge and topology yielding powerful results and
new insights.

With topology, we have an extremely powerful tool for
proving lower bounds for decision tasks. In this approach,
a protocol is modeled as a combinatorial structure called a
simplical complex that describes the final states of the proto-
col and how much any two final states have in common (that
is, which processes find the two states indistinguishable). A
task, too, is modeled as a simplical complex, and a protocol
solves a task if and only if a certain map exists from the
protocol complex to the task complex. Lower bounds can
be derived by comparing these complexes’ degrees of con-
nectivity, the dimensions below which their “surfaces” have
no “holes.” Nearly every lower bound proof for a decision
task can be understood in terms of topology. In fact, for
set agreement and renaming, the only lower bound proofs
known to date are either based on or inspired by topological
arguments.

With knowledge, we have the dominant tool for reason-
ing about simultaneity. A process knows that a predicate ¢
holds if ¢ holds in every global state compatible with the
local state of the process. Common knowledge of ¢ occurs
when each process knows ¢, each process knows that each
process knows ¢, and so on. In this approach, lower bounds
can be derived by observing that certain tasks require attain-
ing common knowledge of particular facts [HM90, FHMV95],
and protocol design can reduce to implementing tests for
common knowledge. For simultaneous consensus, for exam-
ple, Moses and Dwork [DM90] show that the optimal simul-
taneous consensus protocol takes time t +1 — W, where W,
the waste of the execution, is a measure of how far the exe-
cution deviates from the worst-case failure pattern (defined
below).

As Moses and Raynal observed [MRO08], simultaneous de-
cision tasks require that processes agree on two things:

e on mutually-compatible decision values, and
e on a common decision round.

They started with two known results: that simultaneous
consensus is solvable in t+1—W rounds; and that condition-
based consensus, which restricts the set of input vectors to
those satisfying a condition involving d, is solvable in t+1—d
rounds. The question that they considered was whether
it is possible to compound the savings—one based on the
input structure and the other (the waste) stemming from
the failure pattern. They showed that there is no “double
discount”—that it is possible to solve simultaneous condition-
based consensus in the minimum of t+1—-W and t+1—d
rounds, but no earlier. Moreover, the protocol that achieves
this is all-case optimal: for every behavior of the adversary,
determining the inputs and the failure pattern, no other
simultaneous-decision protocol can decide earlier than their
protocol does. This all-case optimality property is the same
as that of the simultaneous consensus protocol of Dwork and
Moses, which decides in t + 1 — W rounds when the inputs
are unconstrained.

Our work was inspired by [MRO08], and shows that it is
a particular case of a general phenomenon. A large class
of simultaneous tasks can be solved in an all-case optimal
fashion. Indeed, given a protocol that solves a simultaneous
task in time that matches the worst-case lower bound L,
we show how to use this protocol in order to obtain one
that is all-case optimal, by executing it concurrently with a

continuous consensus protocol, and deciding at the earlier
of the a priori worst-case bound L and time ¢t +1 — W.

Returning to simultaneous decision tasks, common knowl-
edge has the property that a fact about the initial state (that
is, about the input values) becomes common knowledge to
all processes at the same time. A decision task can usu-
ally be solved simultaneously once some fact (enough facts)
about the initial state become common knowledge. On the
other hand, many decision tasks are much easier than test-
ing for common knowledge. It may take as many as t + 1
rounds for any fact about the initial state to become com-
mon knowledge in the worst case, but the renaming task can
be solved in log n rounds in the worst case. Of course, worst-
case executions are the longest executions, and it is usually
possible to decide much earlier in other executions. In this
paper we show that, for any decision task, deciding simul-
taneously at any point before the decision task’s worst-case
lower bound—a bound typically proven using topology—
reduces to testing for common knowledge, and we show that
running a protocol matching the topological lower bound
in parallel with a knowledge-theoretic protocol results in a
protocol that is optimal in every execution (and not just the
worst-case execution).

More precisely, our main results are the following:

e We show that a protocol for continuous consensus called
CoNCoN [MMO08], derived by knowledge-theoretic means,
can be adapted to solve any decision task simultane-
ously in £ 4+ 1 — W rounds, which is the time required
to solve simultaneous consensus.

e We show that any protocol for a decision task can
be transformed into a simultaneous protocol, and that
running it in parallel with CONCON yields a simulta-
neous protocol that decides in time that is the mini-
mum of original protocol’s worst-case execution time
and CoNCON’s t+1 —W.

e We show that — for problems with tight worst-case
bounds — running CONCON in parallel with a protocol
that is optimal in the worst-case execution yields a
protocol that is all-case optimal: For every behavior
of an adversarial scheduler, our protocol halts at least
as early as any other protocol for the problem would
in the context of this behavior.

