Algorithms for Computing Triangular Decompositions of Polynomial Systems

Changbo Chen
ORCCA, University of Western Ontario (UWO)
London, Ontario, Canada
cchen252@csd.uwo.ca

Marc Moreno Maza
ORCCA, University of Western Ontario (UWO)
London, Ontario, Canada
moreno@csd.uwo.ca

Abstract

We propose new algorithms for computing triangular decompositions of polynomial systems incrementally. With respect to previous works, our improvements are based on a weakened notion of a polynomial GCD modulo a regular chain, which permits to greatly simplify and optimize the sub-algorithms. Extracting common work from similar expensive computations is also a key feature of our algorithms. In our experimental results the implementation of our new algorithms, realized with the RegularChains library in Maple, outperforms solvers with similar specifications by several orders of magnitude on sufficiently difficult problems.

1. INTRODUCTION

The Characteristic Set Method 21 of Wu has freed Ritt's decomposition from polynomial factorization, opening the door to a variety of discoveries in polynomial system solving. In the past two decades the work of Wu has been extended to more powerful decomposition algorithms and applied to different types of polynomial systems or decompositions: differential systems [2, 10, difference systems 3, real parametric systems [22], primary decomposition [17, cylindrical algebraic decomposition [4. Today, triangular decomposition algorithms provide back-engines for computer algebra system front-end solvers, such as MAPLE's solve command.

Algorithms computing triangular decompositions of polynomial systems can be classified in several ways. One can first consider the relation between the input system S and the output triangular systems S_{1}, \ldots, S_{e}. From that perspective, two types of decomposition are essentially different: those for which S_{1}, \ldots, S_{e} encode all the points of the zero set S (over the algebraic closure of the coefficient field of S) and those for which S_{1}, \ldots, S_{e} represent only the "generic zeros" of the irreducible components of S.

One can also classify triangular decomposition algorithms by the algorithmic principles on which they rely. From this
other angle, two types of algorithms are essentially different: those which proceed by variable elimination, that is, by reducing the solving of a system in n unknowns to that of a system in $n-1$ unknowns and those which proceed incrementally, that is, by reducing the solving of a system in m equations to that of a system in $m-1$ equations.

The Characteristic Set Method and the algorithm in 20 belong to the first type in each classification. Kalkbrener's algorithm [11, which is an elimination method solving in the sense of the "generic zeros", has brought efficient techniques, based on the concept of a regular chain. Other works 12 , 16] on triangular decomposition algorithms focus on incremental solving. This principle is quite attractive, since it allows to control the properties and size of the intermediate computed objects. It is used in other areas of polynomial system solving such as the probabilistic algorithm of Lecerf [13] based on lifting fibers and the numerical method of Sommese, Verschelde, Wample 18 based on diagonal homotopy.

Incremental algorithms for triangular decomposition rely on a procedure for computing the intersection of an hypersurface and the quasi-component of a regular chain. Thus, the input of this operation can be regarded as well-behaved geometrical objects. However, known algorithms, namely the one of Lazard [12] and the one of the second author [16] are quite involved and difficult to analyze and optimize.

In this paper, we revisit this intersection operation. Let $R=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ be the ring of multivariate polynomials with coefficients in \mathbf{k} and ordered variables $\mathbf{x}=x_{1}<$ $\cdots<x_{n}$. Given a polynomial $p \in R$ and a regular chain $T \subset \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$, the function call $\operatorname{Intersect}(p, T, R)$ returns regular chains $T_{1}, \ldots, T_{e} \subset \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ such that we have:

$$
V(p) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(p) \cap \overline{W(T)}
$$

(See Section 2 for the notion of a regular chain and related concepts and notations.) We exhibit an algorithm for computing Intersect (p, T, R) which is conceptually simpler and practically much more efficient than those of 12, 16. Our improvements result mainly from two new ideas.

Weakened notion of polynomial GCDs modulo regular chain. Modern algorithms for triangular decomposition rely implicitly or explicitly on a notion of GCD for univariate polynomials over an arbitrary commutative ring. A formal definition was proposed in [16] (see Definition 1) and applied
to residue class rings of the form $\mathbb{A}=\mathbf{k}[\mathbf{x}] / \operatorname{sat}(T)$ where $\operatorname{sat}(T)$ is the saturated ideal of the regular chain T. A modular algorithm for computing these GCDs appears in 14]: if $\operatorname{sat}(T)$ is known to be radical, the performance (both in theory and practice) of this algorithm are very satisfactory whereas if $\operatorname{sat}(T)$ is not radical, the complexity of the algorithm increases substantially w.r.t. the radical case. In this paper, the ring \mathbb{A} will be of the form $\mathbf{k}[\mathbf{x}] / \sqrt{\operatorname{sat}(T)}$ while our algorithms will not need to compute a basis nor a characteristic set of $\sqrt{\operatorname{sat}(T)}$. For the purpose of polynomial system solving (when retaining the multiplicities of zeros is not required) this weaker notion of a polynomial GCD is clearly sufficient. In addition, this leads us to a very simple procedure for computing such GCDs, see Theorem 1 To this end, we rely on the specialization property of subresultants. Appendix A reviews this property and provides corner cases for which we could not find a reference in the literature.

Extracting common work from similar computations. Up to technical details, if T consists of a single polynomial t whose main variable is the same as p, say v, computing Intersect (p, T, R) can be achieved by successively computing
$\left(s_{1}\right)$ the resultant r of p and t w.r.t. v,
$\left(s_{2}\right)$ a regular GCD of p and t modulo the squarefree part of r.

Observe that Steps $\left(s_{1}\right)$ and $\left(s_{2}\right)$ reduce essentially to computing the subresultant chain of p and t w.r.t. v. The algorithms of Section 4 extend this simple observation for computing Intersect (p, T, R) with an arbitrary regular chain. In broad terms, the intermediate polynomials computed during the "elimination phasis" of $\operatorname{Intersect}(p, T, R)$ are recycled for performing the "extension phasis" at essentially no cost.

The techniques developed for $\operatorname{Intersect}(p, T, R)$ are applied to other key sub-algorithms, such as:

- the regularity test of a polynomial modulo the saturated of a regular chain, see Section 4
- the squarefree part of a regular chain, see Appendix B

The primary application of the operation Intersect is to obtain triangular decomposition encoding all the points of the zero set of the input system. However, we also derive from it in Section 6 an algorithm computing triangular decompositions in the sense of Kalkbrener.

Experimental results. We have implemented the algorithms presented in this paper within the RegularChains library in Maple, leading to a new implementation of the Triangularize command. In Section 77 we report on various benchmarks. This new version of Triangularize outperforms the previous ones (based on [16]) by several orders of magnitude on sufficiently difficult problems. Other Maple commands or packages for solving polynomial systems (the WSolve package, the Groebner:-Solve command and the Groebner:-Basis command for a lexicographical term order) are also outperformed by the implementation of the algorithms presented
in this paper both in terms of running time and, in the case of engines based on Gröbner bases, in terms of output size.

2. REGULAR CHAINS

We review hereafter the notion of a regular chain and its related concepts. Then we state basic properties (Propositions 11 2, 3, 4, and Corollaries 1, 2) of regular chains, which are at the core of the proofs of the algorithms of Section 4

Throughout this paper, \mathbf{k} is a field, \mathbf{K} is the algebraic closure of \mathbf{k} and $\mathbf{k}[\mathbf{x}]$ denotes the ring of polynomials over \mathbf{k}, with ordered variables $\mathbf{x}=x_{1}<\cdots<x_{n}$. Let $p \in \mathbf{k}[\mathbf{x}]$.

Notations for polynomials. If p is not constant, then the greatest variable appearing in p is called the main variable of p, denoted by $\operatorname{mvar}(p)$. Furthermore, the leading coefficient, the degree, the leading monomial, the leading term and the reductum of p, regarded as a univariate polynomial in $\operatorname{mvar}(p)$, are called respectively the initial, the main degree, the rank, the head and the tail of p; they are denoted by $\operatorname{init}(p), \operatorname{mdeg}(p), \operatorname{rank}(p), \operatorname{head}(p)$ and tail (p) respectively. Let q be another polynomial of $\mathbf{k}[\mathbf{x}]$. If q is not constant, then we denote by $\operatorname{prem}(p, q)$ and $\operatorname{pquo}(p, q)$ the pseudoremainder and the pseudo-quotient of p by q as univariate polynomials in $\operatorname{mvar}(q)$. We say that p is less than q and write $p \prec q$ if either $p \in \mathbf{k}$ and $q \notin \mathbf{k}$ or both are nonconstant polynomials such that $\operatorname{mvar}(p)<\operatorname{mvar}(q)$ holds, or $\operatorname{mvar}(p)=\operatorname{mvar}(q)$ and $\operatorname{mdeg}(p)<\operatorname{mdeg}(q)$ both hold. We write $p \sim q$ if neither $p \prec q$ nor $q \prec p$ hold.

Notations for polynomial sets. Let $F \subset \mathbf{k}[\mathbf{x}]$. We denote by $\langle F\rangle$ the ideal generated by F in $\mathbf{k}[\mathbf{x}]$. For an ideal $\mathcal{I} \subset \mathbf{k}[\mathbf{x}]$, we denote by $\operatorname{dim}(\mathcal{I})$ its dimension. A polynomial is regular modulo \mathcal{I} if it is neither zero, nor a zerodivisor modulo \mathcal{I}. Denote by $V(F)$ the zero set (or algebraic variety) of F in \mathbf{K}^{n}. Let $h \in \mathbf{k}[\mathbf{x}]$. The saturated ideal of \mathcal{I} w.r.t. h, denoted by $\mathcal{I}: h^{\infty}$, is the ideal $\left\{q \in \mathbf{k}[\mathbf{x}] \mid \exists m \in \mathbb{N}\right.$ s.t. $\left.h^{m} q \in \mathcal{I}\right\}$.

Triangular set. Let $T \subset \mathbf{k}[\mathbf{x}]$ be a triangular set, that is, a set of non-constant polynomials with pairwise distinct main variables. The set of main variables and the set of ranks of the polynomials in T are denoted by $m \operatorname{var}(T)$ and $\operatorname{rank}(T)$, respectively. A variable in \mathbf{x} is called algebraic w.r.t. T if it belongs to $\operatorname{mvar}(T)$, otherwise it is said free w.r.t. T. For $v \in \operatorname{mvar}(T)$, denote by T_{v} the polynomial in T with main variable v. For $v \in \mathbf{x}$, we denote by $T_{<v}$ (resp. $T_{\geq v}$) the set of polynomials $t \in T$ such that $\operatorname{mvar}(t)<v$ (resp. $\operatorname{mvar}(t) \geq v)$ holds. Let h_{T} be the product of the initials of the polynomials in T. We denote by sat (T) the saturated ideal of T defined as follows: if T is empty then $\operatorname{sat}(T)$ is the trivial ideal $\langle 0\rangle$, otherwise it is the ideal $\langle T\rangle: h_{T}^{\infty}$. The quasi-component $W(T)$ of T is defined as $V(T) \backslash V\left(h_{T}\right)$. Denote $\overline{W(T)}=V(\operatorname{sat}(T))$ as the Zariski closure of $W(T)$. For $F \subset \mathbf{k}[\mathbf{x}]$, we write $Z(F, T):=V(F) \cap W(T)$.

