
Vectorization vs. Compilation in Query Execution

Juliusz Sompolski1
VectorWise B.V.

julek@vectorwise.com

Marcin Zukowski
VectorWise B.V.

marcin@vectorwise.com

Peter Boncz2

Vrije Universiteit Amsterdam
p.a.boncz@vu.nl

ABSTRACT

Compiling database queries into executable (sub-) programs
provides substantial benefits comparing to traditional inter-
preted execution. Many of these benefits, such as reduced
interpretation overhead, better instruction code locality, and
providing opportunities to use SIMD instructions, have pre-
viously been provided by redesigning query processors to
use a vectorized execution model. In this paper, we try to
shed light on the question of how state-of-the-art compila-
tion strategies relate to vectorized execution for analytical
database workloads on modern CPUs. For this purpose, we
carefully investigate the behavior of vectorized and compiled
strategies inside the Ingres VectorWise database system in
three use cases: Project, Select and Hash Join. One of the
findings is that compilation should always be combined with
block-wise query execution. Another contribution is iden-
tifying three cases where “loop-compilation” strategies are
inferior to vectorized execution. As such, a careful merging
of these two strategies is proposed for optimal performance:
either by incorporating vectorized execution principles into
compiled query plans or using query compilation to create
building blocks for vectorized processing.

1. INTRODUCTION
Database systems provide many useful abstractions such

as data independence, ACID properties, and the possibil-
ity to pose declarative complex ad-hoc queries over large
amounts of data. This flexibility implies that a database
server has no advance knowledge of the queries until run-
time, which has traditionally led most systems to implement
their query evaluators using an interpretation engine. Such
an engine evaluates plans consisting of algebraic operators,
such as Scan, Join, Project, Aggregation and Select. The op-
erators internally include expressions, which can be boolean

1This work is part of a MSc thesis being written at Vrije
Universiteit Amsterdam.
2The author also remains affiliated with CWI Amsterdam.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Proceedings of the Seventh International Workshop on Data Management

on New Hardware (DaMoN 2011), June 13, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0658-4 ...$10.00.

conditions used in Joins and Select, calculations used to in-
troduce new columns in Project, and functions like MIN,
MAX and SUM used in Aggregation. Most query inter-
preters follow the so-called iterator-model (as described in
Volcano [5]), in which each operator implements an API that
consists of open(), next() and close() methods. Each next()
call produces one new tuple, and query evaluation follows a
“pull” model in which next() is called recursively to traverse
the operator tree from the root downwards, with the result
tuples being pulled upwards.

It has been observed that the tuple-at-a-time model leads
to interpretation overhead: the situation that much more
time is spent in evaluating the query plan than in actually
calculating the query result. Additionally, this tuple-at-a-
time interpretation model particularly affects high perfor-
mance features introduced in modern CPUs [13]. For in-
stance, the fact that units of actual work are hidden in the
stream of interpreting code and function calls, prevents com-
pilers and modern CPUs from getting the benefits of deep
CPU pipelining and SIMD instructions, because for these
the work instructions should be adjacent in the instruction
stream and independent of each other.

Related Work: Vectorized execution. MonetDB [2]
reduced interpretation overhead by using bulk processing,
where each operator would fully process its input, and only
then invoking the next execution stage. This idea has been
further improved in the X100 project [1], later evolving into
VectorWise, with vectorized execution. It is a form of block-
oriented query processing [8], where the next() method rather
than a single tuple produces a block (typically 100-10000)
of tuples. In the vectorized model, data is represented as
small single-dimensional arrays (vectors), easily accessible
for CPUs. The effect is (i) that the percentage of instruc-
tions spent in interpretation logic is reduced by a factor
equal to the vector-size, and (ii) that the functions that per-
form work now typically process an array of values in a tight
loop. Such tight loops can be optimized well by compilers,
e.g. unrolled when beneficial, and enable compilers to gener-
ate SIMD instructions automatically. Modern CPUs also do
well on such loops, as function calls are eliminated, branches
get more predictable, and out-of-order execution in CPUs
often takes multiple loop iterations into execution concur-
rently, exploiting the deeply pipelined resources of modern
CPUs. It was shown that vectorized execution can improve
data-intensive (OLAP) queries by a factor 50.

Related Work: Loop-compilation. An alternative strat-
egy for eliminating the ill effects of interpretation is using
Just-In-Time (JIT) query compilation. On receiving a query

33

for the first time, the query processor compiles (part of) the
query into a routine that gets subsequently executed. In
Java engines, this can be done through the generation of
new Java classes that are loaded using reflection (and JIT
compiled by the virtual machine) [10]. In C or C++, source
code text is generated, compiled, dynamically loaded, and
executed. System R originally skipped compilation by gen-
erating assembly directly, but the non-portability of that
approach led to its abandonment [4]. Depending on the
compilation strategy, the generated code may either solve
the whole query (“holistic” compilation [7]) or only certain
performance-critical pieces. Other systems that are known
to use compilation are ParAccel [9] and the recently an-
nounced Hyper system [6]. We will generalise the current
state-of-the-art using the term“loop-compilation”strategies,
as these typically try to compile the core of the query into a
single loop that iterates over tuples. This can be contrasted
with vectorized execution, which decomposes operators in
multiple basic steps, and executes a separate loop for each
basic step (“multi-loop”).