Interestingly, beating the worst-case bound of a simulta-
neous decision task is as hard as simultaneous consensus:
while some simultaneous decision tasks are easy and some
are hard, the cost of beating a problem’s worst-case lower
bound is the same ¢t + 1 — W for all problems, easy or hard.

This paper is organized as follows. Section 2 presents the
synchronous model and the class of simultaneous decision
tasks. It then reviews material about continuous consensus
and the CONCON protocol. Section 3 considers how proto-
cols solving a given simultaneous decision task can be com-
posed. Section 4 presents our main theorem, showing how
CONCON can be used to obtain simultaneous solutions that
are optimal in all runs. Applications of this theorem are
presented and discussed in Section 5. Finally, in Section 6
we discuss the results, focusing on the interaction between
combinatorial topology and common knowledge that they
demonstrate.

2. MODEL AND PRELIMINARIES

2.1 Synchronous computation

Our model of computation is a synchronous, message-
passing model with crash failures. A system has n > 2
processes denoted by P = {p1,p2,...,pn}. Each pair of
processes is connected by a two-way communication link,
and each message is tagged with the identity of the sender.
They share a discrete global clock that starts out at time 0
and advances by increments of one. Communication in the
system proceeds in a sequence of rounds, with round k + 1
taking place between time k and time k + 1. Each process
starts in some initial state at time 0, usually with an input
value of some kind. In every round, each process first sends
a set of messages to other processes, then receives messages
sent to it by other processes during the same round, and then
performs some local computation based on the messages it
has received.

A faulty process fails by crashing in some round k£ > 1.
It behaves correctly in the first £ — 1 rounds and sends no
messages from round k£ 4+ 1 on. During its crashing round k,
the process may succeed in sending messages on an arbitrary
subset of its links. We assume that at most t < n — 1
processes fail in any given execution.

A failure pattern describes how processes fail in an execu-
tion. It is a graph where a vertex is a process-time pair (p, k)
denoting process p and time k, and an edge is of the form
((p, k—1), (g, k)) denoting the fact that p succeeded in send-
ing a message to g during round k. We write Fails(¢) to de-
note the set of failure patterns in which at most ¢ processes
fail.

An input vector describes what input the processes receive
in an execution. It is a vector (i1,...,4n) where iy is the
input to pg.

A run is a description of an infinite behavior of the system.
Given a run r and a time k, we write r(k) to denote the
global state at time k in r, and r,(k) to denote the local
state of process p at time k in r.

A protocol describes what messages a process sends and
how a process changes state during a round as a function
of its local state at the start of a round and the messages
received during a round. We assume that a protocol A has
access to the values of n and ¢, typically passed to A as
parameters. A run r of a protocol is uniquely determined by
the protocol A, the input vector 7, and the failure pattern F',
and we write r = A[7, F.

2.2 Decision tasks

A decision task is given by a relation from input vectors to
output vectors. We think of each process as having an input
and output register, and we think of a process as deciding
on a value when it writes the value to its output register.
Let I; and O; be sets of input values and output values for
process p; for each i = 1,...,n. Let Z be a subset of input
vectors 11 X - - - x In,,' and let O be the set of output vectors
O1 X+ --XOy. A decision task P over Z and O is specified by
a relation on Z x O whose projection on the first component
coincides with Z. The interpretation is that if (7,0) € P
and processes begin with input values in 7, then processes

'Most decision tasks in the literature are exhaustive, in the
sense that Z = I; X --- X I,,., When not exhaustive, the
set Z is often called a condition restricting the input vec-
tors [MRRO03, MRRO6].

are allowed to decide on output values in &. Formally, a
protocol A solves a decision task P if every run r of A in
which at most ¢ of n processes fail satisfies the following
conditions:

e Completeness: Every nonfaulty process decides on some
output value.

e (Correctness: The set of deciding processes choose cor-
rect values: If 7€ 7 is the vector of input values in the
run r, then there is an output vector ¢ € O such that
(7,6) € P and each process p; that decides in r decides
on the value o; given by 0.

Well-known examples of decision tasks are consensus, k-set
agreement, condition-based consensus, renaming, and order-
preserving renaming. We note that the values n and t are
known to processes following a decision protocol in the sense
that they are parameters to the protocol, and the sets 7
and O are known in the sense that a protocol is written
with a specific family of sets (whose definitions probably
depend in part on n and t) in mind.

For every decision task P, there is an associated simul-
taneous decision task denoted by SIM(P). The protocol A
solves sIM(P) if, in addition to completeness and correctness,
every run r of A also satisfies

e Simultaneity: All processes that decide in r do so in
the same round.

