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Abstract. Motivated by an open problem from graph drawing, we study several partitioning problems
for line and hyperplane arrangements. We prove a ham-sandwich cut theorem: given two sets of n
lines in R2, there is a line ` such that in both line sets, for both halfplanes delimited by `, there are

√
n

lines which pairwise intersect in that halfplane, and this bound is tight; a centerpoint theorem: for any
set of n lines there is a point such that for any halfplane containing that point there are

√
n/3 of the

lines which pairwise intersect in that halfplane. We generalize those results in higher dimension and
obtain a center transversal theorem, a same-type lemma, and a positive portion Erdős-Szekeres theorem
for hyperplane arrangements. This is done by formulating a generalization of the center transversal
theorem which applies to set functions that are much more general than measures. Back to Graph
Drawing (and in the plane), we completely solve the open problem that motivated our search: there is
no set of n labelled lines that are universal for all n-vertex labelled planar graphs. As a contrast, the
main result by Pach and Toth in [J. of Graph Theory, 2004], has, as an easy consequence, that every
set of n (unlabelled) lines is universal for all n-vertex (unlabelled) planar graphs.

1 Introduction

Consider a mapping of the vertices of a graph to distinct points in the plane and represent each edge by
the closed line segment between its endpoints. Such a graph representation is a (straight-line) drawing
if the only vertices that each edge intersects are its own endpoints. A crossing in a drawing is a pair
of edges that intersect at some point other than a common endpoint. A drawing is crossing-free if it
has no crossings.

One main focus in graph drawing is finding methods to produce drawings or crossing-free
drawings for a given graph with various restrictions on the position of the vertices of the graph in the
plane. For instance, there is plethora of work where vertices are required to be placed on integer grid
points or on parallel lines in 2 or 3–dimensions.

Given a set R of n regions in the plane and an n-vertex graph G, consider a class of graph
drawing problems where G needs to be drawn crossing-free by placing each vertex of G in one region
of R. If such a drawing exists, then R is said to support G. The problems studied in the literature
distinguish between two scenarios: in one, each vertex of the graph is prescribed its specific region
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(that is, the vertices and the regions are labelled); in the other, each vertex is free to be assigned to
any of the n regions (that is, the vertices are unlabelled).

When regions are points in the plane, Rosenstiehl and Tarjan [RT86] asked if there exists
a set of n points that support all n-vertex unlabelled planar graphs. This question is answered in
the negative by De Fraysseix [dFPP88, dFPP90]. On the contrary, every set of n points in general
position supports all n-vertex unlabelled outerplanar graphs, as proved by Gritzmann et al.[GMPP91]
and recapitulated in Lemma 14.7 in the text by Agarwal and Pach [AP95]. If the drawings are not
restricted to be straight-line, then every set of labelled points supports every labelled planar graph, as
shown by [PW01]. However Ω(n) bends per edge may be necessary in any such crossing-free drawing.

When regions are labelled lines in the plane, Estrella-Balderrama et al.[EBFK09] showed that
for every n ≥ 6, there is no set of n parallel lines in the plane that support all labelled n-vertex planar
graphs. The authors moreover characterized a (sub)class of n-vertex planar graphs that are supported
by every set of n-parallel lines, for every labelling of the graphs in the class. That class is mainly
comprised of several special families of trees. Dujmović et al.[DEK+10] showed that no set of n lines
that all intersect in one common point supports all n-vertex labelled planar graphs. Moreover, they
show that for every n large enough, there is a set of n lines in general position that does not support
all labelled n-vertex planar graphs. They leave as the main open problem the question of whether, for
every n large enough, there exists a universal set of n lines in the plane, that is, one that supports
all labelled n-vertex planar graphs. In Section 5, as our main graph drawing result, we answer that
question in the negative. The main result by Pach and Toth [PT04] on monotone drawings, has, as an
easy consequence, that in the unlabelled case, every set of n-lines supports every n-vertex unlabelled
planar graph. As a side note, we give an alternative and direct proof of that fact. The result illustrates
the sharp contrast with the labelled case.

While the positive result is proved using little of the geometry in the arrangement, the non-
existence of universal line sets required extraction of some (bad) substructure from any line arrange-
ment. This prompted us to study several structural and partitioning problems for line and hyperplane
arrangements.

Hyperplane arrangements Partitioning problems are central to our understanding of discrete and
computational geometry, and while many works have focused on partitioning point sets, probability
distributions or measures, much less is understood for sets of lines in R2 or hyperplanes in Rd. This
is partially due to the fact that a line (or a hyperplane), being infinite, can’t be contained in any
bounded region, or even in a halfplane (except if the boundary of the halfplane is parallel to the
given line). Previous works (such as cuttings [CF90, Mat90] or equipartitions [LS03]) have focused
on identifying, and bounding the number of lines/hyperplanes intersecting a set of regions. Others
[CSSS89] on partitioning the vertices of the arrangements rather than the lines themselves. Those
results have found numerous applications. Our graph drawing problem motivates a different approach.