Compilation removes interpretation overhead and can lead
to very concise and CPU-friendly code. In this paper, we
put compilation in its most favourable light by assuming
that compilation-time is negligible. This is often true in
OLAP queries which tend do be rather long-running, and
technologies such as JIT in Java and the LLVM framework
for C/C++ [12] nowadays provide low (milliseconds) laten-
cies for compiling and linking.

Roadmap: vectorization vs. compilation. Vectorized
expressions process one or more input arrays and store the
result in an output array. Even though systems like Vec-
torWise go through lengths to ensure that these arrays are
CPU cache-resident, this materialization constitutes extra
load/store work. Compilation can avoid this work by keep-
ing results in CPU registers as they flow from one expression
to the other. Also, compilation as a general technique is or-
thogonal to any execution strategy, and can only improve
performance. We used the VectorWise DBMS3 to inves-
tigate three interesting use cases that highlight the issues
around the relationship between compilation and vectoriza-
tion.

As our first case, Section 2 shows how in Project expres-
sion calculations loop-compilation tends to provide the best
results, but that this hinges on using block-oriented pro-
cessing. Thus, compiling expressions in a tuple-at-a-time
engine may improve some performance, but falls short of
the gains that are possible. In Section 3, our second case
is Select, where we show that branch mispredictions hurt
loop-compilation when evaluating conjunctive predicates. In
contrast, the vectorized approach avoids this problem as it
can transform control-dependencies into data-dependencies
for evaluating booleans (along [11]). The third case in Sec-
tion 4 concerns probing large hash-tables, using a HashJoin
as an example. Here, loop-compilation gets CPU cache miss
stalled while processing linked lists (i.e., hash bucket chains).
We show that a mixed approach that uses vectorization for
chain-following is fastest, and robust to the various parame-
ters of the key lookup problem. These findings lead to a set
of conclusions which we present in Section 5.

3See www.ingres.com/vectorwise. Data storage and query
evaluation in VectorWise is based on the X100 project [1].

Algorithm 1 Implementation of an example query using
vectorized and compiled modes. Map-primitives are stat-
ically compiled functions for combinations of operations
(OP), types (T) and input formats (col/val). Dynamically
compiled primitives, such as c000(), follow the same pat-
tern as pre-generated vectorized primitives, but may take
arbitrarily complex expressions as OP.

// General vec tor i z ed pr imi t i ve pat tern
map OP T col T col (idx n ,T∗ res ,T∗ col1 ,T∗ co l 2){

for (int i =0; i<n ; i++)
r e s [i]=OP(co l 1 [i] , c o l 2 [i]) ;

}

// The micro−benchmark uses data stored in :
const idx LEN=1024;
chr tmp1 [LEN] , tmp2 [LEN] , one = 100 ;
sht tmp3 [LEN] ;
int tmp4 [LEN] ; // f i n a l r e s u l t

// Vectorized code :
map add chr va l ch r co l (LEN, tmp1,&one , l d i s c o un t) ;
map sub ch r va l ch r co l (LEN, tmp2,&one , l t a x) ;
map mul ch r co l ch r co l (LEN, tmp3 , tmp1 , tmp2) ;
map mu l i n t c o l s h t c o l (LEN, tmp4 , l e x t p r i c e , tmp3) ;

// Compiled equ iva l en t of t h i s express ion :
c000 (idx n , int ∗ res , int ∗ col1 , chr∗ col2 , chr∗ co l 3){

for (idx i =0; i<n ; i++)
r e s [i]= co l 1 [i]∗((100− co l 2 [i])∗(100+ co l3 [i])) ;

}

2. CASE STUDY: PROJECT
Inspired by the expressions in Q1 of TPC-H we focus on

the following simple Scan-Project query as micro-benchmark:

SELECT l_extprice*(1-l_discount)*(1+l_tax) FROM lineitem

The scanned columns are all decimals with precision two.
VectorWise represents these internally as integers, using the
value multiplied by 100 in this case. After scanning and de-
compression it chooses the smallest integer type that, given
the actual value domain, can represent the numbers. The
same happens for calculation expressions, where the desti-
nation type is chosen to be the minimal-width integer type,
such that overflow is prevented. In the TPC-H case, the
price column is a 4-byte integer and the other two are single-
byte columns. The addition and subtraction produce again
single bytes, their multiplication a 2-byte integer. The fi-
nal multiplication multiplies a 4-byte with a 2-byte integer,
creating a 4-byte result.

Vectorized Execution. VectorWise executes functions
inside a Project as so-called map-primitives. Algorithm 1
shows the example code for a binary primitive. In this, chr,
sht, int and lng represent internal types for 1-, 2-, 4- and
8-byte integers and idx represents an internal type for rep-
resenting sizes, indexes or offsets within columns of data
(implemented as integer of required width). A val suffix in
the primitive name indicates a constant (non-columnar) pa-
rameter. VectorWise pre-generates primitives for all needed
combinations of operations, types and parameter modes. All
functions to support SQL fit in ca. 9000 lines of macro-
code, which expands into roughly 3000 different primitive
functions producing 200K LOC and a 5MB binary.