2.3 Continuous Consensus

A central tool in our study will be the CONCON proto-
col [MMO8], which is an efficient implementation of a con-
tinuous consensus service. We briefly describe continuous
consensus, and then present the protocol.

In continuous consensus, every process maintains a copy
of a “core” of information, with all copies guaranteed to be
identical at all times. Moreover, this core should ultimately
contain as many of the facts of interest in a given applica-
tion as possible. The set of facts being “monitored” in the
cores are a parameter of the service. They can involve vari-
ous events such as input values, information about external
events or about communication or process failures. For the
purposes of this paper we focus on the case where the moni-
tored facts are simply pairs of the form (p;, v;) denoting that
processes p; had input value v;. We define a continuous con-
sensus (CC) service with respect to initial input values to
be a distributed protocol that at all times k& > 0 provides
each process ¢ with a (possibly empty) core M;[k| of input
values. In every run of this protocol the following properties
are required to hold for all nonfaulty processes p; and p;:

e Accuracy: All values M;[k] occurred in the run.
e Consistency: M;[k] = M;[k] at all times k.

o Completeness: If a nonfaulty process p; has input
value vj, then (pj,v;) € M;[k] must hold for some
time k.

The consistency property allows for simultaneous actions
that depend on input values to be consistently performed
simultaneously at all times. Completeness is a liveness con-
dition, guaranteeing that the core will contain relevant infor-
mation eventually. Notice that a CC protocol can be easily
used to solve simultaneous consensus, for example. If pro-
cesses decide on the first input value that enters the core

(and on the minimal value, in case a number of input val-
ues enter in the same round), the conditions of simultaneous
consensus are all satisfied. As we shall see, a CC protocol is a
useful tool for solving simultaneous decision tasks in general.
In a precise sense, continuous consensus is closely related to
the notion of common knowledge. Indeed, all of the facts in
the CC core are guaranteed to be common knowledge. (We
defer a more detailed definition of common knowledge and
the connection to Section 4.)

Mizrahi and Moses [MMO8] introduced continuous consen-
sus and gave an efficient implementation called CONCON for
the crash and sending omissions failure models. In addition
to sending linear-sized messages per round, the CoNCoON
protocol has a number of useful properties in the crash fail-
ure model:

e M;[k] = M,[k] for all processes that are still active at
time k, for all £ > 0.

e There is a property W (standing for waste) of the
particular failure pattern in a given execution, such
that (i) M;[t + 1 — W] contains the input values of all
active processes, and possibly of the failed processes,
and (ii) M;[k] =0 forall k <t+1—W.

e CONCON maintains the maximal core of all possible
CC protocols: For every behavior of the adversary (de-
termining the vector of inputs and every failure pat-
tern), the core M;[k] at time k in CONCON is a superset
of the core at time k in any other CC protocol, under
the same adversary.

3. FAST PROTOCOLS

In this section, we show that CONCON yields fast protocols
for simultaneous decision tasks.

There is a simple construction that transforms a decision
protocol into a simultaneous decision protocol for the same
problem with the same worst-case execution time. Let P be
any decision task, and let A be any protocol that solves P.
For any given time k, the protocol DELAY(A, k) is obtained
from A simply by having processes delay decisions until
time k. Thus, processes send exactly the same messages
in A and DELAY(A, k). The only change is that whenever A
specifies that a process should decide before time k, the pro-
cess keeps track of its decision value and writes the value to
its output registers only at time k. (Decisions after time k
in A are performed unchanged.) Since processes communi-
cate with each other via messages and not output registers,
a process can change the time it writes to its output register
without changing the views of other processes.

LEMMA 1. If protocol A solves decision task P, and k
is an upper bound on the worst-case execution time of A,

then DELAY (A, k) solves SIM(P) with execution time exactly k.

PRrROOF. Completeness is satisfied since the nonfaulty pro-
cesses will survive until time k and write to their output reg-
isters. Correctness is satisfied since the values chosen in a
run of DELAY(A, k) are a subset of those chosen in A: every
run 7’ of DELAY(A, l%) maps to a run r of A where processes
do not delay their decisions as they do in r’, so there is a
pair (7,0) € P such that %’ is the input vector for r (and
hence r’) and such that every process p; that decides in r
(and hence every process p; that decides in ') chooses the

value o; in 6. Simultaneity is satisfied since all processes
decide at time k. [

There is a simple construction based on CONCON that
transforms any decision protocol A into a simultaneous de-
cision protocol CONCON(A) for the same problem with exe-
cution time t+1—W. Let P be a decision task, and let A be
a protocol that solves P. In the protocol CONCON(A), each
process p; € P follows the protocol CONCON until the core
becomes nonempty. It then simulates an execution of A in
which all processes whose initial values are in the core starts
with these values and are fault-free, while all remaining pro-
cesses are crashed and silent from the outset. The process
then decides in CONCON(A) on the value it should decide
on in the simulated run.