An arrangement L of n lines in R2 is composed of vertices V (L) (all pairwise intersections
between lines of L), edges connecting these vertices, and half-lines. If we omit the half-lines, we are
left with a finite graph which can be contained in a bounded region of the plane, in particular, it is
contained in the convex hull CH(V (L)) of the vertices of the arrangement. Therefore, a natural way
of evaluating the portion of an arrangement contained in a given convex region C is to find the largest
subset L′ of lines of L such that the arrangement of L′ (without the half-lines) is contained in C, or
equivalently, such that all pairwise intersections of lines in L′ lie in C.



It is not hard to show that, in any arrangement of n lines, a line ` can be found such that for both
closed halfplanes bounded by ` there are at least

√
n lines which pairwise intersect in that halfplane.

This provides the analogue of a bisecting line for point sets. In Section 3.1, we show that any two line
arrangements can be bisected simultaneously in this manner, thus proving a ham-sandwich theorem
for line arrangements. We also prove a centerpoint theorem: for any arrangement of n lines, there is a
point q such that for any halfplane containing q, there are at least

√
n/3 lines of the arrangement that

pairwise intersect in that halfplane. In Section 3.2 we generalize these notions to higher dimensions
and prove a center transversal theorem: for any k and d, there is a growing function Q such that for
any k sets A1, . . . , Ak of hyperplanes in Rd, there is a (k − 1)-flat π such that for any halfspace h
containing π there is a subset A′i of Q(|Ai|) hyperplanes from each set Ai such that any d hyperplanes
of A′i intersect in h. The bound Q we find is related to Ramsey numbers for hypergraphs.

Ham-sandwich theorems have a number of natural consequences. In Section 2 we show a same-
type lemma for hyperplane arrangements: informally, for any k arrangements A1, . . . , Ak of hyperplanes
in general position (no d + 1 share a point) and that are large enough, we can find a large subset of
hyperplanes A′i from each set Ai such that the convex hulls CH(A′i) of the vertices in the arrangements
A′i are well-separated, that is, no hyperplane hits d+ 1 of them. In the plane, we also show a positive
portion Erdős-Szekeres theorem: for any integers k and c there is an integer N such that any set of
N lines in general position contains k subsets A1, . . . , Ak of c lines each such that the vertices of each
arrangement Ai can be separated from those of all the others by a line.

All the results above would be relatively easy to prove if the set function we were computing –
the maximum subset of hyperplanes that have all d-wise intersections in a given region – was a measure.
Unfortunately it is not. However, in Section 2, we identify basic properties much weaker than those of
measures which, if satisfied by a set function, guarantee a central-transversal theorem to be true.

2 Center transversal theorem

The center transversal theorem is a generalization of both the ham-sandwich cut theorem, and the
centerpoint theorem discovered independently by Dol’nikov [Dol92], and Živaljević and Vrećica [ŽV90].
The version of Dol’nikov is defined for a class of set functions that is more general than measures. Let
H be the set of all open halfspaces in Rd and let G be a family of subsets of Rd closed under union
operations and that contains H. A charge µ is a finite set function that is defined for all set X ∈ G,
and that is monotone (µ(X) ≤ µ(Y ) whenever X ⊆ Y ) and subadditive (µ(X ∪ Y ) ≤ µ(X) + µ(Y )).
A charge µ is concentrated on a set X if for every halfspace h ∈ H s.t. h∩X = ∅, µ(h) = 0. Dol’nikov
shows1:

Theorem 1 (Center transversal theorem [Dol92]). For arbitrary k charges µi, i = 1, . . . , k, defined on
G and concentrated on bounded sets, there exists a (k − 1)-flat π such that

µi(h) ≥ µi(Rd)
d− k + 2

, i = 1, . . . , k,

for every open halfspace h ∈ H containing π.

1Dol’nikov actually shows a slightly more general theorem that allows for non-concentrated charges. For the sake of
simplicity we only discuss the simplified version even though our generalizations extend to the stronger original result.



A careful reading of the proof of this theorem reveals that its statement can be generalized, and
the assumptions on µi weakened. We first notice that the subadditive property is only used in the proof
for taking the union of a finite number of halfspaces from H. Therefore, define µ to be H-subadditive
if

µ(∪h∈H) ≤
∑
h∈H

µ(h)

for any finite set H ⊂ H of halfspaces.

Next, notice that in order for the proof to go through, the set function µ need not be real-valued.
Recall [Bou07] that a totally ordered unital magma (M,⊕,≤, e) is a totally ordered set M endowed
with a binary operator ⊕ such that M is closed under ⊕ operations, ⊕ has neutral element e (i.e.,
x⊕ e = x = e⊕ x) and is monotone (i.e., a⊕ c ≤ b⊕ c and c⊕ a ≤ c⊕ b whenever a ≤ b). Further, for
all x ∈M and c ∈ N, define the cth multiple of x as cx := ⊕cx := x⊕ (x⊕ (. . .⊕ x) . . .)︸ ︷︷ ︸

c times

.

