
Towards Situation-Oriented Programming Languages 

Erkan Tin ,  Varol Akman  
Depar tment  of Compute r  Engineering 

Bilkent University 
Bilkent, 06533 Ankara,  Turkey 

{tin, akin an}@bilkent.edu.tr 

A b s t r a c t  

Recently, there have been some attempts towards 
developing programming languages based on situ- 
ation theory. These languages employ situation- 
theoretic constructs with varying degrees of diver- 
gence from the ontology of the theory. In this 
paper, we review three of these programming lan- 
guages. 

1 I n t r o d u c t i o n  

The development of programming languages based on situa- 
tion theory [1, 6] is a new trend. For this reason, it is worth 
examining how much these programming languages reflect 
situation-theoretic concepts and how much they deviate from 
them. In this paper, we review three approaches [9, 4, 12] to- 
wards programming systems based on situation theory, viz. 
PROSIT, ASTL, and BABY-SIT, respectively. 

2 P K O S I T  

PROSIT (PROgramming in Situation Theory), developed by 
Nakashima et al. [8, 9, 10], is tile first situation-theoretic 
programming language. It is a declarative language in which 
both programs and data are just sets of declarative elements. 
This feature makes PROSIT akin to PROLOG, but PROSIT 
is based on situation theory [1, 2, 6] instead of Horn clauses. 
The motivation behind +the design of this new language rests 
on the following features: 

0 The use of partially specified objects (e.g., situations) 
and partial information 

® Situations as 'first-class citizens' of the theory 
• Informational constraints 
® Self-referential expressions 

In PROSIT, an infon (a discrete item of information) is rep- 
resented as a list whose first element is the relation and whose 
remaining elements are the arguments of the relation: 

(relation objech  . . .  object , ) .  

For example, the infon 

(listening-to John Mary) 

expresses that the relation listening-to holds between the ob- 
jects represented by John and Mary, i.e., John is listening to 
Mary. 

One can assert infons and make queries about them. Unlike 
PROLOG, all infons are local to situations. For example, 
to ~sert  the infon mentioned above in situation s i t l  the 
following expression is used: 

(!= sitl ( l i s t e n i n g - t o  John Mary)) 

Expressions in PROSIT are LISP-style objects (i.e., atoms 
or lists). Atoms that are numbers or strings are considered 

Murat  Ersan 
Depar tment  of Compute r  Science 

Brown Universi ty 
Providence, RI 02912-1910, USA 

me@cs.brown.edu 

to be constants. Symbols starting with a character other 
than "*" are parameters. They are used to represent things 
in the world, such as individuals, situations, and relations. 
Usually, different parameters correspond to different entities. 
Parameters can be used in any infon including queries and 
constraints; their scope is global. A third kind of expression is 
a variable. Variables axe represented with symbols starting 
with "*'.  They can only occur in queries and constraints. 
They can stand for any PROSIT expression, yet their scope 
is local to the constraint or query they participate in. 

In PROSIT, there exists a tree hierarchy among all situations, 
where the situation top is at the root of the tree. top is the 
global situation and the 'owner' of all the other situations 
generated. One can traverse the 'situation tree' using the 
predicates i n  and out. Although it is possible to make queries 
from any situation about any other situation, the result will 
depend on where the query is made. If a situation s i t 2  is 
defined in the current situation, say s i t l ,  then s i t l  is said 
to be the owner of s i t2 ,  or equivalently: 

• s i t 2  is a part of s i t l  
• s i t l  describes s i t 2  

The owner relation states that if (!= s i t 2  in fon)  holds in 
s i t  1, then in fon  holds in s i t 2 ,  and conversely, if i n f o n  holds 
in s i t 2  then (!= s i t 2  i n fon )ho lds  in s i t l .  So, i n  causes 
the interpreter to go to a specified situation which will be 
a part of the 'current situation' (the situation in which the 
predicate is called) and out causes the interpreter to go to 
the owner of the current situation. 

Similar to the owner relation between situations there is the 
'subchunk' relation. It is denoted as ([_ s i t l  s i t 2 ) ,  where 
s i t l  is a subchunk of s i t 2 ,  and conversely, s i t 2  is a super- 
chunk of s i t l .  When a situation, say s i t l ,  is asserted to be 
the subchunk of another situation, say s i t 2 ,  it means that 
s i t l  is totally described by s i t 2 .  A superchunk is like an 
owner except that out will always cause the interpreter to go 
to the owner, not to a superchunk. 

PROSIT has two more relations that can be defined between 
situations. These are the 'subtype' relation and the 'subsit- 
uation' relation. When the subtype relation (denoted by (Q< 
s i t  1 s i t 2 ) )  is asserted, it causes the current situation to de- 
scribe that s i t 2  supports i for every infon i valid in s i t l  and 
that s i t 2  respects every constraint that is respected by s i t  1. 
i.e., s i t l  becomes a subtype of s i t 2 .  The subsituation rela- 
tion is denoted as (<--  s i t l  s i t 2 )  and is the same as (©< 
s i t l  s i t 2 )  except that only infons, but no constraints, axe 
inherited. Both relations are transitive. A distinguishing fea- 
ture of PROSIT is that the language allows self-referential ex- 
pressions. The fact that PROSIT permits situations as argu- 
ments to infons makes it possible to represent self-referential 
statements. Consider a card game where there are two play- 
ers. John has the ace of spades and Mary has the queen of 
spades. When both players display their cards the foUowi_ng 
infons will be true: 

(!ffi s i t  (has John ace-of - spades ) )  

2 7 ACM SIGPLAN Notices, Volume 30, No. 1, January 1995 



(!= sit (has Mary queen-of-spades)) 
(!= sit (sees 3ohn sit)) 
(!= sit (sees Mary sit)) 

As stated above, the notion of informational constraints 
is a distinguishing feature that encouraged the design of 
PROSIT. Constraints can be considered as a special type of 
information that generates new facts. They are just a special 
case of infons, and therefore are also situated. A constraint 
can be specified using either of the three relations =>, <=, 
and <=>. Constraints specified with => are forward-chaining. 
They are of the form (=> fac t  head1 head2 . . .  head, ) .  If 
fact is asserted to the situation then all of the head facts are 
a/so asserted to that situation. Constraints specified with <= 
are backward-chaining. They are of the form (<= head fact1 
fact2 .. .  factn) .  If each of the facts from 1 to n are sup- 
ported by the situation, then the head fact is also supported 
(though not asserted) by the same situation. Constraints 
specified with <=> should be considered as both backward- 
and forward-chaining. 

Hence, if there is a constraint stating that everything that 
smiles is happy in situation s i t l ,  viz. 

(resp sitl (=> (smiles *X) (happy *X))) 

then asserting ( smi les  John) in s i t l  will force PROSIT to 
assert the following infon in s i t l  too: 

(happy John). 