Rank of a triangular set. Let $S \subset \mathbf{k}[\mathbf{x}]$ be another triangular set. We say that T has smaller rank than S and we write $T \prec S$ if there exists $v \in \operatorname{mvar}(T)$ such that $\operatorname{rank}\left(T_{<v}\right)=\operatorname{rank}\left(S_{<v}\right)$ holds and: (i) either $v \notin \operatorname{mvar}(S)$; (ii) or $v \in \operatorname{mvar}(S)$ and $T_{v} \prec S_{v}$. We write $T \sim S$ if $\operatorname{rank}(T)=\operatorname{rank}(S)$.

Iterated resultant. Let $p, q \in \mathbf{k}[\mathbf{x}]$. Assume q is nonconstant and let $v=\operatorname{mvar}(q)$. We define $\operatorname{res}(p, q, v)$ as follows: if the degree $\operatorname{deg}(p, v)$ of p in v is null, then $\operatorname{res}(p, q, v)=p$; otherwise $\operatorname{res}(p, q, v)$ is the resultant of p and q w.r.t. v. Let T be a triangular set of $\mathbf{k}[\mathbf{x}]$. We define $\operatorname{res}(p, T)$ by induction: if $T=\varnothing$, then $\operatorname{res}(p, T)=p$; otherwise let v be greatest variable appearing in T, then $\operatorname{res}(p, T)=\operatorname{res}\left(\operatorname{res}\left(p, T_{v}, v\right), T_{<v}\right)$.

Regular chain. A triangular set $T \subset \mathbf{k}[\mathbf{x}]$ is a regular chain if: (i) either T is empty; (ii) or $T \backslash\left\{T_{\max }\right\}$ is a regular chain, where $T_{\text {max }}$ is the polynomial in T with maximum rank, and the initial of $T_{\max }$ is regular w.r.t. $\operatorname{sat}\left(T \backslash\left\{T_{\max }\right\}\right)$. The empty regular chain is simply denoted by \varnothing.

Triangular decomposition. Let $F \subset \mathbf{k}[\mathbf{x}]$ be finite. Let $\mathfrak{T}:=\left\{T_{1}, \ldots, T_{e}\right\}$ be a finite set of regular chains of $\mathbf{k}[\mathbf{x}]$. We call \mathfrak{T} a Kalkbrener triangular decomposition of $V(F)$ if we have $V(F)=\cup_{i=1}^{e} \overline{W\left(T_{i}\right)}$. We call \mathfrak{T} a Lazard-Wu triangular decomposition of $V(F)$ if we have $V(F)=\cup_{i=1}^{e} W\left(T_{i}\right)$.

Proposition 1 (Th. 6.1. in [1]). Let p and T be respectively a polynomial and a regular chain of $\mathbf{k}[\mathbf{x}]$. Then, $\operatorname{prem}(p, T)=0$ holds if and only if $p \in \operatorname{sat}(T)$ holds.

Proposition 2 (Prop. 5 in [16]). Let T and T^{\prime} be two regular chains of $\mathbf{k}[\mathbf{x}]$ such that $\sqrt{\operatorname{sat}(T)} \subseteq \sqrt{\operatorname{sat}\left(T^{\prime}\right)}$ and $\operatorname{dim}(\operatorname{sat}(T))=\operatorname{dim}\left(\operatorname{sat}\left(T^{\prime}\right)\right)$ hold. Let $p \in \mathbf{k}[\mathbf{x}]$ such that p is regular w.r.t. $\operatorname{sat}(T)$. Then p is also regular w.r.t. $\operatorname{sat}\left(T^{\prime}\right)$.

Proposition 3 (Prop. 4.4 in [1]). Let $p \in \mathbf{k}[\mathbf{x}]$ and $T \subset \mathbf{k}[\mathbf{x}]$ be a regular chain. Let $v=\operatorname{mvar}(p)$ and $r=$ $\operatorname{prem}\left(p, T_{\geq v}\right)$ such that $r \in \sqrt{\text { sat }\left(T_{<v}\right)}$ holds. Then, we have $p \in \sqrt{\operatorname{sat}(T)}$.

Corollary 1. Let T and T^{\prime} be two regular chains of $\mathbf{k}\left[x_{1}, \ldots, x_{k}\right]$, where $1 \leq k<n$. Let $p \in \mathbf{k}[\mathbf{x}]$ with $\operatorname{mvar}(p)=$ x_{k+1} such that init (p) is regular w.r.t. both $\operatorname{sat}(T)$ and sat $\left(T^{\prime}\right)$. Assume that $\sqrt{\operatorname{sat}(T)} \subseteq \sqrt{\operatorname{sat}\left(T^{\prime}\right)}$ holds. Then we also have $\sqrt{\operatorname{sat}(T \cup p)} \subseteq \sqrt{\operatorname{sat}\left(T^{\prime} \cup p\right)}$.

Proposition 4 (Lemma 4 in [3]). Let $p \in \mathbf{k}[\mathbf{x}]$. Let $T \subset \mathbf{k}[\mathbf{x}]$ be a regular chain. Then the following statements are equivalent:
(i) the polynomial p is regular w.r.t. sat (T),
(ii) for each prime ideal \mathfrak{p} associated with sat (T), we have $p \notin \mathfrak{p}$,
(iii) the iterated resultant res (p, T) is not zero.

Corollary 2. Let $p \in \mathbf{k}[\mathbf{x}]$ and $T \subset \mathbf{k}[\mathbf{x}]$ be a regular chain. Let $v:=\operatorname{mvar}(p)$ and $r:=\operatorname{res}\left(p, T_{\geq v}\right)$. We have:
(1) the polynomial p is regular w.r.t. sat (T) if and only if r is regular w.r.t. $\operatorname{sat}\left(T_{<v}\right)$;
(2) if $v \notin \operatorname{mvar}(T)$ and $\operatorname{init}(p)$ is regular w.r.t. $\operatorname{sat}(T)$, then p is regular w.r.t. $\operatorname{sat}(T)$.

3. REGULAR GCDS

As mentioned before, Definition 1 was introduced in 16 as part of a formal framework for algorithms manipulating regular chains [7, 12, 5, 11, 23]. In the present paper, the ring \mathbb{A} will always be of the form $\mathbf{k}[\mathbf{x}] / \sqrt{\operatorname{sat}(T)}$. Thus, a regular GCD of p, t in $\mathbb{A}[y]$ is also called a regular GCD of p, t modulo $\sqrt{\operatorname{sat}(T)}$.

Definition 1. Let \mathbb{A} be a commutative ring with unity. Let $p, t, g \in \mathbb{A}[y]$ with $t \neq 0$ and $g \neq 0$. We say that $g \in \mathbb{A}[y]$ is a regular GCD of p, t if:
$\left(R_{1}\right)$ the leading coefficient of g in y is a regular element;
$\left(R_{2}\right) g$ belongs to the ideal generated by p and t in $\mathbb{A}[y]$;
$\left(R_{3}\right)$ if $\operatorname{deg}(g, y)>0$, then g pseudo-divides both p and t, that is, $\operatorname{prem}(p, g)=\operatorname{prem}(t, g)=0$.

Proposition 5. For $1 \leq k \leq n$, let $T \subset \mathbf{k}\left[x_{1}, \ldots, x_{k-1}\right]$ be a regular chain, possibly empty. Let $p, t, g \in \mathbf{k}\left[x_{1}, \ldots, x_{k}\right]$ be polynomials with main variable x_{k}. Assume $T \cup\{t\}$ is a regular chain and g is a regular $G C D$ of p and t modulo $\sqrt{\operatorname{sat}(T)}$. We have:
(i) if $m \operatorname{deg}(g)=m \operatorname{deg}(t)$, then $\sqrt{\operatorname{sat}(T \cup t)}=\sqrt{\operatorname{sat}(T \cup g)}$ and $W(T \cup t) \subseteq Z\left(h_{g}, T \cup t\right) \cup W(T \cup g)$ both hold,
(ii) if $\operatorname{mdeg}(g)<m \operatorname{deg}(t)$, let $q=p q u o(t, g)$, then $T \cup q$ is a regular chain and the following two relations hold:
(ii.a) $\sqrt{\operatorname{sat}(T \cup t)}=\sqrt{s a t(T \cup g)} \cap \sqrt{\operatorname{sat}(T \cup q)}$,
(ii.b) $W(T \cup t) \subseteq Z\left(h_{g}, T \cup t\right) \cup W(T \cup g) \cup W(T \cup q)$,
(iii) $W(T \cup g) \subseteq V(p)$,
(iv) $Z(p, T \cup t) \subseteq W(T \cup g) \cup Z\left(\left\{p, h_{g}\right\}, T \cup t\right)$.

Proof. We first establish a relation between p, t and g. By definition of pseudo-division, there exist polynomials q, r and a nonnegtive integer e_{0} such that

$$
\begin{equation*}
h_{g}^{e_{0}} t=q g+r \text { and } r \in \sqrt{\operatorname{sat}(T)} \tag{1}
\end{equation*}
$$

both hold. Hence, there exists an integer $e_{1} \geq 0$ such that:

$$
\begin{equation*}
\left(h_{T}\right)^{e_{1}}\left(h_{g}^{e_{0}} t-q g\right)^{e_{1}} \in\langle T\rangle \tag{2}
\end{equation*}
$$

holds, which implies: $t \in \sqrt{\operatorname{sat}(T \cup g)}$. We first prove (i). Since $\operatorname{mdeg}(t)=\operatorname{mdeg}(g)$ holds, we have $q \in \mathbf{k}\left[x_{1}, \ldots, x_{k-1}\right]$, and thus we have $h_{g}^{e_{0}} h_{t}=q h_{g}$. Since h_{t} and h_{g} are regular modulo sat (T), the same property holds for q. Together with (2), we obtain $g \in \sqrt{\operatorname{sat}(T \cup t)}$. Therefore $\sqrt{\operatorname{sat}(T \cup t)}=\sqrt{\operatorname{sat}(T \cup g)}$. The inclusion relation in (i) follows from (1).

We prove (ii). Assume $\operatorname{mdeg}(t)>\operatorname{mdeg}(g)$. With (1) and (2), this hypothesis implies that $T \cup q$ is a regular chain and $t \in \sqrt{\operatorname{sat}(T \cup q)}$ holds. Since $t \in \sqrt{\operatorname{sat}(T \cup g)}$ also holds, $\sqrt{\operatorname{sat}(T \cup t)}$ is contained in $\sqrt{\operatorname{sat}(T \cup g)} \cap \sqrt{\operatorname{sat}(T \cup q)}$. Conversely, for any $f \in \sqrt{\operatorname{sat}(T \cup g)} \cap \sqrt{\operatorname{sat}(T \cup q)}$, there exists an integer $e_{2} \geq 0$ and $a \in \mathbf{k}[\mathbf{x}]$ such that $\left(h_{g} h_{q}\right)^{e_{2}} f^{e_{2}}-$
$a q g \in \operatorname{sat}(T)$ holds. With (11) we deduce that $f \in \sqrt{\operatorname{sat}(T \cup t)}$ holds and so does (ii.a). With (1), we have (ii.b) holds.

