
ACHIEVING A UNIFORM INTERFACE FOR BINARY TREE IMPLEMENTATIONS

Chaya Gurwitz

Brooklyn College of the City Universtiy ofNew York

ABSTRACT

One of the basic principles taught in a data structures
course is that an application program should be
independent of the implementation of any particular data
structure it uses. This policy breaks down when binaq
trees are introduce4 because the intertlmes for the various
representations of binary trees are not uniform. In
particular, implementing a binary tree by using an implicit
array generally requires the array itself to be passed as a
parameter to any function that manipulates the tree. In this
paper we present an approach for defining the implicit
array representation of a binary tree. Our definition makes
the underlying array tmnsparent to the user. This allows
us to describe a uniform interface for a binary tree module
that can be used by an application program regardless of
the particular implementation of the tree,

INTRODUCTION

In a data structures course, students are introduced to basic
data structures, their properties and implementations. One
of the fundamental principles introduced in such a course
is the separation of the specification of a data type from its
implementation. The concept of an abstract data type

@ZJ allows us to define a data type in terms of a
specification of the values of the objects and the operations
that can be pefiormed on the objects. In this way a data
type is viewed as a mathematical entity that is not tied to
any particular implementation. The principle of
information hiding provides that the specification of an
ADT should be implementation independent and make no
reference to the way elements of that data type are
represented internally [1,2,3,4].

In teaching a data stmdums course, we emphasize these
points:
● The implementation of a data structure should be

transparent to the user.
. The use of a data structure should not depend on its

implementation.

● Code that manipulates a data structure should not be
changed if the implementation is changed.

These guidelines are followed through most of the course.
For example, code that depends on a stack module, such as

Permission to co y without fee all or part of this material is
Lgranted provided t t the copies are not made or distributed for

direct commerdal advanta e, the ACM copyri ht notice and the
Y Jtitle of the publication and ts date appear, a notice is 9i~en

that copying is by permission of the Asaodati~ of ComputIW
Machinery. To copy otherwise, or to republish, requires a fee
and/ors ecific permission.

zSIGCS ’95 (Y95 Nashville, TN USA
O 1995 ACM 0-S9791-693-ti9W=50.5o

an infix-to-postfix conversion frmctioq is independent of
the actual implementation of the stack. The same
conversion function can be used whether the stack is
implemented se an array, or as a list using dynamic
memory allocation or as a list using a pool of available
nodes. (In fa~ a typical programming assignment
involves running three versions of the program - one for
each of the stack implementations - with the proviso that
the only changes allowed between runs are in the coding of
the stack module.)

However, when binary trees are introduced, the

information-hiding principle breaks down. Typically, we
teach three implementations of binary trees: the dynamic

node representation, in which nodes of the tree are
allocated dynamically; the linked array representation, in

which nodes of the tree are allocated from an available
pool of nod=, and the implicit array implementation, in
which the tree is stored in a contiguous memo~ block [3].

For the first two implementations, a tree is represented by
a pointer to some memory location at which the root of the
tree is stored. Similarly, a subtree is represented by a
pointer to the memory location containing the root of the
subtree. The difference between the two implementations
is whether this pointer is a true memory address (for the
dynamic node representation) or an index into a statically

allocated array (for the linked array representation). In
either case, many trees can make use of the available
memory.

A tree implemented using an implicit array is represented
by the array itself, with the tacit understanding that the
mot of the tree is the first location of the array. A subtree
is referenced slightly differently, in that an index into the
array is needed along with the array itself. If more than
one tree is needed, a separate array must be allocated for
each tree.

Consider a basic tree functio% Tree_data@, thatreturns
the data stored at node p, (which can be Chamcterimdas
the root of a subtree). In a linked represcntatio% the
parameter p provides the location of the node. However,
for a tree implemented using an implicit array, the
fimction must be provided with the location of the
underlying array as well as the location of the node.
Therefore, either the underlying array must be known
globally, or the function is rewritten as Tree data@,

tree_array) (see, for example, [3, p.251] in wfich the
array is used explicitly).