2.1 P R O S I T  v e r s u s  S i t u a t i o n  T h e o r y  

The three major concepts of situation theory [1, 2, 6] are 
infons, situations, and constraints. Infons are the basic in- 
formational units and are denoted as <<relation, argument1, 
. . . .  argument,,  polarity>>. Here relation is an n-place re- 
lation, arguments, . . . ,  argument, are objects appropriate 
for the respective places of relation, and polarity denotes the 
polarity (0 or 1). It is possible to use spatial and temporal 
locations in the argument places of relations. 

PROSIT represents infons as hsts and this is similar to the 
representation of infons in situation theory. PROSIT has 
no special polarity argument in infons, but uses the predi- 
cate no. Thus, (in f e n )  represents a positive infon whereas 
(no in f e n )  stands for the negation of that infon. The only 
deficiency of infons in PROSIT appears in the notion of spa- 
tial and temporal locations. In PROSIT, it is possible to 
use location indicating parameters in the argument places of 
relations, but this would be putting the individuals and lo- 
cations in the same category. However, Devlin [6, p. 35] 
remarks that  " . . . infons are built up out of entities called 
relations, individuals, locations, and polarities" and because 
the majority of real life 'facts '  pertain only to a certain re- 
gion of space and a certain interval of time, it is desirable to 
handle (spatial and temporal) locations separately. 

As mentioned above, situations are first-class citizens of the 
theory. There is no clear definition of what a situation exactly 
is. Rather, a situation is considered to be a structured part 
of the Reality that the agent somehow manages to pick out 
(individuate). The only definition given at this level is that 
of the supports relation: 

s supports c~ (s ~ c~) means that a is an item of 
information that is true of s. 

However, it is desirable to have some tools to handle situa- 
tions. Abstract situations are the mathematical constructs 
using which we can abstract analogs of real situations. They 
are more amenable to mathematical manipulation. An ab- 

stract situation is defined as a set of infons. Given a rea] 
situation, s, the set {c~ I s ~ a} is the corresponding ab- 
stract situation. 

PROSIT has situational parameters that are used to abstract 
analogs of real situations. In that sense, they can be consid- 
ered a.s abstract situations. They are associated with sets of 
infons. The definition of supports changes to: 

A situation s supports an infon ff the infon is ex- 
plicitly asserted to hold in the situation or can be 
proved to hold by application of forward-chaining 
constraints in the situation. 

As a result, supports reduces to simple set-membership. So 
we can conclude that the situations in PROSIT  are equivalent 
to abstract situations. 

In situation theory, the flow of information is carried out by 
constraints. A situation s will carry information relative to 
the constraint C = [S ~ S'], if s: S[f], where f anchors the 
parameters in S and S' .  Hence, the information carried by s 
relative to C is that there is a situation s',  possibly extending 
s, of type S'[f]. 

PROSIT also supports the concept of constraints, but han- 
dles them in a different fashion. These come in three flavors 
in PROSIT: forward-chaining constraints, backward-chaining 
constraints, and forward- and backward-chaining constraints. 
(This classification cannot be found in situation theory.) 
Built up on this classification, the creators of PROSIT  came 
up with new definitions: 

An infon is supported by a situation if the infon 
is explicitly asserted to hold in the situation, or 
can be proved to hold by application of forward- 
chaining constraints in the situation. 
An infon is permitted by a situation if the infon is 
deduced through application of backward-chaining 
constraints. 

It seems that this classification has no philosophical basis, 
but is offered because of implementation requirements. In 
fact, both methods (forward or backward) result in the same 
answers to queries. However, forward-chaining incurs a high 
cost at assertion-time, and backward-chainlng incurs a high 
cost at query-time. Additionally, forward-chaining requires 
more computer memory. So what the expression "an infon 
is permitted in a situation" really means is that,  the infon 
is supported by the situation but there is either no need or 
no space to store it. On the other hand. ff implementation 
strategies are considered, it is a good feature to have this 
kind of choice. It is left to the user to choose which kind of 
constraints to use. For example, forward-chaining constraints 
can be used in the design of applications where the results 
may not be predictable, and backward-chaining can be used 
in diagnostic problems. 

There are two additional points on which the constraints of 
PROSIT have been criticized (cf. [11]). The  first point is that 
PROSIT's  constraints are situated infon constraints, i.e., the 
constraints are about local facts within a situation rather 
than about situation-types. Though this criticism seems to 
be valid, it is possible to simulate constraints that  are not lo- 
ca / to  one situation (but are global). This can be achieved by 
introducing a situation which is global to all other situations 
and then asserting the constraint in this global situation. Be- 
cause all other situations will be in this global situation, any 
constraint that is asserted here will apply to all situations. 
For example, 

28 



(!= (resp topsit 
(<= (!= *Sitl (touching *X *Y)) 

(!= *Sitl (kissing *X *Y))))) 

states that  if, in situation topsit, there is a situation that 
supports a fact with the relation kissing, then that  situation 
also supports a fact with the relation touching on the same 
arguments. 

The second criticism is that  it is not possible to model conven- 
tional constraints in PROSIT .  However, none of the existing 
systems is capable of performing this either. 

An impor tant  feature of situation theory is the existence of 
types. Types are higher-order uniformities which cut across 
uniformities like individuals, relations, situations, and spa- 
tial and temporal  locations. Just  as individuals, temporal 
locations, spatial  locations, relations, and situations, types 
are also (higher-order) uniformities that  are discriminated by 
agents. In this framework, relations may have their argument 
places filled either with individuals, situations, locations, and 
other relations or with types of individuals, situations, loca- 
tions, and relations. For example, if an agent sees smoke he 
can conclude that  there is fire, since he is aware of the con- 
straint which finks situations where there is smoke to those 
where there is fire. This  constraint  is not particular to a cer- 
tain instance, but holds in general. Actually the constraint 
finks types of situations, viz., smoky-type of situations to 
ones with fire. 

The development  of types necessitates devices for making ref- 
erence to arbi t rary objects of a given type. Therefore, for 
each type T,  an infinite collection of parameters T1 ,T2,. . .  is 
introduced. For example, IND3 is an IND-parameter  (pa- 
rameters of type  IND). 

These parameters  offer some computational  power, but we 
need more than that .  Rather  than parameters ranging over 
all individuals, we need parameters  that  range over a more 
restricted class, e.g., all men kicking footballs. Such param- 
eters are called restricted parameters. For example, 

r'l = h T <<kicking, &, b, 1>> 
g = I N D 3  T <<man, IND3,  1>> 

= I N D 2  T <<football, IND2,  1>>. 

Once defined, r'l ranges over all men kicking footballs. 

In addition, it is possible to obtain new types using a param- 
eter, s, and a set, I ,  of infons (in the form [s [ s ~ I]). For 
example, 

[SIT I S I T  ~ <<kicking, h, b, 1>>] 

represents a s i tuat ion- type where a man is kicking a football 
and 

[h [ S I T  ~ <<kicking, h, b, I>>] 

denotes the type  of men kicking a football. 