We prove (iii) and (iv). Definition 1 implies: $\operatorname{prem}(p, g) \in$ $\sqrt{\operatorname{sat}(T)}$. Thus $p \in \sqrt{\operatorname{sat}(T \cup g)}$ holds, that is, $\overline{W(T \cup g)} \subseteq$ $V(p)$, which implies (iii). Moreover, since $g \in\langle p, t, \sqrt{\operatorname{sat}(T)}\rangle$, we have $Z(p, T \cup t) \subseteq V(g)$, so we deduce (iv).

Let p, t be two polynomials of $\mathbf{k}\left[x_{1}, \ldots, x_{k}\right]$, for $k \geq 1$. Let $m=\operatorname{deg}\left(p, x_{k}\right), n=\operatorname{mdeg}\left(t, x_{k}\right)$. Assume that $m, n \geq 1$. Let $\lambda=\min (m, n)$. Let T be a regular chain of $\mathbf{k}\left[x_{1}, \ldots, x_{k-1}\right]$. Let $\mathbb{B}=\mathbf{k}\left[x_{1}, \ldots, x_{k-1}\right]$ and $\mathbb{A}=\mathbb{B} / \sqrt{\operatorname{sat}(T)}$.

Let $S_{0}, \ldots, S_{\lambda-1}$ be the subresulant polynomials [15, 8, of p and t w.r.t. x_{k} in $\mathbb{B}\left[x_{k}\right]$. Let $s_{i}=\operatorname{coeff}\left(S_{i}, x_{k}^{i}\right)$ be the principle subresultant coefficient of S_{i}, for $0 \leq i \leq \lambda-1$. If $m \geq n$, we define $S_{\lambda}=t, S_{\lambda+1}=p, s_{\lambda}=\operatorname{init}(t)$ and $s_{\lambda+1}=\operatorname{init}(p)$. If $m<n$, we define $S_{\lambda}=p, S_{\lambda+1}=t$, $s_{\lambda}=\operatorname{init}(p)$ and $s_{\lambda+1}=\operatorname{init}(t)$.

The following theorem provides sufficient conditions for S_{j} (with $1 \leq j \leq \lambda+1$) to be a regular GCD of p and t in $\mathbb{A}\left[x_{k}\right]$.

Theorem 1. Let j be an integer, with $1 \leq j \leq \lambda+1$, such that s_{j} is a regular element of \mathbb{A} and such that for any $0 \leq i<j$, we have $s_{i}=0$ in \mathbb{A}. Then S_{j} is a regular $G C D$ of p and t in $\mathbb{A}\left[x_{k}\right]$.

Proof. By Definition 1 it suffices to prove that both $\operatorname{prem}\left(p, S_{j}, x_{k}\right)=0$ and $\operatorname{prem}\left(t, S_{j}, x_{k}\right)=0$ hold in \mathbb{A}. By symmetry we only prove the former equality.

Let \mathfrak{p} be any prime ideal associated with $\operatorname{sat}(T)$. Define $\mathbb{D}=\mathbf{k}\left[x_{1}, \ldots, x_{k-1}\right] / \mathfrak{p}$ and let \mathbb{L} be the fraction field of the integral domain \mathbb{D}. Let ϕ be the homomorphism from \mathbb{B} to \mathbb{L}. By Theorem 4 of Appendix \mathbb{A} we know that $\phi\left(S_{j}\right)$ is a GCD of $\phi(p)$ and $\phi(t)$ in $\mathbb{L}\left[x_{k}\right]$. Therefore there exists a polynomial q of $\mathbb{L}\left[x_{k}\right]$ such that $p=q S_{j}$ in $\mathbb{L}\left[x_{k}\right]$, which implies that there exists a nonzero element a of \mathbb{D} and a polynomial q^{\prime} of $\mathbb{D}\left[x_{k}\right]$ such that $a p=q^{\prime} S_{j}$ in $\mathbb{D}\left[x_{k}\right]$. Therefore $\operatorname{prem}\left(a p, S_{j}\right)=0$ in $\mathbb{D}\left[x_{k}\right]$, which implies that $\operatorname{prem}\left(p, S_{j}\right)=0$ in $\mathbb{D}\left[x_{k}\right]$. Therefore $\operatorname{prem}\left(p, S_{j}\right)$ belongs to \mathfrak{p} and thus to $\sqrt{\operatorname{sat}(T)}$. So $\operatorname{prem}\left(p, S_{j}, x_{k}\right)=0$ in \mathbb{A}.

4. THE INCREMENTAL ALGORITHM

In this section, we present an algorithm to compute LazardWu triangular decompositions in an incremental manner. We recall the concepts of a process and a regular (delayed) split, which were introduced as Definitions 9 and 11 in (16. To serve our purpose, we modify the definitions as below.

Definition 2. A process of $\mathbf{k}[\mathbf{x}]$ is a pair (p, T), where $p \in \mathbf{k}[\mathbf{x}]$ is a polynomial and $T \subset \mathbf{k}[\mathbf{x}]$ is a regular chain. The process $(0, T)$ is also written as T for short. Given two processes (p, T) and $\left(p^{\prime}, T^{\prime}\right)$, let v and v^{\prime} be respectively the greatest variable appearing in (p, T) and $\left(p^{\prime}, T^{\prime}\right)$. We say $(p, T) \prec\left(p^{\prime}, T^{\prime}\right)$ if: (i) either $v<v^{\prime}$; (ii) or $v=v^{\prime}$ and $\operatorname{dim} T<\operatorname{dim} T^{\prime}$; (iii) or $v=v^{\prime}, \operatorname{dim} T=\operatorname{dim} T^{\prime}$ and $T \prec T^{\prime} ;($ iv $)$ or $v=v^{\prime}, \operatorname{dim} T=\operatorname{dim} T^{\prime}, T \sim T^{\prime}$ and
$p \prec p^{\prime}$. We write $(p, T) \sim\left(p^{\prime}, T^{\prime}\right)$ if neither $(p, T) \prec\left(p^{\prime}, T^{\prime}\right)$ nor $\left(p^{\prime}, T^{\prime}\right) \prec(p, T)$ hold. Clearly any sequence of processes which is strictly decreasing w.r.t. \prec is finite.

Definition 3. Let $T_{i}, 1 \leq i \leq e$, be regular chains of $\mathbf{k}[\mathbf{x}]$. Let $p \in \mathbf{k}[\mathbf{x}]$. We call T_{1}, \ldots, T_{e} a regular split of (p, T) whenever we have
$\left(L_{1}\right) \sqrt{\operatorname{sat}(T)} \subseteq \sqrt{\operatorname{sat}\left(T_{i}\right)}$
(L_{2}) $W\left(T_{i}\right) \subseteq V(p)$ (or equivalently $p \in \sqrt{\operatorname{sat}\left(T_{i}\right)}$)
$\left(L_{3}\right) V(p) \cap W(T) \subseteq \cup_{i=1}^{e} W\left(T_{i}\right)$

We write as $(p, T) \longrightarrow T_{1}, \ldots, T_{e}$. Observe that the above three conditions are equivalent to the following relation.

$$
V(p) \cap W(T) \subseteq W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right) \subseteq V(p) \cap \overline{W(T)}
$$

Geometrically, this means that we may compute a little more than $V(p) \cap W(T)$; however, $W\left(T_{1}\right) \cup \cdots \cup W\left(T_{e}\right)$ is a "sharp" approximation of the intersection of $V(p)$ and $W(T)$.

Next we list the specifications of our triangular decomposition algorithm and its subroutines. We denote by R the polynomial ring $\mathbf{k}[\mathbf{x}]$, where $\mathbf{x}=x_{1}<\cdots<x_{n}$.

Triangularize (F, R)

- Input: F, a finite set of polynomials of R
- Output: A Lazard-Wu triangular decomposition of $V(F)$.

$\operatorname{Intersect}(p, T, R)$

- Input: p, a polynomial of $R ; T$, a regular chain of R
- Output: a set of regular chains $\left\{T_{1}, \ldots, T_{e}\right\}$ such chat $(p, T) \longrightarrow T_{1}, \ldots, T_{e}$.

Regularize (p, T, R)

- Input: p, a polynomial of $R ; T$, a regular chain of R.
- Output: a set of pairs $\left\{\left[p_{1}, T_{1}\right], \ldots,\left[p_{e}, T_{e}\right]\right\}$ such that for each $i, 1 \leq i \leq e$: (1) T_{i} is a regular chain; (2) $p=p_{i} \bmod \sqrt{\operatorname{sat}\left(T_{i}\right)} ;(3)$ if $p_{i}=0$, then $p_{i} \in \sqrt{\operatorname{sat}\left(T_{i}\right)}$ otherwise p_{i} is regular modulo $\sqrt{\operatorname{sat}\left(T_{i}\right)}$; moreover we have $T \longrightarrow T_{1}, \ldots, T_{e}$.

SubresultantChain (p, q, v, R)

- Input: v, a variable of $\left\{x_{1}, \ldots, x_{n}\right\} ; p$ and q, polynomials of R, whose main variables are both v.
- Output: a list of polynomials $\left(S_{0}, \ldots, S_{\lambda}\right)$, where $\lambda=\min (\operatorname{mdeg}(p), \operatorname{mdeg}(q))$, such that S_{i} is the i-th subresultant of p and q w.r.t. v.

	sys	Input size			Output size					
		$\# \mathrm{v}$	$\# \mathrm{~A}$	deg	dim	GL	GS	GD	TL	TK
1	4corps-1parameter-homog	4	3	8	1	-	-	21863	-	30738
2	8-3-config-Li	12	7	2	7	67965	-	72698	7538	1384
3	Alonso-Li	7	4	4	3	1270	-	614	2050	374
4	Bezier	5	3	6	2	-	-	32054	-	114109
5	Cheaters-homotopy-1	7	3	7	4	26387452	-	17297	-	285
7	childDraw-2	10	10	2	0	938846	-	157765	-	-
8	Cinquin-Demongeot-3-3	4	3	4	1	1652062	-	680	2065	895
9	Cinquin-Demongeot-3-4	4	3	5	1	-	-	690	-	2322
10	collins-jsc02	5	4	3	1	-	-	28720	2770	1290
11	f-744	12	12	3	1	102082	-	83559	4509	4510
12	Haas5	4	2	10	2	-	-	28	-	548
14	Lichtblau	3	2	11	1	6600095	-	224647	110332	5243
16	Liu-Lorenz	5	4	2	1	47688	123965	712	2339	9388
17	Mehta2	11	8	3	3	-	-	1374931	5347	5097
18	Mehta3	13	10	3	3	-	-	-	25951	25537
19	Mehta4	15	12	3	3	-	-	-	71675	71239
21	p3p-isosceles	7	3	3	4	56701	-	1453	9253	840
22	p3p	8	3	3	5	160567	-	1768	-	1712
23	Pavelle	8	4	2	4	17990	-	1552	3351	1086
24	Solotareff-4b	5	4	3	1	2903124	-	14810	2438	872
25	Wang93	5	4	3	1	2772	56383	1377	1016	391
26	Xia	6	3	4	3	63083	2711	672	1647	441
27	xy-5-7-2	6	3	3	3	12750	-	599	-	3267

Table 1 The input and output sizes of systems

RegularGcd (p, q, v, S, T, R)

- Input: v, a variable of $\left\{x_{1}, \ldots, x_{n}\right\}$,
- T, a regular chain of R such that $\operatorname{mvar}(T)<v$,
$-p$ and q, polynomials of R with the same main variable v such that: $\operatorname{init}(q)$ is regular modulo $\sqrt{\operatorname{sat}(T)} ; \operatorname{res}(p, q, v)$ belongs to $\sqrt{\operatorname{sat}(T)}$,
$-S$, the subresultant chain of p and q w.r.t. v.
- Output: a set of pairs $\left\{\left[g_{1}, T_{1}\right], \ldots,\left[g_{e}, T_{e}\right]\right\}$ such that $T \longrightarrow T_{1}, \ldots, T_{e}$ and for each $T_{i}:$ if $\operatorname{dim} T=\operatorname{dim} T_{i}$, then g_{i} is a regular GCD of p and q modulo $\sqrt{\operatorname{sat}\left(T_{i}\right)}$; otherwise $g_{i}=0$, which means undefined.

