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on Interactive 3D Graphics, April 1995, Monterey, CA.

Abstract

This paper discusses how wavelet techniques may be
applied to a variety of geometric modeling tools. In
particular, wavelet decompositions are shown to be
useful for hierarchical control point or least squares
editing. In addition, direct curve and surface manip-
ulation methods using an underlying geometric varia-
tional principle can be solved more efficiently by using
a wavelet basis. Because the wavelet basis is hier-
archical, iterative solution methods converge rapidly.
Also, since the wavelet coefficients indicate the degree
of detail in the solution, the number of basis func-
tions needed to express the variational minimum can
be reduced, avoiding unnecessary computation. An
implementation of a curve and surface modeler based
on these ideas is discussed and experimental results are
reported.

1 Introduction

Wavelet analysis provides a set of tools for representing functions
hierarchically. These tools can be used to facilitate a number of
geometric modeling operations easily and efficiently. In particular,
this paper explores three paradigms for free-form curve and surface
construction: control point editing, direct manipulation using least
squares, and direct manipulation using variational minimization
techniques. For each of these paradigms, the hierarchical nature
of wavelet analysis can be used to either provide a more intuitive
modeling interface or to provide more efficient numerical solutions.

In control point editing, the user sculpts a free-form curve or
surface by dragging a set of control points. A better interface
allows the user to directly manipulate the curve or surface itself,
which defines a set of constraints. In a least squares paradigm,
given a current curve or surface, the modeling tool returns the curve
or surface that meets the constraints by changing the current control
points by the least squares amount [1, 11].

The behavior of the modeling tool is determined by the type
of control points and basis functions used to describe the curve
or surface. With the uniform cubic B-spline basis, for example,
the user’s actions result in local changes at a predetermined scale.
This is not fully desirable; at times the user may want to make fine
changes of detail, while at other times he may want to easily make
broad changes. Hierarchical B-splines offer a representation that
allows both control point and least squares editing to be done at
multiple resolutions [9]. Hierarchical B-splines, though, form an
over-representation for curves and surface (i.e., any curve has mul-
tiple representations using hierarchical B-splines). As a result, the
same curve may behave differently to a user depending on the partic-
ular underlying representation. In contrast, B-spline wavelets form
a hierarchical basis for the space of B-spline curves and surfaces
in which every object has a unique representation. Wavelet meth-
ods in conjunction with hierarchical B-splines provide a method for
constructing a useful geometric modeling interface. This approach
is similar to the one described by Finkelstein and Salesin [8]. In this
paper we will discuss some of the various issues that are relevant to
building such a modeling tool.

Variational modeling is a third general paradigm for geometric
modeling[2, 28, 21]. In this setting, a user alters a curve or surface
by directly manipulation, as above, defining a set of constraints. The
variational modeling paradigm seeks the “best” solution amongst all
answers that meet the constraints. The notion of best, which is for-
mally defined as the solution that minimizes some energy function,
is often taken to mean the smoothest solution.

In theory, the desired solution is the curve or surface that has
the minimum energy of all possible curves or surfaces that meet the
constraints. Unfortunately there is little hope to find a closed form
solution '. Therefore, in practice, the “space” of parametric curves
or surfaces is restricted to those represented by a linear combination
of a fixed set of basis functions such as cubic B-splines. Given a set
of n basis functions, the goal of finding the best curve or surface is
then reduced to that of finding the best set of n coefficients. This
reduction is referred to as the finite element method [27].

The general case requires solving a non-linear optimization
problem. In the best case, the energy function is quadratic and
the constraints are linear leading to a single linear system to solve.
But even this can be costly when n is large since direct methods for
matrix inversion require O(n’) time. To accelerate this process it is
tempting to use gradient-type iterative methods to solve the linear
system; these methods only take O(n) time per iteration, due to
the O(n) matrix sparsity created by the finite element formulation.
Unfortunately, the linear systems arising from a finite element for-
mulation are often expensive to solve using iterative methods. This
is because the systems are ill-conditioned, and thus require many
iterations to converge to a minimum [26, 25]. Intuitively speaking
this occurs because each basis function represents a very narrow
region of the answer; there is no basis function which can be moved
to change the answer in some broad manner. For example, chang-
ing one coefficient in a cubic B-spline curve during an iteration
alters the curvature in a local region only. In order to produce a
broad smooth curve, the coefficients of the neighboring B-splines
will move in next few iterations. Over the next many iterations, the
solution process will affect wider and wider regions, and the effect
will spread out slowly like a wave moving along a string. The result
is very slow convergence (see Figure (1)). One method used to
combat this problem is multigridding [26, 10], where a sequence of
problems at different resolution levels are posed and solved.