In P R O S I T  some of these are hard to achieve and some are 
not even possible. First  of all, there is no typing in PROSIT. 
A variable can match any parameter  or constant without due 
r.egard to types. In one of the previous exaznples we defined 
r l  as a restr icted parameter  ranging over all men kicking 
footballs. Once  defined, r l  will represent this subclass of 
individuals. But  in P R O S I T  it is not possible to make this 
kind of parameter  definitions which can be used throughout 
a program. The  only thing one can do is to pose queries 
on restricted parameters .  All men kicking footballs can be 
queried using the following expression: 

(AND (kicking *a *b) (man *a) (football *b)). 

Although none of the variables above are restricted, the ex- 
pression queries a restricted class of individuals. 

PROSIT has no mechanism to define types either. As a con- 
sequence, one essential criticism on PROSIT is the lack of 
situation-types. We cannot define a situation-type explicitly, 
i.e., there is no corresponding expression for defining all men 
kicking footballs as in si tuation theory. On the other  hand 
P R O S I T  can query a certain type of situation and put con- 
straints between situation-types.  

So the real problem is that  it is not possible to restrict a 
parameter  or to assign a variable to a certain type. This 
also makes it impossible to define argument  roles. Neverthe- 
less, this deficiency does not prevent  us from making queries 
about  restricted parameters  or put t ing constraints  between 
situation-types.  

As described in the previous section, P R O S I T  has a tree 
s tructure among situations, but  in si tuation theory there is 
no mention of a hierarchy. There  is no subchunk relation 
either. However, this hierarchy of P R O S I T  turns out  to be 
useful in modeling some problems regarding knowledge and 
befieL 

One may ask why there are two different relations (owner and 
superchunk) doing very similar jobs. The  major  difference 
between these relations is not what  the P R O S I T  manual  [10] 
says, i.e., the predicate ou t  will take the interpreter  to the 
owner not to the superchunk. More importantly,  the owner 
relation is defined between si tuations which are parent-child 
in the situation tree and the superchunk relation between two 
situations that  are siblings in this tree. 

The  other two relations (subtype and subsituation) should 
also be examined carefully. At  first glance, it seems that  
there is a similarity between these relations and the concept 
of inheritance in object-oriented programming.  However, in 
PROSIT  the supersi tuation inherits  all the infons from the 
subsituation, whereas in object-or iented programming it is 
the subclass tha t  inherits the propert ies and methods  from 
the superclass. Accordingly, it can be concluded that  ei- 
ther the direction of inheritance is completely different in 
two paradigms or t h a t  the terms subsituation and subclass 
should not evoke object-oriented concepts.  

Next comes the question of where we can use these relations. 
The  example given in the P R O S I T  manual  uses these rela- 
tions to classify the airplanes of type DC (DC-9, DC-10, and 
so on). But from the si tuat ion-theoret icM point of view, it is 
not correct to consider airplanes of type DC as a situation. 
An agent does not  individuate DC type of airplanes as a sit- 
uation and DC-9s as a subsituation of tha t  situation. These 
can only be considered as a class and its subclass. This  exam- 
ple surely suits well to object-oriented programming,  but not 
to situation theory. P R O S I T  should make a clear distinction 
between situations and classes. 

One would be hard-pressed to find anything about  inheri- 
tance, supersituations, and subsituations when one reads the 
essential documents  on si tuation theory [1, 2, 6]: The  only 
thing that  seems related to these concepts is the part-of re- 
lation which is defined ms follows: 

A s i t u a t i o n  sl is a part  of a si tuation s2 (denoted 
as sl ~ s~) jus t  in case every basic s tate of affairs 
that  is a fact of sl  is also a fact of s2. 

However if sih 4 sit2 is true, then the only comment  we 
should make is tha t  these two are defining the same situation, 

29  



but sit2 gives a more fine-grained description (using more 
infons) than sit1. 

A very important point to note is that there is no rela- 
tion between the tree-hierarchy among situations and the su- 
per/subclass relation between situations. The super/subclass 
relation is defined between situations that are in the same 
level of the situation tree. 

2 .2 S o l v i n g  P r o b l e m s  U s i n g  P R O S I T  

The main group of problems that PROSIT can handle is 
that of individual knowledge and belief in multi-agent sys- 
tems, and common knowledge (mutual information). There 
are three main properties that enable PROSIT to simulate 
human-like reasoning. The first one is situated programming, 
i.e., infons and constraints are local to situations. The sec- 
ond is PROSIT's  situation tree structure, using which one 
can represent nested knowledge/belief (e.g., "A thinks that 
B believes that  C knows . . . ' ) .  The third is the use of incon- 
sistencies to generate new information. Two good examples 
for this type of problems are the "Three Wisemen Problem" 
[9] (which uses all of the three properties above) and the 
"Treatment of Identity" [8]. 

PROSIT proposes an important forward-chaining feature; 
viz., the assertion of uninstantiated variables. For example, 
when the constraint 

(=> ( g r a n d f a t h e r  *X *Y) 
(parent *X *Z) (parent *Z *Y) (male *X)) 

is fired with an infon, say (grandfather John Mary), the 
system should assert the following infons: 

(parent John *ZI) 
(parent *Z1 Mary) 
(male John) 

where *Zl is an uninstantiated variable. However, while a 
very useful feature, this has not been implemented correctly. 
The current system only asserts the first and the third infons 
and also concludes that (parent John Mary). 

PROSIT is the first situation-theoretic programming lan- 
guage, and therefore is a valuable study. It provides most of 
the features of situation theory. Additionally, it offers some 
other tools such as the distinction between constraints (for- 
ward or backward) or the tree-hierarchy among situations. 

When publications on PROSIT axe compared, it will be no- 
ticed that the more recent papers deviate from the earlier 
papers which are more theoretic. Most features proposed in 
the earlier papers arc not supported in the implementation, 
e.g., the implementation does not support compound terms 
and labels. In addition, the inheritance mechanism is totally 
different than the one proposed. 

Self-referential expressions and situations as arguments of in- 
fons are two powerful features. These features can efficiently 
be used in representing knowledge and belief (e.g., "Three 
Wisemen Problem"). The owner relation and the superchunk 
relation are useful in modeling such epistemic problems. So, 
PROSIT is primarily aimed at the more general problems of 
knowledge representation and is closer to the world of logic 
programming than natural language processing. 

3 ASTL 

Black's ASTL (A Situation-Theoretic Language) is based on 
situation theory [4]. ASTL is aimed at natural language pro- 
cessing [4]. One can define, in ASTL, constraints and rules 

of inference over situations. An interpreter, a basic version 
of which is implemented in Common LISP, passes over ASTL 
definitions to answer queries about a set of constraints and 
basic situations. 

