
ar
X

iv
:1

10
4.

25
27

v1
 [

cs
.D

S
]

13
 A

pr
 2

01
1

Faster Information Dissemination in Dynamic Networks via
Network Coding

Bernhard Haeupler
Massachusetts Institute of Technology

32 Vassar Street, 32-G622
Cambridge, MA 02139, USA

haeupler@mit.edu

David R. Karger
Massachusetts Institute of Technology

32 Vassar Street, 32-G592
Cambridge, MA 02139, USA

karger@mit.edu

ABSTRACT
We use network coding to improve the speed of distributed
computation in the dynamic network model of Kuhn, Lynch
and Oshman [STOC ’10]. In this model an adversary adap-
tively chooses a new network topology in every round, mak-
ing even basic distributed computations challenging.

Kuhn et al. show that n nodes, each starting with a d-bit
token, can broadcast them to all nodes in time O(n2) using
b-bit messages, where b ≥ d + log n. Their algorithms take
the natural approach of token forwarding : in every round
each node broadcasts some particular token it knows. They
prove matching Ω(n2) lower bounds for a natural class of
token forwarding algorithms and an Ω(n log n) lower bound
that applies to all token-forwarding algorithms.

We use network coding, transmitting random linear com-
binations of tokens, to break both lower bounds. Our al-
gorithm’s performance is quadratic in the message size b,
broadcasting the n tokens in roughly d

b2
· n2 rounds. For

b = d = Θ(log n) our algorithms use O(n2/ log n) rounds,
breaking the first lower bound, while for larger message sizes
we obtain linear-time algorithms. We also consider networks
that change only every T rounds, and achieve an additional
factor T 2 speedup. This contrasts with related lower and up-
per bounds of Kuhn et al. implying that for natural token-
forwarding algorithms a speedup of T , but not more, can
be obtained. Lastly, we give a general way to derandom-
ize random linear network coding, that also leads to new
deterministic information dissemination algorithms.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures; G.2.2 [Discrete Mathemat-

ics]: Graph Theory—network problems, graph algorithms

General Terms
Algorithms, Performance, Theory

Keywords
dynamic networks, gossip, multicast, network coding

PODC’11, June 6–8, 2011, San Jose, California, USA.
.

1. INTRODUCTION
In this paper we demonstrate that network coding can sig-

nificantly improve the efficiency of distributed computations
in dynamic networks. Network coding breaks with the clas-
sical paradigm of routing atomic packets through a network
and recognizes that information can be mixed and coded to-
gether in ways other (physical) quantities can not. Network
coding is a relatively recent discovery that has already rev-
olutionized information theory; it is now a crucial tool in
designing robust and efficient communication protocols. We
believe network coding has potential for similar impact in
the distributed computing community.

We study the recently introduced dynamic network model
of Kuhn et al. [9]. This model was designed to capture the
highly dynamic and non-converging nature of many modern
networks by allowing the network topology to change com-
pletely and adaptively in every round subject to the con-
straint that the network is always connected. In each syn-
chronized communication round, each node chooses a mes-
sage which is then broadcast to its neighbors for the round.
What makes this problem particularly challenging is that
the broadcast is anonymous, i.e., at the time a node chooses
its message it does not know who its receiving neighbors for
the round will be.

An important problem in such dynamic networks is k-
token dissemination: there are k tokens initially distributed
to some nodes, and the goal is to disseminate them to all
nodes.

The most natural approach to solving token dissemination
is token forwarding : in each round, each node chooses to
broadcast one token it knows. Kuhn et al. [9] show how to
disseminate k tokens in an n-node network in O(nk) time by
flooding the k tokens one by one in O(n) rounds each. They
also show how pipelining can improve the running time of
this approach to O(nk

T
+ n) in slower-changing T -interval-

connected networks, in which for any interval of T rounds
the links of some specific underlying spanning tree persist.

Kuhn et al. give evidence that this is the best one can do
with token forwarding. For the natural class of knowledge-
based token forwarding algorithms, where each node’s mes-
sages depend only on the tokens it knows, they show a
matching Ω(nk

T
+ n) lower bound. They also give a more

general Ω(n log k) lower bound that applies even if the algo-
rithm is operated under “centralized control” and mention
in the conclusion the ”hope to strengthen [this] and obtain
an Ω(nk/T) general lower bound”.

Building on work of the first author [6], we show that these
lower bounds cease to hold if one does not require that tokens

http://arxiv.org/abs/1104.2527v1

be broadcast individually. We use network coding, sending
out random linear combinations of tokens, to solve k-token
dissemination of size-O(log n) tokens in O(kn/ log n) time,
outperforming the Θ(kn) bound [9] for knowledge-based to-
ken forwarding algorithms. We also show that, perhaps
counter-intuitively, larger tokens can be disseminated faster:
if the token size (and message size) is d, network coding can
disseminate k tokens in O(k(n log n)/d) time. Thus, for to-
kens of size n log n, we break the general Ω(n log k) bound
on token-forwarding algorithms.

We also consider networks that are T -stable, changing
only once every T rounds. Kuhn et al. show that token-
forwarding can achieve a factor-T speedup in this case, but
that knowledge-based token-forwarding algorithms cannot
do better. In contrast, we show network coding can achieve
a factor T 2 speedup.

Finally, we show that linear network coding is not inher-
ently randomized but that the ideas and improvements carry
over to (non-uniform) deterministic algorithms as well.

2. OUR RESULTS
In this section we provide the formal statements of our

main results. The model should be clear from the introduc-
tion but is also more formally described in Section 4.

2.1 The Role of Message Size
Kuhn et al. assume throughout that the message size is

equal to the token size. For token-forwarding algorithms,
this is quite reasonable. For fixed token size, a larger mes-
sage simply allows forwarding more tokens at once, which for
all their results is equivalent to executing multiple rounds in
parallel. Thus, all their upper and lower bounds simply scale
linearly with this message size.

Once we move beyond token forwarding this equivalence
breaks down. Thus, we introduce a separate parameter, b,
representing the size of a message. We will see that net-
work coding performance improves quadratically with the
message size. Somewhat surprisingly, this means that when
the message size is equal to the token size, larger tokens can
be disseminated faster.

Explicitly modeling b also allows us to bridge an important
gap between the distributed computing and network coding
communities. In distributed computing we often focus on
size-O(log n) message-sizes. But in practice, most commu-
nication protocols impose a minimum message size in the
thousands or tens of thousands of bits. We should there-
fore try to take advantage of the possibility of tokens being
much smaller than the message size; with network coding we
can. At the other end, the network coding community gener-
ally assumes messages are so large that overheads associated
with network coding can be ignored. Our work accounts for
the hidden cost of these overheads, which can be significant
when messages are smaller. In summary, explicitly model-
ing b lets us span the range of assumptions from distributed
computing’s tiny messages to network coding’s huge ones.
We discuss this in more detail in Section 3.