An alternative approach, is to use a wavelet basis instead of a
standard finite element basis [25, 23, 15, 22]. In a wavelet basis,
the answer is represented hierarchically. This allows the solution
method to alter the answer at any desired resolution by altering
the proper basis function, and thus the ill-conditioning is avoided.
In this paper we show how to use a wavelet construction, which
is based on cubic B-splines, to quickly solve variational modeling
problems in an elegant fashion.

Another problem with the finite element approach is choosing
the density of the basis functions. If too few basis functions (too
few B-spline segments or tensor product B-spline patches) are used
then the solution obtained will be far from the actual minimum. If
too many basis functions are used then unnecessary computation
will be performed during each iteration (n is too big). In order to
successfully choose a proper density, one must know how much
detail exists in the variational minimum answer. Since, a priori, this
is unknown, an efficient solver must be able to adaptively change
the basis during the solution process [28], one needs an easy way
to detect that too many or too few basis functions are being used.
In addition, one needs a basis for which adding more detail, (i.e.,
refinement), is easy. Wavelets offer a basis where this task can be
accomplished quickly and elegantly.

The work presented in this paper combines the wavelet ap-
proaches of [25], [12], and [16]. Like [25], this paper uses hierar-
chical basis functions as a pre-conditioner, so that fewer iterations

'But see [20].
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Figure 1: Minimum energy solutions subject to three constraints, found by the B-spline and wavelet methods after various numbers (0-1024)
of iterations. (65 variables, 3 constraints). This illustrates the ill conditioning of the B-spline optimization problem.

are needed for convergence. Similar to [12] and [16], wavelets are
also used as a method for limiting the solution method to the proper
level of detail.

2 Geometric Representation

This paper will restrict itself to parametric representations of curves
and surfaces. In this representation, a curve is defined as a 3
dimensional trajectory parameterized by t,

V() = (X(8),Y(t), Z(1)) ¢))

and a surface is defined as
7(57t) = (X(S,t),Y(S,t),Z(S,t)) 2

which defines a three dimensional location for every parameter pair
(s,t).

The parametric representation of a curve or surface is made
up of three functions X,Y, Z, which are represented as a linear
combination of basis functions. Just focusing on the X function,
for curves this becomes

X(t) =) wipLi(t) 3)
J
and for surfaces
X(s,t) =Y wjndrn(st) @
gk

where the = are scalar coefficients. In geometric modeling the
univariate basis ¢, ;(t) is typically some “piecewise” basis, such
as a cubic B-spline or the Bernstein (Bézier) basis, and the bivari-
ate basis used for surfaces is the associated tensor product basis

GL,jk(5,t) = b, (5)PLr(t).

3 Hierarchical Geometric Descriptions

In this section we will briefly review some ways that curves and
surfaces may be represented hierarchically.

Let us begin by discussing curves. For simplicity we will deal
with the uniform cubic B-spline basis over the interval [0...2"]
made up of translations of a single basis shape denoted ¢(t). The
cubic B-spline function ¢(¢) is supported over the interval [0. . . 4]
and is made up of 4 cubic polynomial pieces joined with C* con-
tinuity. The complete uniform cubic B-spline basis is made up of
translated copies ¢z ; (¢) of the basis shape ¢(¢) (see Figure 2).

b1, (t) = ot — j) 6)

The index j represents the translation of a specific basis from the
canonical B-spline left justified at zero, and L is the level or resolu-
tion of the basis. There are roughly 2F functions in this basis 2. In
wavelet terminology, the space (or family) of curves spanned by all
linear combinations of these basis functions is denoted V4, (e.g., Vi
contains all functions that are piecewise cubic, with simple knots at
the integers).