ASTL allows of individuals, relations, situations, parameters, 
and variables. These definitions form the basic terms of the 
language. Complex terms are in the form oft-terms (to be de- 
fined shortly), situation types, and situations. Situations can 
contain facts which have those situations as arguments. Sen- 
tences in ASTL are constructed from terms in the language 
and can be constraints, grammar rules, or word entries. 

The complex term i-term is simply an infon 
(rel, argl, . . . ,  arg, ,  pol) where rel is a relation of arity 
n, argi is a term, and pol is either 0 or 1. A situation type 
is given in the form [paramlcondl . . .  cond,] where condi has 
the form param ~ i.term. If situation Sl supports the fact 
that Bob is a young person, this can be defined as: 

Si: [S I S ~ (young, bob, I)]. 

The single colon indicates that St supports the situation type 
on its right-hand side. The supports relation in ASTL is 
global rather than situated. Consequently, query answering 
is independent of the situation in which the query is issued. 

Constraints are actually backward-chaining constraints. 
Each constraint is of the form sito : typeo <= sit1 : 
t y p e l , . . . , s i t ,  : type , ,  where siti is a situation or a vari- 
able, and typei is a situation type. If each sit i ,  1 < i < n, 
supports the corresponding situation type, typei,  then sito 
supports typeo. For example, the constraint that every man 
is a human being can be written as follows: 

• s: Is I s ~ <human, *X, I)] <= 
• S: IS I S ~ (man, *X, I)]. 

• S, *X are variables and S is a parameter. An interesting 
property of A S T L  is that constraints are global. Thus, a 
new situation of the appropriate type need not have a con- 
straint explicitly added to it. For example, assume that  Sl, 
supporting the fact that Bob is a man, is asserted: 

s l :  [s I s ~ (man, bob,  1 ) ] .  

This together with the constraint above would give: 

St: [S I S ~ (human, bob, 1)]. 

Grammar rules are another form of constraints. An example 
grammar rule describing the utterance of a sentence consist- 
ing of a noun phrase and verb phrase can be defined as: 

• s: Is I s ~ (cat, s, sentence, I)] -> 
• NP: [S I S ~ (ca t ,  S, nounphrase ,  1)],  
• vP= ts I s (cat, s, verbphrase, 1)] 

where cat denotes the category of the construct, and -> in- 
dicates that this is a grammar rule. This rule can be read: 
"When there is a situation *NP of the given type and situa- 
tion • VP of the given type, there is also a situation *S of the 
given type." 

3.1 ASTL as a Situation-Theoretlc Language 

At the heart of situation theory lie schemes ofindivlduation, 
ways to classify the world into 'uniformities' discriminated by 
cognitive agents. Situations, relations, individuals, temporal 
locations, and spatial locations are the basic uniformities. 
The need for a mathematical representation of these unifor- 
mities resulted in what is known as types. Types correspond 
to the cognitive process of individuating or discnmlnating 

........... 30 



uniformities in the world. The ontology of situation theory 
has been extended further to include other uniformities such 
as infons, polarities, etc. In this respect, ASTL does not 
allow its objects to be of some type. Only situations can 
be declared to have a situation type. Other objects in the 
system are left untyped. This approach has particular conse- 
quences on the conception of relations and parameters which 
are explained in the sequel. 

There are three characteristics of an infon in ASTL which 
should be evaluated from the standpoint of situation theory: 
argument places, minimality conditions, and argument roles. 

For a reasonable treatment of infons both in conceptual and 
computational levels, each relation should have a limited 
number of argument places. Consider the relation walking. 
A reasonable assumption will be that this relation has four 
argument places: a walking agent, direction/destination, lo- 
cation of walking, and time of walking. 

To have a formally well-defined infon, there must be a lower 
bound as to the number of argument places to be filled in 
an n-place relation. For example, there must be at least 
one argument place of the relation walking filled, namely the 
walldng agent. Otherwise, the infon <<walking>> would have 
zero information content. Minimality conditions are, then, 
necessary for a relation to provide an item of information. 
All argument places of a relation in ASTL are required to be 
filled. 

Any object appearing as an argument of a relation must be 
appropriate for the argument role imposed by that argument 
place. Hence, appropriateness conditions must be defined for 
each possible argument place of a relation. This is generally 
done by forming a set of infons for an argument place which 
are supposed to be supported by the world situation for a 
given object. At the primary level, each argument role re- 
quires the appropriate object to be of some basic type. That 
is, each argument role is associated with a certain type, the 
type of the object that may legitimately fill that argument 
role. In a technical sense, appropriate conditions for an argu- 
ment role are complex types having only 'the world situation' 
as their grounding situation. ASTL does not allow definition 
of appropriateness conditions for arguments of relations. The 
relation walking, for example, might require its walking agent 
role to be filled by an animate object. Such a restriction can 
be defined only by using constraints in ASTL. However, this 
requires writing the restriction each time a new constraint 
about walking is to be added. Thus, an ASTL relation can 
have any object in the system as one of its arguments. Hav- 
ing appropriateness conditions as a built-in feature would be 
better. 

In situation theory, a fact and its dual should not both be sup- 
ported by a situation. ASTL does not provide a mechanism, 
such as truth maintenance, to preserve coherence within situ- 
ations. It is claimed that this is left to the user's control and 
that it can be achieved by specifying some special constraints 
in the ASTL descriptions. A constraint of the form 

• s :  [sls ~ ( a o t u a l ,  s .  0)] - >  

• s:  I s i s  ~ (*R, *A, 0], 
• s.. Is I s ~ (.rt, **, 0)] 

is given by Black as an example for such constraints. How- 
ever, this is not a solution to the problem of having incoherent 
situations. Moreover, this approach may be quite expensive 
for the user since maintaining coherence is a hard and com- 
plicated task and when left to the user, a large number of 
constraints must be written. What is worse is that conse- 
quences of allowing incoherent situations and reasoning over 

them may be drastic, e.g., it may lead to unintended models 
during computation. It seems that coherence, as a built-in 
notion, can hardly be embedded in an extension of the exist- 
ing version of ASTL since it is not a syntactical matter and 
requires meta level control over the whole model. 

Parameters are place holders in infons for the objects of some 
type and they are used to represent indeterminate objects in 
situation theory. In ASTL, there is no special treatment of 
parameters which are just  atomic objects in the model. Pa- 
rameters are only used in identifying situation types. Since 
there is no notion of types other than situation types in 
ASTL, a parameter can hold the place of any object. For 
this reason, any parametric object carries symbolic impor- 
tance in this system. 

In situation theory, parameters are used to achieve abstrac- 
tion at the level of almost all object types, i.e., situations, 
individuals, temporal locations, etc. However, in ASTL, ab- 
straction is only at the level of situations. There is no direct 
equivalent of properties in ASTL. Consider the abstraction 
for an object having the property of being happy in some 
situation s :  

IX Is  ~ <hapvy,  X, 1 >  1 . 

