
Improving Scalability by Self-Archiving
Zhiwu Xie1, 2, Jinyang Liu3, Herbert Van de Sompel4, Johann van Reenen1, Ramiro Jordan1

1University of New Mexico
Albuquerque, NM 87131

{zxie, jreenen, rjordan}
@unm.edu

2George Mason University
Fairfax, VA 22030

zxie2@gmu.edu

3Howard Hughes Medical
Institute

Ashburn, VA 20147

liuj@janelia.hhmi.org

4Los Alamos National
Laboratory

Los Alamos, NM 87544

herbertv@lanl.gov

ABSTRACT
The newer generation of web browsers supports the client-side
database, making it possible to run the full web application stacks
entirely in the web clients. Still, the server side database is
indispensable as the central hub for exchanging persistent data
between the web clients. Assuming this characterization, we
propose a novel web application framework in which the server
archives its database states at predefined periods then makes them
available on the web. The clients then use these archives to
synchronize their local databases. Although the main purpose is to
reduce the database scalability bottleneck, this approach also
promotes self-archiving and can be used for time traveling. We
discuss the consistency properties provided by this framework, as
well as the tradeoffs imposed.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Web-based services; H.2.4 [Database Management]:
Systems – Concurrency, Distributed databases, Transaction
processing.

General Terms
Design, Performance.

Keywords
Database scalability, replication control, freshness, serializability,
eventual consistency, client-side, archive, Memento.

1. INTRODUCTION
A Memento is a web resource that represents an archived
snapshot of the original, time-varying resource. The Memento
framework [1] establishes an HTTP based model and syntax to
link the existing Mementos and their Original Resources, enabling
time travel on the web.

The primary source for Mementos should be self-archiving. For
data-driven applications, a large body of research exists on
temporalizing the data model [2], and many database products
have long supported archiving and time travel at the transaction
level. But in practice, most web applications assume the users are
only interested in the current state of the affairs. For these
applications, creating and maintaining Mementos is less mission-
critical than improving the performance of the current-state
transactions. In this paper we present a web framework in which
self-archiving is by design in the core of the current-state web
application functionalities to alleviate the scalability bottleneck at

the server side database. This provides a more pertinent
motivation for the web applications to self-archive.

2. FRESHNESS FOR SCALABILITY
From the web client’s viewpoint, the data freshness is never
promised by the current-state web applications. Even if the
database explicitly guarantees it, the originally fresh data must
still travel across the WAN latency to reach the clients, during
which period the database state could have already changed. This
is even more evident when the server load is high, the application
state is updated very frequently, and the database starts to choke.

Since the web clients always have to tolerate some staleness, it
makes a relatively small difference for them to switch from
waiting for the fresh data to become stale to immediately reusing
the readily available stale data. The latter has the obvious benefit
of bypassing the server side database queries, leading to much
better scalability. The challenge, however, is how to trade
freshness for scalability in a consistent and efficient manner.

3. SELF ARCHIVING
We start by temporalizing the data model. With a temporal
database on the server, we now require the database query issued
explicitly with a time predicate, therefore is conceptually against
an archived database snapshot taken at a past instant. This forms a
database query parallel of the Memento framework. We then limit
the time predicates in these queries to a predefined set by
establishing a TimeMap that all the web clients must obtain upon
initialization and possibly update later. In this way, the same
database snapshot can be reused by all the queries issued by
different web clients that although not issued at the same instant,
but falling in the same time period.

We use the motion pictures as an analogy to help understand this
method. When shooting motion pictures, no matter how fast the
object moves (or the database updates), the video camera takes
snapshots at its own predefined frequencies. Given the archived
snapshots, a video player understands how the frames are timed
and assembled, and uses this knowledge to replay the snapshots to
the clients (clients query against the snapshots). The states in
between the snapshots are invisible to the clients, and are
presumed as not worth knowing.