3.1 Hierarchical B-splines

Forsey and Bartels [9] introduced hierarchical B-splines as a way of
representing and modeling geometric objects hierarchically. Instead
of using only B-spline basis functions at a single resolution L, they
use a hierarchy of wider and wider B-spline functions

i j(t) = ¢(2" 't — j) (6)

for 0 < ¢ < L. For example, the basis functions ¢z ; at reso-
lution level L — 1 (with a support size of 8), are twice as wide as
the basis functions ¢r, ; at level L (with a support size of 4). These
basis functions, ¢ _1,;, span the space of piecewise cubic functions
with knots at all even integers; in wavelet terminology, this space is
called Vz_;. On each coarser level, the space V; has half as many
basis functions, and they are all twice as wide.

According to the well known B-spline knot insertion algo-
rithm [6, 9, 3] one can define double width B-spline basis functions
as linear combinations of single width B-spline basis functions.

bi1,; = th—Zj ik @)
k
where the sequence h is
14641
A ===, =, =, =
o4 ={g 5555 ®)

(see Figure (2)). As a result of Equation (7) the set of functions in
Vi_1 is a subset of the functions in V;.

VieiCV; &)

The basic idea of Forsey and Bartels is to allow the user to control
the coefficient of each of these basis functions ¢; ; by exposing a
control mesh at each level ¢.

3.2 Wavelets

Hierarchical B-splines {¢; j} do not form a basis for the function
space V1 ; they form an overrepresentation for all the curves in

2 A few extra basis functions are needed at the boundary. This paper will not discuss
the technical details needed to handle all of the boundary constraints. This is discussed
in many places including [4, 16, 8, 13].



V. In other words, there are many linear combinations of the
basis functions defining the same curve or surface. Wavelets are a
representation related to hierarchical B-splines, that form a basis;
in a wavelet basis, all curves in Vz have a unique representation.

Rather than add a new finer set of B-splines at each level of the
hierarchy, the idea is to look for a set of functions /s ; that “fills
in” the space between the adjacent B-spline spaces, V; and V1.
These wavelet functions ;,; represent the detail of the curve that
cannot be represented by the double width B-splines, ¢, ;. For each
1, the space of functions spanned by the v/; ; is called W;.

There is actually quite a bit of freedom in choosing these ¢ ;
functions, and hence the space W;, as long as every function in
Vi1 can be written as a combination of some function in V; and
some function in W;. This is notated as

Vigr = Vit W; (10)

Just like the Hierarchical B-splines are all scales and translates
of a single shape ¢(t), (see Equation (5)) in a wavelet basis, the
basis functions ;,; are all translates and scales of a single function
P(t). ,

i(t) = (2"t~ j) (1n

Also similar to hierarchical B-splines, in a wavelet basis, the
basis functions on one level can be defined by linearly combining
B-spline functions on the next finer resolution,

Vi1, = ng—Zj bik (12)

k

And as a result W;_; C V;. There is some degree of freedom
in choosing the sequence g, as long as the property expressed by
Equation (10) holds. One such sequence given by Cohen et al. [5]

is 3 (see Figure (3)).

Due to the relationships of Equations (7) and (12), if some
function X (¢) in V; has been expressed as a linear combination of
the B-spline basis function at level ¢ — 1 and wavelet basis functions
atlevel ¢ — 1, using coefficients notated by zy, _, ; and xy,_, ;,

X = @ory; Gt + T, Yirs(t)  (13)
i

then, z4 e the coefficients of the same function, with respect to
the B-spline basis at level ¢ may be found with

To;; = Zhj—% Toi_yp T Zgj—zk Loy (14)
k k

and now X(t) = Zj 1'¢i.j ¢i,j (t)

Inversely, if some function has been expressed with respect to
B-spline functions at level 7, then the representation of Equation
(13) may be found using the formula

LToi_y,; — Zﬁk*% Lo 1 (15)
k

ngfzj Lo 5 (16)
k

Lapi_1,;

using the proper inverse sequences § and k. Equation (15) projects
the high resolution curve from V; into the lower resolution space
Vi_1; this is, in some sense, a smoother approximation of the object

3 A different sequence is given by Chui [3] and generates a semi-orthogonal wavelet.
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Figure 2: Five B-splines ¢, ; may be combined using the weights
h to construct the double width B-spline ¢r.—1,0
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Figure 3: Eleven B-splines ¢, ; may be combined using the weights
g to construct the wavelet function ¢z, 10

in V;. Equation (16) captures the detail that is lost in this projection,
and represents it using a basis for the space W;_.
When using the i and g sequences given by Cohen et al [5], the

proper inverse sequences h and § are
~5 20 —1 —96 70 280 70 —96 —1 20 -5

h1=3-71 =355 356" 256 256 256" 256° 256" 256 256 256’ 256
1 -4 6 —4 1
gl3. 7 =4{=, —, =, —, = 17
g[ ] 87 8 787 8 78} ( )