In the current version of ASTL, Black tries to achieve this 
by allowing situation types with paxametric infons. But this 
is not an appropriate way to use abstractions since one can- 
not abstract over other objects such as individuals, tempo- 
ral locations, etc. (cf. object type-abstraction and situation 
type-abstraction in [6]). 

As mentioned above, parameters are place holders for inde- 
terminate objects in situation theory, hence yielding a form of 
abstraction over objects. The ties of these abstractions with 
the real world occur via a kind of assignment function called 
anchor. This function changes from one cognitive agent to 
the other, and from one perspective to the other of a single 
cognitive agent. Information content of an abstract object 
increases when its parameters are anchored to objects in the 
real world by an anchor. An anchor maps a parameter to a 
unique, appropriate object in the world. Technically speak- 
ing, a parameter must be anchored to an object of the same 
type since the parameter is a filler for an object having spe- 
cific properties. The issues of anchoring to a unique object 
and anchoring to an object of the same type introduce tech- 
nical difficulties in building a computational system. In case 
of ASTL, there are several points worth mentioning. Black 
proposes to consider anchors as situations (anchoring situa- 
tions) having infons of the form ~anchor-to, label, term>> 
and other related infons. Second, the current version of ASTL 
must be modified to use anchoring situations. This cannot 
be controlled by the user. The main reason is that whenever 
an anchoring occurs, the system must check whether the first 
argument of the relation anchor-to is a label and the second 
one is a term. Moreover, the system must assure that the 
parameter is anchored to only one object in that anchoring 
situation. Finally, type checking for both of the arguments is 
required. The crux of all these problems lies in ASTL's not 
having type-theoretic objects and not employing parameters 
as they are intended in situation theory. 

Although one can define constraints between situations in 
ASTL, the notion of background conditions for constraints 
is not available. This means that conditional constraints are 
not available. However, this can be achieved by writing a 
set of conditions which must be satisfied for the constraint to 
qualify as an applicable one. These conditions will obviously 
be placed on the consequent part of each ASTL constraint 
since all ASTL constraints are used for backward-chaining. 

...... .... 31 



Being in a larger situation gives one the ability of having 
information about its subsituations. The part-of relation of 
situation theory is used to build such a structure (i.e., in- 
formation nesting) among abstract situations. ASTL does 
not have a mechanism to relate two situations so that one 
will directly support all the facts that the other does. While 
this might be achieved via constraints of ASTL, there is no 
built-in structure between situations. 

Another issue is circularity; allowing situations as arguments 
of their own infons is common in situation theory, This is 
also possible in ASTL. 

3.2 A S T L  as  a P r o g r a m m i n g  L a n g u a g e  

ASTL has been developed with the natural language pro- 
cessing and natural language semantics in mind. Still, it is 
possible to use it as a general knowledge representation lan- 
guage. It is in the class of declarative languages which are 
known to be suitable for knowledge representation. Advan- 
tages of employing declarative or procedural approaches in 
knowledge-based systems are still being debated. Both have 
been justified from perspectives of cognitive science and phi- 
losophy. Some researchers studied unified approaches. For 
the time being, declarative approach fits best for a situation- 
theoretic computational language, but one can also benefit 
from procedural knowledge. (PROSIT is a candidate for a 
unified framework since it is possible to use LISP statements 
as part of the language.) 

Black shows that his system is sound, but he leaves its com- 
pleteness formally unproved. Therefore, we are not sure if it 
is complete or not. The user should rely on the language and 
its computation mechanism. There are two aspects of the 
inference mechanism for which ASTL should be evaluated 
accordingly. 

The first is the form of constraints. A typical user studying 
situation theory will not only want to investigate if an infon 
is supported by a situation, but also want to see if an infon 
is not supported by that situation. In other words, he would 
like to know if a situation is not of a certain type ind  then 
use this knowledge. This calls for negation in both query 
statements and constraints. An elegant way to do this is by 
having the appropriate syntax and semantics for the nega- 
tion of supports relation, i.e., letting "~"  be used in these 
statements. Consider the following constraint: 

*S: [S I S ~ (paid-little, *W, *S, I)], 
. s :  [s I s ~ (has-o ther - income,  *W, *S, 1)] -> 

.s: [sls ~ (poor, *w, i)] 

which expresses the form of reasoning "if I know that a worker 
is paid little and I do not know that he has other income, then 
I know that he is poor." Another example is: 

.s: Is I s ~ (exists, smoke, *S, 1)], 
*S: [S I S ~ ( e x i s t s ,  a i r ,  *S, 0)] -> 

, s :  [sls ~ ( ex i s t s ,  fire, *S, 1)]. 

This says that  "if I know that there is smoke in a situation 
and I do not know that there does not exist air in the same 
situation, then there is a fire in that situation." Note that 
negated forms of infons in propositions with ~ are the as- 
sumptions. They are accepted to be true by default, unless 
otherwise stated. 

The other aspect is that of the chaining mechanism. ASTL 
constraints are all in the form of backward-chaining con- 
straints. The user can only issue queries. However, an intel- 
ligent agent has the ability to not only acquire information 

about situations and obtain new information about them by 
being attuned to assorted constraints, but also act accord- 
ingly to alter its environment. Thus, having forward-chaining 
constraints as well would be better. In this way, new situa- 
tions would be created, new infons would be inserted into sit- 
uations, and consequences of new infons would be observed. 

ASTL provides a simple user interface. The user writes ASTL 
definitions into a file which can be loaded in a Common LISP 
environment. Other than querying what situations support, 
the user has the opportunity to view some system features. 
ASTL is not an interactive language in the sense that a static 
definition is input to the system and the user can observe 
what can be inferred from these definitions. Moreover, one 
cannot assert propositions to the system: new propositions 
must first be added to the static description and then the sys- 
tem must be reloaded. This prevents the user from directly 
seeing the consequences of his propositions. An ideal system 
should be designed as if it were a cognitive agent instantly re- 
ceiving information about its environment, making decisions 
upon, and acting accordingly. A system built with this view 
in mind would be dynamic since it would be responsive, and 
incremental since it would develop itself by learning more and 
more in time. 

It is questionable whether the current version of ASTL can be 
updated vis-a-vis new (probably computational) constructs 
to be developed within situation theory. A few extensions 
to ASTL, especially in order to obtain abstractions, are pro- 
posed by Black. Even though these seem to be easily embed- 
ded in the current version of ASTL, they do not reflect bona 
fide semantic and syntactic constructs of situation theory; 
rather, they are synthetic substitutes, doability and seman- 
tic consequences of which are unknown. 