IntersectFree $\left(p, x_{i}, C, R\right)$

- Input: x_{i}, a variable of $\mathbf{x} ; p$, a polynomial of R with main variable $x_{i} ; C$, a regular chain of $\mathbf{k}\left[x_{1}, \ldots, x_{i-1}\right]$.
- Output: a set of regular chains $\left\{T_{1}, \ldots, T_{e}\right\}$ such that $(p, C) \longrightarrow\left(T_{1}, \ldots, T_{e}\right)$.

IntersectAlgebraic $\left(p, T, x_{i}, S, C, R\right)$

- Input: p, a polynomial of R with main variable x_{i},
- T, a regular chain of R, where $x_{i} \in \operatorname{mvar}(T)$,
- S, the subresultant chain of p and $T_{x_{i}}$ w.r.t. x_{i},
$-C$, a regular chain of $\mathbf{k}\left[x_{1}, \ldots, x_{i-1}\right]$, such that: $\operatorname{init}\left(T_{x_{i}}\right)$ is regular modulo $\sqrt{\operatorname{sat}(C)}$; the resultant of p and $T_{x_{i}}$, which is S_{0}, belongs to $\sqrt{\operatorname{sat}(C)}$.
- Output: a set of regular chains T_{1}, \ldots, T_{e} such that $\left(p, C \cup T_{x_{i}}\right) \longrightarrow T_{1}, \ldots, T_{e}$.

CleanChain $\left(C, T, x_{i}, R\right)$

- Input: T, a regular chain of $R ; C$, a regular chain of $\mathbf{k}\left[x_{1}, \ldots, x_{i-1}\right]$ such that $\sqrt{\operatorname{sat}\left(T_{<x_{i}}\right)} \subseteq \sqrt{\operatorname{sat}(C)}$.
- Output: if $x_{i} \notin \operatorname{mvar}(T)$, return C; otherwise return a set of regular chains $\left\{T_{1}, \ldots, T_{e}\right\}$ such that $\operatorname{init}\left(T_{x_{i}}\right)$ is regular modulo each $\operatorname{sat}\left(T_{j}\right), \sqrt{\operatorname{sat}(C)} \subseteq \sqrt{\operatorname{sat}\left(T_{j}\right)}$ and $W(C) \backslash V\left(\operatorname{init}\left(T_{x_{i}}\right)\right) \subseteq \cup_{j=1}^{e} W\left(T_{j}\right)$.

Extend $\left(C, T, x_{i}, R\right)$

- Input: C, is a regular chain of $\mathbf{k}\left[x_{1}, \ldots, x_{i-1}\right] . T$, a regular chain of R such that $\sqrt{\operatorname{sat}\left(T_{<x_{i}}\right)} \subseteq \sqrt{\operatorname{sat}(C)}$.
- Output: a set of regular chains $\left\{T_{1}, \ldots, T_{e}\right\}$ of R such that $W\left(C \cup T_{\geq x_{i}}\right) \subseteq \cup_{j=1}^{e} W\left(T_{j}\right)$ and $\sqrt{\operatorname{sat}(T)} \subseteq$ $\sqrt{\operatorname{sat}\left(T_{j}\right)}$.

Algorithm SubresultantChain is standard, see [8]. The algorithm Triangularize is a principle algorithm which was first presented in [16. We use the following conventions in our pseudo-code: the keyword return yields a result and terminates the current function call while the keyword output yields a result and keeps executing the current function call.

5. PROOF OF THE ALGORITHMS

Theorem 2. All the algorithms in Fig. 1 terminate.

Proof. The key observation is that the flow graph of Fig. 1 can be transformed into an equivalent flow graph satisfying the following properties: (1) the algorithms Intersect and Regularize only call each other or themselves; (2) all the other algorithms only call either Intersect or Regularize. Therefore, it suffices to show that Intersect and Regularize terminate.

```
Algorithm 1: \(\operatorname{Intersect}(p, T, R)\)
if \(\operatorname{prem}(p, T)=0\) then return \(\{T\}\);
if \(p \in \mathbf{k}\) then return \(\}\);
\(r:=p ; P:=\{r\} ; S:=\{ \} ;\)
while \(\operatorname{mvar}(r) \in \operatorname{mvar}(T)\) do
    \(v:=\operatorname{mvar}(r) ; s r c:=\) SubresultantChain \(\left(r, T_{v}, v, R\right)\);
    \(S:=S \cup\{s r c\} ; r:=\operatorname{resultant}(s r c)\);
    if \(r=0\) then break;
    if \(r \in \mathbf{k}\) then return \(\}\);
    \(P:=P \cup\{r\}\)
\(\mathfrak{T}:=\{\varnothing\} ; \mathfrak{T}^{\prime}:=\{ \} ; i:=1 ;\)
while \(i \leq n\) do
    for \(C \in \mathfrak{T}\) do
        if \(x_{i} \notin \operatorname{mvar}(P)\) and \(x_{i} \notin \operatorname{mvar}(T)\) then
            \(\mathfrak{T}^{\prime}:=\mathfrak{T}^{\prime} \cup\) CleanChain \(\left(C, T, x_{i+1}, R\right)\)
            else if \(x_{i} \notin \operatorname{mvar}(P)\) then
                \(\mathfrak{T}^{\prime}:=\mathfrak{T}^{\prime} \cup\) CleanChain \(\left(C \cup T_{x_{i}}, T, x_{i+1}, R\right)\)
                else if \(x_{i} \notin \operatorname{mvar}(T)\) then
                for \(D \in \operatorname{IntersectFree}\left(P_{x_{i}}, x_{i}, C, R\right)\) do
                \(\mathfrak{T}^{\prime}:=\mathfrak{T}^{\prime} \cup\) CleanChain \(\left(D, T, x_{i+1}, R\right)\)
            else
                for \(D \in \operatorname{IntersectAlgebraic}\left(P_{x_{i}}, T, x_{i}, S_{x_{i}}, C, R\right)\) do
                \(\mathfrak{T}^{\prime}:=\mathfrak{T}^{\prime} \cup\) CleanChain \(\left(D, T, x_{i+1}, R\right)\)
    \(\mathfrak{T}:=\mathfrak{T}^{\prime} ; \mathfrak{T}^{\prime}:=\{ \} ; i:=i+1\)
return \(\mathfrak{T}\)
```

```
Algorithm 2: RegularGcd \((p, q, v, S, T, R)\)
\(\overline{\mathfrak{T}}:=\{(T, 1)\} ;\)
while \(\mathfrak{T} \neq \emptyset\) do
    let \((C, i) \in \mathfrak{T} ; \mathfrak{T}:=\mathfrak{T} \backslash\{(C, i)\} ;\)
    for \([f, D] \in \operatorname{Regularize}\left(s_{i}, C, R\right)\) do
            if \(\operatorname{dim} D<\operatorname{dim} C\) then output \([0, D]\);
            else if \(f=0\) then \(\mathfrak{T}:=\mathfrak{T} \cup\{(D, i+1)\} ;\)
            else output \(\left[S_{i}, D\right]\)
```

```
Algorithm 3: IntersectFree \(\left(p, x_{i}, C, R\right)\)
for \([f, D] \in \operatorname{Regularize}(\operatorname{init}(p), C, R)\) do
    if \(f=0\) then output \(\operatorname{Intersect}(\operatorname{tail}(p), D, R)\);
    else
            output \(D \cup p\);
            for \(E \in \operatorname{lntersect}(\operatorname{init}(p), D, R)\) do
                output Intersect \((\operatorname{tail}(p), E, R)\)
```

```
Algorithm 4: IntersectAlgebraic \(\left(p, T, x_{i}, S, C, R\right)\)
for \([g, D] \in \operatorname{RegularGcd}\left(p, T_{x_{i}}, x_{i}, S, C, R\right)\) do
    if \(\operatorname{dim} D<\operatorname{dim} C\) then
        for \(E \in\) CleanChain \(\left(D, T, x_{i}, R\right)\) do
            output IntersectAlgebraic \(\left(p, T, x_{i}, S, E, R\right)\)
    else
            output \(D \cup g\);
            for \(E \in \operatorname{Intersect}(\operatorname{init}(g), D, R)\) do
                for \(F \in\) CleanChain \(\left(E, T, x_{i}, R\right)\) do
                output IntersectAlgebraic \(\left(p, T, x_{i}, S, F, R\right)\)
```

```
Algorithm 5: Regularize \((p, T, R)\)
if \(p \in \mathbf{k}\) or \(T=\varnothing\) then return \([p, T]\);
\(v:=\operatorname{mvar}(p)\);
if \(v \notin \operatorname{mvar}(T)\) then
        for \([f, C] \in \operatorname{Regularize}(\operatorname{init}(p), T, R)\) do
        if \(f=0\) then output Regularize \((\operatorname{tail}(p), C, R)\);
        else output \([p, C]\);
else
    \(s r c:=\) SubresultantChain \(\left(p, T_{v}, v, R\right) ; r:=\operatorname{resultant}(s r c) ;\)
    for \([f, C] \in \operatorname{Regularize}\left(r, T_{<v}, R\right)\) do
        if \(\operatorname{dim} C<\operatorname{dim} T_{<v}\) then
                for \(D \in \operatorname{Extend}(C, T, v, R)\) do
                    output Regularize \((p, D, R)\)
        else if \(f \neq 0\) then output \(\left[p, C \cup T_{\geq v}\right]\);
        else
            for \([g, D] \in \operatorname{RegularGcd}\left(p, T_{v}, v, s r c, C, R\right)\) do
                    if \(\operatorname{dim} D<\operatorname{dim} C\) then
                    for \(E \in \operatorname{Extend}(D, T, v, R)\) do
                            output Regularize \((p, E, R)\);
                else
                    if \(\operatorname{mdeg}(g)=\operatorname{mdeg}\left(T_{v}\right)\) then output
                    \(\left[0, D \cup T_{>v}\right]\); next
                    output \(\left[0, D \cup g \cup T_{>v}\right]\);
                    \(q:=\operatorname{pquo}\left(T_{v}, g\right)\);
                    output Regularize \(\left(p, D \cup q \cup T_{>v}, R\right)\);
                    for \(E \in \operatorname{Intersect}\left(h_{g}, D, R\right)\) do
                            for \(F \in \operatorname{Extend}(E, T, v, R)\) do
                            output Regularize \((p, F, R)\)
```

```
Algorithm 6: Extend \(\left(C, T, x_{i}, R\right)\)
if \(T_{\geq x_{i}}=\varnothing\) then return \(C\);
let \(p \in T\) with greatest main variable; \(T^{\prime}:=T \backslash\{p\}\);
for \(D \in \operatorname{Extend}\left(C, T^{\prime}, x_{i}, R\right)\) do
    for \([f, E] \in \operatorname{Regularize}(\operatorname{init}(p), D)\) do
        if \(f \neq 0\) then output \(E \cup p\);
```

```
Algorithm 7: CleanChain \(\left(C, T, x_{i}, R\right)\)
if \(x_{i} \notin \operatorname{mvar}(T)\) or \(\operatorname{dim} C=\operatorname{dim} T_{<x_{i}}\) then return \(C\);
for \([f, D] \in \operatorname{Regularize}\left(\operatorname{init}\left(T_{x_{i}}\right), C, R\right)\) do
    if \(f \neq 0\) then output \(D\)
```

```
Algorithm 8: Triangularize \((F, R)\)
if \(F=\{ \}\) then return \(\{\varnothing\}\);
Choose a polynomial \(p \in F\) with maximal rank;
for \(T \in \operatorname{Triangularize~}(F \backslash\{p\}, R)\) do
    output \(\operatorname{Intersect}(p, T, R)\)
```