3.3 The Basis

Every function in V7, expressed as a combination of the B-spline
basis functions {¢r,;}, can be expressed uniquely in the wavelet
basis is made up by the functions

{0, ¥ij} 0<i<L—1 18)

In the wavelet representation, the function is expressed hierarchi-
cally.

Transforming a function’s representation from B-spline to wavelet
coefficients may be done with the pyramid procedure coef_ pyrm up.
This procedure may be performed in linear time by successively ap-
plying the transformation of Equations (15) and (16). This linear
transformation may be denoted by the matrix W. The inverse trans-
formation (denoted by the matrix W), may be implemented with
the procedure coef_pyrm down, which succesively applies the
transformation of Equation (14).

If coef_pyrm_up is implemented using the h and g sequences
instead of the h and § sequences, then the resulting procedure may
be called basis_pyrm_ up, and it is represented by the matrix

w-T coef_pyrm down is implemented using the A and
g sequences instead of the h and g sequences, then the resulting
procedure may be called basis_pyrm down, and it is represented

by the matrix wT.

3.4 Surfaces

The ideas outlined above are easily extended to tensor product sur-
faces [3]. The uniform tensor product cubic B-spline basis is made



up of the functions ¢r, ; (s)@r « (t) The hierarchical uniform tensor
product cubic B-spline representation is made up of the functions
¢i,j(8)pik(t) for 0 < i < L. On each coarser resolution of the
hierarchy, there are 1/4 the amount of ¢ basis functions.

The tensor product B-spline wavelet basis is made up of the

functions *
0,5 (5)Po,r () Pij(s)ibik(F) (19)
Vi, (8)bik(t)  i,;(8)ik(t)

withiin {0...L — 1}.
Just like for curves, there are four pyramid procedures and
associated W matrices.

4 Geometric Modeling with Wavelets

The styles of interactive control discussed in the introduction will
be revisited in the context of hierarchical representations. Multires-
olution modeling allows the user to interactively modify the curve
or surface at different resolution levels. This allows the user to
make broad changes while maintaining the details, and conversely
detailed changes while maintaining the overall shape. Two types
of hierarchical manipulation are considered, control point dragging
and a direct manipulation involving solving a least squares problem.

In contrast, variational modeling allows the user to directly
manipulate the curve or surface with the curve or surface main-
taining some notion of overall smoothness subject to user imposed
constraints. This physically based paradigm provides an intuitive
means for shape control. Each of these paradigms will be explored
in the context of wavelet bases which will be shown to provide the
required hooks for such interaction and/or significant computational
savings.

4.1 Multiresolution Modeling

A multiresolution representation such as a hierarchical B-spline or
wavelet representation may be used to implement a multiresolution
modeling system. This section explores the choices that must be
made when designing a multiresolution tool. Two related methods
are described; direct control point manipulation and a least squares
solver.

In control point modeling, the user is allowed to directly alter
the coefficient values, by clicking and dragging on control points.
In the least squares scheme [1, 11], the user can click and drag
directly on the curve or surface, defining interpolation and tangent
constraints. The system returns the curve or surface that satisfies
these linear constraints (Ax = b), by changing the coefficients
by the least squares amount. Least square solutions can be found
very inexpensively using the pseudoinverse [11]. The least squared
problem can also be posed as a minimization problem [28], whose
solution can be found by solving a sparse, well conditioned, linear
system.

In multiresolution versions of these two schemes, the user
chooses the resolution level ¢, and then only the quantities of basis
functions on level 7 are altered. The locality of the effect on the
curve or surface is directly tied to the chosen level . In control
point modeling, the control polygon at level ¢ is manipulated by
the user. In a least squares scheme, the user is provided a direct
handle on the curve or surface itself, and the least squares solution
is found only using the basis functions on level i. The least-squares
approach offers a much more intuitive interface, and (for curves)
works at interactive speeds.

