
XDP: A SIMPLE LIBRARY FOR TEACHING A DISTRIBUTED PROGRAMMING MODULE

David M. Arnow

Dept. of Computer and Information Science

Brooklyn College of CUNY

Brooklyn, NY 11210

arnow @sci. brooklyn. cuny. edu

ABSTRACT: XDP is a simplified interj$ace to the DP
distributed programming library. I describe its use in a
course on workstation programming, a pragmatic course
whose mission is to cover concurrent programming,
graphical user interfaces and event-driven programming
as well as network and distributed computing. Using
XDP, rather than the native socket inte~ace, makes it
feasible to cover the last topics, squeezed though they are
into a rather overloaded course. Finding (or building)
teaching tools like XDP will become increasingly essen-
tial as more demands are placed on undergraduate CS
curriculum coverage.

1. So many important topics, so few credits

Until recently, the only exposure to concurrent pro-
gramming that most undergraduate CS majors received
was in the context of an operating systems course. Distrib-
uted programming as a topic at the undergraduate level
was even rarer. Now, however, it is generally recognized
that concurrency, parallel computing and distributed pro-
gramming are all appropriate and, in fact, highly desirable
at the undergraduate level.

There is a problem however. There is already a con-
siderable CS “core” of essential courses, the total number
of credits that a college student will take is fixed by the
institution and increases in major requirements often meet
with stiff resistance from college governance bodies. Fur-
thermore, not only is it increasingly accepted that all CS
majors have some experience with parallelism and distrib-
uted computing but other areas, such as GUIS and human
factors, database, optimization, logic programming and so
on compete for the all too small set of required advanced
undergraduate course credits.

Our response as faculty must be to find parsimonious
ways of teaching these areas. We must find vehicles for
conveying the important ideas and techniques and avoid

Permission to co y without fee all or part of this material is
[granted provided t at the oopies are not made or distributed for

direet commercial advanta e, the ACM eopyrigM notice and the
Ytitle of the publication and ts date appear, and notice is given

that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/ors edfic permission.
SIGCSE!’95 3/95 Nashville, TN USA
@ 1995 ACM O-89791-6%+ti9WOOo3....50.5o

spending time
cance.

on details of minor or ephemeral signifi-

In this paper, I report on the classroom use of a very
simple library that supports dk-ibuted programming. Sec-
tion 2 describes the course and explains the need for the
library, XDP. Section 3 describes the library itself. Section
4 presents a useful initial classroom example and describes
some suitable exercises that use the library. In the last sec-
tion I draw a few conclusions from this experience.

2. The couree: workstation programming

The module appears in a course called “Workstation
Programming”. It assumes a knowledge of C, some Unix
experience and a course in data structures. Its purpose is to
introduce students to programming techniques for applica-
tion development on networks of workstations. It is struc-
tured in three modules. At the outset, there is a module that
covers process environments, file system issues, concurrent
programming, and interprocess communication. It is essen-
tially an overview of basic stand-alone Unix facilities.
Another module addresses graphical user interfaces and
event-driven programming. A third module deals with net-
work programming: application of transport layer services,
remote process creation, distributed computing and the cli-
ent-server model.

The course has been taught twice and each time has
used Stevens’ fine book [Stevens90] as a primary text. The
students have access to a network of Sun workstations to do
their assignments and explore issues raised in the course.

2.1 Distributed and network programming module

This is a pragmatic (dare I say “hacker”?) course and
the main goals of the module on distributed and network

programming are to give students direct experience with the
issues that arise when writing distributed programs that rely
on network services. These include but are not limited to

● achieving reliability when the underlying commun-
ication medium is unreliable

● synchronization (e.g. barriers, serializing pro-
cesses)

● parallelizing (or distributing) programs and

● ordering events.

82

http://crossmark.crossref.org/dialog/?doi=10.1145%2F199688.199732&domain=pdf&date_stamp=1995-03-15

Because the course targets the low-level semantics
typically offered by network services, using a high level
system such as SR [Andrews82] or Linda [Gelernter85]
was in appropriate. The first time I taught the course the
students used the BSD socket interface. This approach has
many advantages. Our textbook discusses the interface in
detail and the interface is ubiquitous on Unix systems.
However, like so much of the Unix system, the interface is
messy and contains many options and rules that, while per-
haps required for generality, are unnecessarily cumbersome
for the students. The problem is not so much that the stu-
dents can’t master these rules. It is that the time required
for mastery limits the period during which they can be
expected to work on interesting exercises. Worse, the inter-
face serves as a distraction and the students often fail to
focus on the important issues.

A similar, though less severe, problem had been
encountered with the part of the course that used System V
IPC features in connection with concurrent programming.
That problem had been solved by providing the students
with simplified set of routines to create and initialize sema-
phores as well as provide standard P and V operations.