4 BABY-SIT 

BABY-SIT is a computational medium based on situations, 
a prototype of which is currently being developed in KEE 
(Knowledge Engineering Environment) [7] on a SPARCsta- 
tion. The primary motivation underlying BABY-SIT is to 
facilitate the development and testing of programs in do- 
mains ranging from linguistics to artificial intelligence within 
a unified framework built upon situation-theoretic constructs 
[11, 12]. 

The computational model underlying the current version of 
BABY-SIT consists of nine primitive domains: individuals, 
times, places, relations, polarities, parameters, infons, sit- 
uations, and types. Each domain carries its own internal 
structure: 

. Individuals: Unique atomic entities in the model which 
correspond to real objects in the world. 

0 Times: Individuals of distinguished type, representing 
temporal locations. 

• Places: Similar to times, places are individuals which 
represent spatial locations. 

• Relations: Various relations hold or fail to hold between 
objects. A relation has argument roles which must be 
occupied by appropriate objects. 

• Polarities: The ' t ruth values' 0 and 1. 
• Infons: Discrete items of information of the form 

<<re/, argl, . . . ,  arg,~, pol>>, where re/ is a relation, 
argo, 1 < i < n, is an object of the appropriate type for 
the ith argument role, and pol is the polarity. 

• Parameters: 'Place holders' for objects in the model. 
They are used to refer to arbitrary objects of a given 
type. 

........ 32 



* Situations: (Abstract) situations are set-theoretic con- 
structs, e.g., a set of parametric infons (comprising re- 
lations, parameters, and polarities). A parametric infon 
is the basic computational unit. By defining a hierar- 
chy between them, situations can be embedded via the 
special relation part-of. A situation can be either (spa- 
tinily and/or temporally) located or unlocated. Time 
and place for a situation can be declared by time-of and 
place-of relations, respectively. 

* Types: Higher-order uniformities for individuating or 
discriminating uniformities in the world. 

This computational model is shared by the three modes of 
computation in BABY-SIT: assertion mode, constraints,and 
query mode. 

4.1  M o d e s  o f  C o m p u t a t i o n  

4.1.1 Assert ion Mode 

This mode provides an interactive environment in which 
one can define objects and their types. There are nine ba- 
sic types corresponding to nine primitive domains: ,-rIND 
(individuals), ,-,TIM (times), ,-,LOC (places), ~REL (rela- 
tions), ~ P O L  (polarities), ,-dNF (infons), ,,~PAR (parame- 
ters), ,-,SIT (situations), and ~ T Y P  (types). For instance, if 
I is a place, then I is of type ,-,LOC, and the infon <<el-type, 
l, ~LOC,  1>> is a fact in the background situation. Note 
that the type of all types is ~TYP.  For example, the infons 
<<el-type, ,-,LOC, ,-,TYP, 1>> and <<el-type, ,-,TYP, ~TYP, 
1>> are facts in the background situation by default. The 
syntax of the assertion mode (cf. [11]) is the same as in [6]. 

Suppose bob is an individual, sees  is a relation, and s i t l  is 
a situation. Then, these objects can be declared as: 

I>  bob: ,,rIND 

I> sees: -,~REL 

I> sitl: ~SIT 

The definition of relations includes the appropriateness con- 
ditions for their argument roles. Appropriateness conditions 
define the domains to which arguments of a relation belong. 
Each argument can be declared to be from one or more of the 
primitive domains above. Consider the relation above. If we 
like it to have two arguments, the former being of type indi- 
vidual and the latter being of type situation, we can write: 

I> <sees [ ~IND, ~SIT> [I] 

The number in square brackets indicates the minimum num- 
ber of arguments that can be used with the relation. Hence, 
<<sees, bob, 1>>, for example, is considered to be a valid 
infon (i.e., saturated infon) in the system. 

In order for the parameters to be anchored to objects of the 
appropriate type, parameters must  be declared to be from 
only one of the primitive domains. It is a/so possible to put 
restrictions on a parameter in the environment. Suppose we 
want to have a parameter E denoting any individual that sees 
situation s i t l .  This can be done by asserting: 

I> E = INDI " <<sees, INDi, sitl, I>> 

IND1 is a default system parameter of type ~IND. E is consid- 
ered as an object of type ,-~PAK such that if it is anchored to 
an object, say obj 1, then obj 1 must be of type ~IND and the 
background situation must support the infon <<sees, obj 1, 
sitl, i>>. 

Parametric types are also allowed in BABY-SIT. They are 
are of the form [P  I s ~ I] where P i s  aparameter ,  s i s  a 
situation (i.e., a grounding situation), and I is a set ofinfons. 
The type of all situations that Bob sees can be defined in 
BABY-SIT as follows: 

I>  ~SITALL = [SIT1 [ w ~ <<sees, bob, SIT1, 1>>] 

Hence, ,-,SITALL is seen as an object of type ,-,TYP in BABY- 
SIT and can be used as a type specifier for declaration of new 
objects in the environment. An object of type --,SITALL, say 
obj2, is an object of basic type ~SIT  such that the back- 
ground situation supports the infon <<sees,  bob, obj2,  
1>>. 

Naming infons enables one to easily refer to them in expres- 
sions. For instance, the infon < : s e e s ,  bob, s i t l ,  1>> can 
be named i n f o n l  by the assertion: 

I> infonl = <<sees, bob, sitl, I~ 

In BABY-SIT, a situation browser enables one to create sit- 
uations, browse them graphically, add or delete infons, and 
establish hierarchies among situations. For example, the fol- 
lowing sequence of assertions creates a situation s i t 2  and 
then adds the infon <<sees, bob, s i t l ,  0)> into it: 

I>  s i t 2 :  ~SIT 

I>  s i t 2  ~ <<sees, bob, s i t l ,  0>> 

Variables in BABY-SIT are only used in constraints and 
query expressions, and have scope only within the constraint 
or the query expression they appear. A variable can match 
any object appropriate for the place or the argument role 
it appears in. For example, given the relation above, vari- 
ables ?S and ?X in the proposition ?S~<<sees ,  ?X, s i t l ,  
1 ~  can only match objects of type ,-,SIT and ,-JND, respec- 
tively. 

4.1.2 Cons t ra in ts  

Barwise and Perry identify three forms of constraints [1]. 
Necessary constraints are those by which one can define or 
name things, e.g., "Every dog is a mammal." Nomic con- 
straints are patterns that are usually called natural laws, e.g., 
"Blocks drop if not supported." Conventional constraints are 
those arising out of explicit or implicit conventions that hold 
within a community of living beings, e.g., "The first day of 
the month is the pay day." They are neither nomic nor nec- 
essary, i.e., they can be violated. All types of constraints can 
be conditionM and unconditional. Conditional constraints 
can be applied to situations that meet some condition while 
unconditional constraints can be applied to all situations. 

A BABY-SIT constraint is of the form: 

antecedenh . . . . .  antecedent, {<=, =>, <=>} 
consequent1, . . . ,  consequentm. 