THEOREM 2. If protocol A solves the decision task P,
then CONCON(A) solves SIM(P). In a run with failure pat-
tern F, it decides at time t +1 — W (F).

ProOOF. It follows from the discussion in Section 2.3 that
CONCON satisfies several important properties: the core be-
comes nonempty for the first time at time ¢t + 1 — W, all
processes surviving to the end of round t + 1 — W compute
the same core at time ¢t + 1 — W, and the initial states of
all nonfaulty processes are in the core. Notice that the non-
faulty processes are nonfaulty in the simulated run of A,
since the initial states of all nonfaulty processes are in the
core, and hence at most ¢ processes fail in the run of A and
the remaining processes decide in this run of A. Complete-
ness is satisfied since all nonfaulty processes are nonfaulty in
the simulated run of A and decide. Simultaneity is satisfied
since all processes learn that the core is nonempty for the
first time at time ¢+ 1 — W. Correctness is satisfied since all
processes learn the same core at time ¢ + 1 — W, and hence
simulate the same run of A, and hence choose output values
consistent with the input values according to the problem
specification P. [J

Given two solutions for a simultaneous decision task siM(P)
that run in time k and t 4+ 1 — W, respectively, we can com-
pose them and run them in parallel to get a solution that de-
cides simultaneously at the time which is the minimum of k
and t+1—W. Moses and Raynal [MRO08] define parallel com-
position as follows. Suppose that A and B are two protocols
for a simultaneous decision task SIM(P). Define A else B to
be the protocol that runs A and B in parallel, but gives
preference to A over B when choosing output values: In the
composed protocol, process p € P executes both protocols
in parallel until the first round k& at the end of which one
of A and B has p decide. At that point, if only one protocol
has p decide, then p decides on the value determined by that
protocol; and if both protocols have p decide, then p decides
on the value determined by A.

THEOREM 3. Let k be an upper bound on the worst-case
running time of a protocol A. If A solves P, then

DELAY(A, k) else CONCON(A)

solves sSIM(P) with ezecution time min{k,t+1— W}.

PRrROOF. First we prove that if A and B are simultane-
ous decision protocols, then in any run of A else B either
all deciding processes choose according to A or all choose
according to B. Suppose that p decides at time k, and ¢

decides at time kq. Further assume (without loss of gen-
erality) that k, < k,. Whichever simultaneous protocol (A
or B) caused p to decide at time kp, would also have caused ¢
to decide at time kp. So kg < kp and it follows that k, = kq.
Suppose that (without loss of generality) p decides at time k,
and does so according to X € {A,B}. If X = A then A
has ¢ decide at time k£ as well, and so p and ¢ both decide
according to A in the composition. If X = B then p does
not decide before round £ in either protocol, and does not
decide according to A at time k. By the simultaneity of A
and B, the same is true for q. Thus, ¢ decides on the value
determined by B in the composed protocol. It follows that in
every run of DELAY(A, k) else CONCON(A), either all decid-
ing processes decide according to DELAY(A, I%) or all decide
according to CONCON(A). Thus, (i) every run of the compo-
sition satisfies completeness, correctness, and simultaneity,
and (ii) every run of the composition has processes decide
at the earlier of k and t +1—W. [J

4. OPTIMAL PROTOCOLS

In this section, we prove that the protocol
Opt(A, k) = DELAY(A, k) else CONCON(A)

for a decision task sIM(P) is not only fast, it is all-case op-
timal when k is the worst-case lower bound for P and A is
a protocol that solves P in k rounds. To say that Opt(A4, k)
is all-case optimal means that for any input vector and fail-
ure pattern, Opt(A, k) decides as soon as any other protocol
for siM(P) would decide with the same input and failure
pattern.

This generalizes a result by Moses and Raynal [MROS],
shown for the particular decision task of condition-based
consensus, where the condition (the set of possible input
vectors) is assumed to satisfy a property called d-tightness.
As in their case, we will use knowledge theory and known
results about the structure of common knowledge to prove
our claim. However, while proving optimality in [MROS] re-
quired a tailor-made lower bound argument, we present a
novel proof technique that allows proving the claim at once
for all decision problems. Before presenting the proof, we re-
view just enough material from knowledge theory to support
our proof.