Figure 1: Flow graph of the Algorithms

Note that the input of both functions is a process, say (p, T). One can check that, while executing a call with (p, T) as input, any subsequent call to either functions Intersect or Regularize will take a process $\left(p^{\prime}, T^{\prime}\right)$ as input such that $\left(p^{\prime}, T^{\prime}\right) \prec(p, T)$ holds. Since a descending chain of processes is necessarily finite, both algorithms terminate.

Since all algorithms terminate, and following the flow graph of Fig. 1, each call to one of our algorithms unfold to a finite dynamic acyclic graph (DAG) where each vertex is a call to one of our algorithms. Therefore, proving the correctness of these algorithms reduces to prove the following two points.

- Base: each algorithm call, which makes no subsequent calls to another algorithm or to itself, is correct.
- Induction: each algorithm call, which makes subsequent calls to another algorithm or to itself, is correct, as soon as all subsequent calls are themselves correct.

For all algorithms in Fig. 1, proving the base cases is straightforward. Hence we focus on the induction steps.

Proposition 6. IntersectFree satisfies its specification.

Proof. We have the following two key observations:

- $C \longrightarrow D_{1}, \ldots, D_{s}$, where D_{i} are the regular chains in the output of Regularize.
- $V(p) \cap W(D)=W(D, p) \cup V(\operatorname{init}(p), \operatorname{tail}(p)) \cap W(D)$.

Then it is not hard to conclude that $(p, C) \longrightarrow T_{1}, \ldots, T_{e}$.

Proposition 7. IntersectAlgebraic is correct.

Proof. We need to prove: $\left(p, C \cup T_{x_{i}}\right) \longrightarrow T_{1}, \ldots, T_{e}$. Let us prove $\left(L_{1}\right)$ now, that is, for each regular chain T_{j} in the output, we have $\sqrt{\operatorname{sat}\left(C \cup T_{x_{i}}\right)} \subseteq \sqrt{\operatorname{sat}\left(T_{j}\right)}$. First by the specifications of the called functions, we have $\sqrt{\operatorname{sat}(C)} \subseteq$ $\sqrt{\operatorname{sat}(D)} \subseteq \sqrt{\operatorname{sat}(E)}$, thus, $\sqrt{\operatorname{sat}\left(C \cup T_{x_{i}}\right)} \subseteq \sqrt{\operatorname{sat}\left(E \cup T_{x_{i}}\right)}$ by Corollary 1 since init $\left(T_{x_{i}}\right)$ is regular modulo both sat (C)
and $\operatorname{sat}(E)$. Secondly, since g is a regular GCD of p and $T_{x_{i}}$ modulo $\sqrt{\operatorname{sat}(D)}$, we have $\sqrt{\operatorname{sat}\left(C \cup T_{x_{i}}\right)} \subseteq \sqrt{\operatorname{sat}(D \cup g)}$ by Corollaries 1 and Proposition 5 .

Next we prove $\left(L_{2}\right)$. It is enough to prove that $W(D \cup$ $g) \subseteq V(p)$ holds. Since g is a regular GCD of p and $T_{x_{i}}$ modulo $\sqrt{\operatorname{sat}(D)}$, the conclusion follows from point (iii) of Proposition 5

Finally we prove $\left(L_{3}\right)$, that is $Z\left(p, C \cup T_{x_{i}}\right) \subseteq \bigcup_{j=1}^{e} W\left(T_{j}\right)$. Let D_{1}, \ldots, D_{s} be the regular chains returned from Algorithm RegularGcd. We have $C \longrightarrow D_{1}, \ldots, D_{s}$, which implies $Z\left(p, C \cup T_{x_{i}}\right) \subseteq \cup_{j=1}^{e} Z\left(p, D_{j} \cup T_{x_{i}}\right)$. Next since g is a regular GCD of p and $T_{x_{i}}$ modulo $\sqrt{\operatorname{sat}\left(D_{j}\right)}$, the conclusion follows from point (iv) of Proposition [5]

Proposition 8. Intersect satisfies its specification.

Proof. The first while loop can be seen as a projection process. We claim that it produces a nonempty triangular set P such that $V(p) \cap W(T)=V(P) \cap W(T)$. The claim holds before staring the while loop. For each iteration, let P^{\prime} be the set of polynomials obtained at the previous iteration. We then compute a polynomial r, which is the resultant of a polynomial in P^{\prime} and a polynomial in T. So $r \in\left\langle P^{\prime}, T\right\rangle$. By induction, we have $\langle p, T\rangle=\langle P, T\rangle$. So the claim holds.

Next, we claim that the elements in \mathfrak{T} satisfy the following invariants: at the beginning of the i-th iteration of the second while loop, we have
(1) each $C \in \mathfrak{T}$ is a regular chain; if $T_{x_{i}}$ exists, then $\operatorname{init}\left(T_{x_{i}}\right)$ is regular modulo sat (C),
(2) for each $C \in \mathfrak{T}$, we have $\sqrt{\operatorname{sat}\left(T_{<x_{i}}\right)} \subseteq \sqrt{\operatorname{sat}(C)}$,
(3) for each $C \in \mathfrak{T}$, we have $\overline{W(C)} \subseteq V\left(P_{<x_{i}}\right)$,
(4) $V(p) \cap W(T) \subseteq \bigcup_{C \in \mathfrak{T}} Z\left(P_{\geq x_{i}}, C \cup T_{\geq x_{i}}\right)$.

When $i=n+1$, we then have $\sqrt{\operatorname{sat}(T)} \subseteq \sqrt{\operatorname{sat}(C)}, W(C) \subseteq$ $V(P) \subseteq V(p)$ for each $C \in \mathfrak{T}$ and $V(p) \cap W(T) \subseteq \cup_{C \in \mathfrak{T}} W(C)$. So $\left(L_{1}\right),\left(L_{2}\right),\left(L_{3}\right)$ of Definition 3 all hold. This concludes the correctness of the algorithm.

Now we prove the above claims (1), (2), (3), (4) by induction. The claims clearly hold when $i=1$ since $C=\varnothing$ and $V(p) \cap W(T)=V(P) \cap W(T)$. Now assume that the loop invariants hold at the beginning of the i-th iteration. We need to prove that it still holds at the beginning of the $(i+1)$-th iteration. Let $C \in \mathfrak{T}$ be an element picked up at the beginning of i-th iteration and let L be the set of the new elements of \mathfrak{T}^{\prime} generated from C.

Then for any $C^{\prime} \in L$, claim (1) clearly holds by specification of CleanChain. Next we prove (2).

- if $x_{i} \notin \operatorname{mvar}(T)$, then $T_{<x_{i+1}}=T_{<x_{i}}$. By induction and specifications of called functions, we have

$$
\sqrt{\operatorname{sat}\left(T_{<x_{i+1}}\right)} \subseteq \sqrt{\operatorname{sat}(C)} \subseteq \sqrt{\operatorname{sat}\left(C^{\prime}\right)} .
$$

- if $x_{i} \in \operatorname{mvar}(T)$, by induction we have $\sqrt{\operatorname{sat}\left(T_{<x_{i}}\right)} \subseteq$ $\sqrt{\operatorname{sat}(C)}$ and $\operatorname{init}\left(T_{x_{i}}\right)$ is regular modulo both $\operatorname{sat}(C)$ and $\operatorname{sat}\left(T_{<x_{i}}\right)$. By Corollary $\square_{\text {we }}$ wave

$$
\sqrt{\operatorname{sat}\left(T_{<x_{i+1}}\right)} \subseteq \sqrt{\operatorname{sat}\left(C \cup T_{x_{i}}\right)} \subseteq \sqrt{\operatorname{sat}\left(C^{\prime}\right)}
$$

Therefore (2) holds. Next we prove claim (3). By induction and the specifications of called functions, we have $\overline{W\left(C^{\prime}\right)} \subseteq$ $\overline{W\left(C \cup T_{x_{i}}\right)} \subseteq V\left(P_{<x_{i}}\right)$. Secondly, we have $\overline{W\left(C^{\prime}\right)} \subseteq V\left(P_{x_{i}}\right)$. Therefore $\overline{W\left(C^{\prime}\right)} \subseteq V\left(P_{<x_{i+1}}\right)$, that is (3) holds. Finally, since $V\left(P_{x_{i}}\right) \cap W\left(C \cup T_{x_{i}}\right) \backslash V\left(\operatorname{init}\left(T_{x_{i+1}}\right)\right) \subseteq \cup_{C^{\prime} \in L} W\left(C^{\prime}\right)$, we have $Z\left(P_{\geq x_{i}}, C \cup T_{\geq x_{i}}\right) \subseteq \cup_{C^{\prime} \in L} Z\left(P_{\geq x_{i+1}}, C^{\prime} \cup T_{\geq x_{i+1}}\right)$, which implies that (4) holds. This completes the proof.

Proposition 9. Regularize satisfies its specification.

Proof. If $v \notin \operatorname{mvar}(T)$, the conclusion follows directly from point (2) of Corollary 2 From now on, assume $v \in$ $\operatorname{mvar}(T)$. Let L be the set of pairs $\left[p^{\prime}, T^{\prime}\right]$ in the output. We aim to prove the following facts
(1) each T^{\prime} is a regular chain,
(2) if $p^{\prime}=0$, then p is zero modulo $\sqrt{\operatorname{sat}\left(T^{\prime}\right)}$, otherwise p is regular modulo sat (T),
(3) we have $\sqrt{\operatorname{sat}(T)} \subseteq \sqrt{\operatorname{sat}\left(T^{\prime}\right)}$,
(4) we have $W(T) \subseteq \cup_{T^{\prime} \in \mathrm{E}} W\left(T^{\prime}\right)$.