Each antecedenti, 1 < i < n, and each conseequentj, 1 < j _< 
m, is of the form sit {~,  ~} <<re/, argl . . . . .  argl, pol>> 
such that tel and each argk, 1 < k _< 1, can either be an 
object of appropriate type or a variable. 

Eazh constraint has an identifier associated with it and must 
belong to a group of constraints. For example, the following 
is a backward-chaining constraint named HUMAN-BEINGS- 
012 under the constraint group SPECIES-PERSPECTIVE: 

SPECIES-PERSPECTIVE: 
HUMAN-BEINGS-012: 

?S ~ <<human, ?X, 1>> <= ?S ~ <<man, ?X, 1>> 

33 



where ?S and ?X are variables. ?S can only be assigned an 
object of type ,-,SIT while ?X can have values of some type 
appropriate for the argument roles of the human and man 
relations. This constraint can apply in any situation. Hence, 
BABY-SIT constraints can be global. Constraints can also be 
situated. For example, HUMAN-BEINGS-012 can be rewritten 
to apply only in situation s i t l :  

sitl ~ <<human, ?X, I>> <= sitl ~ <<man, ?X, I>>. 

Conditional constraints of BABY-SIT come with a set of 
background conditions which must be satisfied for the con- 
straint to apply. For example, to state that  blocks drop if 
not supported, one can write: 

NATURAL-LAW-PERSPECTIVE: 
FALLING-BLOCK: 
?SI ~ <<block, ?X, I>>, 
?$1 ~ <'<supported, ?X, 0> => 

?S2 ~ <<drops, ?X, I> 
UNDER-CONDITIONS: 

w: <<exists, gravity, i>>. 

Background conditions are, in fact, assumptions which are 
required to hold for constraints to be eligible for activation. 
FALLING-BLOCK constraint can become a candidate for ac- 
tivation only if it is the case that w ~ < < e x i s t s ,  g r a v i t y ,  
0>>, i.e., if the absence of gravity is not known in the back- 
ground situation. 

Forward-chaining mechanism of BABY-SIT is initiated ei- 
ther when the user tells the system to do so or by asser- 
tion of a new object into the system. A candidate forward- 
chaining constraint is activated whenever its antecedent part 
is satisfied. All the consequences are asserted if they do not 
yield a contradiction in the situation into which they are as- 
serted. New assertions may in turn activate other candidate 
forward-chaining constraints. Candidate backward-chaining 
constraints are activated either when a query is entered ex- 
plicitly or is issued by the forward-chaining mechanism. 

In BABY-SIT, the following classes of constraints can be eas- 
ily modeled [4]: 

• Situation constraints: Constraints between situation 
types. 

• Infon constraints: Constraints between infons (of a sit- 
uation). 

• Argument constraints: Constraints on argument roles 
(of an infon). 

4.1.3 Query  Mode 

Query mode enables one to issue queries about situations. 
BABY-SIT's  response depends on its understanding of the 
intention of the user. There are several possible actions which 
can be further controlled by the user: 

• Searching for solutions by using a given group of con- 
straints. 

• Replacing each parameter in the query expression by the 
corresponding individual if there is a possible anchor, 
either partial or full, for that parameter provided by the 
given anchoring situation. 

• Returning solutions. (Their number is determined by 
the user.) 

• Displaying a solution with its parameters replaced by 
the individuals to which they are anchored by the given 
anchoring situation. 

• For each solution, displaying infons anchoring any pa- 
rameter in the solution to an individual in the given 
anchoring situation. 

• Displaying a trace of anchoring of parameters in each 
solution. 

The computation upon issuing a query is done either by 
direct querying through situations or by the application of 
backward-chaining constraints. A situation, 3, supports an 
infon if the infon is either explicitly asserted to hold in s, or 
it is supported by a situation s' which is part of s, or it can 
bc proven to hold by application of ba~ckward-chalnlng con- 
straints. Given an anchoring situation, say anchor1, a query 
and the system's response to it are as follows: 

Q> 7S ~ {.~:sees, E, ?Y, 1>, 
<<time-of, sit1, ?Z, 1>>}, 

w ~ <<blind, bob, i>> 

answers (without anchoring of parameters): 

sit3 ~ {<<sees, E, sitl, i>>, 
<<time-o:f, sitl, tl, I~}, 

w ~ <<blind, bob, I>> 

with the anchoring: 

anchorl ~ .~anchor, E, bob, I>>. 

In addition to query operations, a special operation, orac/e, is 
allowed in the query mode. An oracle is defined over an object 
and a set of infons (set of issues) [6]. The oracle of an object 
enables one to chronologically view the information about 
that object from a particular perspective provided by the 
given set of infons. One may consider oracles as 'histories' of 
specific objects. Given an object and a set of issues, BABY- 
SIT anchors all parameters in this set of issues and collects 
all infons supported by the situations in the system under a 
specific situation, thus forming a 'minimal' situation which 
supports all parameter-free infons in the set of issues. 

4.2 Compatibility with Situation Theory 

BABY-SIT accommodates the following basic features of sit- 
uation theory: 

• Objects: The world is viewed as a collection of objects. 
The basic objects include individuals, times, places, la- 
bels, situations, relations, and parameters. 

• Situations: Situations are first-class citizens which rep- 
resent bruited portions of the world. 

. Partiality: Infons can be made true or false, or may be 
left unmentioned by some situation. 

• Coherence: A situation cannot support both an infon 
and its dual. 

• Circularity: A situation can contain infons which have 
the former as arguments. 

• Constraints: Information flow is made possible via co- 
ercions that  link various types of objects. 

Compared to the existing approaches [9, 10], BABY-SIT en- 
hances the features listed above in the following ways: 

• Situations are viewed at an abstract level. This means 
that situations are sets of parametric infons, but they 
may be non-well-founded (circularity) [3]. 

, Parameters are place holders and can be anchored to 
unique individuals in an anchoring situation. The an- 
choring situation is required to cohere. 

........... 34 



• A situation can be reMized if its parameters are an- 
chored, eiZher partially or fully, by an anchoring situa- 
tion. That  is, only anchoring the parameters of an infon 
contributes a piece of information about the situation. 
Each relation has 'appropriateness conditions' which de- 
termine the type of its arguments. The basic computa- 
tion regime is unification. 

• Situations (and hence infons they support) have spatio- 
temporal dimensions. 

e A hierarchy of situations can be defined both stati- 
cally and dynamically. A situation can have information 
about another which is a part of the former. 
Situations can be grouped to form a whole which pro- 
vides a computational context. Such a whole has its own 
set of constraints which can be globally applied to the 
situations collected under it. 

o Partial nature of situations facilitates computation with 
incomplete information. 

® Constraints can be violated. This aspect is built directly 
into the computational mechanism: a constraint can be 
applied to a situation only if it does not introduce an 
incoherence. 