It is reasonable to expect that a compiler that claims sup-
port for SIMD should be able to vectorize the trivial loop in
the map_ functions. On x86 systems, gcc (we used 4.5.1) usu-
ally does so and the Intel compiler icc never fails to. With

34

1
2

5
1

0
2

0
5

0

Vector size

C
y
c
le

s
 p

e
r

tu
p

le
 (

lo
g

 s
c
a

le
)

1 2 4 8 32 128 512 2K 8K 32K 128K 1M 4M

Comp.

per tuple

Interpreted

Vectorized, SIMD

Compiled, SIMD

Vectorized, no−SIMD

Compiled, no−SIMD

Vectorized, SIMD−sht

Compiled, SIMD−sht

Figure 1: Project micro-benchmark: with and

without {compilation, vectorization, SIMD}. The

“SIMD-sht” lines work around the alignment sub-

optimality in icc SIMD code generation.

a single SSE instruction, modern x86 systems can add and
subtract 16 single-byte values, multiply 8 single-byte inte-
gers into a 2-byte result, or multiply four 4-byte integers.
Thus, 16 tuples in this expression could be processed with 8
SIMD instructions: one 8-bit addition, one 8-bit subtraction,
two 8-bit multiplications with 16-bit results, and four 32-bit
multiplications. All of these instructions store one result
and the first two operations load one input (with the other
parameter being a constant) while the other two load two
inputs. With these 22 (2*2+6*3) load/stores, we roughly
need 30 instructions – in reality some additional instruc-
tions for casts, padding and looping are required, such that
the total for processing 16 tuples is around 60. In compari-
son, without SIMD we would need 4 instructions (2 loads, 1
calculation, 1 store) per calculation such that a single tuple
requires 16 instructions, > 4 times more than with SIMD.

The vectorized “SIMD” and “no-SIMD” lines in Figure 1,
show an experiment in which expression results are calcu-
lated, using different vector-sizes. We used a 2.67GHz Ne-
halem core, on a 64-bits Linux machine with 12GB of RAM.
The no-SIMD vectorized code, produced by explicitly dis-
abling SIMD generation in the compiler (icc 11.04, here), is
indeed 4 times slower than SIMD. The general trend of de-
creasing interpretation overhead with increasing vector-size
until around one thousand, and performance deteriorating
due to cache misses if vectors start exceeding the L1 and L2
caches, has been described already in detail in [13, 1].

Compiled Execution. The lower part of Algorithm 1
shows the compiled code that a modified version of Vector-

4Compiler options are -O3 for gcc, supplemented for icc with
-xSSE4.2 -mp1 -unroll

Wise can now generate on-the-fly: it combines vectorization
with compilation. Such a combination in itself is not new
(“compound primitives” [1]), and the end result is similar
to what a holistic query compiler like HIQUE [7] generates
for this Scan-Project plan, though it would also add Scan
code. However, if we assume a HIQUE with a simple main-
memory storage system and take l_tax, etc. to be pointers
into a column-wise stored table, then c000() would be the
exact product of a “loop-compilation” strategy.

The main benefit of the compiled approach is the absence
of load/stores. The vectorized approach needs 22 load/s-
tores, but only the bottom three loads and top-level store
are needed by the compiled strategy. Comparing vectorized
with compiled, we are surprised to see that the vectorized
version is significantly faster (4 vs. 2 cycles/tuple). Close
investigation of the generated code revealed that icc chooses
in its SIMD generation to align all calculations on the widest
unit (here: 4-byte integers). Hence, the opportunities for 1-
byte and 2-byte SIMD operations are lost. Arguably, this is
a compiler bug or sub-optimality.

In order to show what compilation could achieve, we re-
tried the same, now assuming that l_extprice would fit into
a 2-byte integer; which are the “SIMD-sht” lines in in Fig-
ure 1. Here, we see compilation beating vectorized execu-
tion, as one would normally expect in Project tasks. A final
observation is that compiled map-primitives are less sensi-
tive to cache size (only to L2, not L1), such that a hybrid
vectorized/compiled engine can use large vector-sizes.

Tuple-at-a-time compilation. The black star and dia-
mond in Figure 1, correspond to situations where primitive
functions work tuple-at-a-time. The non-compiled strategy
is called “interpreted”, here. An engine like MySQL, whose
whole iterator interface is tuple-at-a-time, can only use such
functions as it has just one tuple to operate on at any mo-
ment in time. Tuple-at-a-time primitives are conceptually
very close to the functions in Algorithm 1 with vector-size
n=1, but lack the for-loop. We implemented them separately
for fairness, because these for-loops introduce loop-overhead.
This experiment shows that if one would contemplate intro-
ducing compilation in an engine like MySQL without break-
ing its tuple-at-a-time operator API, the gain in expression
calculation performance could be a factor 3 (23 vs 7 cycle/tu-
ple). The absolute performance is clearly below what block-
wise query processing offers (7 vs 1.2cycle/tuple), mainly
due to missed SIMD opportunities, but also because the
virtual method call for every tuple inhibits speculative exe-
cution across tuples in the CPU. Worse, in tuple-at-a-time
query evaluation function primitives in OLAP queries only
make up a small percentage (<5%) of overall time [1], be-
cause most effort goes into the tuple-at-a-time operator APIs.
The overall gain of using compilation without changing the
tuple-at-a-time nature of a query engine can therefore at
most be a few percent, making such an endeavour question-
able.