66

http://crossmark.crossref.org/dialog/?doi=10.1145%2F199688.199726&domain=pdf&date_stamp=1995-03-15

Neither solution is satisfactory in terms of the goals of the
data WuchUes course. If the array is global, then the
program is limited to using only one tree. If the parameter
list is chang~ then the calling sequence in the application
program varies for the different tree implementations, and
the implementation is no longer tmnsparent,

One might argue that the various tree implementations are
not equally applicable to all applications, and that
therefore, the user should indeed be aware of which

implementation is being used. In particular, the implicit
array implementation is, ofte~ an extremely inefficient
implementation. This representation should be used only
when the tree is known to be close to a complete binary
tree, such as in heapsort. However, we fml that for the
sake of uniformity, this representation should be presented
in a manner that preserves the principles of abstract data
typing and information hiding.

DEFINITION OF A TREE USING THE IMPLICIT ARRAY
REPRESENTATION

In the following we present an approach for defining the
implicit array representation of a tree in a manner that
makes the underlying array tmnsparent to the user. The
tree must contain a reference both to the underlying array
and to the location of the root node. (Although the root of
the tree is understood to be in the first location of the
array, a subtree can be rooted at any location within the
array.) In additioq we need to know the location of the
“last” node in the tree, so that we can determine when a

location in the array is beyond the bounds of the tree. This
leads us to the following definition of a tree, which can be
used both for the root of a tree or for the root of a subtrce:

struct Tree {
Type *Tree_array;
int root;
lnt ‘n; };

typedef struct Tree Tree;

Note that the tree contains references to both the
underlying array, Tree_array, and the last indez n. In this
manner we ensure that there is only one copy of the
underlying array, and its associated index, n. The storage
for Tree_array and n is allocated when a new tree is
created. This scheme allows multiple trees to be created.
When a particular subtree (or node), p, is accessed, the
Tree_array field of the record associated with p provides
accessto the appropriate array.

A UNIFORM INTERFACE

The file below describes a typical interface for a tree
module. It contains function prototypes for basic
operations defined on trees. We then show that this
interface can be used regardless of whether the tree is
implemented using a linked representation or using the
implicit array representation.

#include “treedef. h”

/*tree .h: function prototypes for basic
binary tree functions */

/’ Tree new and Tree free are functions to
constru~t and dest ru~t trees */

‘free *Tree_new () ;
void Tree_free (Tree *t) ;

i.nt Tree_empty (Tree t) ;

/* Tree data return= the data stored at the

root of–tree t. Tree_lef t returns the left
subtree of tree t. Tree_right returns the
right subtree of tree t. */

Type Tree_data (Tree t) ;
Tree Tree_left (Tree t) ;
Tree Tree_rlght (Tree t) ;

/* Tree_make_root in~ert~ the data, x, at

the root of tree t. Tree_set_data stores the
data, x, in node t. Tree_insert_left
inserts the data, x, at the root of the
left subtree of tree t. Tree_insert_right
inserts the data, x, at the root of the
right subtree of tree t */

void Tree make root (Tree *t, Type x) ;
void Tree—set ~ata (Tree *t, Type x) ;
void Tree—ins6rt_left (Tree ●t, Type x) ;
void Tree~insert_right (Tree *t, Type x) ;

Figure 1: file tred

The file treedefh contains the definition of the tree,
which can be implemented using any one of the three
representations described earlier.

IMPLEMENTATIONS USING THE UNIFORM INTERFACE

In the following, we present two Werent implementations
of trees that can be used with the interface given in the file
tree.h. In each case, we speci@ the files treede$h and

tree.c. The file treedefh contains the definition of a treq
the file tree.c provides the code to implement the functions
whose prototypes appear in tree.h. The first

implementatio~ presented in Figures 3 and 5, uses the
implicit array representation described earlier. The second
implementation presented in Figures 4 and 6, uses a
linked representation in which a tree is defined as a
pointer to a node. The nodes themselves may be either