Our lower bound is based on a well-known connection be-
tween simultaneous actions and common knowledge [DM90,
MT88, MMO08|. Rather than develop the logic of knowledge
in detail here, we will employ a simple graph-theoretic inter-
pretation of common knowledge that applies in our setting.
For the rest of this section, fix a set Z of input vectors, a
number n of processes, and a bound ¢ < n—1 on the number
of failures. Define the runs of A to be the set of all runs of
the form A[7, F] for all input vectors 7 € Z and all failure
patterns F' € Fails(t).

Similarity graph.

Given a protocol A, we say that two runs r and ' of A
are indistinguishable to a process p at time k if process p
survives round k in both runs and has the same local state
at the end of round £ in both runs. We define the similarity
graph for A at time k to be the undirected graph where the
vertices are the runs of A and the edges are all pairs {r,r’}
such that r and 7’ are indistinguishable to some process p at
time k. We say that two runs r and 7’ of A are connected at

time k if they are in the same connected component of the

similarity graph for A at time k, which we denote by r Koy

Common knowledge.

One way to define common knowledge is in terms of the
connected components of the similarity graph [DM90]. Given
a protocol A, a fact ¢ is common knowledge at time k in a
run r of A if ¢ holds at time k in all runs 7’ of A satisfy-

ing 7’ X r. One can prove that if A solves siM(P) and if
processes decide at time k in a run r of A, then it is com-
mon knowledge at time k in r that processes are deciding at
time k. Formulating this observation in terms of similarity,
we have

LEMMA 4. Let P be a decision task and A be a protocol
that solves P simultaneously. If the nonfaulty processes de-
cide at time k in a run r of A, then they decide at time k in

L k
every run v’ of A satisfying v’ ~ r.

PRrOOF. It is enough to prove the result for the case of a
single edge from r to 7’ in the similarity graph at time k, and

the result will follow by induction since r & 7' means there
is a finite path of edges from r to r’. Since there is an edge
from r to r’, there is a process p that survives round k in
both runs and has the same local state at the end of round &
in both runs. Since the nonfaulty processes decide at time k
in » and p has not failed, process p must decide at time k
in . Since p has the same local state at time k in both
runs, it must decide at time k in 7" as well. Since decisions
are simultaneous in runs of A, all nonfaulty processes must
decide at time k in 7', and we are done. []

Waste.

It is known that an adversarial scheduler can keep a fact
from becoming common knowledge by failing processes that
know this fact, and the best strategy for the adversary is
to fail one process per round to keep a fact from becoming
common knowledge until the end of round t+1. To fail more
than one process per round is a waste. Following [DM90], we
capture this intuition as follows. Given a failure pattern F',
we say that the failure of a process p is exposed in round k
if the round k£ edge from p to ¢ is missing in F' for some
process ¢ that survives round k in F. Let E(F,k) be the
number of processes whose failure is exposed in round k
or earlier. Observe that E(F,0) = 0 for all F' € Fails(t).
Let W (F') denote the waste inherent in F' defined by

W(F) = max{B(F.k) ~ k}.

Notice that 0 < W(F) <t —1 for all F' € Fails(¢). In the
language of [MRO09], we say that round k is premature in a
runr = AR, F]if kK < t+1—W(F), since we shall see that no
nontrivial fact can be be common knowledge at the end of
a premature round. Specifically, the analysis of connectiv-
ity in the similarity graph performed in [DM90] showed the
following. We say that the set Z of input vectors is complete
if it is equal to a Cartesian product I; X --- X I,,, meaning
that process input values can be chosen independently.

LEMMA 5. [DM90, MRO8] Suppose the set L of input vec-
tors is complete. If round k is premature in two runs r and r’

of A, thenr X ¢’

We now have the combinatorial machinery that we need
to prove our main result:

THEOREM 6 (ALL-CASE OPTIMALITY). Let P be a de-
cision task with worst-case lower bound k and let A be a
protocol that solves P in time k. If P’s set of input vectors
is complete, then

Opt(4, k) = DELAY(A, k) else CONCON(A)
is a protocol for SIM(P) that is all-case optimal.

PROOF. Since A solves P in time k, Theorem 3 implies
that Opt(A, k) solves siM(P) in time min{k, ¢+ 1 — W (F)},
where F' is the failure pattern. A

Suppose that the theorem is false: that Opt(A, k) is not
all-case optimal. This means there is a protocol B solv-
ing SIM(P) and an input vector ¥ € Z and a failure pat-
tern F' € Fails(¢) such that processes decide at time kg <
min{k,t + 1 — W(F)} in the run r = B[, F]. Let B =
Opt(B, ko). Notice that in the run # = B[z, F] correspond-
ing to r, processes decide according to B at time ko since
ko < t+1— W(F) is premature in 7. We now prove that B
solves sIM(P) within at most ko < k rounds, contradicting
the assumption that k is a worst-case lower bound for P.