3. CASE STUDY: SELECT
We now turn our attention to a micro-benchmark that

tests conjunctive selections:

WHERE col1 < v1 AND col2 < v2 AND col3 < v3

Selection primitives shown in Algorithm 2 create vectors
of indexes for which the condition evaluates to true, called

35

Algorithm 2 Implementations of < selection primitives.
All algorithms return the number of selected items (re-
turn j). For mid selectivities, branching instructions lead
to branch mispredictions. In a vectorized implementation
such branching can be avoided. VectorWise dynamically se-
lects the best method depending on the observed selectivity,
but in the micro-benchmark we show the results for both
methods.

// Two vec tor i z ed implementations
// (1 .) medium s e l e c t i v i t y : non−branching code
idx s e l l t T c o l T v a l (idx n ,T∗ res ,T∗ col1 ,T∗val2 ,

idx∗ s e l){
i f (s e l== NULL) {

for (idx i =0, idx j =0; i<n ; i++) {
r e s [j] = i ; j += (co l 1 [i] < val2 [0]) ;

}
} else {

for (idx i =0, idx j =0; i<n ; i++) {
r e s [j] = s e l [i] ; j += (co l 1 [s e l [i]] < ∗ val2) ;

}
}
return j ;

}
// (2 .) e l s e : branching s e l e c t i on
idx s e l l t T c o l T v a l (idx n ,T∗ res ,T∗ col1 ,T∗val2 ,

idx∗ s e l){
i f (s e l==NULL) {

for (idx i =0, idx j =0; i<n ; i++)
i f (co l 1 [i] < ∗ val2) r e s [j++] = i ;

} else {
for (idx i =0, idx j =0; i<n ; i++)

i f (co l 1 [s e l [i]] < ∗ val2) r e s [j++] = s e l [i] ;
}
return j ;

}

// Vectorized conjunction implementation :
const idx LEN=1024;
idx s e l 1 [LEN] , s e l 2 [LEN] , r e s [LEN] , ret1 , ret2 , r e t3 ;
r e t1 = s e l l t T c o l t v a l (LEN, se l1 , co l1 ,&v1 ,NULL) ;
r e t2 = s e l l t T c o l t v a l (ret1 , s e l 2 , co l1 ,&v1 , s e l 1) ;
r e t3 = s e l l t T c o l t v a l (ret2 , res , co l1 ,&v1 , s e l 2) ;

selection vectors. Selection primitives can also take a selec-
tion vector as parameter, to evaluate the condition only on
elements of the vectors from the positions pointed to by the
selection vector 5. A vectorized conjunction is implemented
by chaining selection primitives with the output selection
vector of the previous one being the input selection vector
of the next one, working on a tightening subset of the origi-
nal vectors, evaluating this conjunction lazily only on those
elements for which the previous conditions passed.

Each condition may be evaluated with one of two imple-
mentations of selection primitive. The naive “branching”
implementation of selection evaluates conditions lazily and
branches out if any of the predicates fails. If the selectivity
of conditions is neither very low or high, CPU branch predic-
tors are unable to correctly guess the branch outcome. This
prevents the CPU from filling its pipelines with useful future
code and hinders performance. In [11] it was shown that a
branch (control-dependency) in the selection code can be
transformed into a data dependency for better performance.

The sel_lt functions in Algorithm 2 contain both ap-
proaches. The VectorWise implementation of selections uses
a mechanism that chooses either the branch or non-branch

5In fact, other primitives are also able to work with selection
vectors, but it was removed from code snippets where not
necessary for the discussed experiments.

Algorithm 3 Four compiled implementations of a con-
junctive selection. Branching cannot be avoided in loop-
compilation, which combines selection with other opera-
tions, without executing these operations eagerly. The four
implementations balance between branching and eager com-
putation.

// (1 .) a l l p red ica te s branching (” la zy ”)
idx c0001 (idx n ,T∗ res ,T∗ col1 ,T∗ col2 ,T∗ col3 ,

T∗ v1 , T∗ v2 , T∗ v3) {
idx i , j =0;
for (i =0; i<n ; i++)

i f (co l 1 [i]<∗v1 && co l2 [i]<∗v2 && co l3 [i]<∗v3)
r e s [j++] = i ;

return j ; // return number of s e l e c t e d items .
}

// (2 .) branching 1 ,2 , non−br . 3
idx c0002 (idx n ,T∗ res ,T∗ col1 ,T∗ col2 ,T∗ col3 ,

T∗ v1 , T∗ v2 , T∗ v3) {
idx i , j =0;
for (j =0; i<n ; i++)

i f (co l 1 [i]<∗v1 && co l2 [i] < ∗v2) {
r e s [j] = i ; j += co l3 [i] < ∗v3 ;

}
return j ;

}

// (3 .) branching 1 , non−br . 2 ,3
idx c0003 (idx n ,T∗ res ,T∗ col1 ,T∗ col2 ,T∗ col3 ,