One decision to be made is whether to expose the user to hier-
archical B-splines or to wavelets. It is easy to see that manipulat-
ing wavelet basis functions does not produce an intuitive interface.
Moving such a control point, and thus changing the amount of some

“This basis is known as the non-standard basis [3].
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Figure 4: When B-spline coefficients are manipulated, the curve
responds in a “hump” like fashion. When wavelet coefficients are
manipulated, the curve responds in a “wave” like fashion.

Xyz

“he
Z

wavelets

ntb
B-splines

I
/\%
Th

7)1 1

Figure 5: When the (X,Y,Z) frame is used for wavelet multiresolu-
tion editing, detail maintains its orientation as the sweep is changed.
When the normal, tangent, bi-normal, (N ,T,B ) frame is used with
a wavelet representation, the detail does not maintain its structure
as the sweep is changed. When the (IV, T, B) frame is used with
a B-spline representation, the detail follows the orientation of the
curve.

wavelet basis function used, changes the solution in a “wave” like
fashion. In contrast, it is more intuitive to move a B-spline control
point which changes the solution in a “hump” like fashion (see Fig-
ure 4). Thus the user in this case should manipulate the hierarchical
B-spline functions.

4.2 Orientation

In the parametric representation, the curve or surface is represented
by three functions X, Y, Z. In the the multi-resolution paradigm,
when a user adds fine directional detail, say a fine hump in the
X direction, this detail will become locked in the originally chosen
direction. If the user later manipulates the broad sweep of the curve,
the detail will maintain its original direction (see Figure 5). This is
not always desirable, since the user may want the detail’s orientation
to follow the changing direction of broader curve or surface.

An “orientation” approach first proposed by Forsey and Bar-
tels [9] may be applied to the multiresolution editing scheme. In
a multiresolution modeling system all of the information describ-
ing the curve or surface lives at some resolution. In an orientation
approach, the information at each resolution ¢ is not expressed as
three independent functions of (X, Y, Z). Instead the detail at each
resolution ¢ is represented with respect to the geometric shape of
the lower resolution version of the curve or surface. This lower res-
olution version is defined by summing all of the information from
all the lower resolution levels.

Tangent and normal directions of the lower resolution curve or
surface are then computed at a series of sample points. The detail
coefficients at level ¢ are then expressed with respect to these tangent
and normal directions instead of the (X,Y, Z) directions. If any



lower resolution component of the curve is later explicitly altered,
then the detail’s orientation will change appropriately.

4.2.1 Defining Detail

In order to apply an orientation approach, one must have some
method for decomposing the object into components at different
resolutions. When one is using hierarchical B-splines, which over-
represent objects in V7, then there is some freedom in defining what
information resides at which level of detail.

If the geometric object is being designed with a multiresolution
editor, then the user is explicitly manipulating the object at resolu-
tions that he chooses. Therefore, one simple method is to maintain
all information at the resolution entered by the user [9]. Using this
method, the same geometric object may behave differently depend-
ing on the way the object was generated.

An alternative is to use wavelet analysis: begin with the com-
plete resolution object (in V7), and then successively project it to
each lower resolution level using Equation (15). This generates a
unique smoothed version of the object at each resolution V;. The
object can now be represented as a combination of components
from the difference spaces W;.

In typical wavelet analysis, the components in W; are repre-
sented using some special basis functions 13, ; that span the differ-
ence space W;. Alternatively, instead of using wavelet functions
1;,; to represent the difference, one may instead use the B-spline
functions on the next finer level ¢;4, ;. This can be done because
of Equation (12). The choice of whether to use B-spline or wavelets
to represent the functions in W; is an important question that we
shall deal with soon.

4.2.2 Projections between Levels

There are many ways to obtain a lower resolution version of some
object from V7. For example, given an object in V7, one could
obtain a lower resolution version in Vz,_; by throwing away every
other control point. Subsampling is not a true projection; starting
with a smooth curve in Vz_;, and then expressing that smooth
curve in the higher resolution B-spline basis basis V7, and finally
subsampling the control points will not return the original smooth
curve we began with.