Then, it suffices that µ take values over M , and use e as the 0 used in the definition of a
concentrated set function above. It is then the addition operator ⊕ which is to be used in the definition
of the subadditive (or H-subadditive) property and in the proof of the theorem. Thus, just by reading
the proof of Dol’nikov under this new light we have:

Theorem 2. Let µi, i = 1, . . . , k be k set functions defined on G and taking values in a totally
ordered unital magma (M,⊕,≤, e). If the functions µi are monotone H-subadditive and concentrated
on bounded sets, there exists a (k − 1)-flat π such that

(d− k + 2)µi(h) ≥ µi(Rd), i = 1, . . . , k,

for every open halfspace h ∈ H containing π.

3 Center transversal theorem for arrangements

Let A be an arrangement of n hyperplanes in Rd. We write V (A) for the set of all vertices (intersection
points between any d hyperplanes) of A and CH(A) = CH(V (A)) for the convex hull of those points.
In the arguments that follow, by abuse of language, we will write A and mean V (A) or CH(A). For
example, we say that the arrangement A is above hyperplane h when all points in V (A) are above h.
More generally for a region Q in Rd, we say that the arrangement A does not intersect Q if CH(A)
does not intersect Q. We say that the k arrangements A1, A2, . . . , Ak are disjoint if their convex hulls
do not intersect. They are separable if they are disjoint and no hyperplane intersects d + 1 of them
simultaneously.

Let H be the set of all open halfspaces in Rd and let G be a family of subsets of Rd closed
under union operations and that contains H. For any set S ∈ G, let µA(S) be the maximum number
of hyperplanes of A that have all their vertices inside of S, that is,

µA(S) = max
A′⊆A,V (A′)⊆S

|A′|.

In particular, µA(Rd) = µA(CH(A)) = n and µA(∅) = d− 1.



3.1 Lines in R2

We start with the planar case. Thus, A is a set of lines in R2, and H is the set of all open halfplanes.
Recall the Erdős-Szekeres theorem [ES35]

Theorem 3 (Erdős-Szekeres). For all integers r, s, any sequence of n > (r−1)(s−1) numbers contains
either a non-increasing subsequence of length r or an increasing subsequence of length s.

We show:

Lemma 4. For any two sets S1 ∈ H and S2 ∈ G,

µA(S1 ∪ S2) ≤ µA(S1)µA(S2)

Proof. Let ` be a line defining two open halfplanes `+ and `− such that S1 = `− and let S′2 = S2 \ `−.
Rotate and translate the plane so that ` is the (vertical) y axis, and `+ contains all points with positive
x coordinate. Let A′ be a maximum cardinality subset of A such that V (A′) ⊆ S1 ∪S2. Let l1, . . . , l|A′|
be the lines in A′ ordered by increasing order of their slopes, and let Y = (y1, . . . , y|A′|) be the y
coordinates of the intersections of the lines li with line `, in the same order. For any set A1 ⊆ A′ such
that the yi values of the lines in A1 form an increasing subsequence in Y , notice that V (A1) ⊆ S1.
Likewise, for any set A2 ⊆ A′ that forms a non-increasing subsequence in Y , we have V (A2) ⊆ S′2. Any
such set A1 is of size |A1| ≤ µA(S1) and any such set A2 is of size |A2| ≤ µA(S′2) ≤ µA(S2).

Therefore, Y has no non-decreasing subsequence of length µA(S1) + 1 and no non-increasing
subsequence of length µA(S2)+1, and so by Theorem 3, µA(S1∪S2) = |A′| = |Y | ≤ µA(S1)µA(S2).

Corollary 5. The set function µA takes values in the totally ordered unital magma (R+
0 , ·,≤, 1); it is

monotone and H-subadditive.

We can thus apply the generalized center transversal theorem with k = 2 to obtain a ham-
sandwich cut theorem:

Theorem 6. For any arrangements A1 and A2 of lines in R2, there exists a line ` bounding closed
halfplanes `+ and `− and sets Aσi , i ∈ 1, 2, σ ∈ +,− such that Aσi ⊆ Ai, |Aσi | ≥ |Ai|1/2, and V (Aσi ) ∈ `σ.