T∗ v1 , T∗ v2 , T∗ v3) {
idx i , j =0;
for (i =0; i<n ; i++)

i f (co l 1 [i]<v1) {
r e s [j] = i ; j += co l2 [i]<∗v2 & co l3 [i]<∗v3

}
return j ;

}

// (4 .) non−branching 1 ,2 ,3 , (”compute−a l l ”)
idx c0004 (idx n ,T∗ res ,T∗ col1 ,T∗ col2 ,T∗ col3 ,

T∗ v1 , T∗ v2 , T∗ v3) {
idx i , j =0;
for (i =0; i<n ; i++) {

r e s [j] = i ;
j += (co l 1 [i]<∗v1 & co l2 [i]<∗v2 & co l3 [i]<∗v3)

}
return j ;

}

strategy depending on the observed selectivity 6. As such, its
performance achieves the minimum of the vectorized branch-
ing and non-branching lines in Figure 2.

In this experiment, each of the columns col1, col2, col3
is an integer column, and the values v1, v2 and v3 are con-
stants, adjusted to control the selectivity of each condition.
Here, we keep the selectivity of each branch equal, hence to
the cube root of the overall selectivity, which we vary from
0 to 1. We performed the experiment on 1K input tuples.

Figure 2 shows that compilation of conjunctive Select is
inferior to the pure vectorized approach. The lazy compiled
program does slightly outperform vectorized branching, but
for the medium selectivities branching is by far not the best
option. The gist of the problem is that the trick of (i) con-
verting all control dependencies in data dependencies while
still (ii) avoiding unnecessary evaluation, cannot be achieved
in a single loop. If one avoids all branches (the“compute-all”
approach in Algorithm 3), all conditions always get evalu-
ated, wasting resources if a prior condition already failed.

6It even re-orders dynamically the conjunctive predicates
such that the most selective is evaluated first.

36

0
5

1
0

1
5

2
0

2
5

C
y
c
le

s
 p

e
r

tu
p

le

Vectorized, branching

Vectorized, non−branching

Comp., if(1 && 2 && 3){} (lazy)

Comp., if(1 && 2) { 3 non−br }

Comp., if(1) { 2&3 non−br }

Comp., 1&2&3 non−br. (compute all)

0
2

0
0

4
0

0
6

0
0

8
0

0

Selectivity of each condition

T
o

ta
l
b

r.
 m

is
p
.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 2: Conjunction of selection conditions: total

cycles and branch mispredictions vs. selectivity

One can try mixed approaches, branching on the first pred-
icates and using data dependency on the remaining ones.
They perform better in some selectivity ranges, but main-
tain the basic problems – their worst behavior is when the
selectivity after branching predicates is around 50%.

4. CASE STUDY: HASH JOIN
Our last micro-benchmark concerns Hash Joins:

SELECT build.col1, build.col2, build.col3
WHERE probe.key1 = build.key1 AND probe.key2 = build.key2
FROM probe, build

We focus on an equi-join condition involving keys consist-
ing of two (integer) columns, because such composite keys
are more challenging for vectorized executors. This discus-
sion assumes simple bucket-chaining, such as used in Vec-
torWise, presented in Figure 3. This means that keys are
hashed on buckets in an array B with size N which is a power
of two. Each bucket contains the offset of a tuple in a value
space V . This space can either be organized using DSM or
NSM layout; VectorWise supports both [14]. It contains the
values of the build relation, as well as a next-offset, which
implements the bucket chain. A bucket may have a chain
of length > 1 either due to hash collisions, or because there
are multiple tuples in the build relation with the same key.

Algorithm 4 Vectorized implementation of hash probing.

map hash T col (idx n , idx∗ res , T∗ co l 1){
for (idx i =0; i<n ; i++)

r e s [i] = HASH(co l 1 [i]) ;
}
map rehash idx co l T co l (idx n , idx∗ res ,

idx∗ col1 , T∗ co l 2) {
for (idx i =0; i<n ; i++)

r e s [i] = co l 1 [i] ˆ HASH(co l 2 [i]) ;
}
map f e t ch i dx co l T co l (idx n , T∗ res ,

idx∗ col1 , T∗ base , idx∗ s e l){
i f (s e l) {

for (idx i =0; i<n ; i++)
r e s [s e l [i]] = base [co l 1 [s e l [i]]] ;

} else {/∗ s e l == NULL, omitted ∗/}
}
map che ck T co l i dx c o l c o l T co l (idx n , chr∗ res ,

T∗ keys , T∗ base , idx∗ pos , idx∗ s e l) {
i f (s e l) {

for (idx i =0; i<n ; i++)
r e s [s e l [i]] =

(keys [s e l [i]] != base [pos [s e l [i]]]) ;
} else {/∗ s e l == NULL, omitted ∗/}

}
map r e ch e c k ch r c o l T co l i d x c o l T co l (idx n ,

chr∗ res , chr∗ col1 ,
T∗ keys , T∗ base , idx∗ pos , idx∗ s e l) {

i f (s e l) {
for (idx i =0; i<n ; i++)

r e s [s e l [i]] = co l 1 [s e l [i]] | |
(keys [s e l [i]] != base [pos [s e l [i]]]) ;