The above changes would have brought little relief to the
scalability bottleneck if the server side database still needs to
handle all the web queries. We instead take advantage of the
recently popular client side database to replicate the archived
database snapshot to the clients and then execute the timed
queries on the clients. Since multiple clients would need the same
database snapshot in approximately the same time period, its
materialized view can be efficiently cached by the web
intermediaries and reused, presenting a good temporal locality.
Unlike queries, database updates don’t need time predicates, and

Copyright is held by the author/owner(s).
JCDL’11, June 13–17, 2011, Ottawa, Ontario, Canada.
ACM 978-1-4503-0744-4/11/06.

TimeT0 T1 T2

Snapshot(T0):
A=0
B=0
C=0

Server

Internet

Proxy/
Cache

Client 2

Client 1

5. Read A | t = T0?
6. Local db has Snapshot(T0)? Y
7. Return A=0.

Snapshot(T0):
A=0
B=0
C=0

Snapshot(T0):
A=0
B=0
C=0

Snapshot(T0):
A=0
B=0
C=0

1.Write A=1

2.Write A=1

3.Commit A=1

Snapshot(T0):
A=0
B=0
C=0

Snapshot(T1):
A=1
B=0
C=0

4. OK.

8. Read A | t = T1?
9. Local db has Snapshot(T1)? N

10. Cache has Snapshot(T1)? N

11. Get Snapshot(T1)

12. Return Snapshot(T1)

13. Cache Snapshot(T1)

Snapshot(T1):
A=1
B=0
C=0

14. Return Snapshot(T1) Snapshot(T1):
A=1
B=0
C=0

17. Update to Snapshot(T1)
18. Return A=1

15. Read B and C | t = T1?
16. Local db has Snapshot(T1)? N

19. Cache has Snapshot(T1)? Y

20. Return Snapshot(T1)

21. Update to Snapshot(T1)
22. Return C=0, B=0Network Topology

Snapshot(T0):
A=0
B=0
C=0

Figure 1. Improving scalability by self-archiving.

are always executed on the server side database and timestamped
with their respective commit times.

Based on the above characterizations, we devise a lazy-master
style [3] database replication control algorithm and can prove its
correctness. The distributed execution of this algorithm is 1-copy
serializable [4]. It presents a single-node view equivalence to the
web clients, an important correctness property not present in the
popular “eventual consistency” model [5]. We leave the details
and the proof to a separate paper.

In Figure 1 we schematically show how the server side temporal
database, its snapshot archives, the web proxy/cache, and the
clients and their local databases are concerted by our algorithm to
read and write data over the time. We note a few interesting
phenomenon. First, although step 3 commits before step5, Client
1 is not aware of the updated value of A until after T1. Second, in
step 13 Snapshot(T1) is brought in to the cache by Client 2, but is
shared with subsequent queries from Client 1. Since the cache is
closer to the clients than the origin server, Client 1 may get faster
responses, potentially compensating the prolonged staleness.

The archiving schema can be further optimized. Archiving full
database snapshots can be expensive in terms of storage and
bandwidth usage. In many cases we only need to know the data
changes or the writesets since the last archive. But then to rebuild
a full snapshot entirely from the writesets will require many more
web requests. The combination of the full snapshots and writesets
provides more flexibilities and a better balance, which may differ
case by case. Such archive based query also has positive
implications on the security and privacy issues encountered in the
other caching and replication approaches.

4. CONCLUSION
In this paper we present an archive based web applications
framework. It uses the client-side databases as the replicas of the
master database on the server, ensures 1-copy serializability and
improves scalability. We will report the experimental verification
and quantitative measurements in the follow-up work.

5. REFERENCES
[1] Van de Sompel, H., Nelson, M. and Sanderson, R. HTTP

framework for time-based access to resource states --
Memento. http://tools.ietf.org/html/draft-vandesompel-
memento-00

[2] Snodgrass, R.T. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, 1999.

[3] Gray, J., Helland, P., O'Neil, P. and Shasha, D. 1996. The
dangers of replication and a solution. Proceedings of the
1996 ACM SIGMOD international conference on
Management of data (Montreal, Quebec, Canada, 1996),
173-182.

[4] Bernstein, P.A., Hadzilacos, V. and Goodman, N. 1987.
Concurrency Control and Recovery in Database Systems.
Addison Wesley Publishing Company.

[5] Vogels, W. 2009. Eventually consistent. Communications of
the ACM. 52, (Jan. 2009), 40–44.