Note that this statement is similar to the result of Aronov et al.[AEG+94] on mutually avoiding
sets. Specifically, two sets A and B of points in the plane are mutually avoiding if no line through a
pair of points in A intersects the convex hull of B, and vice versa. Note that, on the other hand, our
notion of separability for lines is equivalent to the following definition in the dual. Two sets A and B of
points in the plane are separable if there exists a point x such that all the lines through pairs of points
in A are above x and all the lines through pairs of points in B are below x or vice versa. Aronov et al.
show in Theorem 1 of [AEG+94] that any two sets A1 and A2 of points contains two subsets A′i ⊆ Ai,
|A′i| ≥ |Ai/12|1/2, i ∈ {1, 2} that are mutually avoiding. That this bound is tight, up to a constant,
was proved by Valtr [Val97]. In the dual, Theorem 6 states that for any two sets A1 and A2 of points
in R2, there exists a point ` and sets Aσi , i ∈ 1, 2, σ ∈ +,− such that Aσi ⊆ Ai, |Aσi | ≥ |Ai|1/2, and all
lines through pairs of points in A+

i are above ` and all lines through pairs of points in A−i are below
`. While similar, neither the two results nor the two notions of mutually avoiding and separable are



equivalent. It is not difficult to show that no result/notion immediately implies the other. Moreover,
neither our proof of Theorem 6 nor the proof of Theorem 1 in [AEG+94] give two sets that are, at the
same time, mutually avoiding and separable.

Note that the bound in Theorem 6 is tight: assume n is the square of an integer. Construct
the first line arrangement A1 with

√
n pencils of

√
n lines each, centered at points with coordinates

(−1/2, i) for i = 1, . . . ,
√
n, and the slopes of the lines in pencil i are distinct values in [1/2 − (i −

1)/
√
n, 1/2 − i/

√
n]. Thus all intersections other than the pencil centers have x coordinates greater

than 1/2. The line x = 0 delimits two halfplanes in which µA1(x ≤ 0) =
√
n since any set of more than√

n lines have lines from different pencils which intersect on the right of x = 0, and µA1(x ≥ 0) =
√
n

since any set of more than
√
n lines has two lines in the same pencil which intersect left of x = 0. Since

µA1 is monotone, no vertical line can improve this bound on both sides. Perturb the lines so that no
two intersection points have the same x coordinate. For A2, build a copy of A1 translated down, far
enough so that no line through two vertices of A1 intersects CH(A2) and conversely. Therefore any
line not combinatorially equivalent to a vertical line (with respect to the vertices of A1 and A2) does
not intersect one of the arrangements and so there is no better cut than x = 0.

Applying the generalized center transversal theorem with k = 1 gives a centerpoint theorem
with a bound of |A|1/3. A slightly more careful analysis improves that bound.

Theorem 7. For any arrangement A of lines in R2, there exists a point q such that for every halfplane
h containing q there is a set A′ ⊆ A, |A′| ≥

√
|A|/3, such that V (A′) ∈ h.

Proof. Let H be the set of halfplanes h such that µA(h) < z =
√
|A|/3. The halfspace depth δ(q) is

the minimum value of µA(h) for any halfspace containing q. Therefore, the region of depth ≥ z is the
intersection of the complements h of the halfplanes h ∈ H. If there is no point of depth ≥ z then the
intersection of the complements of halfplanes in H is empty, and so (by Helly’s Theorem) there must
be 3 halfplanes h1, h2, and h3 in H such that the intersection of their complements h1 ∩ h2 ∩ h3 is
empty. But then, there is at least one point q ∈ h1 ∩ h2 ∩ h3. Let h′i be the translated halfplanes hi
with point q on the boundary. Since h′i ⊆ hi, µA(h′i) ≤ µA(hi) < z. The point q and the 3 halfplanes
through it are witness that there is no point of depth ≥ z.

The 3 lines bounding those 3 halfplanes divide the plane into 6 regions. Every line misses one
of the three regions h′1∩h′2∩h′3, h′1∩h′2∩h′3, and h′1∩h′2∩h′3. Classify the lines in A depending on the
first region it misses, clockwise. The largest class A′ contains ≥ |A|/3 lines. Assume without loss of
generality that all lines in A′ miss h′1 ∩h′2 ∩h′3, then all intersections between lines of A′ are in h′2 ∪h′3.
By Lemma 4,

|A|/3 ≤ |A′| = µA′(h
′
2 ∪ h′3) ≤ µA′(h′2)µA′(h′3) < z2 = |A|/3,

a contradiction.

3.2 Hyperplanes in Rd

We first briefly review a bichromatic version of Ramsey’s theorem for hypergraphs.

Theorem 8. For all p, a, b ∈ N, there is a natural number R = Rp(a, b) such that for any set S of size
R and any 2-colouring c :

(
S
p

)
→ {1, 2} of all subsets of S of size p, there is either a set A of size a



such that all p-tuples in
(
A
p

)
have colour 1 or a set B of size b such that all p-tuples in

(
B
p

)
have colour

2.