There are a number of distributed programming librar-
ies available, the most widespread of which is PVM
[Sunderam90]. However, even these are too high-level for
the purpose needed here. They do not provide messages
that cause interrupts nor do they provide messages that are
unreliable (in the sense of datagrams). A lower-level
library, DP, has been developed at Brooklyn College
[Arnow95]. Its semantic level includes that of the socket
interface, but it too, again in the interest of generality, has
aspects that are distracting to students. For that reason,
XDP. a simplified interface to DP, was written and used in
the most recent offering of the course.

3. The XDP eervicee

To make use of XDP services in a program, a student
need only include the appropriate header file, link to the
XDP library and provide a file called “hosts” in the current
directory. An XDP computation is initiated by invoking the
XDP program, which results in the first, or prima~, pro-
cess.

3.1 Process creation and management

Processes are created statically, at the outset of execu-
tion. For each entry in the host file, a process will be cre-
ated, if possible, on the machine described by the entry. In
order for this to happen, every XDP program must invoke

~init (), typically at the outset of execution. When this
is executed by the f~st, or primury, process, all the other
seconalwy processes are created.

Each secondary process executes the same program as
the primary, and thus will also invoke xd~init (). For
these processes, ~init t 1 serves to establish communi-
cation. Each secondary process receives the same com-
mand-line arguments as the primary. The call to
xdpinit [J returns the actual number of processes (which

will be less than or equal to the number of entries in the
hosts file).

Each process is identified by a small integer, ranging
from O to N-1, where N is the number of processes. The
Xdmmmpid () function returns a process’s id. The id of the
primary will always be O.

XDP processes must terminate using xc%mx~t (),
passing it a string indicating the reason for termination.
XDP processes must not use the Unix exit ().

3.2 Message sending

XDP processes communicate by sending and receiving
messages. To send a message in XDP we write:

xdpwrite (id, msgptr, msgsize, mode)

where id is an integer that identifies the target, msgptr
points to the message data, msgsize is the size of the nmes-

sage, and mode is a set of flags that allow two orthogonal
choices:

First, the message can be sent reliably (XDPREL) or not
(XDPUNREL). Reliability here means that XDP will guaran-
tee the eventual sequenced delivery of the message to the
target, provided that the underlying network and relevant
host machines do not fail. Not sending the message reli-
ably means that XDP will use the cheapest means to send
the message and neither sequence nor delivery itself is
guaranteed.

The ~write () never blocks. This means that upon
return from xd~ite (), one thing is certain: the target
has not yet received the message !

Second, the message can be sent so that it willl be
“interrupting” (xDPamuaG) or not (xDPru?cv). In the case
of non-interrupting messages, the message is queued upon
arrival and does not affect the receiving process until the
receiver explicitly reads the message with the ~recv ()

call (see below). In the case of the interrupting message,
the message’s arrival may force the invocation of a special
message-catching routine if such a routine has been desig-
nated by the receiving process. Whether or not such a rou-
tine has been designated, the interrupting message must be
read explicitly with the xdpgetmsg () call, not the
xdprecv() call.

Receiving messages. Logically, each XDP process has two
receiving ports: one for receiving interrupting messages
(marked XDPRECV) and another for receiving non-interrupt-
ing messages (xDPGEmusG). XDP processes can receive
these messages using one of two routines:

xdprecv(src, buffer, l~mi.t, mxle)
xdpgetmsg (src, buffer, limit)

In each case, src is a pointer to an integer in which the id
of the sender will be stored. The second argument, buffer

is the address of a buffer in which to store the message con-

tents and the third argument, limit specifies its size. Mes-

sages that exceed this limit are truncated without remark.

The x~getmsg () call is used to receive messages that

83

generate an intermpt— as such it is typically used inside an
interrupt handler (see below). In such a context, blocking
would be inappropriate, and so xdpcretmsg () never
blocks— it returns immediately, with the return value
XDPSUCCESS or XDPNOMESSAGE. On the other hand,
by using a mode of XDPBLOCK or XDPNOBLOCK, the
xdprecv () call may or may not be forced to block until a
message is available.

Interrupting Messages. In the absence of any arrangement
for immediate response to their arrival, interrupting mes-
sages can be read in the same way that non-interrupting
messages are, but using xdpgetmsg () instead of
xdprecv () (and hence not being able to block). Generally,
however, the purpose of such messages is to provoke an
immediate response by or have an immediate impact on the
recipient. That requires that the receiving process previ-
ously invoke xdpcatchmsg () (preferably at an early point
of the program) passing it a pointer to a message handler,
i.e., a function that will be invoked when an interrupting
message arrives. The message handler should in turn call

xdwetmsff () to retrieve the message and carry out the
appropriate action concerning the datum.