Another way of obtaining a smoothed version of the object
is by orthogonally projecting the object from V7 into Vz_;. The
orthogonal projection is the object in Vz_; that is closest to object in
V1 using the L” measure. One may ‘obtain the orthogonal projection
by using Equation (15), with the h sequence given for the semi-
orthogonal wavelet construction by Chui [3]. This is the approach
used in [8]. Although this is a very elegant way of obtaining a
lower resolution version of an object, it has a few drawbacks. This
particular h sequence is infinite in length (although it does decay
rapidly from its centers) and so performing this task efficiently can
be troublesome. Also, because these sequences are not local, then
a single change to one B-spline coefficient at level L will alter all
of the coefficients of the projection at level L — 1.

One good compromise between these two extremes (subsam-
pling, and orthogonal projection), is to use Equation (15) but to use
the h filter given for the non-orthogonal wavelet construction by
Cohen et al. [5]. This projection in non-orthogonal, but it is en-
tirely local. This is the choice we have used in our multiresolution
modeling tool.

4.2.3 Representing Detail

What set of basis functions should be used to represent the detail.
If a wavelet projection Equation (15) is used to define the lower
resolution versions of the object, then the detail can be represented

by using the corresponding wavelet functions. The other option is
to represent the detail using hierarchical B-spline functions. The
disadvantage of using hierarchical B-splines is that there are roughly
2n B-splines in the hierarchy, and only n wavelets.

The advantage of using hierarchical B-splines however is that
they maintain the orientation better. When the user changes the
broad sweep of the curve, changing the tangent, normal, and bi-
normal frame at ¢;, the detail functions are remixed. If the de-
tail functions are wavelet functions, then changing the normal and
tangent frame remixes “wave” shaped functions introducing non-
intuitive wiggles. If the detail functions are B-spline basis functions,
then “hump” shaped functions get remixed, yieding more intuitive
changes. Also if the detail functions are B-splines, then because
there are twice as many B-splines than wavelets, the tangent and
normal directions are computed at twice as many sample points
allowing the detail to follow the orientation with more fidelity (see
Figure 5).

5 Variational Modeling

The variational modeling paradigm generalizes the least squares
notion to any objective function minimization, typically one repre-
senting minimizing curvature. The variational problem leads to a
non-linear optimization problem over a finite set of variables when
cast into a given basis.

There are a variety of objective functions used in geometric
modeling [21, 24] In our implementation we have used the thin-plate
measure which is based on parametric second derivatives [27, 2, 28].
The thin plate minimum may be found by solving the following
linear system [28].

H AT
A 0

0
g

Where A is the constraint matrix, H is the Hessian matrix, and A
are Lagrange variables.

5.1 Hierarchical Conditioning

Wavelets can be used in the context of variational modeling so that
the solution may be obtained more efficiently.

In the B-spline basis, the optimization procedure resulted in
the linear system given by Equation (20). In the wavelet basis, a
different linear system results which is given by

H AT || x
A 0 ||

0
gl w

where the bars signify that the variables are wavelet coefficients,
X = Wx, and the Hessian and constraint matrix are expressed with
respect to the wavelet basis. To see the relationship with the B-
spline system, the new system can also be written down as

X
A

w-Taw-1 w-TAT
Aw-1 0

0
i

Although Equation (20) and Equation (21/22) imply each other,
they are two distinct linear systems of equations. Because the
wavelet system (21/22) is hierarchical it will not suffer from the
poor conditioning of the B-spline system of Equation (20). For a
rigorous discussion of the relevant theory see [7].

The scaling of the basis functions is very significant for the
behavior of the optimizing procedures. Traditionally the wavelet
functions are defined with the following scaling [19, 22]:



z(ifL)/Z ¢(2(7,7L)t _ ])
2072 2B — ) (23)

$i,;(t)
i, (t)

This means that at each level moving up, the basis functions
become twice as wide, and are scaled Lz times as tall. While in
many contexts this normalizing may be desirable, for optimization
purposes it is counter productive. For the optimization procedure
to be well conditioned [15, 7] it is essential to emphasize the coarser
levels. The correct theoretical scaling depends on both the energy
function used, and the dimension of problem. For a fuller discus-
sion, see the Appendix in [13]. In the experiments described in this
paper the following scaling was used

gi(t) = 27071 0Pt — )
i (t) T ) (24)

This means that as one goes from level ¢ to level ¢ — 1 the basis
functions become twice as wide, and 1/2 as tall. In the pyramid
code, this is achieved by multiplying all of the & and g entries by 2,
and all of the A and § by 1/2°.