Since B solves SIM(P) by assumption and CONCON(B)
solves SIM(P) by Theorem 2, any decision by DELAY(B, ko)
or CoNCON(B) is correct and simultaneous, and hence any
decision by B is correct and simultaneous. We need only
prove that one of DELAY(B, ko) or CONCON(B) actually
makes a decision at or before time ko in every run, and
hence that B does so as well. Let #/ = B[7, F'] be any run
of B. Let k1 =t + 1 — W(F') and consider two cases:

e Suppose that k1 < ko. Theorem 2 says CONCON(B)
decides at time ky =t +1 — W(F') in # = B[7, F'],
so B can decide at time ki < ko in 7.

e Suppose that k1 > ko. In this case, ko is premature
in both 7 and #, and thus 7 % # by Lemma 5. Since

processes decide at ko in #, they decide at ko in # by
Lemma 4. [J

The proof shows that beating the worst-case lower bound is
as hard as solving consensus. In particular, if DELAY(A, k)
solves s1M(P) at time k < k, then k > ¢ + 1 — W at which
time consensus can be solved.

Coverability.

Theorem 6 requires that the set of input vectors is com-
plete, meaning that is a Cartesian product, which is typ-
ically true of most decision tasks. We can generalize this
theorem using an inherently topological notion of coverabil-
ity. A set Z of input vectors is c-coverable if for every pair
of input vectors 7" and 7 in Z there is a finite sequence of
input vectors ¥ = %p,%1,...,2, = 7 in Z with the property
that adjacent vectors 72¢ and 7p4+1 differ on the inputs of at
most ¢ processes. Note that if 7 is complete (a Cartesian
product), then Z is 1-coverable. We can generalize Lemma 5
from complete to c-coverable sets of input vectors:

LEMMA 7. [MROS8] Suppose the set T of input vectors is c-
coverable. If k <t+ 1— c and round k is premature in two

k
runs r and ' of A, then r ~ .

We can generalize Theorem 6 from complete to c-coverable
sets of input vectors:

THEOREM 8 (ALL-CASE OPTIMALITY). Let P be a de-
cision task with worst-case lower bound k and let A be a
protocol that solves P in time k. If P’s set of inpul vectors
is c-coverable and k < t+ 2 — ¢, then

Opt(A, k) = DELAY(A, k) else CONCON(A)
is a protocol for SIM(P) that is all-case optimal.

PrOOF. Simply use Lemma 7 in place of Lemma 5 in
the proof of Theorem 6. The only tricky observation is that
Lemma 5 is applied with & = ko < k < t4+2—c which implies
the hypothesis £ <t + 1 — ¢ required by the lemma. [

5. APPLICATIONS

The construction of Theorem 6 yields simultaneous pro-
tocols that are all-case optimal for some of the most famous
problems in distributed computation.

5.1 Set agreement and consensus

The k-set agreement problem [Cha90] is a well-known gen-
eralization of consensus [PSL80, LSP82]. Given a set V of
at least k+ 1 values, processes start with inputs from V' and
must choose outputs from V' subject to three requirements:

e Termination: Every nonfaulty process chooses an out-
put value.

e Validity: Every process’s output value is some pro-
cess’s input value.

e Agreement: The set of output values chosen must con-
tain at most k distinct values.

The sets Z and O of input and output vectors are V x---xV
(n copies of V). Consensus is k-set agreement with k = 1.

Set agreement is most famous for a trio of papers [HS99,
BG93, SZ00] proving that set agreement is impossible in
asynchronous systems, generalizing the impossibility result
for consensus [FLP85]. One paper [CHLT00], however, proves
that [t/k] + 1 is a tight worst-case bound on the number
of rounds required for k-set agreement in the synchronous
model. This matches and generalizes the tight bound of t+1
rounds for consensus [FL81, DS82]. Let SA be a k-set agree-
ment protocol that halts in |¢/k] + 1 rounds. Theorem 6
implies:

COROLLARY 9. Opt(sa, [t/k] + 1) is a protocol for k-set
agreement that is all-case optimal. It halts in time

min{|t/k] +1,t+1— W}

5.2 Condition-based consensus

Consensus and k-set agreement are decision tasks whose
set Z =V x--- x V of input vectors allows any process to
start with any value in V. Condition-based consensus was
defined [MRRO3] as a way of circumventing the impossibility
of consensus in asynchronous models [FLP85] by restricting
the set Z of input vectors to a subset of V' x ---x V. The in-
tuition is that consensus is easier to solve when fewer input
vectors are possible. A protocol solves condition-based con-
sensus for a given condition Z if all of its executions satisfy

the termination, agreement, and validity conditions for 1-set
agreement (consensus).