2.2 Token Forwarding Algorithms
For comparison we first recall the upper- and lower-bound

results of [9]:

Theorem 2.1. [9] There is a deterministic knowledge-
based token forwarding algorithm that solves the k-token dis-

semination problem in a T -stable dynamic network in O(1
T
·

nkd
b

+ n) rounds using messages of size b for tokens of size
d. This is tight, i.e., for any T , any (even randomized)
knowledge-based token forwarding algorithm takes at least
Ω(1

T
· nkd

b
+ n) rounds in the worst case.

This is not a verbatim restatement. Indeed, Kuhn et al
[9] prove this theorem for the related but stronger stability
measure of T -interval connectivity. Furthermore, except for
the abstract, they only describe the case of small tokens
and assume that the messages size is equal to the size of the
tokens, i.e., b = d = log n. Lastly, for most of the paper they
assume that k = n or that each node starts with exactly one
token. It is easy to verify that the lower bound from [9]
continues to hold for our weaker T -stability model and that
the algorithms also directly extend to the stated theorem:
E.g., to achieve a running time of nkd

b
for T = 1 the nodes

repeatedly flood b
d
tokens per O(n) rounds instead of one.

Their second lower bound applies to deterministic cen-
tralized algorithms and shows that even if one allows such
unrestricted, coordination between nodes a linear time algo-
rithm is not achievable (in contrast to static graphs):

Theorem 2.2. [9] For b = d any deterministic central-
ized token forwarding algorithm that solves the k-token dis-
semination problem in a dynamic network takes Ω(n log k)
rounds in the worst case.

2.3 Network Coding
Even though the token dissemination problem is about

delivering complete tokens, one can benefit from not treat-
ing the information as a physical quantity that needs to
be routed through the network. We do this by providing
faster (knowledge-based) algorithms for the k-token dissem-
ination problem based on network coding. The lower bound
in Theorem 2.1 pertains even if one allows the algorithms
to chop up tokens into single bits and route those bits in-
dependently through the network – including concatenating
bits of different tokens within one message. This shows that
true (network) coding is required.

Our algorithms use random linear network coding, the ar-
guably simplest form of network coding, in which messages
are random linear combinations of tokens. Independent of
network dynamics, nodes in our algorithm always choose
a uniformly random linear combination of all received mes-
sages and can therefore also be considered knowledge-based.

Our first theorem shows that one can solve k-token dis-
semination roughly a factor of b faster than the lower bound
for knowledge-based token forwarding algorithms:

Theorem 2.3. There is a randomized network coding al-
gorithm that solves the k-token dissemination problem in a
dynamic network with n nodes in

O(min{1
b
· nkd

b
+ nb,

log n

b
· nkd

b
+ n log n})

rounds with high probability.

This means that the efficiency of token-dissemination in-
creases at least quadratically with the message size, instead
of the more intuitive linear increase given by Theorem 2.1. A
similar result is true for the advantages coming from more
stable networks. Theorem 2.1 implies that T -stability (or
even T -interval connectivity) allows for a speed up of T . Our

next theorem shows that with network coding the speedup of
a more stable network improves to T 2. For most parameter
values, this improvement can be combined with the speed-
up from larger message sizes. The next theorem implies an

at least log2n
bT2

speed up over the O(nkd
b

) rounds for most
settings of the parameters b, d, k and T . This is a factor

of log2n
bT

faster than the lower bound for knowledge-based
token-forwarding algorithms:

Theorem 2.4. There is a randomized network coding al-
gorithm that solves the k-token dissemination problem in a
T -stable dynamic network with n nodes in

O(1) ·min
{

log n
bT2 · nkd

b
+ nbT 2 log n

log2 n
bT2 · nkd

b
+ nT log2 n

log2 n
bT2 · n2 + n log n

}

rounds with high probability.

All these algorithms are based on random linear network
coding which seems to be inherently dependent on random-
ization. We show that this is not true. We give tight trade-
offs between the adaptiveness of the adversary and the re-
quired coefficient size/overhead. For derandomization we
must pay higher (quadratic) coefficient overhead, but we
can still outperform token-forwarding algorithms. These ar-
guments apply quite generally to the network coding frame-
work in [6] and are interesting on their own. We defer the
description of these results to Section 6 and mention here
only the implications for the k-dissemination problem:

Theorem 2.5. There is a deterministic network coding
algorithm that solves the k-token dissemination problem in
a T -stable dynamic network with n nodes in

O(
1√
bT

· n ·min{k, n
T
}+ n) · 2O(

√
logn)

rounds.

For completeness we also describe what our findings imply
for centralized algorithms1:

Corollary 2.6. There is a randomized centralized net-
work coding algorithm that solves the k-token dissemina-
tion problem in a T -stable dynamic network with n nodes
in order-optimal Θ(n) time with probability 1 − 2−n and a
deterministic centralized network coding algorithm that runs
in O(log n

bT
· n ·min{k, n

T
}+ n) rounds.

To help interpret these general results we present a few
interesting value instantiations:

• Even for b = d = log n and k = n, which is an im-
portant case because of its connection to counting the

1A centralized algorithm can globally coordinate nodes. For-
mally we define centralized algorithms as “distributed” algo-
rithms that furthermore provide each node with knowledge
about past topologies, the initial token distribution (with-
out getting to know the tokens itself) and a source of shared
randomness in case of a randomized algorithm. It is easy to
verify that this extends the definition given in [9] for cen-
tralized token-forwarding algorithms to general algorithms
and problems.

number of nodes in a network [9], the n2/ log n rounds
needed by the network coding algorithm is a Θ(log n)-
factor faster than any knowledge-based token forward-
ing algorithm can be.

• For the counting problem with larger message sizes,
i.e., d = log n and k = n, Theorem 2.3 implies that
a message-size of b =

√
n log n suffices to obtain an

optimal linear-time randomized algorithm. For b =
n2/3 log n this can be made deterministic. In contrast,
the best known token-forwarding algorithm needs b =
n log n (see Proposition 3.2 of [9]) which is tight for
knowledge-based token forwarding algorithms.

• The situation is similar if one considers the question
of how stable a graph needs to be to allow near-linear
n1+o(1) time algorithms for the n-token dissemination
problem. Theorems 2.4 and 2.5 show that T = Ω(

√
n)

suffices for randomized algorithms and T = Ω(n2/3) for
deterministic algorithms. This means that

√
n (resp.

n1/3) adversarial topology changes can be tolerated
with network coding. In contrast any knowledge-based
token-forwarding algorithm requires the graph to be
essentially static, i.e., T = Ω(n1−o(1)).

• For the case that messages are of the size of a token,
i.e, b = d, the weaker but quite general lower bound
for Theorem 2.2 rules out any linear time token for-
warding algorithm even if a deterministic centralized
algorithm is used. In contrast to this there are linear
time network coding algorithms that are:

– randomized and centralized

– deterministic and centralized
(for message and token sizes ≥ n log n)

– randomized and knowledge-based
(for message and token sizes ≥ n log n)

– deterministic and knowledge-based
(for message and token sizes ≥ n2 log n)

3. RELATED WORK
While traditional distributed algorithms research has fo-

cused on computation in static networks, the analysis of
dynamic network topologies has gained importance both in
practice and theory. Kuhn et al. [9] offer an extensive review
of this literature.