-dlY or statically allocated. This example provides
another instmw of information hiding, in that the actual
implementation of the nodes is hidden in the files fnode.h

and tnode.c. It is not necessary to know the
implementation of the nodes in order to define a tre, it is
sufficient to provide accessto the functions which are used
to allocate and free nodes, and the fimctions which aet and
retrieve the values stored in the nodes. Figure 2 illustrates
the different combinations of files that can be used in
writing a program that manipulates binary trees.

n.dm=nation
implicit array representation

treedef.h (Fig. 3) and tree.c (Fig. 5)

dynamic node allocation static node allocation

Figure 2: various implementations of binary trees deilned with a uniform interface

#i fndef TREEDEF_H
#define TREEDEF_H

#ifndef TREEDEF_H
#define TREEDEF_H

typedef int Type; #include “tnode.h”
#define MaxTreeNodes 100 typedef Tnodeptr Tree;
#define NULLVAL -99

/*Tnodeptr is a pointer to a
struct Tree { Tree_node, defined in tnode.h.

Type *Tree_array; The pointer may be an address
int root;
lnt *n;);

or an array index, depending
on whether dynamic or static

typedef struct Tree Tree;
#endif

allocation is used ●/
#endif

Figure3: treedef.h (implicit array) Figure 4 file treedcf.h (linked nodes)

Iinclude <stdlib.h>
#include <assert.h>

#include <stdlib.h>
#include <assert.h>

!include “treedef.h” #include “treedef.h”

!* code for basic tree functions using the /* code for basic tree functions using the
implicit array representation of a tree */ linked node representation of a tree ‘/

rree *Tree_newo
[

:ree ●Tree_newo

Tree *t;
Tree *t;

int i; t = (Tree *)malloc (sizeof (Tree));
assert(t);

t = (Tree *) malloc(sizeof(Tree)); *t = NULLPTR;
t -> Tree_array=(Type *)malloc return (t);

(MaxTreeNodes*sizeof (Type));)
for (i=O: i<MaxTreeNodes; j,++)

(t->Tree_array) [i]= NULLVAL;
t -> root = 1;
t -> n = (int *) malloc (sizeof (int));
* (t -> n) = O;
return (t) ;

1

F@w5: filetree.c(implicitarray) Figure& filetreec(linkednodes)

68

Figure !!continuexk treec (implicit array)

void Tree_free(Tree *t)
{

free (t -> Tree_array);
free(t -> n);
free (t);

}

int Tree_empty(Tree t)
{

return (t.Tree_array[t .root]==NULLVAL)
II (t.root>*(t.n));

}

Type Tree_data(Tree t)
(

assert (!Tree_empty(t));
return (t.Tree_array) [t.rOOtl;

}

Tree Tree_left(Tree t)
{

Tree q;
q.root = 2*t.root;
q.n = t.n;
q.Tree_array = t.Tree_array;
return (q);

)
Tree Tree_right(Tree t)
{

Tree q;
q.root = 2*t.root+l;
q.n = t.n;
q.Tree_array = t.Tree_array;
return (q);

}

void Tree_make_root (Tree
{

Tree_set_data (t,x);
}

*t, Type x)

void Tree_set_data (Tree *t, Type x)
{

Type *arr;

arr = t->Tree_array;
arr[t->root] = x;
if (t->root > *(t->n))*(t->n) = t->root;

)

void Tree insert left(Tree *t, Type x)—
(

—

Type *arr;
int left;

assert(t->root <= *(t->n));
arr = t->Tree_array;
left = t->root*2;
assert(left < MaxTreeNodes);
arr[l.eftl = x:
if (left > *(t->n)) *(t->n) = left;

1

Figure6continued: tree+c(linkednodes)

void Tree_free(Tree *t)
{

free (t);
}

int Tree_empty(Tree t)
(.

return (t == NULLPTR);
}

Type Tree_data(Tree t)
{

assert(t != NULLPTR);
return(Tnode_data (t));

}

Tree Tree_left(Tree t)
{

assert(t != NULLPTR);
return(Tnode_left (t));