Every subset Z of V' x- - - xV defines a condition, and hence
defines an instance of condition-base consensus. A property
of conditions called d-legality was defined in [MRROG6], and a
protocol was presented that solves condition-based consen-
sus for all d-legal conditions in ¢ + 1 — d rounds. However,
not all d-legal conditions require ¢ + 1 — d rounds in the
worst case. A stronger property called d-tightness was de-
fined in [MRO8] to mean both d-legal and (d 4 1)-coverable.
An example of a d-tight condition is the set M of all vectors
such that the largest value appearing in the vector appears
there more than d times.

The results of [MRO8] imply that for every d-tight con-
dition Z4, there is a worst-case lower bound of t + 1 — d
rounds for decision in condition-based consensus. The re-
sults of [MRRO06] imply there is a condition-based consensus
protocol that halts in ¢t + 1 — d rounds on d-legal (and hence
on d-tight) conditions. Let ¢BC(d) be any such condition-
based consensus protocol. Theorem 8 implies:

CoROLLARY 10. Opt(cBc(d),t+ 1 —d) is a protocol for
condition-based consensus that is all-case optimal on d-tight
conditions. It halts in time

min{t+1—d,t+1—-W}.

PrOOF. Apply Theorem 8 with ¢ = d+1 and k=t+1—d.
The input vectors are c-coverable because they are d-tight
and thus (d + 1)-coverable. The bound k& < ¢ + 2 — ¢ holds

because k=t +1—d. [

We note that Corollary 10 is the central result of Moses
and Raynal in [MRO08]. While their proof required a careful
and nontrivial explicit lower bound proof for condition-based
consensus, ours is obtained in a more uniform manner.

5.3 Renaming

The renaming and strong renaming problems were first
defined in the asynchronous model [ABND190]. In the re-
naming problem, processes start with distinct names from a
large namespace and are required to choose distinct names
from a small namespace, a namespace of size roughly equal
to the number of processes participating in the protocol. In
the strong renaming problem, processes are required to pre-
serve the order of names: if p and ¢ start with names i, < iq,
then they are required to choose names o, < o,. In both
problems, given sets I and O of initial and final names, the
set Z is the subset of I x --- x I consisting of vectors of
distinct names, and the set O is the set O x --- x O.

The first paper to consider strong renaming in the syn-
chronous model was [HT90]. They proved a tight log ¢ worst-
case bound for strong renaming, where ¢ is the number of
processes concurrently participating in the protocol. Since ¢
depends on the execution, their results imply a worst-case
bound of logn. Let SR be a strong renaming protocol that
halts in log n rounds. Since the input vectors are 1-coverable,
Theorem 8 implies:

COROLLARY 11. Opt(SR,logn) is a protocol for strong re-
naming that is all-case optimal assuming logn < t+ 1. It
halts in time

min{logn,t+1— W}.

PRrROOF. Apply Theorem 8 with ¢ = 1 and k= logn. The
input vectors are 1-coverable. The bound k < ¢+2—c holds
because k =logn <t+1. [

A few comments on Opt(SR,logn) are in order. While the
original protocol SR of [HT90] allows a subset of the non-
faulty processes not to participate in the execution, the op-
timal protocol Opt(SR, logn) does not. This may be justified
by the intuition that a protocol that must be optimally fast
under all conditions cannot be expected to allow some of the
processes be dormant, unless their identity is built into the
protocol.

6. CONCLUSIONS

This work shows how knowledge and topology can be used
together to attain interesting results about distributed com-
putation, and begins what we hope will be a fruitful ap-
proach to reasoning about distributed computation. While
the proofs we presented in this paper are combinatorial, the
definitions and results used in the paper all come from or
are inspired by knowledge and topology.

Our technical results concern the construction of simulta-
neous protocols for decision tasks. We have demonstrated
that the protocol CONCON derived by knowledge-theoretic
means can be used to solve any decision task simultaneously,
and running it in parallel with a protocol A solving the de-
cision task can solve the task faster than A or CoNCON
alone, and that if A matches the worst-case bound, the par-
allel composition yields an all-case optimal solution to the
task.

Our primary insights, however, come from the proofs of
the technical results:

e Stopping early requires attaining common knowledge
of a nontrivial fact. Every protocol has a worst-case
run 7 in which processes decide at a time k late in
the run. Consider any other run r in which processes
decide earlier time k. Lemma 4 says that processes
decide at time k in every run r’ connected to r. It
follows that 7 cannot be connected to r since processes
do not decide at time k < k in 7. So it is common
knowledge at time £ in the run r that the current run
is not connected to #, a nontrivial fact.

e Stopping early means consensus can be solved. Stop-
ping early implies a nontrivial fact has become com-
mon knowledge. The CONCON protocol computes a
core that characterizes all nontrivial facts that are com-
mon knowledge. Stopping early means the core has
become nonempty, and it is known that consensus can
be solve once the core becomes nonempty.