Next to [9] the line of research most relevant to this work
is network coding for gossip problems [2, 4, 5, 12] and most
specifically work by Haeupler [6]. Since its introduction [1,
10] network coding has revolutionized the understanding of
information flow in networks and found many practical ap-
plications (see, e.g., the books [7,14]).

Random linear network coding and its distributed imple-
mentation considered in this paper were introduced by Ho et
al. [8] and shown to achieve capacity for multicast. Its per-
formance for the distributed n-token dissemination problem
has been intensively studied in combination with gossip algo-
rithms under the name of algebraic gossip or rumor spread-
ing. The first such analysis [4, 5] studied the performance
of algebraic gossip in the random phone call model, i.e., the
complete graph in which each nodes sends a message to a
random neighbor in each round. Follow-on work [2, 3, 6, 12]
has analyzed the distributed network coding gossip algo-
rithm on general static networks. Haeupler [6] gives a very

simple analysis technique (reviewed in Section 5) that can be
used to show order optimal stopping times in practically all
communication models. Most interestingly this holds true
even if, as studied here and in [9], a fully adaptive adversary
changes the topology in every round. In the setting con-
sidered here this would imply an optimal O(n) linear time
algorithm for the n-token dissemination problem. Unfor-
tunately, these prior results do not directly apply for two
subtle but important reasons:

First, [6], as well as all prior work on algebraic gossip,
assumes that the additive overhead of the network coding
header, which is linear in the number of coded packets, is
negligible compared to the size of a packet. This assumption
is backed up by many practical implementations in which
this overhead is indeed less than one percent. But a rigorous
theoretical treatment, like that of [9], must account for this
overhead which may be significant if message-sizes are small.

Secondly, in all prior literature including [6], it is also
assumed that tokens are uniquely numbered/indexed and
that this index is known to any node that starts with a
token. This is needed to allow nodes to specify in the coding
header which packets are coded together in a message. In
this paper such an assumption would be unacceptable. For
example, for the task of counting the number of nodes in a
dynamic network [9] having the IDs consecutively indexed
would essentially amount to assuming that a solution to the
counting problem is already part of the input.

In this paper we address both points explicitly. Account-
ing for the coding overhead leads to interesting trade-offs
and poses new algorithmic challenges like the need for gath-
ering many tokens in one node so that they can be grouped
together to a smaller number of larger “meta-tokens” that
require fewer coefficients. To this end we consider interme-
diate message sizes b that can range between logarithmic
size [9] to (super)linear size [2–6, 12]. We furthermore do
not assume any token indexing or other extra coordination
between nodes but show how to bootstrap the token dissem-
ination algorithms to find such an indexing.

4. PROBLEM DESCRIPTION
Throughout this paper we work in the dynamic network

model of Kuhn et al. [9]. The following section gives a de-
tailed description of the model and of the token dissemina-
tion problem.

4.1 The Dynamic Network Model
A dynamic network consists of n nodes with unique iden-

tifiers (UIDs) of size O(log n) and we assume that the num-
ber of nodes is known (up to a factor of 2) to all nodes.
The network operates in synchronized rounds. During each
round t the network’s connectivity is defined by a connected
undirected graph G(t) chosen by an adversary. The nodes
communicate via anonymous broadcast : At the beginning
of a round each node chooses an O(b)-bit message, where
b ≥ log n, without knowing to which nodes it is connected in
the round. After the messages and the network G(t) is fixed
each node receives all messages chosen by its neighbors in
G(t). The model does not restrict local computations done
by nodes.

We present deterministic and randomized algorithms. In
the case of randomization one must carefully specify how
the adversary is allowed to adapt to algorithmic actions. We
cover several models in the full paper but here we assume an

adaptive adversary : in each round the adversary chooses the
network topology based on all past actions (and the current
state) of the nodes. Following this the nodes then choose
random messages (still without knowing their neighbors).

Remarks:

• For randomized algorithms the assumption of O(log n)
size UIDs is without loss of generality since they can be
generated randomly with a high probability of success.

• In the case of n-token dissemination the assumption
that all nodes know n is without loss of generality: If
n is unknown one can start with guessing an upper
bound n = 2, count the number of node IDs using
n-token dissemination and repeatedly double the esti-
mate an restart when a failure is detected. This use of
the n-token dissemination prevents a termination with
a too small estimate. Since the running times only de-
pend (at least linearly) on the size of the estimate, all
rounds spend on computations with too low estimates
are dominated by a geometric sum and increase the
overall complexity at most by a factor of two. A sim-
ilar argument was given in [9]. We defer more details
to the full paper.

4.2 The k-Token Dissemination Problem
In this section we describe the k-token dissemination prob-

lem [9]. In this problem, k ≤ n tokens of d ≤ b bits are lo-
cated in the network and the goal is for all nodes to become
aware of the union of the tokens and then terminate. We
assume that the k tokens are chosen and distributed to the
nodes by the adversary before the first round.

Kuhn et al. observe that k-token dissemination seems
intimately connected to the problem of counting the number
of nodes in a network and to simpler problems like consensus.
In fact k-dissemination is “universal” as any function of the
k tokens can be computed by distributing them to all nodes
and the letting each node compute the function locally.

We consider only Las Vegas algorithms that are guaran-
teed to terminate with all tokens disseminated. We will
bound the expected number of rounds until all nodes termi-
nate. All stopping times actually hold with high probability.

Our algorithms for k-token dissemination solve several
natural subproblems as subroutines:

gathering: nodes need to collect tokens such that a sin-
gle node or a small collection of nodes knows about a
specified number of tokens.

k-indexing: k tokens must be selected and a distinct index
in the range 1, . . . , k assigned to each.

k-indexed-broadcasting: k tokens with distinct indices
1, . . . , k must be distributed to all nodes

5. (ANALYZING) NETWORK CODING

5.1 Random Linear Network Coding
Instead of sending the d-bit tokens as atomic entities, net-

work coding interprets these tokens as vectors over a finite
field and sends out random linear combinations of the vec-
tors. Formally, the algorithm chooses a prime q as a field
size and represents the tokens as d′ = ⌈d/ lg q⌉-dimensional
vectors over Fq. For most of this paper one can choose q = 2,
i.e., take the natural token representation as a bit sequence
of length d′ = d and replace linear combinations by XORs.

Let t1, . . . , tk ∈ F d′

q be k indexed tokens. We concate-

nate the ith basis vector ei of F
k
q to ti to produce a k + d′-

dimensional vector vi. Each node that initially knows ti
“receives” this vector vi before the first round. Notice that
if a node knows the subspace S spanned by the vi, e.g, in the
form of any basis of S, it can use Gaussian elimination to
reconstruct the vi, and thus the original tokens. Thus, we
solve k-indexed-broadcast by delivering to every node a set
of vectors that span S. The algorithm is straightforward:
At each round, any node computes a random linear combi-
nation of any vectors received so far (if any) and broadcasts
this as a message to its (unknown) neighbors. Note that
the message only depends on the current knowledge of the
tokens, i.e., the subspace spanned by the received vectors.
This natural property was called knowledge-based in [9].