In the event that several interrupting messages arrive
before the system has had a chance to invoke the message
handler function, only one call to the message handler will
be made, i.e., there is not a one-to-one correspondence
between interrupting messages and calls to the handler.
Hence, the message handler should in general be written
on the assumption that many messages are ready to be
received. As a result, the typical structure of a message
handler is:

initialization;
while (xdpgetmsg (. . .) ! .XDPNOMESSAGE)

process message just received;

3.3 Synchronization and timeouts

Critical sections. The message handler specified in a call
to x~catchmsg () may be invoked at any time and may
reference global objects. To guarantee mutual exclusion,
such access should be preceded by a call to xdpblock () to
disable calls to the interrupt handler and followed by a call
to xdpunblock () to re-enable them. Upon invoking

xdpunblock (), if any interrupting messages arrived since
the call to -lock (), the catching function will be
invoked.

or an external signal. If t is not zero, a timeout event is set
to occur in t milliseconds. In that case, if t? is not null, it is
a function that will be invoked prior to return from xdp-
pause (). If t=O no timeout event will take place. Since
the xdppause () routine returns as a result of any asyn-
chronous event, interrupting message arrival or otherwise,
so the necessary condition must be rechecked:

while (I desiredcondition)

Xdppause(t, f);

When xdppause () is used this way, it is usually the
case that the desired condition will become true as a result
of the arrival of interrupting messages. There is, therefore,
a race condition: afier the desired condition is checked, and
found to be false, but before xdppause () is called, an
interrupting message could arrive and bring about the
desired condition. Unfortunately, when xdppause () would
then be called (upon returning from the message handler),
there would be no interrupting message to terminate the
xdppause () — the process would hang. Essentially this is
due the global character of the desired condition: testing
that condition is a critical section. To avoid this problem,
xdpblock () hcdpunblock must be used.

xdpblock () ;
while (I deshedconditfon)

xdppause (t, f);
xdpunblock () ;

This code guarantees that the test-and-call sequence
(test the condition, call xdppause ()) is atomic. The mes-
sage handler is blocked from the time the condition is
tested through the time x~~ause () is entered. In order for
~ause () to ever have a chance to complete and to
make it possible for the desired condition to become true,
xdppause () reenables message handler invocations upon
enter. Upon return from xdppause (), the message handler
status is restored to its state upon entry. Note that during
xdppause (), interrupts are automatically re-enabled.

3.4 Other facilities

To ease the development process somewhat, some utilities
for XDP are available:

● xdphosts machine 1 machine2 ... machineN
creates a hosts tile with the above machines, fill-
ing in all necessary fields.

The message handler is never invoked recursively and
● xdpsee program.name

so there is no need to protect the function itself. Thus xdp-
gives a ps-style list of the named program on just
those machines mentioned in the local hosts file.

block () /xdpudaock () are never used inside a handler,

● ~c~leted prograrn.name
Synchronization and timeouts. Sometimes a process counts the number of XDP processes running the
needs to wait until some condition becomes true, typically named program on the machines in the local hosts
as a result of incoming interrupting messages. In order to file that have completed.
do so the process can call xdppause ():

xdmause (t, f) 3.5 Restrictions

This call causes the invoking process to suspend exe- Stdin, stdout and stderr are not available to XDP pro-
cution until an asynchronous event has taken place. Such cesses: all input and output files must be opened by the
events include arrival of an interrupting message, a timeout processes. Doing a blocking xdprecv () is not allowed in a

84

message handler, nor is sending a XDPREL I XDPRECV mes-
sage. In this section we indicate other resrnctions,

Timing. All systems calls and standard subroutines that are
implemented using the Unix alarm system call (or its vari-
ants) are not allowed. That includes: sleep, alarm,
ualarm. To give the application writer some of this func-
tionality, there is a special XDP routine, ~alarm (t, f)
which arranges for function f to be invoked after t millisec-
onds.

Asynchronous and signal-driven i/o. Using the BSD
select (1 system call or making use of the SIGIO signal is
forbidden.

Exec. Use of any of the axec variants is forbidden, unless
used in conjunction with fork ().

Fork. The fork () system call can be used provided that
the children to not attempt to partake in the execution of
xdp routines. Child processes (but not the parent) may do
execs.

4. Examples and ssmple problems for students

An straightforward example for illustrating some of
the issues in distributed programming is the following pro-
gram, WI “ch creates a file containing all the primes from 2
to a number that is a command-line argument to the pro-
gram. The range of integers to be checked is divided up
into equal subranges. The primtuy informs all the second-
ary processes what their subranges are. (The primary has a
subrange for itself too.) Each process works independently
for the most part, checking integers in its subrange (execut-
ing search (). When the primary finds a prime it calls
zmwprtio () to add it to the list. When a secondary finds a
prime it sends it to the primary using xclmrr~te ().