Statement (1) is due to Proposition 2 Next we prove (2). First, when there are recursive calls, the conclusion is obvious. Let $[f, C]$ be a pair in the output of $\operatorname{Regularize}\left(r, T_{<v}, R\right)$. If $f \neq 0$, the conclusion follows directly from point (1) of Corollary 2. Otherwise, let $[g, D]$ be a pair in the output of the algorithm RegularGcd $\left(p, T_{v}, v, s r c, C, R\right)$. If $\operatorname{mdeg}(g)=$ $\operatorname{mdeg}\left(T_{v}\right)$, then by the algorithm of RegularGcd, $g=T_{v}$. Therefore we have $\operatorname{prem}\left(p, T_{v}\right) \in \sqrt{\operatorname{sat}(C)}$, which implies that $p \in \sqrt{\operatorname{sat}\left(C \cup T_{\geq v}\right)}$ by Proposition 3

Next we prove (3). Whenever Extend is called, (3) holds immediately. Otherwise, let $[f, C]$ be a pair returned by Regularize $\left(r, T_{<v}, R\right)$. When $f \neq 0$, since $\sqrt{\operatorname{sat}\left(T_{<v}\right)} \subseteq$ $\sqrt{\operatorname{sat}(C)}$ holds, we conclude $\sqrt{\operatorname{sat}(T)} \subseteq \sqrt{\operatorname{sat}\left(C \cup T_{\geq v}\right)}$ by Corollary 1 Let $[g, D] \in \operatorname{RegularGcd}\left(p, T_{v}, v, s r c, C, R\right)$. Corollary 1 and point (ii) of Proposition 5imply that $\sqrt{\operatorname{sat}(T)} \subseteq$ $\sqrt{\operatorname{sat}\left(D \cup T_{\geq v}\right)}, \sqrt{\operatorname{sat}(T)} \subseteq \sqrt{\operatorname{sat}\left(D \cup g \cup T_{>v}\right)}$ together with $\sqrt{\operatorname{sat}(T)} \subseteq \sqrt{\operatorname{sat}\left(D \cup q \cup T_{>v}\right)}$ hold. Hence (3) holds.

Finally by point (ii.b) of Proposition 5 we have $W\left(D \cup T_{v}\right) \subseteq$ $Z\left(h_{g}, D \cup T_{v}\right) \cup W(D \cup g) \cup W(D \cup q)$. So (4) holds.

Proposition 10. Extend satisfies its specification.
Proof. It clearly holds when $T_{\geq x_{i}}=\varnothing$, which is the base case. By induction and the specification of Regularize, we know that $\sqrt{\operatorname{sat}\left(T^{\prime}\right)} \subseteq \sqrt{\operatorname{sat}(E)}$. Since $\operatorname{init}(p)$ is regular modulo both $\operatorname{sat}\left(T^{\prime}\right)$ and $\operatorname{sat}(E)$, by Corollary 1 we
have $\sqrt{\operatorname{sat}(T)} \subseteq \sqrt{\operatorname{sat}(E \cup p)}$. On the other hand, we have $W\left(C \cup T_{\geq x_{i}}^{\prime}\right) \subseteq \cup W(D)$ and $W(D) \backslash V\left(h_{p}\right) \subseteq \cup W(E)$. Therefore $W\left(C \cup T_{\geq x_{i}}\right) \subseteq \cup_{j=1}^{e} W\left(T_{j}\right)$, where T_{1}, \ldots, T_{e} are the regular chains in the output.

Proposition 11. CleanChain satisfies its specification.

Proof. It follows directly from Proposition 2

Proposition 12. RegularGcd satisfies its specification.
Proof. Let $\left[g_{i}, T_{i}\right], i=1, \ldots, e$, be the output. First from the specification of Regularize, we have $T \longrightarrow T_{1}, \ldots, T_{e}$. When $\operatorname{dim} T_{i}=\operatorname{dim} T$, by Proposition 2 and Theorem $1 g_{i}$ is a regular GCD of p and q modulo $\sqrt{\operatorname{sat}(T)}$.

6. KALKBRENER DECOMPOSITION

In this section, we adapt the Algorithm Triangularize (Algorithm (8), in order to compute efficiently a Kalkbrener triangular decomposition. The basic technique we rely on follows from Krull's principle ideal theorem.

Theorem 3. Let $F \subset \mathbf{k}[\mathbf{x}]$ be finite, with cardinality $\#(F)$. Assume F generates a proper ideal of $\mathbf{k}[\mathbf{x}]$. Then, for any minimal prime ideal \mathfrak{p} associated with $\langle F\rangle$, the height of \mathfrak{p} is less than or equal to $\#(F)$.

Corollary 3. Let \mathfrak{T} be a Kalkbrener triangular decomposition of $V(F)$. Let T be a regular chain of \mathfrak{T}, the height of which is greater than $\#(F)$. Then $\mathfrak{T} \backslash\{T\}$ is also a Kalkbrener triangular decomposition of $V(F)$.

Based on this corollary, we prune the decomposition tree generated during the computation of a Lazard-Wu triangular decomposition and remove the computation branches in which the height of every generated regular chain is greater than the number of polynomials in F.

Next we explain how to implement this tree pruning technique to the algorithms of Section (4. Inside Triangularize, define $A=\#(F)$ and pass it to every call to Intersect in order to signal Intersect to output only regular chains with height no greater than A. Next, in the second while loop of Intersect, for the i-th iteration, we pass the height $A-\#\left(T_{\geq x_{i+1}}\right)$ to CleanChain, IntersectFree and IntersectAlgebraic.

In IntersectFree, we pass its input height A to every function call. Besides, Lines 5 to 6 are executed only if the height of D is strictly less than A, since otherwise we would obtain regular chains of height greater than A. In other algorithms, we apply similar strategies as in Intersect and IntersectFree.

7. EXPERIMENTATION

Part of the algorithms presented in this paper are implemented in Maple14 while all of them are present in the current development version of Maple. Tables 1 and 2 report on our comparison between Triangularize and other MAPLE

sys	Triangularize								Triangularize versus other solvers				
	TK13	TK14	TK	TL13	TL14	TL	STK	STL	GL	GS	WS	TL	TK
1	-	241.7	36.9	-	-	-	62.8	-	-	-	-	-	36.9
2	8.7	5.3	5.9	29.7	24.1	25.8	6.0	26.6	108.7	-	27.8	25.8	5.9
3	0.3	0.3	0.4	14.0	2.4	2.1	0.4	2.2	3.4	-	7.9	2.1	0.4
4	-	-	88.2	-	-	-	-	-	-	-	-	-	88.2
5	0.4	0.5	0.7	-	-	-	451.8	-	2609.5	-	-	-	0.7
7	-	-	-	-	-	-	1326.8	1437.1	19.3	-	-	-	-
8	3.2	0.7	0.6	-	55.9	7.1	0.7	8.8	63.6	-	-	7.1	0.6
9	166.1	5.0	3.1	-	-	-	3.3	-	-	-	-	-	3.1
10	5.8	0.4	0.4	-	1.5	1.5	0.4	1.5	-	-	0.8	1.5	0.4
11	-	29.1	12.7	-	27.7	14.8	12.9	15.1	30.8	-	-	14.8	12.7
12	452.3	454.1	0.3	-	-	-	0.3	-	-	-	-	-	0.3
14	0.7	0.7	0.3	801.7	226.5	143.5	0.3	531.3	125.9	-	-	143.5	0.3
16	0.4	0.4	0.4	4.7	2.6	2.3	0.4	4.4	3.2	2160.1	40.2	2.3	0.4
17	-	2.1	2.2	-	4.5	4.5	2.2	6.2	-	-	5.7	4.5	2.2
18	-	15.6	14.4	-	126.2	51.1	14.5	63.1	-	-	-	51.1	14.4
19	-	871.1	859.4	-	1987.5	1756.3	859.2	1761.8	-	-	-	1756.3	859.4
21	1.2	0.6	0.3	-	1303.1	352.5	0.3	-	6.2	-	792.8	352.5	0.3
22	168.8	5.5	0.3	-	-	-	0.3	-	33.6	-	-	-	0.3
23	0.8	0.9	0.5	-	10.3	7.0	0.4	12.6	1.8	-	-	7.0	0.5
24	1.5	0.7	0.8	-	1.9	1.9	0.9	2.0	35.2	-	9.1	1.9	0.8
25	0.5	0.6	0.7	0.6	0.8	0.8	0.8	0.9	0.2	1580.0	0.8	0.8	0.7
26	0.2	0.3	0.4	4.0	1.9	1.9	0.5	2.7	4.7	0.1	12.5	1.9	0.4
27	3.3	0.9	0.6	-	-	-	0.7	-	0.3	-	-	-	0.6

Table 2 Timings of Triangularize versus other solvers
solvers. The notations used in these tables are defined below.

Notation for Triangularize. We denote by TK and TL the latest implementation of Triangularize for computing, respectively, Kalkbrener and Lazard-Wu decompositions, in the current version of Maple. Denote by TK14 and TL14 the corresponding implementation in MAPLE14. Denote by TK13, TL13 the implementation based on the algorithm of [16] in Maple13. Finally, STK and STL are versions of TK and TL respectively, enforcing that all computed regular chains are squarefree, by means of the algorithms in Appendix B

Notation for the other solvers. Denote by GL, GS, GD, respectively the function Groebner:-Basis (plex order), Groebner:Solve, Groebner:-Basis (tdeg order) in current beta version of Maple. Denote by WS the function wsolve of the package Wsolve [19], which decomposes a variety as a union of quasicomponents of Wu Characteristic Sets.

The tests were launched on a machine with Intel Core 2 Quad CPU (2.40 GHz) and 3.0 Gb total memory. The timeout is set as 3600 seconds. The memory usage is limited to 60% of total memory. In both Table 1 and 2 , the symbol "-" means either time or memory exceeds the limit we set.

The examples are mainly in positive dimension since other triangular decomposition algorithms are specialized to dimension zero [6]. All examples are in characteristic zero.

In Table 1, we provide characteristics of the input systems and the sizes of the output obtained by different solvers. For each polynomial system $F \subset \mathbb{Q}[\mathbf{x}]$, the number of variables appearing in F, the number of polynomials in F, the maximum total degree of a polynomial in F, the dimension of the algebraic variety $V(F)$ are denoted respectively by $\# v, \# e, \operatorname{deg}$, dim. For each solver, the size of its output is measured by the total number of characters in the output.

To be precise, let "dec" and "gb" be respectively the output of the Triangularize and Groebner functions. The Maple command we use are length(convert(map(Equations, dec, R), string)) and length(convert(gb, string)). From Table 1, it is clear that Triangularize produces much smaller output than commands based on Gröbner basis computations.

TK, TL, GS, WS (and, to some extent, GL) can all be seen as polynomial system solvers in the sense of that they provide equidimensional decompositions where components are represented by triangular sets. Moreover, they are implemented in Maple (with the support of efficient C code in the case of GS and GL). The specification of TK are close to those of GS while TL is related to WS, though the triangular sets returned by WS are not necessarily regular chains.

In Table 2, we provide the timings of different versions of Triangularize and other solvers. From this table, it is clear that the implementations of Triangularize, based on the algorithms presented in this paper (that is TK14, TL14, TK, TL) outperform the previous versions (TK13, TL13), based on [16, by several orders of magnitude. We observe also that TK outperforms GS and GL while TL outperforms WS.