} else {/∗ s e l == NULL, omitted ∗/}
}
h t l o o k u p i n i t i a l (idx n , idx ∗pos , idx∗ match ,

idx∗ H, idx∗ B) {
for (idx i =0,k=0; i<n ; i++) {

// saving found chain head pos i t i on in HT
pos [i] = B[H[i]] ;
// saving to a s e l . vector i f non−zero
i f (pos [i]) { match [k++] = i ; }

}
}
ht lookup next (idx n , idx∗ pos , idx∗ match ,

idx∗ next) {
for (idx i =0,k=0; i<n ; i++) {

// advancing to next in chain
pos [match [i]] = next [pos [match [i]]] ;
// saving to a s e l . vec . i f non−empty
i f (pos [match [i]]) { match [k++] = match [i] ; }

}
}

procedure HTprobe(V, B[0..N − 1], ~K1..k(in), ~R1..v(out))
// Iterative hash-number computation
~H ← map hash(~K1)
for each remaining key vectors Ki do

~H ← map rehash(~H, ~Ki)
~H ← map bitwiseand(~H, N − 1)
// Initial lookup of candidate matches
~Pos, ~Match← ht lookup initial(H, B)

while ~Match not empty do
// Candidate value verification

~Check ← map check(~K1, Vkey1
, ~Pos, ~Match)

for each remaining key vector ~Ki do
~Check ← map recheck(~Check, ~Ki, Vkeyi

, ~Pos, ~Match)

~Match← sel nonzero(~Check, ~Match)
// Chain following
~Pos, ~Match← ht lookup next(~Pos, ~Match, Vnext)

~Hits← sel nonzero(~Pos)
// Fetching the non-key attributes

for each result vector ~Ri do
~Ri ← map fetch(~Pos, Vvaluei

, ~Hits)

37

key1 key2 val1 val2 val3

V (DSM)

H B next

hash value computation

hash
values

bucket
heads

v
3

0

w

x

x
0

Apr

Oct

Jan100

1003 46 May
1

2

3

4

0

2

3

4

0

1

2

3

0

1

xx

103

102

203

x

3

1002

2003

1000

x

0

73

736

124

x

0 a

2

Figure 3: Bucket-chain hash table as used in Vec-

torWise. The value space V presented in the figure

is in DSM format, with separate array for each at-

tribute. It can also be implemented in NSM, with

data stored tuple-wise.

Vectorized Hash Probing. For space reasons we only
discuss the probe phase in Algorithm 4, we show code for
the DSM data representation and we focus on the scenario
when there is at most one hit for each probe tuple (as is
common with relations joined with a foreign-key referen-
tial constraint). Probing starts by vectorized computation
of a hash number from a key in a column-by-column fash-
ion using map-primitives. A map_hash_T_col primitive first
hashes each key of type T onto a lng long integer. If the
key is composite, we iteratively refine the hash value using
a map_rehash_lng_col_T_col primitive, passing in the previ-
ously computed hash values and the next key column. A
bitwise-and map-primitive is used to compute a bucket num-
ber from the hash values: H&(N -1).

To read the positions of heads of chains for the calculated
buckets we use a special primitive ht_lookup_initial. It be-
haves like a selection primitive, creating a selection vector

~Match of positions in the bucket number vector H for which
a match was found. Also, it fills the ~Pos vector with posi-
tions of the candidate matching tuples in the hash table. If
the value (offset) in the bucket is 0, there is no key in the

hash table – these tuples store 0 in ~Pos and are not part of
~Match.
Having identified the indices of possible matching tuples,

the next task is to “check” if the key values actually match.
This is implemented using a specialized map primitive that
combines fetching a value by offset with testing for non-
equality: map_check. Similar to hashing, composite keys
are supported using a map_recheck primitive which gets the
boolean output of the previous check as an extra first pa-
rameter. The resulting booleans mark positions for which
the check failed. The positions can then be selected using a
select sel_nonzero primitive, overwriting the selection vector

~Match with positions for which probing should advance to
the“next”position in the chain. Advancing is done by a spe-
cial primitive ht_lookup_next, which for each probe tuple in

~Match fills ~Pos with the next position in the bucket-chain of

V . It also guards for ends of chain by reducing ~Match to its
subset for which the resulting position in ~Pos was non-zero.

The loop finishes when the ~Match selection vector be-
comes empty, either because of reaching end of chain (ele-

ment in ~Pos equals 0, a miss) or because checking succeeded

(element in ~Pos pointing to a position in V , a hit).

Hits can be found by selecting the elements of ~Pos which
ultimately produced a match with a sel_nonzero primitive.