Lemma 9. For any two sets S1 ∈ H and S2 ∈ G,

µA(S1 ∪ S2) ≤ Rd(µA(S1) + 1, µA(S2) + 1)− 1

Proof. Let h be a hyperplane defining two open halfplanes h+ and h− such that S1 = h− and let
S′2 = S2 \ h−. Let A′ be a maximum cardinality subset of A such that V (A) ⊆ S1 ∪ S2. Colour
every subset of d hyperplanes in A′ with colour 1 if their intersection point is in h− and with colour 2
otherwise.

For any set A1 ⊆ A′ such that all subsets in
(
A1

d

)
have colour 1, notice that V (A1) ⊆ S1.

Likewise, for any set A2 ⊆ A′ such that all subsets in
(
A2

d

)
have colour 2, we have V (A2) ⊆ S′2. Any

such set A1 is of size |A1| ≤ µA(S1) and any such set A2 is of size |A2| ≤ µA(S′2) ≤ µA(S2).

Therefore, A′ has no subset of size µA(S1) + 1 that has all d-tuples of colour 1, and no subset
of size µA(S2) + 1 that has all d-tuples of colour 2, and so by Ramsey’s Theorem, µA(S1 ∪S2) = |A′| ≤
Rd(µA(S1) + 1, µA(S2) + 1)− 1.

Define the operator ⊕ as a⊕ b = Rd(a+ 1, b+ 1)− 1. The operator is increasing and closed on
the set N≥d−1 of naturals ≥ d − 1. Since Rd(d, x) = x for all x, d − 1 is a neutral element. Therefore
(N≥d−1,⊕,≤, d− 1) is a totally ordered unital magma. Thus we have:

Corollary 10. The set function µA takes values in the totally ordered unital magma (N≥d−1,⊕,≤
, d− 1); it is monotone and H-subadditive.

Apply now the generalized center transversal theorem to obtain:

Theorem 11. Let A1, . . . , Ak be k sets of hyperplanes in Rd. There exists a (k − 1)-flat π such that
for every open halfspace h that contains π,

(d− k + 2)µAi(h) ≥ |Ai|.

The special case when k = d gives a ham-sandwich cut theorem.

Corollary 12. Let A1, . . . , Ad be d sets of hyperplanes in Rd. There exists a hyperplane π bounding
the two closed halfspaces π+ and π− and sets Aσi ⊆ Ai, σ ∈ {+,−}, such that V (Aσi ) ⊆ πσ and
|Aσi | ⊕ |Aσi | ≥ |Ai|.

If the arrangement A has the property that no r + 1 hyperplanes intersect in a common point,
µA(π) ≤ r for any hyperplane π, and so by Lemma 9, if h is an open halfspace bounded by π and
h̄ = π ∪ h is the corresponding closed halfspace, µA(h̄) ≤ µA(h)⊕ r.

Corollary 13. Let A1, . . . , Ad be d sets of hyperplanes in Rd, no r+ 1 of which intersect in a common
point. There exists a hyperplane π bounding the two open halfspaces π+ and π− and sets Aσi ⊆ Ai,
σ ∈ {+,−}, such that V (Aσi ) ⊆ πσ and (|Aσi | ⊕ |Aσi |)⊕ r ≥ |Ai|.



4 Same-type lemma for arrangements

Center transversal theorems, and especially the ham-sandwich cut theorem, are basic tools for proving
many facts in discrete geometry. We show here how the same facts can be shown for hyperplane
arrangements in Rd.

A transversal of a collection of sets X1, . . . , Xm is a m-tuple (x1, . . . , xm) where xi ∈ Xi. A
collection of sets X1, . . . , Xm has same-type transversals if all of its transversals have the same order-
type.

Note that m ≥ d + 1 sets have same-type transversals if and only if every d + 1 of them have
same-type transversals. There are several equivalent definitions for these notions.

1. The sets X1, . . . , Xd+1 have same-type transversals if and only if they are well separated, that is,
if and only if for all disjoint sets of indices I, J ⊆ {1, . . . , d+ 1}, there is a hyperplane separating
the sets Xi, i ∈ I from the sets Xj , j ∈ J .

2. Connected sets C1, . . . , Cd+1 have same-type transversals if and only if there is no hyperplane
intersecting simultaneously all Ci. Sets X1, . . . , Xd+1 have same-type transversals if and only if
there is no hyperplane intersecting simultaneously all their convex hulls Ci = CH(Xi).

The same-type lemma for point sets states that there is a constant c = c(m, d) such that for any
collection S1, . . . , Sm of finite point sets in Rd, there are sets S′i ⊆ Si such that |S′i| ≥ c|Si| and the sets
S′1, . . . , S

′
m have same-type transversals. We here show a similar result for hyperplane arrangements.

A function f is growing if for any value y0 there is a x0 such that f(x) ≥ y0 for any x ≥ x0.