The latter information INTERRUPTS the primary,
forcing the invocation of f catch (). This in turn invokes
ne~risie (). Termination handling is done as follows:
secondaries send a negative integer to the primary to indi-
cate they are finished. When the primary has received the
appropriate number of such integers it knows the computa-
tion has ended.

#include <stdio. h>
#include “ xdp . h “

#define REL_RECV (XDPREL I XDPRECV)
#define REL_INTR (XDPREL I XDPGETMSG)

#define NAXPRINES 90000
int p [MAXPRIMES] , nprimes=O;

int mypid, nnodes, done=O, interval, maxnum;

void I* executed by the prinuary only V
newprime (int n) {

xdpblock () ; /*potential race condition V
if (nprimes<MAXPRIMES) /* so block interrupts ‘/

p [nprimes++l = n;
xdpunblock () ;

}

void

sendint (int dest, int v, int mode) {
xdpwrite(dest, v, sizeof (i) , REL_INTR) ;

}

void I* executed by the primary only *I
fcatch () {

int p, src;

while (xdpgetmsg (&src, &p, sizeof (P))
! =xDpNOMESSJ@E)

if (p < O)
done++;

else
newprime (p) ;

}

void
search (int nl, int n2) {

int i;

for (i=nl; i<=n2; i++) {
if (IsPrime (i) {

if (mypid==O)
newprime (i) ;

else
sendint (O, i, RELJNTR) ;

}
}

}

void
foreman () { I* executed by the prinuuy only *I

int i, pid, b;

xdpcatchmsg (fcatch) ;

for (b=O, pid=l; pid<nnodes; pid++) {
sendint(pid, b, REL_RECV) ;
b += interval;

}
search (b, maxnum) ;
done++;

xdpblocko ;
while (done< nnodes)

xdppause(OL, NULLFUNC) ;
xdpunblocko ;

... print the list of primes here ...

xdpexit(’’You’re fired! “) ;

)

void
workero { /*executed bythe secondary only *I

int b, src;

xdprecv(&src, &b, sizeof (b) , XDPBLOCK) ;
search (b, b+interval) ;
quitvalue = -1;
sendint(O,- l,REL_INTR);
fclose(fp);
xdpexit(”I quit!”);

}

main(int ac,char *av[l) {
nnodes=xdpinit(&ac, &a) ;
maxnum = atoi(av[l]);
mypid = xdpgetpido;
interval = maxnurdnnodes;
(mypid == 0) ? foremano ; workero;

}

85

Along with examples like this students have been
given various exercises, such as:

5.

● parallelize a simple quadrature

● parallelize (Djikstra’s) single source shortest path
algorithm

● paralkdize a given ising-model simulation

● write a program that estimates the relative avail-
able computational power on the set of machines
mentioned in the hosts file

. using ~alazm t 1 arrange to send messages reli-
ably using only the XDPTJNI?ELflag in mite ()

Conclusion

As can be seen from the above, the student working
with this library still must address the fundamental prob-
lems of buffering, race conditions, synchronization, task
decomposition, and reliability that must be resolved in net-
work computing. By using the library, the student is
relieved of having to create and bind addresses and carry
out other messy socket layer administration.

XDP is a new library and, so far, has not been used
outside of Brooklyn College. Is this a disadvantage for
these students? In the absence of time constraints, using
the socket layer might be desirable, but even if there is
enough time to teach it effectively, should a CS major’s
fust encounter with network computing be obscured by its
idiosyncrasies? And would a student graduating to a posi-
tion involving network programming under NT be better
prepared by an XDP or a socket layer module? My admit-
tedly anecdotal (based on two offerings) experience sug-
gests that using a library to raise just the issues of interest

and to hide those not of interest is effective. Others in my
department have had similar experiences in teaching other
advanced undergraduate electives, for example, constraint-
based programming [McAloon,Tretkoff95]. As we in the
university strive to make available a broader range of more
advanced topics, we may increasingly have to resort to
libraries and environments that are specially designed for
instruction.

6. References

[Andrews82] G.R. Andrews: The distributed programming
language SR-- mechanisms, design and implementation.
So@vare— Practice and Experience 12,8 (Aug. 1982).

[Arnow95] D,M. Arnow: DP: A library for building porta-
ble, reliable distributed applications. To appear in the Pro-
ceedings of the Winter USENIX 95 Conference, New
Orleans (Jan., 1995).

[Gelemter85] D. Gelemter: Generative communication in
Linda. ACM Transactions on Programming Languages and
Systems 7, 1 (Jan. 1985).

[McAloon,Tretkoff95] K. McAloon and C. Tretkoff Opti-
mization and Computational Logic, Wiley, to appear in
1995.

[Stevens90] W. Richard Stevens: UNIX Network Program-
ming. Prentice-Hall (1990).

[Sunderam90] V.S. Sunderam: PVM— A framework for
parallel distributed computing. Concurrency: Practice and
Experience 2 (1990).

86