Algorithm 5 Fully loop-compiled hash probing: for each
NSM tuple, read hash bucket from B, loop through a chain
in V, fetching results when the check produces a match

for (idx i =0, j =0; i<n ; i++) {
idx pos , hash = HASH(key1 [i]) ˆHASH(key2 [i]) ;
i f (pos = B[hash&(N−1)]) do {

i f (key1 [i]==V[pos] . key1 &&
key2 [i]==V[pos] . key2) {
r e s1 [i] = V[pos] . co l 1 ;
r e s2 [i] = V[pos] . co l 2 ;
r e s3 [i] = V[pos] . co l 3 ;
break ; // found match

}
} while (pos = V. next [pos]) ; // next

}

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0
7

0
0

C
y
c
le

s
 p

e
r

tu
p

le

Vectorized DSM

Vectorized NSM

Compiled NSM

Compiled DSM

0
2

4
6

8
1

0

Number of fetched columns

T
L

B
 m

is
s
e

s
 p

e
r

tu
p

le

1 2 3 4 5 6 7 8 9 10

Figure 4: Fetching columns of data from a hash ta-

ble: cycles per tuple and total TLB misses

~Pos with selection vector ~Hits becomes a pivot vector for
fetching. This pivot is subsequently used to fetch (non-key)
result values from the build value area into the hash join
result vectors; using one fetch primitive for each result col-
umn.

Partial Compilation. There are three opportunities to
apply compilation to vectorized hashing. The first is to com-
pile the full sequence of hash/rehash/bitwise-and and bucket
fetch into a single primitive. The second combines the check
and iterative re-check (in case of composite keys) and the
select > 0 into a single select-primitive. Since the test for a
key in a well-tuned hash table has a selectivity around 75%,
we can restrict ourselves to a non-branching implementation.
These two opportunities re-iterate the compilation benefits
of Project and Select primitives, as discussed in the previous
sections, so we omit the code.

The third opportunity is in the fetch code. Here, we can
generate a composite fetch primitive that, given a vector of
positions, fetches multiple columns. The main benefit of this

38

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Varying hash table size

Hash table size (tuples)

C
y
c
le

s
 p

e
r

tu
p
le

4K 16K 64K 256K 1M 4M 16M 64M

Vectorized, DSM
Vectorized, NSM
Compiled, DSM
Compiled, NSM
Partial Compilation

828
890

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Varying selectivity on HT with 16M tuples

Selectivity of matching (fraction of matched tuples)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Varying number of buckets on HT with 16M tuples

Number of buckets / hash table size

2x 1x 1/2x 1/4x 1/8x 1/16x 1/32x

5293
4419

Figure 5: Hash table probing. Left: different sizes of the hash table value space V . Middle: different match

rates of the probe. Right: different sizes of the bucket array B w.r.t. value space V (different chain lengths).

is obtained in case of NSM organisation of the value space
V . Vectorization fetches values column-at-a-time, hence
passes over the NSM value space as many times as there
are result columns (here: 3), accessing random positions
from the value space on each pass. On efficient vector-sizes,
the amount of random accesses is surely larger than TLB
cache size and may even exceed the amount of cache lines,
such that TLB and cache trashing occurs, with pages and
cache lines from the previous pass being already evicted from
the caches before the next. The compiled fetch fetches all
columns from the same position at once, achieving more data
locality. Figure 4 shows that in normal vectorized hashing
performance of NSM and DSM is similar, but compilation
makes NSM clearly superior.

Full Compilation. It is possible to create a loop-compiled
version of the full join, like e.g. proposed in HIQUE [7]. Al-
gorithm 5 shows the hash probe section of such an algorithm,
which we also tested. It loops over probe keys, and for each
probe key fetches the corresponding bucket, then iterates
over the bucket-chain, checking the key for equality, and if
equal, fetches the needed result columns. We try to explain
in the following why this fully compiled algorithm is inferior
to the vectorized alternative with partial compilation.

Parallel Memory Access. Because memory latency is
not improving much (∼100ns), and cache line granularities
must remain limited (64bytes), memory bandwidth on mod-
ern hardware is no longer simply the division between these
two. A single Nehalem core can achieve a factor 10 more
than this 0.64GB/s, thanks to automatic CPU prefetching
on sequential access. Performance thus crucially depends on
having multiple outstanding memory requests at all times.

For random access, this is hard to achieve, but the deeply
pipelined out-of-order nature of modern CPUs does help.
That is, if a load stalls, the CPU might be able to speculate
ahead into upstream instructions and reach more loads. The
Intel Nehalem architecture can have four outstanding loads,
improving bandwidth by a factor four7. Success is not guar-
anteed, since the instruction speculation window of a CPU
is limited, depends on branch prediction, and only indepen-
dent upstream instructions can be taken into execution.

The Hard-To-Understand Part. The crux here is that
the vectorized fetch primitive trivially achieves whatever
maximum outstanding loads the CPU supports, as it is a
tight loop of independent loads. The same holds for the
partially compiled variants. The fully compiled hash probe,
however, can run aground while following the bucket chain.
Its performance is only good if the CPU can speculate ahead
across multiple probe tuples (execute concurrently instruc-
tions from multiple for-loop iterations on i). That depends
on the branch predictor predicting the while(pos..) to be
false, which will happen in join key distributions where there
are no collisions. If, however, there are collisions or if the
build relation has multiple identical keys, the CPU will stall
with a single outstanding memory request (V[pos]), because
the branch predictor will make it stay in the while-loop, and
it will be unable to proceed as the value of pos = V.next[pos]

is unknown because it depends on the current cache/TLB
miss. A similar effect has been described in the context of
using explicit prefetching instructions in hash-joins [3]. This

7Speculation-friendly code is thus more effective than man-
ual prefetching, which tends to give only minor improve-
ment, and is hard to tune/maintain for multiple platforms.