Acknowledgments. The authors would like to thank the support of Maplesoft, Mitacs and Nserc of Canada.

8. REFERENCES

[1] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets. J. Symb. Comp., 28(1-2):105-124, 1999.
[2] F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a finitely generated differential ideal. In proceedings of ISSAC'95, pages 158-166, 1995.
[3] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and W. Pan. Comprehensive Triangular

Decomposition, volume 4770 of $L N C S$, pages 73-101. Springer Verlag, 2007.
[4] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing cylindrical algebraic decomposition via triangular decomposition. In ISSAC'09, pages 95-102, 2009.
[5] S.C. Chou and X.S. Gao. Solving parametric algebraic systems. In Proc. ISSAC'92, pages 335-341, 1992.
[6] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie. Lifting techniques for triangular decompositions. In ISSAC'05, pages 108-115. ACM Press, 2005.
[7] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in algebraic number fields. In Proc. EUROCAL 85 Vol. 2, pages 289-290. Springer-Verlag, 1985.
[8] L. Ducos. Optimizations of the subresultant algorithm. Journal of Pure and Applied Algebra, 145:149-163, 2000.
[9] X.-S. Gao, J. Van der Hoeven, Y. Luo, and C. Yuan. Characteristic set method for differential-difference polynomial systems. J. Symb. Comput., 44:1137-1163, 2009.
[10] É. Hubert. Factorization free decomposition algorithms in differential algebra. J. Symb. Comp., 29(4-5):641-662, 2000.
[11] M. Kalkbrener. A generalized euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comp., 15:143-167, 1993.
[12] D. Lazard. A new method for solving algebraic systems of positive dimension. Discr. App. Math, 33:147-160, 1991.
[13] G. Lecerf. Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. J. Complexity, 19(4):564-596, 2003.
[14] X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains. In Proc. ISSAC'09, pages 239-246, New York, NY, USA, 2009. ACM Press.
[15] B. Mishra. Algorithmic Algebra. Springer-Verlag, New York, 1993.
[16] M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK, 1999. Presented at the MEGA-2000 Conference, Bath, England.
[17] T. Shimoyama and K. Yokoyama. Localization and primary decomposition of polynomial ideals. J. Symb. Comput., 22(3):247-277, 1996.
[18] A.J. Sommese, J. Verschelde, and C. W. Wampler. Solving polynomial systems equation by equation. In Algorithms in Algebraic Geometry, pages 133-152. Springer-Verlag, 2008.
[19] D. K. Wang. The Wsolve package. http://www.mmrc.iss.ac.cn/~dwang/wsolve.txt.
[20] D. M. Wang. Elimination Methods. Springer, New York, 2000.
[21] W. T. Wu. A zero structure theorem for polynomial equations solving. $M M$ Research Preprints, 1:2-12, 1987.
[22] L. Yang, X.R. Hou, and B. Xia. A complete algorithm for automated discovering of a class of inequality-type theorems. Science in China, Series F, 44(6):33-49, 2001.
[23] L. Yang and J. Zhang. Searching dependency between algebraic equations: an algorithm applied to automated reasoning. Technical Report IC/89/263, International Atomic Energy Agency, Miramare, Trieste, Italy, 1991.

APPENDIX

A. SPECIALIZATION PROPERTIES OF SUBRESULTANT CHAINS

Let \mathbb{A} be a commutative ring with identity and let $k \leq \ell$ be two positive integers. Let M be an $k \times \ell$ matrix with coefficients in \mathbb{A}. Let M_{i} be the square submatrix of M consisting of the first $k-1$ columns of M and the $i_{t h}$ column of M, for $i=k \cdots \ell$. Let $\operatorname{det}\left(M_{i}\right)$ be the determinant of M_{i}. We denote by $\operatorname{dpol}(M)$ the element of $\mathbb{A}[x]$, called the determinant polynomial of M, given by

$$
\operatorname{det} M_{k} x^{\ell-k}+\operatorname{det} M_{k+1} x^{\ell-k-1}+\cdots+\operatorname{det} M_{\ell} .
$$

Let $f_{1}(x), \ldots, f_{k}(x)$ be a set of polynomials of $\mathbb{A}[x]$. Let $\ell=1+\max \left(\operatorname{deg} f_{1}(x), \ldots, \operatorname{deg} f_{k}(x)\right)$. The matrix M of f_{1}, \ldots, f_{k} is defined by $M_{i j}=\operatorname{coeff}\left(f_{i}, x^{\ell-j}\right)$.

Let $f=a_{m} x^{m}+\cdots+a_{0}, g=b_{n} x^{n}+\cdots+b_{0}$ be two polynomials of $\mathbb{A}[x]$ with positive degrees m and n. Let $\lambda=\min (m, n)$. For any $0 \leq i<\lambda$, let M be the matrix of the polynomials $x^{n-1-i} f, \ldots, x f, f, x^{m-1-i} g, \ldots, x g, g$. We define the $i_{\text {th }}$ subresultant of f and g, denoted by $S_{i}(f, g)$, as

$$
\begin{aligned}
S_{i}(f, g) & =\operatorname{dpol}\left(x^{n-1-i} f, \ldots, x f, f, x^{m-1-i} g, \ldots, x g, g\right) \\
& =\operatorname{dpol}(M)
\end{aligned}
$$

Note that $S_{i}(f, g)$ is a polynomial in $\mathbb{A}[x]$ with degree at most i. Let $s_{i}(f, g)=\operatorname{coeff}\left(S_{i}(f, g), x^{i}\right)$ and call it the principle subresultant coefficient of S_{i}.

Let \mathbb{B} be a UFD. Let ϕ be a homomorphism from \mathbb{A} to \mathbb{B}, which induces naturally also a homomorphism from $\mathbb{A}[x]$ to $\mathbb{B}[x]$. Let $m^{\prime}=\operatorname{deg}(\phi(f))$ and $n^{\prime}=\operatorname{deg}(\phi(g))$.

Lemma 1. For any integer $0 \leq k<\lambda$, if $\phi\left(s_{k}\right) \neq 0$, then $\phi\left(a_{m}\right)$ and $\phi\left(b_{n}\right)$ does not vanish at the same time. Moreover, we have both $\operatorname{deg} \phi(f) \geq k$ and $\operatorname{deg} \phi(g) \geq k$.

Proof. Observe that

$$
s_{k}=\left|\begin{array}{ccccc}
a_{m} & a_{m-1} & \cdots & a_{0} & \\
& \cdots & & \cdots & \\
& a_{m} & a_{m-1} & \cdots & a_{k} \\
b_{n} & b_{n-1} & \cdots & b_{0} & \\
& \cdots & & \cdots & \\
& b_{n} & b_{n-1} & \cdots & b_{k}
\end{array}\right|
$$

Therefore there exists $i \geq k, j \geq k$ such that $\phi\left(a_{i}\right) \neq 0$ and $\phi\left(b_{j}\right) \neq 0$. The conclusion follows.

Lemma 2. Assume that $\phi\left(s_{0}\right)=\cdots=\phi\left(s_{\lambda-1}\right)=0$. Then, if $m \leq n$, we have
(1) if $\phi\left(a_{m}\right) \neq 0$ and $\phi\left(b_{n}\right)=\cdots=\phi\left(b_{m}\right)=0$, then $\phi(g)=$ 0
(2) if $\phi\left(a_{m}\right)=0$ and $\phi\left(b_{n}\right) \neq 0$, then $\phi(f)=0$

Symmetrically, if $m>n$, we have
(3) if $\phi\left(b_{n}\right) \neq 0$ and $\phi\left(a_{m}\right)=\cdots=\phi\left(a_{n}\right)=0$, then $\phi(f)=$ 0
(4) if $\phi\left(b_{n}\right)=0$ and $\phi\left(a_{m}\right) \neq 0$, then $\phi(g)=0$

Proof. We prove (1) and (2), whose correctness implies (3) and (4) by symmetry. Let $i=\lambda-1=m-1$, then we have

$$
S_{m-1}=\operatorname{dpol}\left(x^{n-m} f, \ldots, x f, f, g\right)
$$

Therefore

$$
s_{m-1}=\left|\begin{array}{cccc}
a_{m} & \cdots & a_{0} & \\
& \ddots & \ddots & \\
& & a_{m} & a_{m-1} \\
b_{n} & \cdots & b_{m} & b_{m-1}
\end{array}\right|
$$

So from $\phi\left(b_{n}\right)=\cdots=\phi\left(b_{m}\right)=0$ and $\phi\left(s_{m-1}\right)=0$, we conclude that $\phi\left(b_{m-1}\right)=0$. On the other hand, if $\phi\left(a_{m}\right)=0$ and $\phi\left(b_{n}\right) \neq 0$, then $\phi\left(a_{m-1}\right)=0$.

Now let consider S_{m-2}. We have

$$
s_{m-2}=\left|\begin{array}{ccccc}
a_{m} & a_{m-1} & \ldots & a_{0} & \\
& \ddots & & \ddots & \\
& & a_{m} & a_{m-1} & a_{m-2} \\
b_{n} & \ldots & b_{m-1} & b_{m-2} & \\
& b_{n} & \cdots & b_{m-1} & b_{m-2}
\end{array}\right|
$$

From $\phi\left(b_{m-1}\right)=0$, we conclude that $\phi\left(b_{m-2}\right)=0$. From $\phi\left(a_{m-1}\right)=0$, we conclude that $\phi\left(a_{m-2}\right)=0$.

So on so forth, finally, if $\phi\left(a_{m}\right) \neq 0$ and $\phi\left(b_{n}\right)=\cdots=$ $\phi\left(b_{m}\right)=0$, we deduce that $\phi\left(b_{i}\right)=0$, for all $0 \leq i \leq m-1$, which implies that $\phi(g)=0$; if $\phi\left(a_{m}\right)=0$ and $\phi\left(b_{n}\right) \neq 0$, we deduce that $\phi\left(a_{m-1}\right)=\cdots=\phi\left(a_{0}\right)=0$, which implies that $\phi(f)=0$.

Lemma 3. Let i be an integer such that $1 \leq i<\lambda$. Assume that $\phi\left(a_{m}\right) \neq 0$. If $i \leq n^{\prime}$, then we have

$$
\begin{array}{r}
\phi\left(S_{i}\right)=\phi\left(a_{m}\right)^{n-n^{\prime}} \operatorname{dpol}\left(x^{n^{\prime}-1-i} \phi(f), \ldots, x \phi(f), \phi(f),\right. \\
\left.x^{m-1-i} \phi(g), \ldots, x \phi(g), \phi(g)\right)
\end{array}
$$

Proof. If $i \leq n^{\prime}$, then $n-n^{\prime} \leq n-i$. Therefore we have

$$
\begin{aligned}
\phi\left(S_{i}\right)= & \phi\left(\operatorname{dpol}\left(x^{n-1-i} f, \ldots, x f, f, x^{m-1-i} g, \ldots, x g, g\right)\right) \\
= & \phi\left(\operatorname { d p o l } \left(x^{n-1-i} \phi(f), \ldots, x \phi(f), \phi(f),\right.\right. \\
& \left.\left.x^{m-1-i} \phi(g), \ldots, x \phi(g), \phi(g)\right)\right) \\
= & \phi\left(a_{m}\right)^{n-n^{\prime}} \operatorname{dpol}\left(x^{n^{\prime}-1-i} \phi(f), \ldots, x \phi(f), \phi(f),\right. \\
& \left.\left.x^{m-1-i} \phi(g), \ldots, x \phi(g), \phi(g)\right)\right)
\end{aligned}
$$

Done.