Notice that the conclusion of the first point—common knowl-
edge that the current run is not connected to the worst-case
run—is inherently a statement about knowledge of topology
(connectivity). We hope the combination of knowledge and
topology will yield many more insights in the years to come.

Acknowledgments

We thank our anonymous referees for their helpful comments
and advice.

7. REFERENCES
[ABND%90] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg,

[AR02]

[BG93)

[Cha90]

[CHLT00]

[DM90)]

[DSS2]

[FHMV95)

[FL81]

[FLPS5]

[HM90]

and R. Reischuk. Renaming in an
asynchronous environment. Journal of the
ACM, 37(3):524-548, 1990.

H. Attiya and S. Rajsbaum. The
combinatorial structure of wait-free solvable
tasks. STAM Journal on Computing,
31(4):1286-1313, 2002.

E. Borowsky and E. Gafni. Generalized FLP
impossibility result for t-resilient
asynchronous computations. In Proc. 25th
ACM Symp. on Theory of Computing, pages
91-100, 1993.

S. Chaudhuri. Agreement is harder than
consensus: Set consensus problems in totally
asynchronous systems. In Proc. 9th ACM
Symp. on Principles of Distributed
Computing, pages 311-324, 1990.

S. Chaudhuri, M. Herlihy, N. A. Lynch, and
M. R. Tuttle. Tight bounds for k-set
agreement. Journal of the ACM,
47(5):912-943, 2000.

C. Dwork and Y. Moses. Knowledge and
common knowledge in a Byzantine
environment: Crash failures. Information and
Computation, 88(2):156-186, 1990.

D. Dolev and H. R. Strong. Polynomial
algorithms for multiple processor agreement.
In Proc. 14th ACM Symp. on Theory of
Computing, pages 401-407, 1982.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y.
Vardi. Reasoning about Knowledge. MIT
Press, Cambridge, MA, 1995.

M. J. Fischer and N. A. Lynch. A lower
bound for the time to assure interactive
consistency. Information Processing Letters,
14:183-186, 1981.

M. J. Fischer, N. A. Lynch, and M. S.
Paterson. Impossibility of distributed
consensus with one faulty processor. Journal
of the ACM, 32(2):374-382, 1985.

J. Y. Halpern and Y. Moses. Knowledge and
common knowledge in a distributed
environment. Journal of the ACM,
37(3):549-587, 1990.

[HS99]

[HT90]

[LSP82]

[MMOS]

[MROS]

[MRO9]

[MRRO3]

[MRRO6]

[MTs8]

[PSL80]

[SZ00]

M. Herlihy and N. Shavit. The topological
structure of asynchronous computability.
Journal of the ACM, 46(6):858-923, 1999.
M. Herlihy and M. R. Tuttle. Wait-free
computation in message-passing systems. In
Proc. 9th ACM Symp. on Principles of
Distributed Computing, pages 347-362,
August 1990.

L. Lamport, R. Shostak, and M. Pease. The
Byzantine generals problem. ACM Trans. on
Programming Languages and Systems,
4(3):382—401, 1982.

T. Mizrahi and Y. Moses. Continuous
consensus via common knowledge. Distributed
Computing, 20(5):305-321, 2008.

Y. Moses and M. Raynal. No double discount:
Condition-based simultaneity yields limited
gain. In Proc. 22nd Int. Symp. on Distributed
Computing, pages 423-437, September 2008.
Y. Moses and M. Raynal. Revisiting
simultaneous consensus with crash failures.
Journal of Parallel and Distributed
Computing, 69(4):400-409, 2009.

A. Mostefaoui, S. Rajsbaum, and M. Raynal.
Conditions on input vectors for consensus
solvability in asynchronous distributed
systems. Journal of the ACM, 50(6):922-954,
2003.

A. Mostéfaoui, S. Rajsbaum, and M. Raynal.
Synchronous condition-based consensus.
Distributed Computing, 18(5):325-343, April
2006.

Y. Moses and M. R. Tuttle. Programming
simultaneous actions using common
knowledge. Algorithmica, 3:121-169, 1988.
M. Pease, R. Shostak, and L. Lamport.
Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228-234, 1980.
M. Saks and F. Zaharoglou. Wait-free k-set
agreement is impossible: The topology of
public knowledge. SIAM Journal on
Computing, 29(5):1449-1483, 2000.