39

effect causes fully compiled hashing to be four times slower
than vectorized hashing in the worst case.

Experiments. Figure 5 shows experiments for hash prob-
ing using the vectorized, fully and partially compiled ap-
proaches, using both DSM and NSM as the hash table (V)
representation. We vary hash table size, selectivity (frac-
tion of probe keys that match something), and bucket chain
length; which have default values resp. 16M, 1.0 and 1. The
left part shows that when the hash table size grows, per-
formance deteriorates; it is well understood that cache and
TLB misses are to blame, and DSM achieves less locality
than NSM. The middle graph shows that with increasing hit
rate, the cost goes up, which mainly depends on increasing
fetch work for tuple generation. The compiled NSM fetch
alternatives perform best, as explained. The right graph
shows what happens with increasing chain length. As dis-
cussed above, the fully compiled (NSM) variant suffers most,
as it gets no parallel memory access. The overall best solu-
tion is partially compiled NSM, thanks to its efficient com-
piled multi-column fetching (and to a lesser extent efficient
checking/hashing, in case of composite keys) and its parallel
memory access, during lookup, fetching and chain-following.

5. CONCLUSIONS
For database architects seeking a way to increase the com-

putational performance of a database engine, there might
seem to be a choice between vectorizing the expression en-
gine versus introducing expression compilation. Vectoriza-
tion is a form of block-oriented processing, and if a system
already has an operator API that is tuple-at-a-time, there
will be many changes needed beyond expression calculation,
notably in all query operators as well as in the storage layer.
If high computational performance is the goal, such deep
changes cannot be avoided, as we have shown that if one
would keep adhering to a tuple-a-time operator API, expres-
sion compilation alone only provides marginal improvement.

Our main message is that one does not need to choose be-
tween compilation and vectorization, as we show that best
results are obtained if the two are combined. As to what this
combining entails, we have shown that ”loop-compilation”
techniques as have been proposed recently can be inferior
to plain vectorization, due to better (i) SIMD alignment,
(ii) ability to avoid branch mispredictions and (iii) parallel
memory accesses. Thus, in such cases, compilation should
better be split in multiple loops, materializing intermediate
vectorized results. Also, we have signaled cases where an in-
terpreted (but vectorized) evaluation strategy provides op-
timization opportunities which are very hard with compila-
tion, like dynamic selection of a predicate evaluation method
or predicate evaluation order.

Thus, a simple compilation strategy is not enough; state-
of-the art algorithmic methods may use certain complex
transformations of the problem at hand, sometimes require
run-time adaptivity, and always benefit from careful tun-
ing. To reach the same level of sophistication, compilation-
based query engines would require significant added com-
plexity, possibly even higher than that of interpreted en-
gines. Also, it shows that vectorized execution, which is an
evolution of the iterator model, thanks to enhancing it with
compilation further evolves into an even more efficient and
more flexible solution without making dramatic changes to
the DBMS architecture. It obtains very good performance

while maintaining clear modularization, simplified testing
and easy performance- and quality-tracking, which are key
properties of a software product.

6. REFERENCES
[1] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:

Hyper-Pipelining Query Execution. In Proc. CIDR,
Asilomar, CA, USA, 2005.

[2] P. A. Boncz. Monet: A Next-Generation DBMS

Kernel For Query-Intensive Applications. Ph.d. thesis,
Universiteit van Amsterdam, Amsterdam, The
Netherlands, May 2002.

[3] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C.
Mowry. Improving hash join performance through
prefetching. In Proc. ICDE, Boston, MA, USA, 2004.

[4] D. Chamberlin et al. A history and evaluation of
System R. Commun. ACM, 24(10):632–646, 1981.

[5] G. Graefe. Volcano - an extensible and parallel query
evaluation system. IEEE TKDE, 6(1):120–135, 1994.

[6] A. Kemper and T. Neumann. HyPer: Hybrid OLTP
and OLAP High Performance Database System.
Technical report, Technical Univ. Munich,
TUM-I1010, May 2010.

[7] K. Krikellas, S. Viglas, and M. Cintra. Generating
code for holistic query evaluation. In ICDE, pages
613–624, 2010.

[8] S. Padmanabhan, T. Malkemus, R. Agarwal, and
A. Jhingran. Block Oriented Processing of Relational
Database Operations in Modern Computer
Architectures. In Proc. ICDE, Heidelberg, Germany,
2001.

[9] ParAccel Inc. Whitepaper. The ParAcel Analytical

Database: A Technical Overview, Feb 2010.
http://www.paraccel.com.

[10] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman.
Compiled Query Execution Engine using JVM. In
Proc. ICDE, Atlanta, GA, USA, 2006.

[11] K. A. Ross. Conjunctive selection conditions in main
memory. In Proc. PODS, Washington, DC, USA, 2002.

[12] The LLVM Compiler Infrastructure .
http://llvm.org.

[13] M. Zukowski. Balancing Vectorized Query Execution

with Bandwidth-Optimized Storage. Ph.D. Thesis,
Universiteit van Amsterdam, Sep 2009.

[14] M. Zukowski, N. Nes, and P. Boncz. DSM vs. NSM:
CPU Performance Tradeoffs in Block-Oriented Query
Processing. 2008.

40