5.2 Advantages of Network Coding
To contrast network coding with token forwarding, con-

sider the simplified setting in which a node A knows about
all k tokens while another node B knows all but one token. If
A does not know which token B is missing then, in a worst-
case deterministic setting, k rounds of token forwarding are
required. Randomized strategies can improve the expected
number of rounds only to k/2. A better strategy is to send
an XOR of all tokens: with this one piece of information B
can reconstruct the missing token.

Similar situations arise frequently in the end phase of to-
ken forwarding algorithms. Here most nodes already know
most of the tokens but, because of the changing topology,
do not know which few tokens are not shared with their un-
known neighbors of this round. Most token forwarding steps
are therefore wasted. Network coding circumvents this prob-
lem, making it highly probable that every communication
will carry new information.

5.3 The Network Coding Analysis
In this section we review the simple projection analysis

technique that was introduced previously [6]. It shows that
the full “span” of the message vectors ultimately spreads
everywhere by tracking the projection of the received space
in each direction separately. As argued above, a node u can
recover a token ti if and only if the first k-components of
the vectors received by u span the ith unit vector of F k

q .
For the analysis we will thus solely concentrate on the first
k coordinates of the vectors sent around. We track these
projections using the following definition:

Definition 5.1. A node u senses a coefficient vector ~µ ∈
F k
q if it has received a message with a coefficient vector ~µ′

that is not orthogonal to ~µ, i.e., ~µ′ · ~µ 6= 0.

Lemma 5.2. Suppose a node u senses a vector ~µ and gen-
erates a new message. Any recipient of this message will
then sense ~µ with probability at least 1− 1/q.

Proof. This lemma simply states that a random linear
combination of vectors ~µ′

j that are not all perpendicular to
~µ is unlikely to be perpendicular to ~µ. Let rj be the random
coefficient for ~µ′

j . Then (
∑

rj~µ
′
j) ·µ =

∑

rj(~µ
′
j ·µ). Suppose

without loss of generality that ~µ′
0 ·~µ 6= 0. Conditioned on all

other values rj , exactly one value of r0 will make the sum
vanish. This value is taken with probability 1/q.

Lemma 5.2 shows that any node sensing any ~µ will pass
that sense to its neighbors with constant probability. Note

furthermore that sensing is monotone and that unless all
nodes can already sense ~µ the adversary must connect the
nodes that sense ~µ to those that do not. This shows that
in each round the number of nodes that sense a vector ~µ
increases by a constant in expectation. A simple Chernoff
bound shows further that the probability that after O(n+k)

steps not all nodes sense ~µ is at most q−Ω(n+k). We now
apply a union bound: there are qk distinct vectors in F k

q ,
and each fails to be sensed by all nodes with probability
q−Ω(n+k). This shows that all vectors in F k

q are sensed with
high probability implying that all nodes are able to decode
all tokens. The following lemma is immediate.

Lemma 5.3. The network coding algorithm with q ≥ 2
solves the k-indexed-broadcast problem in an always con-
nected dynamic network with probability at least 1− q−n in
time O(n+ k). It uses messages of size k lg q+ d where d is
the size of a token.

6. DERANDOMIZING RANDOM LINEAR
NETWORK CODING

The description of network coding above might suggest
that the distributed random linear network coding approach
is inherently randomized. We give the novel result that this
is not the case. Instead of providing a deterministic algo-
rithm directly we first prove that even an omniscient adver-
sary, which knows knows all randomness in advance, cannot
prevent the fast mixing of the network coding algorithm if
the field size is chosen large enough:

Theorem 6.1. The network coding algorithm with q =
nΩ(k) solves the k-indexed-broadcast problem in an always
connected dynamic network against an omniscient adversary
with probability at least 1 − q−n in time O(n + k). It uses
messages of size k2 log n+ d where d is the size of a token.

Proof. (Sketch) The proof of this result is nontrivial.
The obvious approach, of taking a union bound over all
possible adversarial strategies expressed as a “connectivity
schedule,” fails because there are too many of them. In-
stead, we carefully map each such schedule to a small set of
canonical “witnesses” that describe only the flow of new in-
formation from node to node; there are few enough of these
witnesses that a union bound can be applied.

We specify a compact witness by specifying, at each time
step, which nodes learn something new (in other words, re-
ceive a vector not already in the span of their received mes-
sages) and which nodes they learn it from.2 Given all the
random choices for the coefficients, this information suffices
to inductively reconstruct the complete learning history (but
not the complete topology sequence): By induction, we will
know which subspace is spanned by each node at a given
time step and, from the coefficient choices, we will know
what vector it broadcasts. Given this, if we know which
nodes learn something new from which nodes, we will know
what vectors each received and can thus infer what their
subspace will be in the next round.

The key benefit of this representation is that it is small.
Note that nodes are learning a k-dimensional subspace, and
2There may be some ambiguity about which received vectors
are “new” if they are not linearly independent. To remove
this ambiguity, consider the vectors to arrive one at a time in
some arbitrary order, and include the prior-arrived vectors
of the round while evaluating newness.

that each time a node learns something new, the dimension
of its subspace increases. Thus, each node can have at most
k “learning events”. We specify the witness by specifying,
for each node, the k times and senders triggering such an
events. This requires O(k log n) bits per node for a total of
O(nk log n) bits to specify a witness, meaning the number of
witnesses is exp(nk log n). With a failure probability of at
most q−n and the given choice of q, this is sufficiently small
for the union bound to apply; details will appear in the full
paper.

The proof of Theorem 6.1 can be extended to a random-
ized existence proof for a matrix that contains a sequence
of pseudo-random choices for every possible ID; such that,
no matter how the adversary assigns the IDs and decides
on the network dynamics, if all nodes choose their coding
coefficients according to their sequence, all vectors always
spread. By giving such a matrix as a (non-uniform) advice
or by computing the, e.g., lexicographically first such ma-
trix at every node, the next corollary follows. We defer the
details to the full paper.

Corollary 6.2. There are uniform and non-uniform
deterministic algorithms that solve the k-indexed-broadcast
problem in an always connected dynamic network in time
O(n+k) using messages of size k2 log n+d where d is the size
of a token. The uniform deterministic algorithm performs a
super-polynomial time local computation before sending the
first message.

7. TOKEN DISSEMINATION WITH
NETWORK CODING

We now bridge the gap from index broadcast to token dis-
semination. We begin with a simple result. Combining the
results from [9] and Lemma 5.3 yields the following corollary:

Corollary 7.1. There is a randomized network coding
algorithm that solves k-token dissemination in O(nk log n

b
) =

O(log n
d

· nkd
b

) rounds with high probability.

Proof. All nodes can generate O(log n)-size unique IDs
for their own tokens by concatenating a sequence number
to the node ID. Now all nodes flood the network repeat-
edly announcing the smallest Ω(b/ log n) tokens they have
heard about. After n rounds all nodes will know these token
IDs and can give them consistent distinct indices by sorting
them. The corresponding Ω(b/ log n) tokens can then be
broadcast to all nodes in O(n) time using network-coded in-
dexed broadcast. This needs to be repeated k log n

b
times,

leading to the claimed time bound.