THEOREM 4. We have the following relations between the subresultants and the $G C D$ of $\phi(f)$ and $\phi(g)$:

1. Let $k, 0 \leq k<\lambda$, be an integer such that $\phi\left(s_{k}\right) \neq 0$ and for any $i, 0 \leq i<k, \phi\left(s_{i}\right)=0$. Then $\operatorname{gcd}(\phi(f), \phi(g))=$ $\phi\left(S_{k}\right)$.
2. Assume that $\phi\left(s_{i}\right)=0$ for all $0 \leq i<\lambda$. we have the following cases
(a) if $m \leq n$ and $\phi\left(a_{m}\right) \neq 0$, then $\operatorname{gcd}(\phi(f), \phi(g))=$ $\phi(f)$; symmetrically, if $m>n$ and $\phi\left(b_{n}\right) \neq 0$, then we have $\operatorname{gcd}(\phi(f), \phi(g))=\phi(g)$
(b) if $m \leq n$ and $\phi\left(a_{m}\right)=0$ but $\phi\left(b_{n}\right) \neq 0$, then we have $\operatorname{gcd}(\phi(f), \phi(g))=\phi(g)$; symmetrically, if $m \geq$ n and $\phi\left(b_{n}\right)=0$ but $\phi\left(a_{m}\right) \neq 0$, then we have $\operatorname{gcd}(\phi(f), \phi(g))=\phi(f)$
(c) if $\phi\left(a_{m}\right)=\phi\left(b_{n}\right)=0$, then

$$
\operatorname{gcd}(\phi(f), \phi(g))=\operatorname{gcd}(\phi(\operatorname{red}(f)), \phi(\operatorname{red}(g)))
$$

Proof. Let us first prove (1). W.l.o.g, we assume $\phi\left(a_{m}\right) \neq$ 0 . From Lemma 1 we know that $k \leq n^{\prime}$. Therefore for $i \leq k$, we have $i \leq n^{\prime}$. By Lemma 3

$$
\begin{aligned}
\phi\left(S_{i}\right)= & \phi\left(a_{m}\right)^{n-n^{\prime}} \operatorname{dpol}\left(x^{n^{\prime}-1-i} \phi(f), \ldots, x \phi(f), \phi(f),\right. \\
& \left.x^{m-1-i} \phi(g), \ldots, x \phi(g), \phi(g)\right)
\end{aligned}
$$

If $i<n^{\prime}$, we have $\phi\left(S_{i}\right)=\phi\left(a_{m}\right)^{n-n^{\prime}} S_{i}(\phi(f), \phi(g))$. If $i=n^{\prime}$, since $i<m$, we have

$$
\begin{aligned}
\phi\left(S_{i}\right) & =\phi\left(a_{m}\right)^{n-n^{\prime}} \operatorname{dpol}\left(x^{m-1-i} \phi(g), \ldots, x \phi(g), \phi(g)\right) \\
& =\phi\left(a_{m}\right)^{n-n^{\prime}} \phi\left(b_{n^{\prime}}\right)^{m-1-i} \phi(g) .
\end{aligned}
$$

So for all $i<k$, we have $s_{i}(\phi(f), \phi(g))=0$. If $k<n^{\prime}$, we have $s_{k}(\phi(f), \phi(g)) \neq 0$. So $\operatorname{gcd}(\phi(f), \phi(g))=\phi\left(S_{k}\right)$. If $k=$ n^{\prime}, we have $\phi\left(b_{n^{\prime}}\right)=\phi\left(b_{k}\right) \neq 0$. Therefore $\operatorname{gcd}(\phi(f), \phi(g))=$ $\phi(g)=\phi\left(S_{k}\right)$.

Next we prove (2a). By symmetry, we prove it when $m \leq n$. If $\phi\left(b_{n}\right)=\cdots=\phi\left(b_{m}\right)=0$, it follows directy from Lemma 2, Otherwise, we have $n^{\prime} \geq m$. By Lemma 3 for all $i<m$ we have

$$
\begin{aligned}
\phi\left(S_{i}\right)= & \phi\left(a_{m}\right)^{n-n^{\prime}} \operatorname{dpol}\left(x^{n^{\prime}-1-i} \phi(f), \ldots, x \phi(f), \phi(f),\right. \\
& \left.x^{m-1-i} \phi(g), \ldots, x \phi(g), \phi(g)\right)
\end{aligned}
$$

That is $\phi\left(S_{i}\right)=\phi\left(a_{m}\right)^{n-n^{\prime}} S_{i}(\phi(f), \phi(g))$. Since $\phi\left(s_{i}\right)=0$, we deduce that $\phi\left(S_{i}\right)=\operatorname{gcd}(\phi(f), \phi(g))$.

Finally (2b) follows directly from Lemma 2 and (2c) is obviouly true. All done.

B. SQUAREFREE DECOMPOSITION

Throughout this section, we assume that the coefficient field \mathbf{k} is of characteristic zero. We propose two strategies for computing a squarefree triangular decomposition. The first one is a post-processing which applies Algorithm 11to every regular chain returned by Algorithm 8 . The second consists of ensuring that, each output or intermediate regular chain generared during the execution of Algorithm 8 is squarefree.

To implement the second strategy, we add an squarefree option to Algorithm 8 and each of its subalgorithms. If the option is set to true, this option requires that each output regular chain is squarefree. This is achieved by using Algorithm 9 whenever we need to construct new regular chains from a previous regular chain T and a polynomial p such that $T \cup p$ is known to be a regular chain.

```
Algorithm 9: Squarefree \(\left(p, x_{i}, T, R\right)\)
Input: a polynomial ring \(R=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]\), a variable
\(x_{i}\) of \(R\), a squarefree regular chain \(T\) of \(\mathbf{k}\left[x_{1}, \ldots, x_{i-1}\right]\), a
polynomial \(p\) of \(R\) with main variable \(x_{i}\) such that \(T \cup p\) is
a regular chain.
Output: a set of squarefree regular chains \(T_{1}, \ldots, T_{e}\) such
            that \(p \cup T \longrightarrow T_{1}, \ldots, T_{e}\).
\(p:=\) SquarefreePart \((p)\);
if \(\operatorname{mdeg}(p)=1\) then return \(T \cup p\);
else
    src \(:=\) SubresultantChain \(\left(p, p^{\prime}, x_{i}, R\right)\);
    return Squarefree \(\left(p, x_{i}, s r c, T, R\right)\);
```

```
Algorithm 10: Squarefree \(\left(p, x_{i}, s r c, T, R\right)\)
Input: a polynomial ring \(R=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]\), a variable
\(x_{i}\) of \(R\), a squarefree regular chain \(T\) of \(\mathbf{k}\left[x_{1}, \ldots, x_{i-1}\right]\), a
squarefree polynomial \(p\) of \(R\) with main variable \(x_{i}\) such
that \(T \cup p\) is a regular chain, the sub-resultant chain src of
\(p\) and \(p^{\prime}\) w.r.t \(x_{i}\).
Output: a set of squarefree regular chains \(T_{1}, \ldots, T_{e}\) such
    that \(p \cup T \longrightarrow T_{1}, \ldots, T_{e}\).
\(r:=\operatorname{resultant}(s r c, R)\);
\(\mathfrak{T}:=\{ \} ;\)
for \(C \in \operatorname{Regularize}(r, T, R)\) do
    if \(r \notin \operatorname{sat}(C)\) then output \(C \cup p\); next;
    else
        if \(\operatorname{dim} C=\operatorname{dim} T\) then
                \(\mathfrak{T}:=\mathfrak{T} \cup\{C\} ;\) next;
            else
                for \([f, D] \in \operatorname{Regularize}(\operatorname{init}(p), C, R)\) do
                    if \(f \neq 0\) then \(\mathfrak{T}:=\mathfrak{T} \cup\{D\}\);
while \(\mathfrak{T} \neq\{ \}\) do
    let \(C \in \mathfrak{T} ; \mathfrak{T}:=\mathfrak{T} \backslash\{C\}\);
    for \([g, D] \in \operatorname{RegularGcd}\left(p, p^{\prime}, x_{i}, s r c, C, R\right)\) do
            if \(\operatorname{dim} D=\operatorname{dim} C\) then
                output \(D \cup \operatorname{pquo}(p, g)\);
                for \(E \in \operatorname{Intersect}(\operatorname{init}(g), D, R)\) do
                    for \([f, F] \in \operatorname{Regularize}(\operatorname{init}(p), E, R)\) do
                    if \(f \neq 0\) then \(\mathfrak{T}:=\mathfrak{T} \cup\{F\}\);
            else
                for \([f, E] \in \operatorname{Regularize}(\operatorname{init}(p), D, R)\) do
                    if \(f \neq 0\) then \(\mathfrak{T}:=\mathfrak{T} \cup\{E\}\);
```

```
Algorithm 11: Squarefree \((T, R)\)
Input: a polynomial ring \(R=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]\), a regular
    chain \(T\) of \(R\).
Output: a set of squarefree regular chains \(T_{1}, \ldots, T_{e}\) such
            that \(T \longrightarrow T_{1}, \ldots, T_{e}\).
\(T:=\{\) SquarefreePart \((p) \mid p \in T\} ;\)
\(S:=\{ \} ;\)
for \(p \in T\) do
    if \(\operatorname{mdeg}(p)>1\) then
        \(S:=S \cup\left\{\right.\) SubresultantChain \(\left.\left(p, p^{\prime}, \operatorname{mvar}(p), R\right)\right\} ;\)
\(\mathfrak{T}:=\{\varnothing\} ; \mathfrak{T}^{\prime}:=\{ \} ; i:=1 ;\)
while \(i \leq n\) do
    for \(C \in \mathfrak{T}\) do
        if \(x_{i} \notin \operatorname{mvar}(T)\) then
                \(\mathfrak{T}^{\prime}:=\mathfrak{T}^{\prime} \cup\) CleanChain \(\left(C, T, x_{i+1}, R\right)\)
            else
                    if \(\operatorname{mdeg}\left(T_{x_{i}}\right)=1\) then
                    \(\mathfrak{T}^{\prime}:=\mathfrak{T}^{\prime} \cup\) CleanChain \(\left(C \cup\left\{T_{x_{i}}\right\}, T, x_{i+1}, R\right)\)
                else
                    for \(D \in \operatorname{Squarefree}\left(T_{x_{i}}, x_{i}, S_{x_{i}}, C, R\right)\) do
                                    \(\mathfrak{T}^{\prime}:=\mathfrak{T}^{\prime} \cup\) CleanChain \(\left(D, T, x_{i+1}, R\right)\)
    \(\mathfrak{T}:=\mathfrak{T}^{\prime} ; \mathfrak{T}^{\prime}:=\{ \} ; i:=i+1 ;\)
return \(\mathfrak{T}\)
```