Lemma 14. For any integers d, m, and r, there is a growing function f = fm,d,r such that for any
collection of m hyperplane arrangements A1, . . . , Am, in Rd, where no r + 1 hyperplanes intersect at
a common point, there are sets A′i ⊆ Ai such that |A′i| ≥ f(|Ai|) and the sets CH(A′1), . . . , CH(A′m)
have same-type transversals.

Proof. The proof will follow closely the structure of Matoušek [Mat02, Theorem 9.3.1, p.217]. First
notice that the composition of two growing functions is a growing function. The proof will show how
to choose successive (nested) subsets of each set Ai, c times where c = c(m, d) only depends on m and
d and where the size of each subset is some growing function of the previous one.

Also, it will suffice to prove the theorem for m = d + 1, and then apply it repeatedly for each

d+ 1 tuple of sets. The resulting function fm,d,r will be f
( m
d+1)
d+1,d,r, the repeated composition of fd+1,d,r,(

m
d+1

)
times.

So, given d + 1 sets A1, . . . , Ad+1 of hyperplanes in Rd, suppose that there is an index set
I ⊆ {1, . . . , d + 1} such that ∪i∈ICH(Ai) and ∪i/∈ICH(Ai) are not separable by a hyperplane and
assume without loss of generality that d + 1 ∈ I. Let π be the ham sandwich cut hyperplane for
arrangements A1, . . . , Ad obtained by applying Corollary 13. Then for each i ∈ [1, d], each of the two
open halfspaces πσ, σ ∈ {+,−} bounded by π contains a subset Aσi ⊆ Ai such that V (Aσi ) ⊆ πσ and



(|Aσi | ⊕ |Aσi |)⊕ r ≥ |Ai|. Furthermore, because µAd+1
(π) ≤ r and by Lemma 9,

µAd+1
(π+)⊕ µAd+1

(π−)⊕ r ≥ µAd+1
(Rd) = |Ad+1|.

Assume without loss of generality µAd+1
(π+) ≥ µAd+1

(π−). Then µAd+1
(π+)⊕µAd+1

(π+)⊕ r ≥
|Ad+1|. For each i ∈ I, let A′i = A+

i and for each i /∈ I, let A′i = A−i . Let g(x) = min{y|y ⊕ y ⊕ r ≥ x}.
Then g is a growing function, and |A′i| ≥ g(|Ai|).

In the worst case, we have to shrink the sets for each possible I, 2d times. Therefore for
m = d + 1, the function f in the statement of the theorem is a composition of g, 2d times, and is a
growing function.

In the plane, the same-type lemma readily gives a positive portion Erdős-Szekeres Theorem.
Recall that the Erdős-Szekeres (happy ending) theorem [ES35] states that for any k there is a number
ES(k) such that any set of ES(k) points in general position in R2 contains a subset of size k which is
in convex position.

Theorem 15. For every integers k, r, and c, there is an integer N such that any arrangement A of
N lines, such that no r+ 1 lines go through a common point, contains disjoint subsets A1, . . . , Ak with
|Ai| ≥ c and such that every transversal of CH(A1), . . . ,CH(Ak) is in convex position.

Proof. Let m = ES(k) and let f = fm,2,r be as in Lemma 14. Let N be such that f(bN/mc) ≥ c.
Partition the set A of N lines into m sets A1, . . . , Am of N/m lines arbitrarily. Apply Lemma 14 to
obtain sets A′1, . . . , A

′
m each of size at least c. Finally, choose one transversal (x1, . . . , xm) from the sets

CH(A′i) and apply the Erdős-Szekeres theorem to obtain a subset xi1 , . . . , xik of points in convex posi-
tion. Because the sets CH(A′i) have the same type property, every transversal of CH(A′i1), . . . ,CH(A′ik)
is in convex position.



5 Graph Drawing

Formally, a vertex labelling of a graph G = (V,E) is a bijection π : V → [n]. A set of n lines in the
plane labelled from 1 to n supports G with vertex labelling π if there exists a straight-line crossing-free
drawing of G where for each i ∈ [n], the vertex labelled i in G is mapped to a point on line i. A set
L of n lines labelled from 1 to n supports an n-vertex graph G if for every vertex labelling π of G, L
supports G with vertex labelling π. In this context clearly it only makes sense to talk about planar
graphs. We are interested in the existence of an n-vertex line set that supports all n-vertex planar
graphs, that is, in the existence of a universal set of lines for planar graphs.

Theorem 16. For some absolute constant c′ and every n ≥ c′, there exists no set of n lines in the
plane that support all n-vertex planar graphs.

The following known result will be used in the proof of this theorem.

Lemma 17. [DEK+10] Consider the planar triangulation on 6 vertices, denoted by G6, that is depicted
on the bottom of Figure 1. G6 has vertex labelling π such that the following holds for every set L of 6
lines labelled from 1 to 6, no two of which are parallel. For every straight-line crossing-free drawing,
D, of G6 where for each i ∈ [n], the vertex labelled i in π is mapped to a point on line i in L, there is
a point that is in an interior face of D and in CH(L).