5.1.1 Explicit vs. Implicit

There is now a choice to make. In an iterative conjugate gradient
solver, the common operation is multiplication of a vector times the
wavelet matrix given in Equations (21/22). There are two ways to
implement this.

One approach, the explicit approach, is to compute and store
the wavelet Hessian matrix H and the wavelet constraint matrix
A (Equation (21)). These can be computed directly from a closed
form (piecewise polynomial) representation of the wavelet functions
1;,;. Unfortunately, these matrices are not as sparse as the B-spline
Hessian and constraint matrices.

Alternatively, there is the implicit approach [29, 25] which only
computes and stores the entries of the B-spline matrices H and A
(Equation (22)). Multiplication by the W matrices is accomplished
using the pyrm procedures. The advantage of this approach is that
the whole multiply remains O(n) in both time and space, since
the pyrm procedures run in linear time, and the matrices H and
A are O(n) sparse. Even though one of the methods explicitly
uses wavelet terms while the other uses B-spline terms, these two
methods are mathematically equivalent, and so both will have the
same condition properties.

5.2 Adaptive Oracle

By limiting the possible surfaces to only those that can be ex-
pressed as a linear combination of a fixed set of basis functions,
one obtains an approximation of the true optimal surface. As more
basis functions are added, the space of possible solutions becomes
richer and a closer approximation to the true optimal surface can
be made. Unfortunately, as the space becomes richer, the number
of unknown coefficients increases, and thus the amount of compu-
tation required per iteration grows. A priori, it is unknown how
many basis functions are needed. Thus, it is desirable to have
a solution method that adaptively chooses the appropriate basis
functions. This approach was applied using hierarchical B-splines
in [28]. When refinement was necessary, “thinner” B-splines basis
functions were added, and the redundant original “wider” B-splines

SThe proper scaling is essential to obtain the quick convergence of the wavelet
method when steepest descent or conjugate gradient iteration is used. Scaling is
not important with Gauss-Seidel iteration, which will perform the same sequence of
iterations regardless of scale.

were removed. With wavelets, all that must be done is to add in
new “thinner” wavelets wherever refinement is deemed necessary.
Since the wavelets coefficients correspond directly to local detail,
all previously computed coefficients are still valid.

The decision process of what particular wavelets to add and
remove is governed by an oracle procedure which is called after
every fixed number of iterations. The oracle must decide what level
of detail is required in each region of the curve or surface.

When some region of the solution does not need fine detail, the
corresponding wavelet coefficients are near zero, and so the first
thing the oracle does is to deactivate the wavelet basis functions
whose corresponding coefficients are below some small threshold.
The oracle then activates new wavelet basis functions where it
feels more detail may be needed. There are two criteria used. If
a constraint is not being met, then the oracle adds in finer wavelet
functions in the region that is closest in parameter space to the
unmet constraint. Even if all the constraints are being met, it is
possible that more basis functions would allow the freedom to find a
solution with lower energy. This is accomplished by activating finer
basis functions near those with coefficients above some maximum
threshold.

To avoid cycles, a basis function is marked as being dormant
when it is removed from consideration. Of course, it is possible
that later on the solution may really need this basis function, and so
periodically there is a revival phase, where the dormant marks
are removed.

5.3 User Interface

A user of the system is first presented with a default curve or surface.
Constraints can then be introduced by clicking on the curve or
surface with the mouse. The location of the mouse click defines a
parametric position ¢ (and s) on the curve (or surface). The user
can then drag this point to a new location to define an interpolation
constraint. Tangent constraints at a point can also be defined by
orienting “arrow” icons at the point. Once the constraint is set,
the solver is called to compute the minimum energy solution that
satisfies the constraints placed so far. Resulting curves and surfaces
are displayed using SGI GL nurbscurve and nurbssurface
calls ®.