Unfortunately, this is only a log n
d

factor faster than the
bound for token forwarding algorithms from Theorem 2.1.
Thus no improvements are achieved for d = O(log n)-size
tokens, even for large message sizes. This is unsurprising as
the algorithm uses flooding to solve the problem of dissemi-
nating the b/ log n smallest token identifiers for indexing—a
k = (b/ log n)-token dissemination problem with the identi-
fiers treated as tokens of size Ω(log n). Thus if the tokens
themselves are of logarithmic size relying on flooding as an
indexing subroutine cannot lead to any improvement. We
also note that, if d ≪ b, the efficiency of the network coding
messages is severely handicapped: The O(b)-size coefficient

overhead takes up nearly all the space while the coded to-
kens only have size d. Thus in principle one could broadcast
tokens that are a factor of b

d
larger.

We solve both problems by gathering many tokens to one
(or a small number of) nodes. If all tokens are at one node,
they can all trivially be assigned distinct indices. Then,
they can be grouped into blocks of b/2d tokens, each of to-
tal size b/2, and network coding can be used to disseminate
b/2 of these blocks simultaneously. We need an additional
b/2 space to hold the extra b/2 dimensions needed to “un-
tangle” the coded messages, but these too fit in the size-b
messages. In the discussion below, we will ignore the factors
of 2 mentioned here.

We have two gathering-based algorithms, one that works
well as long as b ≤ k1/3 and one that works for larger mes-
sage sizes. Both are based on the following simple random
token forwarding algorithm:

Algorithm random-forward

repeat O(n) times
each node forwards b/d tokens

chosen randomly from those it knows

Identify a node with the maximum token count
(using O(n) rounds of flooding)

Lemma 7.2. If initially there are k tokens in the network
then, after random-forward, the identified node knows with

high probability either all or at least M =
√

bk
d

tokens.

Proof. (Sketch) While there are less than M tokens at
any node, a node choosing b/d random tokens to transmit
will choose any particular token with probability at least
b/dM . Since at least one node that knows the token is con-
nected to one that do not, this implies that a token“spreads”
to at least one new node each round with probability at least
b/dM . Thus after n rounds each token is at Ω(bn/dM)
nodes with high probability. This applies to each token so
there are kbn/dM copies of tokens in the network. It follows
that some node has at least kb/dM tokens. A contradiction
would arise unless M > kb/dM ; the result follows. We defer
the details to the full paper.

This lemma has a nice interpretation, if one looks how
tokens spread over time. At first, the protocol is extremely
efficient, but as more and more tokens become known to
the nodes, there are ever more wasted broadcasts. Spread-
ing all tokens in this way requires in expectation O(nkd/b)
rounds, because the wasted broadcasts occurring for the last
half of the tokens dominate (see also Section 5.2). Note that
this is exactly the time bound for the flooding-based algo-
rithms of Theorem 2.1. Our first algorithm uses the effi-
cient start phase of random-forward to gather tokens and
then broadcasts the gathered tokens using network coded
indexed-broadcast:

Algorithm greedy-forward

while tokens remain to be broadcast
random-forward

the identified node broadcasts up to b2/d tokens
(using the network coded indexed-broadcast)

remove all broadcast tokens from consideration

Theorem 7.3. With high probability the greedy-forward
algorithm takes O(nkd/b2 + nb) time to solve the k-token
dissemination problem.

Proof. Note that it is easy to check in n rounds whether
any node has any tokens to forward. Thus each iteration
of the loop takes O(n) rounds. Suppose that an iteration
begins with k′ tokens to be broadcast. Lemma 7.2 shows
that at least M =

√

bk′/d tokens will be gathered in one
identified node by the random-forward process. This node
can then use the network coded k-indexed-broadcast from
Section 5 to broadcast these tokens in O(n) rounds.

Thus, so long as M ≥ b2/d, meaning k′ > b3/d, the algo-
rithm will broadcast b2/d tokens every O(n) rounds, which
can happen at most kd/b2 times.

Once k′ ≤ b3/d, we no longer gather and broadcast the
full b2/d tokens. Instead, since the maximum number of

tokens at a node after random-forward is
√

bk′

d
, we have the

following recurrence for the number of O(n)-round phases
T (k′) performed to transmit k′ items:

T (k′) ≤ 1 + T (k′ −
√

k′b
d
).

We conclude that it requires O(
√

k′d/b) phases to re-
duce the number of remaining items from k′ to k′/2. It-
erated halving yields a geometric series for the running time
whose first term (when k′ = Θ(b3/d)) dominates, giving
T (b3/d) = O(b) phases of O(n)-time broadcasts which re-
sults in a running time of O(nb) rounds in the end. Putting
both parts together gives that the total time to collect all
tokens is O(nkd/b2 + nb).

Observe that this algorithm does not pay the extra log n
factor introduced by the naive indexed-broadcast algorithm.
Because all tokens to be broadcast are gathered to a single
node, indexing is trivial. This greedy-forward algorithms
works well for small b, but for very large b ≥ n1/3 the
random-forward routine is not able to gather b2/d tokens
in one node efficiently. For this scenario we have a different
algorithm that avoids the additive nb-round term.

Algorithm priority-forward

Run greedy-forward until no node gets b2/d tokens
while tokens remain to be broadcast

Nodes group tokens into blocks of size b/d
Assign each block a random O(log n)-bit priority
Index Θ(b) random blocks in O(n) time

(using priority-forward recursively (*))
Broadcast these blocks in O(n) time

(using the network coded indexed broadcast)
remove all broadcast tokens from consideration

Lemma 7.4. With high probability priority-forward will
terminate in O((1+kd/b2) log n) iterations of its while loop.

Proof. The while loop starts when no node learns of
more than b2/d tokens during random-forward. In this case
we know from the proof of Lemma 7.2 that afterwards the
number of nodes ci that know about each token i is Ω(n

b
)

with high probability. Let C =
∑

ci.
The algorithm divides the known tokens into blocks of size

b/d and picks b random blocks. There are at most C/(b/d)
full blocks in total and at most one partially-full block per
node for a total of n partially full blocks. We consider two
cases.

If C/(b/d) < n then there are at most 2n blocks in total.
Since with high probability every token is in Ω(n/b) blocks,
one of these blocks is among the chosen b with probability
at least (1 − 1/2b)b = Ω(1). It follows that after O(log n)
rounds involving less than n full blocks, all tokens will be
chosen and disseminated with high probability.

If C/(b/d) > n then the number of blocks is at most
2C/(b/d). We argue in this case that C decreases in ex-

pectation by a factor of e−b2/kd in each iteration. If this is
true then after kd(log n)/b2 rounds the expected decrease is
polynomial; since C was polynomial to begin with its ex-
pected value will be polynomially small. At this point the
Markov bound indicates that C = 0 with high probability.