Proof of Theorem 16. Let L be any set of n ≥ c′ = 5N lines, where N is obtained from Theorem 15
with values k = 6, c = 6, r = 17.

[EBFK09] proved that for every n ≥ 6, no set of n parallel lines supports all n-vertex planar
graphs. Thus if L has at least 6 lines that are pairwise parallel, then L cannot support all n-vertex
planar graphs.

[DEK+10] proved that for every n ≥ 18, no set of n lines that all go through a common point
supports all n-vertex planar graphs. Thus if L has at least 18 such lines, then L cannot support all
n-vertex planar graphs.

Thus assume that L has no 6 pairwise parallel lines and no 18 lines that intersect in one common
point. Then L has a subset L′ of c′/5 ≥ N lines no two of which are parallel and no 18 of which go
through one common point. Then Theorem 15 implies that we can find in L′ six sets A1, . . . , A6 of six
lines each, such that the set {CH(A1), . . . ,CH(A6)} is in convex position. Assume CH(A1), . . . ,CH(A6)
appear in that order around their common “convex hull”.

Consider an n-vertex graph H whose subgraph G is illustrated in Figure 1. G \ v has three
components, A, B, and C, each of which is a triangulation. Each of the components A, B, and C has
two vertex disjoint copies of G6 (the 6-vertex triangulation from Lemma 17). Map the vertices of the
first copy of G6 in A to A1 and the second copy to A4 using the mapping equivalent to π in Lemma 17.
Map the vertices of the first copy of G6 in B to A2 and the second copy to A5 using the mapping
equivalent to π in Lemma 17. Map the vertices of the first copy of G6 in C to A3 and the second copy
to A6 using the mapping equivalent to π in Lemma 17. Map the remaining vertices of H arbitrarily to
the remaining lines of L.

We now prove that L does not support H with such a mapping. Assume, for the sake of
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Figure 1: Illustration for the proof of Theorem 16.

contradiction, that it does and consider the resulting crossing-free drawing D of H. In D the drawing
of each of A, B, and C has a triangle as an outerface. Let TA, TB, and TC denote these three triangles
together with their interiors in the plane.

It is simple to verify that in any crossing-free drawing of G at least two of these triangles are
disjoint, meaning that there is no point p in the plane such that p is in both of these triangles. Assume,
without loss of generality, that TA and TB are disjoint. By Lemma 17, there is a point p1 ∈ CH(A1)
such that p1 ∈ TA, and a point p4 ∈ CH(A4) such that p4 ∈ TA. Thus the segment p1p4 is in TA.
Similarly, by Lemma 17, there is a point p2 ∈ CH(A2) such that p2 ∈ TB, and a point p5 ∈ CH(A5)
such that p5 ∈ TB. Thus the segment p2p5 is in TA.

By Theorem 15 and our ordering of A1, . . . , A6, p1p4 and p2p5 intersect in some point p. That
implies that p ∈ TA and p ∈ TB. That provides the desired contradiction, since TA and TB are
disjoint.

As a sharp contrast to Theorem 16, the following theorem shows that the situation is starkly
different for unlabelled planar graphs. Namely, every set of n lines supports all n-vertex unlabelled
planar graphs. The proof of this theorem does not use any of the tools we introduced in the previous
section and is in that sense elementary. It is not difficult to verify that the theorem also follows from
the main result in [PT04] which states the following: given a drawing of a graph G in the plane where
edges of G are x-monotone curves any pair of which cross even number of times, G can be redrawn as
a straight-line crossing-free drawing where the x-coordinates of the vertices remain unchanged.

Theorem 18. [PT04] Given a set L of n lines in the plane, every planar graph has a straight line
crossing free drawing where each vertex of G is placed on a distinct line of L. (In other words, given
any set L of lines, labelled from 1 to n, and any n-vertex planar graph G there is a vertex labelling π
of G such that L supports G with vertex labelling π.)



Proof. In this proof we will use canonical orderings introduced in [dFPP90] and a related structure
called frame introduced in [BDH+09]. We first recall these tools. We can assume G is an embedded
edge maximal planar graph.2 Each face of G is bounded by a 3-cycle. De Fraysseix [dFPP90] proved
that G has a vertex ordering σ = (v1, v2, v3, . . . , vn), called a canonical ordering, with the following
properties. Define Gi to be the embedded subgraph of G induced by {v1, v2, . . . , vi}. Let Ci be the
subgraph of G induced by the edges on the boundary of the outer face of Gi. Then
• v1, v2 and vn are the vertices on the outer face of G.
• For each i ∈ {3, 4, . . . , n}, Ci is a cycle containing v1v2.
• For each i ∈ {3, 4, . . . , n}, Gi is biconnected and internally 3-connected ; that is, removing any

two interior vertices of Gi does not disconnect it.
• For each i ∈ {3, 4, . . . , n}, vi is a vertex of Ci with at least two neighbours in Ci−1, and these

neighbours are consecutive on Ci−1.