When the solution is completed, the result provides information
for not only the curve or surface satisfying the specific value of the
new constraint, but for all curves or surfaces with respect to any
value of this constraint. Once the linear system (Equation (21/22))
with the newest constraint has been solved, the solver stores the
delta vector

Ax
Abm

where m is the index of the newest constraint, and by, is the con-
straint value (i.e., the position or tangent specified by the user).
This vector stores the change of the coefficient vector due to a unit
change in the new constraint Abm, essentially a column of the
inverse matrix. The user is now free to interactively move the tar-
get location of the constraint without having to resolve the system
since, as long as the parameters s, and ¢ of the constraints do not
change, the matrix of the system, and thus its inverse, do not change.
However, as soon as a new constraint is added (or a change to the
parameters s and ¢ is made) there is fresh linear system that must
be solved, and all of the delta vectors are invalidated. The ability
to interactively change the value of a constraint is indicated to the
user by coloring the constraint icon. See Color Plate.

(25)

®One GL call to nurbssur£ace can be more expensive than a complete iteration.
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Figure 6: Error per time. Curve with 65 control points, 3, 7, and 13
constraints.

5.4 Variational Modeling Results

A series of experiments were conducted to examine the performance
of the wavelet based system compared to a B-spline basis. In the
curve experiments, the number of levels of the hierarchy, L, was
fixed to 6, and in the surface experiments, L was fixed as 5. The op-
timization process was then run on problems with different numbers
of constraints. The results of these tests are shown in Figures 6 and
7. These graphs show the convergence behavior of three different
methods, solving with the complete B-spline basis, solving with
the complete wavelet basis, and solving with an adaptive wavelet
basis that uses an oracle. (The wavelet results shown here are using
the implicit implementation). If x(™ is the computed solution
expressed as B-spline coefficients at time m, and x" is the correct
solution of the complete linear system ’ (i.e., the complete system
with 2% + 1 variables, and no adaptive oracle being used) then the
error at time m is defined as

>, Loy —ai™ |

(26)
Z]' | 1'; - 1'5'0) |

To obtain the starting condition x(o), two constraints were ini-
tialized at the ends of the curve, and the minimal thin plate solution
(which in this case is a straight line) was computed. (For surfaces,
the four corners were constrained.) All times were taken from runs
on an SGI R4000 reality engine. ®

When the are a large gaps between the constraints, the B-spline
method is very poorly conditioned, and converges quite slowly
while the wavelet method converges dramatically faster. In these
problems, the oracle decides that it needs only a very small active
set of wavelets and so the adaptive method converges even faster.
As the number of constraints is increased, the solution becomes
more tightly constrained, and the condition of the B-spline system

’computed numerically to high accuracy

®In the curve experiments, each B-spline iteration took 0.0035 seconds, while
each iteration of the implicit wavelet method took 0.011 seconds. For the surface
experiments, each B-spline iteration took 0.68 seconds while each iteration of the
implicit wavelet method took 0.85 seconds. (The wavelet iterations using the explicit
representation took about 10 times as long).
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Figure 7: Error per time. Surface with 1089 control points, 11,23,64
evenly space constraints, and 62 constraints along the boundary.

improves. (Just by satisfying the constraints, the B-spline solution
is very close to minimal energy). Meanwhile the oracle requires a
larger active set of wavelets. Eventually, when enough constraints
are present, the wavelet methods no longer offer an advantage over
B-splines.

Experiments were also run where all the constraints were along
the boundary of the surface. In these experiments there are many
constraints, but the since the constraints are along the boundary,
much of the surface is “distant” from any constraint. In these
problems, the wavelets also performed much better than the B-
spline method.

6 Conclusion

This paper has explored the use of wavelet analysis in a variety
of modeling settings. It has shown how wavelets can be used to
obtain multiresolution control point and least squares control. It
has shown how wavelets can be used to solve variational problems
more efficiently.

Future work will be required to explore the use of higher order
functionals like those given in [21, 24]. Because the optimiza-
tion problems resulting from those functionals are non-linear, they
are much more computationally expensive, and it is even more
important to find efficient methods. It is also important to study op-
timization modeling methods where constraint changes only have
local effects.

Many of these concepts can be extended beyond the realm of
tensor product uniform B-splines. Just as one can create a ladder of
nested function spaces V; satisfying the property of Equation (10)
using uniform cubic B-splines of various resolutions, one can also
create a nested ladder using non-uniform B-splines [18].

Subdivision surfaces are a powerful technique for describing
surfaces with arbitrary topology [14]. A subdivision surface is
defined by iteratively refining an input control mesh. As explained
by Lounsbery et al. [17], one can develop a wavelet decomposition
of such surfaces. Thus, many of the ideas developed in this paper
may be applicable to that representation as well.
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