To show the expected decrease, note there are at most
2C/(b/d) blocks of which ci contain item i. Thus, when a
random block is chosen, item i is in it with probability at
least ci(b/d)/2C. So item i fails to be chosen with prob-
ability at most (1 − bci/2Cd)b < exp(−(b2/d)ci/2C). If
we let c′i = ci for tokens not chosen, and c′i = 0 for to-
kens that are, we find E[

∑

c′i] ≤
∑

ci exp(−(b2/d)ci/C) =
C
∑

αi exp(−(b2/d)αi) where αi = ci/C so
∑

αi = 1. Dif-
ferentiating shows this sum is maximized when all αi are set
equal at 1/k (since there are at most k distinct αi), yielding a
value of C exp(−(b2/kd)). It follows that the expected value

of
∑

ci decreases by a factor e−b2/kd in each round.

We have shown that a small number of iterations suf-
fices but must asses the time to implement one iteration.
In particular, we must explain how line (*) in priority-

forward can be implemented. To choose b random blocks,
we give each block a random O(log n) bit priority (so col-
lisions are unlikely) and then identify and index the b low-
est priorities. Since block priorities have size O(log n), we
can treat their identification as an indexing problem with
d = O(log n). The naive indexing algorithm via flooding
requires O(n log n) time to broadcast the b lowest priority
blocks (b/ log n blocks every O(n) rounds). This would lead
to a runtime of O(nkd(log2 n)/b2 + n log2 n). We can re-
duce the running time by a log n factor with a more careful
approach, which calls priority-forward recursively to dis-
seminate Θ(b) of the smallest size-O(log n) priorities in only
O(n) time on every iteration of the while loop. We defer
the details to the full paper. We get the following for the
performance of the priority-forward algorithm:

Theorem 7.5. For b ≥ log3 n, priority-forward solves
k-token dissemination in O(log n

b
· nkd

b
+n log n) rounds with

high probability.

8. EXPLOITING T -STABILITY
In this section we consider more stable networks and show

how to design faster protocols in such a setting.
Kuhn et al. introduced the notion of T -interval connectiv-

ity to define more stable networks in which over every block
of T rounds at least a spanning-subgraph is unchanging.
They give algorithms with linear speedup in T and match-
ing lower bound for knowledge-based token-forwarding al-
gorithms. We work with our related but stronger require-
ment of T -stability which demands that the entire network
changes only every T steps. Although the Kuhn et al. lower
bound for token forwarding still holds in this model, we give
network-coding algorithms with a quadratic speedup in T .
This T 2 speedup comes from two ideas, each contributing a

factor of T . The first is that in a T -stable network a node
can communicate to the same neighbor T times, thus pass-
ing a message T times as large. This does cost a factor-T
slowdown in the time to send a message, but the results
of section 7 show that the communication rate increases as
T 2. Combining these factors nets a factor-T overall improve-
ment. The second idea, drawn from Kuhn et al., is that in
T rounds pipelining enables a node to communicate its (en-
larged) message to at least T nearby nodes simultaneously,
yielding a second factor-T speedup. We currently need to
rely on the notion of T -stability for this, but we speculate
that T -interval connectivity might suffice. The technique
composes with the our technique exploiting larger message
sizes from the previous section and leads to quadratic speed
ups in b and T for most settings of these parameters.

As previously, we begin by describing an efficient indexed-
broadcast algorithm and then show how it can be used as a
primitive for k-token dissemination.

Our indexed broadcast algorithm exploits T -stability to
broadcast bT blocks each containing bT bits, for a total of
(bT)2 bits (or (bT)2/d tokens), in O((n+bT 2) log n) rounds.
As before, we use network coding, treating these blocks as
vectors and flooding random linear combinations of the vec-
tors through the network. We do so by dividing the network,
in each block of T stable rounds, into patches of size and
diameter roughly T . We then spread random linear com-
binations of the size-bT blocks from patch to patch, taking
O(T) rounds to spread to each new patch but reaching T
nodes in the patch each time, so that n rounds suffice for all
nodes to receive all necessary linear combinations.

8.1 Patching the Graph
Our first step is to partition the graph into connected

patches of size Ω(D) and diameter O(D). It helps to think
of D as approximately T ; Because computing the patch-
ing takes D log n time, we will set D = O(T/ log n). We
will use these patches for O(T) rounds, during which they
will remain static. First, we argue that such patches exist.
Let GD be the Dth power of the (unchanging) connectiv-
ity graph—in other words, connect every node to any node
within distance D. Consider a maximal independent set S
in GD. If every vertex in G is assigned to the closest vertex
in S, we get patches that satisfy our criteria:

1. Consider a shortest path tree on the vertices assigned
to vertex u ∈ S. If v is assigned to u, then so are the
ancestors of v in the shortest paths tree. Thus, the
shortest path tree connects the patch.

2. Because of the maximality of S, every vertex is adja-
cent in GD to a vertex in S, since otherwise such a
vertex could be added to S. In other words, any ver-
tex is within distance D of S. It follows that the depth
of each shortest paths tree, which bounds the (half of
the) diameter, is at most D

3. Also by definition, no two vertices in S are adjacent
in GD—in other words, their distance in G exceeds
D. Thus, any vertex within distance D/2 of u ∈ S is
assigned to u. It follows that every patch has at least
D/2 vertices.

It remains to construct such a maximal independent set.
Luby’s maximal independent set permutation algorithm [11]

can be easily adapted to run in our model. In Luby’s per-
mutation algorithm, vertices talk to their “neighbors”. Since
we are computing in the powered graph G′, we need vertices
to talk to other vertices at distance D over long communi-
cation paths. We have T time, but different communication
paths may overlap, causing congestion.

Fortunately, this is not a significant problem. The core
step of Luby’s algorithm assigns every vertex a random pri-
ority, then adds to the MIS any vertex whose priority is
higher than all its neighbors and “deactivates” all its neigh-
bors. Thus, nodes need only learn the maximum priority of
any neighbor and notify neighbors of their deactivation. We
can simulate the procedure. Nodes can find the highest pri-
ority within distance D by flooding the highest priority they
hear for D rounds. If a node hears no higher priority than its
own, then it knows it is in the MIS and can broadcast a “de-
activation” message to all nodes within distance D of itself.
Luby’s algorithm runs in O(log n) time, which translates to
O(D log n) here. We thus choose D = O(T/ log n).

8.2 T -Stable Indexed-Broadcast
Given our patches of the required size and diameter, we

use network coding to distribute vectors of bT bits. In a
particular sequence of O(T) rounds, after having computed
the patches for this sequence, we do the following:

1. share: All nodes in a patch jointly share a random
linear combination of the vectors in the union of all
their received messages, each adding the result to its
own set of received messages

2. pass: Each node broadcasts its patch’s agreed random
sum vector to its neighbors

3. share: The first sharing phase is repeated, including
the new vectors just received from neighbors.

8.2.1 Implementation
We show how to implement all the required steps in O(T)

rounds. The middle pass step is trivial: each node breaks its
size-bT vector into T components of size b and transmits one
component in each round. Neighbors receive and reassemble
all components.