}

Tree Tree_right(Tree t)
{

assert(t != NULLPTR);
return(Tnode_right (t));

)

void Tree_make root(Tree *t, Type x)
{

Tnodeptr p;

assert(t) ;
p = Tnode_newo;
Tnode_set_data (p,x);
*t = p;

)

void Tree_set_data(Tree *t, Type x)
{

assert(t) ;
Tnode_set_data (*t,x);

}

void Tree_insert left(Tree *t, Type x)
(

Tnodeptr p;

assert(*t != NULLPTR);
p = Tnode_newo;
Tnode_set_data (p,x);
Tnode_set_left (*t,p);

)

—

69

Figure 5 continued: trew (implicit array) Figure 6 continued treec (linked nodes)

Joid Tree_insert_right (Tree *t, Type x) void Tree_insert_right (Tree *t, Type x)
({

Type *arr; Tnodeptr p;
int right;

a~9ert(*t != NuLLPTR);

assert(t->root c= *(t->n)); p = Tnode_newo;
arr = t->Tree_array; Tnode_set_data (p,x);
right = t->root*2 + 1; Tnode_set_right (*t,p);
assert(right < MaxTreeNodes); }
arr[right] = x;
if (right > ●(t->n))*(t->n) = right;

t

OTHERTREE FUNCTIONS p=q;

Theintetieetree.h, defined above,provides some basic if (number < Tree_data(p))

treefunetions. Moregeneraltreefunetionseanbedefin~
q = Tree_left(p);

else
using the iimetions defined in tree.h as building blocks. q = Tree_right(p);
Sincewehave shown that the interface tiee.h canbeused }

in a uniform manner, regardless of the actual

representationof atree,suchgenerrd fimetionseanalso be
if (number == Tree_data(p))

mintf (“%d %sb”. number. “is a
used uniformlyby application programs that use different

.

treeimplementations. else

As au example, cxmsider a procedure that reads in a list of else

numbers and prints out a list of duplicates. This example is

based on an algorithm deseribed in [3, p.238]. In that ~)
textbook the program is presented in two different

duplicate”) ;” -
if (number < Tree_data (p))
Tree_insert_lef t(&p, number);

Tree_insert_right (&p, number);

versions [3, p.247 and p.251], corresponding to different CONCLUSION
implementations of binary trees. Using the interfaee tree.h, Most data StIUdUKS textbcmks discuss various

defined in Figure 1, we are able to use the code below, implementations of binary trees. The implicit array
which is totally independent of the actual tree representation is generally introduced in a manner that is
implementation that is used. not consistent with the presentation of the linked

#include cstdio. h>
#include “tree. h“

void print_dup ()

{ /* print_dup -~
an input list.

representation. This ineonsi~eney detraets from the goals

of the data structures course. Our approach for defining

the implicit array representation of a binary tree hides the

details of the implementation. This allows us to deseribe a

uniform interfaee for a binary tree module that is
prints out duplicates in
the numbers are entered, implementation independent.

they are inserted into a binary search
tree. If a duplicate entry is found in the
tree, it is printed out. */

Tree *tree;
Tree p, q;
int number;

tree = Tree_new () ;
scanf (“%d”, &number) ;

Tree_make_root (tree, number) ;

while (scanf (“%d”, &number) > 0) {
P = *tree;
q = *tree;

while (number != Tree_data (p) &&
!Tree_empty(q)) {

REFERENCES
[1] Horowitz, E., Sahni, S. and Anderson-Fx S.,

Fundamentals of Data Stmetures in C, Computer
Science Press, New Yor~ 1993,

[21Kingston, J-H.,Algorithms and Data Structures:
Design, Correctn~ Analysi~ Addison-Wesley,

Reading Mass., 1990.

[3] Tenenbaum, A.M., Lang-Y. and Augenste&

M.J., Data Structures Using C, Prentice Hall,
Englewood Cliffs, N. J., 1990.

[4] Weiss, M.A., Data Structures and Algorithm
Analysis in C, Benjamin Cummings, Menlo ParlG

Ca., 1993.

70