For example, the ordering in Figure 2(a) is a canonical ordering of the depicted embedded graph G.
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Figure 2: Illustration for the proof of Theorem 18: (a) Canonical ordering of G, (b) Frame F of G

A frame F of G [BDH+09] is the oriented subgraph of G with vertex set V (F) := V (G),
where:
• v1v2 is in E(F) and is oriented from v1 to v2.
• For each i ∈ {3, 4, . . . , n} in the canonical ordering σ of G, edges pvi and vip

′ are in E(F), where
p and p′ are the first and the last neighbour, respectively, of vi along the path in Ci−1 from v1 to
v2 not containing edge v1v2. Edge pvi is oriented from p to vi, and edge vip

′ is oriented from vi
to p′, as illustrated in Figure 2(b).

By definition, F is a directed acyclic graph with one source v1 and one sink v2. The frame F
defines a partial order <F on V (F), where v <F w whenever there is a directed path from v to w in
F .

Translate the given set L of lines so that all vertices of the arrangement of lines have negative
y coordinates, and sort the lines `i ∈ L according to the x coordinate bi of the intersection of `i with

2A planar graph H is edge-maximal (also called, a triangulation), if for all vw 6∈ E(H), the graph resulting from adding
vw to H is not planar.



the x axis. Therefore, the lines `i ∈ L have equation y = ai(x− bi), with b1 < b2 < . . . < bn. Because
all intersections among lines of L have negative coordinates, all bi are distinct, and the values 1/ai are
sorted. Note that the slopes ai might be positive or negative. Let â = min |ai|. For any segment of
slope in [−â, â] connecting two points (xi, yi) ∈ `i and (xj , yj) ∈ `j above the x axis (that is, yi, yj > 0),
xi < xj if and only if i < j.

Construct a linear extension vρ(1), vρ(2), . . . , vρ(n) of the partial order <F and define the bijection
π : V → [n] as π(vρ(i)) = i. That is, the vertices of G will be placed on the lines in such a way that the
partial order <F is compatible with the order determined by the values bi of the lines.

We prove by induction that for every value ŷ and every i ≥ 2, it is possible to draw Gi such
that v1 and v2 are placed on points (b1, 0), (bn, 0), and the y coordinates of all other vertices are in the
horizontal slab (0, ŷ]. The base case (i = 2) is obviously true.

Note that we could have formulated the induction on the slopes of the edges of Gi in the
drawing. In fact those two formulations imply each other: for any value 0 < s ≤ â, there is a ŷs > 0
such that any segment whose endpoints lie on distinct lines of L and have y coordinates in [0, ŷs], the
slope of the segment is in [−s, s]. This is easy to see: draw an upward cone with apex on each point
(bi, 0) and bounded by the lines of slopes s and −s through that point. Define ŷs as the y coordinate
of the lowest intersection point between any two such cones. Any segment with a slope not in [−s, s]
and with its lowest point inside a cone must have its highest point inside the same cone, therefore no
segment connecting two different lines inside the horizontal slab [0, ŷs] can have such a slope.

Assume by induction that the statement is true for Gi−1. We will show how to draw Gi for a
specific value ŷ. The point vi will be placed on the point on line π(vi) with y coordinate ŷ. Let s1 and
s2 be the slopes of the segments v1vi and viv2, and let s = max(|s1|, |s2|)/2 or â, whichever is smaller.
Let y1 be the intersection of the line of slope s through vi and line `1 and y2 the intersection of the line
of slope −s through vi and `n. Note that y1 and y2 are strictly positive. Let ŷ′ = min(y1, y2, ŷs). Apply
the induction hypothesis to draw Gi−1 in the horizontal slab [0, ŷ′]. Thus, in the drawing of Gi−1, all
edges have slope at most s ≤ â. Then by construction, the path in Ci−1 from v1 to v2 not containing
edge v1v2 is x-monotone (that is, all its edges are oriented rightwards), and vi is above the supporting
line of each edge on that path. Therefore, vi can see all vertices in Ci−1 and all edges adjacent to vi
can be drawn.

We conclude this part with an intriguing 3D variant of this graph drawing problem. A graph
is linkless if it has an embedding in 3D such that any two cycles of the graph are unlinked3. These
graphs form a three-dimensional analogue of the planar graphs.

Open Problem 19. Is there an arrangement of labelled planes in 3D such that any labelled linkless
graph has a linkless straight-line embedding where each vertex is placed on the plane with the same
label?

3Two disjoint curves in 3D are unlinked if there is a continuous motion of the curves which transforms them into
disjoint coplanar circles without one curve passing through the other or through itself.
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