Less trivial is the share step. We show how all the nodes in
a given patch can compute a random sum of all the size-bT
vectors in all their received messages.

For this we use the vertices in the maximal independent
set S as leaders and assume that each patch has agreed on
a (shortest path) tree rooted at the leader; each node knows
its depth and its parent and children. This can be done by
letting the leader send out an incrementing broadcast for
O(D) rounds. The time when this broadcast reaches a node
tells it its depth and the (lowest ID) node that the broadcast
was received from is the “parent”.

Now we want to compute a random linear combination of
the union of all the vectors in all the nodes of the patch.
First, each node just computes a random sum of its own
vectors. It remains to sum these sums. This would be easy
if the vectors had dimension b—we would pass them up from
children to parents, summing as we went, so that each node
only passed up one vector. Since their dimension is bT we
pipeline. Each node breaks its length-bT vector (v1, . . . , vbT)
into T length-b vectors wi = (viT , viT+1, . . . , v(i+1)T−1). At
step s of this phase, any node at depth j will have the cu-
mulative sum of all the ws+j−T components of the vectors

from its descendants. It broadcasts this sum to its parent,
and at the same time receives from its children their own cu-
mulative ws+(j+1)−T sums. The receiving node adds these
children’s’ sums to its own ws+j+1+T component, producing
the cumulative w(s+1)+j−T component sum that it needs to
transmit the next round. After T +D < 2T time steps, the
root will have received cumulative sums of all the wi vectors
from its children and added them, yielding the sum of all
the vectors, which is a random sum of all the basis vectors.

This random sum, a single size bT -vector, is now dis-
tributed by the leader to all nodes in the patch via the
obvious pipelined broadcast.

8.2.2 Analysis
We now analyze the share-pass-share algorithm outlined

above. As before, we show that any vector µ that is sensed
by (not perpendicular to the basis of) some node at the start
is quickly sensed by all vectors.

Lemma 8.1. With high probability the patch-sharing net-
work coding algorithm solves the bT -indexed-broadcast prob-
lem in a T -stable dynamic network with tokens of size bT in
O((n+ bT 2) log n) rounds using messages of size O(b).

This is close to the best achievable time. The n term fol-
lows from the network’s possible n diameter. The bT 2 term
follows from information theory: the b2T 2 bits we aim to
transmit may be at a single node that broadcasts only b bits
per round, implying bT 2 rounds will be necessary for that
node to broadcast its information.

Proof. To simplify our proof we assume that bT 2 ≤ n
and prove an O(n log n) bound. For if bT 2 ≥ n, we can run
our algorithm for t < T such that bt2 = n and distribute
b2t2 bits in O(n log n) rounds; repeating (T/t)2 times will
distribute all the bits in (T/t)2n log n = (T 2n/t2) log n =
T 2b log n rounds.

Since we are operating on size-bT messages we can allow
bT tokens of size bT , each with a log q = O(1) size coeffi-
cient. We consider share-pass-share “meta rounds” of length
T where our patches are fixed, and show that O(n/D) of
these meta rounds suffice to disseminate all the tokens, for
a total of O(T ∗ (n/D)) = O(n log n) rounds. For a given
meta round we consider two cases. The first is where there
is some patch that contains no node sensing µ. In this case,
the connectivity assumption implies that a node u in some
such patch is adjacent to some node v in a patch containing
a node that does sense µ. In the first share step v receives a
random linear combination of the vectors in its patch; since
some node in the patch senses µ, with probability 1 − 1/q
node v will sense µ after the first sharing phase. In this
case v transmits the same random linear combination to u
in the pass phase and u will sense µ as well. If so, the final
share step will deliver to all nodes in u’s patch a linear com-
bination not perpendicular to µ with probability 1 − 1/q.
Combining these arguments, we find that with probability
(1 − 1/q)2, the Ω(D) nodes in u’s patch, which previously
did not sense µ, will now do so.

The second case is where every patch contains a node that
senses µ. In this case every node has a 1 − 1/q chance of
sensing µ after the first share step. The expected number
of nodes that do not sense µ thus shrinks by a 1/q < 1/2
factor. The Markov bound shows that it thus shrinks by a
factor 2/3 with constant probability.

We now combine the two cases. If case 1 holds declare a
success if Ω(D) new nodes sense µ; if case 2 holds declare a
success if the number of nodes that do not sense µ shrinks
by 2/3. There can be only O(n/D) successes of case 1 and
O(log n) successes of case 2 before all nodes sense µ. A Cher-
noff bound shows that within Ω(n/D) occurrences of case 1
the probability that we fail to observe O(n/D) successes is

e−Ω(n/D). Similarly, the probability of less than log n suc-
cesses in Ω(n/D) occurrences of case 2 is e−Ω(n/D) (this
follows from the fact that T 2 < n, meaning n/T > log n).

Finally, we apply a union bound on the above argument
over all the 2bT distinct vectors of size T . The probabil-
ity any such vector fails to be sensed in Ω(n/D) phases is

then at most 2bT e−Ω(n/D) which is negligible given our as-
sumption that bT 2 ≤ n. Thus in Θ(n/D) phases each with
a running time of O(T), totaling O(n log n) time, all nodes
sense all vectors and can decode all tokens.

This algorithm can be derandomized using the arguments
developed in Section 6 and replacing Luby’s randomized MIS
algorithm by the deterministic distributed MIS algorithm

in [13] with a running time of MIS(n) = 2O(
√
log n). The

larger k2 log n coefficient overhead still allows for
√

bT/ log n
tokens of size O(bT) being code together for a vector size of
O(bT). This leads to the following Lemma:

Lemma 8.2. The deterministic patch-sharing algorithm
solves the

√

bT/ log n-indexed-broadcast problem with tokens

of size bT in a T -stable dynamic network in O((n+
√
bTT) ·

MIS(n)) rounds using messages of size O(b).

8.3 T -Stable Token Dissemination
We have given an O(n log n)-time algorithm for indexed

broadcast of bT vectors of bT bits. Applying the same re-
duction(s) as before, we might hope to achieve a k-token
dissemination algorithm with running time O(n log n kd

(bT)2
).

This can be achieved for most values of k, b and T . The
key, as before, is gathering tokens we wish to broadcast as
large blocks/tokens. Since the blocks used with T -stability
are larger, gathering is harder. In particular:

• Using greedy-forward to gather tokens yields an al-
gorithm with running time O(log n

bT2 · nkd
b

+ nbT 2 log n)

• Using priority-forward to gather tokens yields an al-

gorithm with running time O(log
2 n

bT2 · nkd
b

+ nT log2 n).

The second algorithm is near-optimal unless T is very large.
In this case there is an alternative gathering algorithm we
can apply: create the patches of our patch algorithm, then
use pipelining to gather together the tokens in a patch to
blocks of size at most bT at a single node (or, if there is
more than one block, at multiple nodes) of that patch. This
produces O(n/D + kd/bT) = O(n log n/T) blocks of size at
most O(bT) which can be much smaller than k. In phases of
O(n log n) rounds we then index bT of these blocks or tokens
using pipelined flooding and broadcast them out using the
network coded indexed-broadcast algorithm. This leads to
an O(1

bT
· min{k, n log n

T
} + 1) · n log n round algorithm for

k-token dissemination. This completes the results stated in
Theorem 2.4.