BABY-SIT allows the use contextual information which plays 
a critical role in all forms of behavior and communica- 
tion. Constraints enable one situation to provide informa- 
tion about another and serve as links between representa- 
tions and the information they represent. Computation over 
situations occurs via constraints and is context-sensitive. In 
the existing approaches [4, 8, 9, 10], the notion of context 
is either poorly handled or left out completely. Furthermore, 
these approaches do not provide an apparatus for forming the 
background information which will assure the applicability of 
constraints. In BABY-SIT, the abstract nature of situations 
make it possible to form abstractions without asserting facts 
into them. 

5 C o n c l u s i o n  

In various fields of science, one observes existence of well 
established theories that  have been followed by their com- 
putational counterparts: fluid dynamics followed by com- 
putational fluid dynamics, geometry followed by computa- 
tional geometry, and category theory followed by computa- 
tional category theory. These computational fields of stud- 
ies have been motivated by the foundations of the theories 
they are based on and they have led to useful systems which 
make basic and advanced features of their theories available 
to users. Situation theory is an obvious candidate in this 
direction [2, 5, 6]. 

The programming languages reviewed in this paper comprise 
initial attempZs towards a computational account of situation 
theory. While they deviate from the ontology of the theory in 
varying degrees (cf. Appendix), they incorporate constructs 
tailored for efficient use in various domains of application 
ranging from artificial intelligence to natural language pro- 
cessmg. 

We also consider situation theory as a candidate framework 
for a new programming paradigm as justified by the nature of 
the existing approaches as general programming and knowl- 
edge representation languages. When we have a look at the 
history of programming language research, we find out that 
there are paradigms such as functional, logical, and object- 
oriented. Functional languages are motivated by A-calculus 
(e.g., LISP), logical languages are based on first-order logic 
(e.g., PROLOG),  and object-oriented languages are mainly 

built upon the concept of inheritance (e.g., Smalltalk). With 
its mathematical foundations based on intuitions basically 
coming from set theory and logic, situation theory adapts a 
remarkably original view of information, a logic, based not 
on truth but on information. We believe that this view of 
information together with situations as first-class objects are 
mature enough to establish a new programming paradigm 
whose computational flavor will be shaped by the existing 
and upcoming approaches. 

A c k n o w l e d g m e n t s  

KEE is a trademark of InZelliCorp, Inc. SPARCstation is a 
trademark of Sun Microsystems, Inc. 

The second author's research is supported in parZ by a NATO 
SFS project (TU-LANGUAGE).  

R e f e r e n c e s  

[1] J. Bazwise and J. Perry. Situations and Attitudes, Cam- 
bridge, MA: MIT Press, 1983. 

[2] J. Barwise. The Situation in Logic, CSLI Leczure Notes 
Number 17, Center for the Study of Language and In- 
formation, Stanford, CA, 1989. 

[3] J. Barwise and J. Etchemendy. The Liar: An Essay on 
Truth and Circularity, New York, N.Y.: Oxford Univer- 
sity Press, 1987. 

[4] A. W. Black. ~An Approach to Computat ional  Situa- 
Zion Semantics," Ph.D. Thesis, Department of Artificial 
Intelligence, University of Edinburgh, Edinburgh, U.K., 
April 1993. 

[5] R. Cooper, K. Mukai, and J. Perry, ediZors. Situation 
Theory and Its Applications, Volume 1, CSLI LecZure 
Notes Number 22, Center for the Study of Language 
and Information, Stanford, CA, 1990. 

[6] K. Devlin. Logic and Information, Cambridge, U.K.: 
Cambridge University Press, 1991. 

[7] KEE T M  (Knowledge Engineering Environment) Soft- 
ware Development System, Version 4.1, InteUiCorp, Inc., 
Mountain View, CA, 1993. 

[8] H. Nakashima, S. Peters, and H. Schfizze. ``Communica- 
tion and Inference through Situations," in Proceedings 
of the Third Conference on Artificial IntelJJgence Ap- 
plications, WashingZon, D.C.: IEEE Computer Society 
Press, 1987, pp. 76-81. 

[9] H. Nakashima, H. Suzuki, P.-K. Halvorsen, and S. Pe- 
ters. "Towards a Computational  Interpretat ion of Situ- 
ation Theory," in Proceedings of the International Con- 
ference on Fifth Generation Computer Systems, Insti- 
tute for New Generation Computer  Technology, Tokyo, 
Japan, 1988, pp. 489-498. 

[10] H. Schfitze. ``The PROSIT Language v0.4," ManuscripZ, 
Center for the Study of Language and Information, Stan- 
ford University, Stanford, CA, 1991. 

[11] E. Tin and V. Akman. ``BABY-SIT: A Computat ional  
Medium Based on Situations," in P. Dekker and M. 
Stokhof, editors, Proceedings of the 9th Amsterdam Col- 
loquium, Part  III, University of Amsterdam, Amster- 
dam, Holland: Institute for Logic, Language, and Com- 
putation, 1993, 665-681. 

35 



[12] E. Tin and V. Akman. "BABY-SIT: Towards a 
Situation-Theoretic Computational  Environment," in C. 
Martln-Vide, editor, Current Issues in Mathematiced 
Linguistics, North-Holland Linguistic Series, Volume 56, 
Amsterdam, Holland: North-Holland, 1994, pp. 299- 
308. 

[13] E. Tm and V. Akman. "Information-Oriented Compu- 
tation with BABY-SIT," in Conference on Information- 
Oriented Approaches to Logic, Language, and Compu- 
tation (4th Conference on Situation Theory and its Ap- 
plications), Saint Mary's  College of California, Moraga, 
CA, 1994 (to be published by CSLI). 

A p p e n d i x :  
T a b l e a u  c o m p a r i s o n  o f  e x i s t i n g  a p p r o a c h e s  

Constraint Type PROSIT ASTL BABY-SIT 
Nomic ~/ ~/ q '  
Necessary ~ ~ 
Conventional - - 9 
Conditional - - x/ 
Situated ~/ - - 

Constraint Class PROSIT ASTL BABY-SIT 
Situation constraint - V / y/ 

.... Infon constraint ~/ ~/ y/ 
Argument constraint - - 

Computation 
Unification 

PROSIT 

.Type-theoretic 
Coherence 

..... .Forward-chaining 
Backward-chaining 
Bidirectional-chaining 

~/ 
,/  

ASTL BABY-SIT 

- , /  
- v '  

- 

- 

Miscellaneous Features 
Circularity 
tl~l gggl l l l  

PROSIT 
,/  
, /  

Parameters ? 
Abstraction ? 
Anchoring 
Information nesting 
Saturated infons 
Set operations 

"'Oracles 

? 

Legend 
x/: exists 
- : doesn't  exist 
? : part iMly/conceptually exists 

ASTL BABY-SIT 
, /  , /  

? , /  

36 