For deterministic algorithms gathering is much harder.
Considering the limitations of token-forwarding, it seems
unlikely that the gathering methods that are based on the

random-forward primitive can be derandomized. Never-
theless, we can make the last gathering method determin-
istic by using the deterministic MIS algorithm from [13]
once more. This, together with the deterministic indexed-
broadcast algorithm from Lemma 8.2, leads to an O(n/D+

kd/bT)/
√

bT/ log n · O(n · MIS(n)) = O(MIS(n)2
√

log n√
bTT

·
n2 + n ·MIS(n)) algorithm as stated in Theorem 2.5; here
MIS(n) is the time needed to compute a maximum inde-
pendent set in an n node graph.

Allowing centralized algorithms on the other hand allevi-
ates many of these problems: indices can be assigned triv-
ially and the coefficient overhead can be ignored since it is
easy to infer the coefficients from knowing the past topolo-
gies. This allows a randomized centralized algorithm to dis-
tribute n blocks of size O(b) in O(n) time and leads to a
linear time algorithm for the k-token dissemination problem
as stated in Corollary 2.6. To obtain deterministic central-
ized algorithm we have to be more careful: A deterministic
centralized algorithm that codes together k tokens requires
according to Corollary 6.2 a field size q = nk. In order
to describe one symbol in the bT -bit size blocks, that are
used in the algorithm developed in this section, at most
k = bT/ log n blocks of size bT can be coded together. We
also note, that with central control the MIS computation
becomes local and thus trivial. Putting all this together and
using the third (deterministic) gathering technique leads to
the results stated in Corollary 2.6.

9. CONCLUSION
We have applied network coding to distributed computing

in dynamic networks. We provided faster algorithms for dis-
tributed information dissemination which, in several cases,
work provably better than any non-coding algorithm.

Message size is an important parameter that was not fully
accounted for in previous work: while extremely small (log-
arithmic size) messages are a standard assumption in dis-
tributed computing, prior work on network coding assumed
exponentially larger, linear size messages. We mediate be-
tween these two assumptions using an explicit message size
and show that, contrary to the natural assumption that
broadcast should scale linearly with the message size, it can
be made to scale quadratically using network coding.

We also explore the range between fully dynamic and fully
static networks, showing that in T -stable networks dissemi-
nation can be sped up by a factor of T 2 using network cod-
ing. In contrast, the Kuhn et al. lower bound apply to such
T -stable networks and show that knowledge-based token-
forwarding algorithm can only offer a factor-T speedup. Im-
proving our patch-sharing algorithms to avoid the computa-
tion of a maximum independent set and making them appli-
cable to the T -interval-connectivity model remains an in-
teresting question. So far we can achieve this goal only
if the topologies chosen by the adversary are highly non-
expanding.

Many of our algorithmic ideas can be extended beyond the
always-connected dynamic networks discussed in this paper
to other network and communication models [6]. The same
is true for our results on omniscient adversaries or (non-
uniformly) deterministic algorithms.

We have shown that network coding outperforms token
forwarding, but it is not clear whether we have made best-
possible use of this technique. Conceivably network coding

can yield even better performance. Unlike for token for-
warding, there are no non-trivial lower bounds for general
or network-coding based algorithms for n-token dissemina-
tion in the dynamic network model. Closing this gap is an
intriguing open question.

Acknowledgments
We thanks Nancy Lynch and Rotem Oshman for introducing
us to the dynamic network model. We thank Muriel Médard
and Lizhong Zheng for interesting discussions. Lastly, we
thank the anonymous reviewers for helpful comments.

10. REFERENCES
[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network

information flow. Transactions on Information Theory
(TransInf), 46(4):1204–1216, 2000.

[2] M. Borokhovich, C. Avin, and Z. Lotker. Tight
bounds for algebraic gossip on graphs. In Proc. of the
International Symp. on Information Theory (ISIT),
pages 1758–1762, 2010.

[3] K. C.-H. Chen Avin, Michael Borokhovich and
Z. Lotker. Order Optimal Information Spreading
Using Algebraic Gossip. In Proc. of the 40th Symp. on
Principles of Distributed Computing (PODC), 2011.

[4] S. Deb, M. Medard, and C. Choute. On random
network coding based information dissemination. In
Proc. of the International Symp. on Information
Theory (ISIT), pages 278 –282, 2005.

[5] S. Deb, M. Medard, and C. Choute. Algebraic gossip:
a network coding approach to optimal multiple rumor
mongering. Transactions on Information Theory
(TransInf), 52(6):2486 – 2507, 2006.

[6] B. Haeupler. Analyzing Network Coding Gossip Made
Easy. In Proc. of the 43nd Symp. on Theory of
Computing (STOC), 2011.

[7] T. Ho and D. Lun. Network coding: an introduction.
Cambridge Univ Pr, 2008.

[8] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros,
J. Shi, and B. Leong. A random linear network coding
approach to multicast. Transactions on Information
Theory (TransInf), 52(10):4413–4430, 2006.

[9] F. Kuhn, N. Lynch, and R. Oshman. Distributed
computation in dynamic networks. In Proc. of the
42nd Symp. on Theory of Computing (STOC), pages
557–570, 2010.

[10] S. Li, R. Yeung, and N. Cai. Linear network coding.
Transactions on Information Theory (TransInf),
49(2):371–381, 2003.

[11] M. Luby. A simple parallel algorithm for the maximal
independent set problem. In Proc. of the 17th Symp.
on Theory of Computing (STOC), pages 1–10, 1985.

[12] D. Mosk-Aoyama and D. Shah. Information
dissemination via network coding. In Proc. of the
International Symp. on Information Theory (ISIT),
pages 1748–1752, 2006.

[13] A. Panconesi and A. Srinivasan. Improved distributed
algorithms for coloring and network decomposition
problems. In Proc. of the 24th Symp. on Theory of
Computing (STOC), pages 581–592, 1992.

[14] R. Yeung. Information Theory and Network Coding.
Springer Verlag, 2008.

	1 Introduction
	2 Our Results
	2.1 The Role of Message Size
	2.2 Token Forwarding Algorithms
	2.3 Network Coding

	3 Related Work
	4 Problem Description
	4.1 The Dynamic Network Model
	4.2 The k-Token Dissemination Problem

	5 (Analyzing) Network Coding
	5.1 Random Linear Network Coding
	5.2 Advantages of Network Coding
	5.3 The Network Coding Analysis

	6 Derandomizing Random Linear Network Coding
	7 Token Dissemination with Network Coding
	8 Exploiting T-stability
	8.1 Patching the Graph
	8.2 T-Stable Indexed-Broadcast
	8.2.1 Implementation
	8.2.2 Analysis

	8.3 T-Stable Token Dissemination

	9 Conclusion
	10 References

