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THE GEOMETRIC STABILITY OF VORONOI DIAGRAMS
WITH RESPECT TO SMALL CHANGES OF THE SITES

DANIEL REEM

Abstract. Voronoi diagrams appear in many areas in science and technol-
ogy and have numerous applications. They have been the subject of extensive
investigation during the last decades. Roughly speaking, they are a certain
decomposition of a given space into cells, induced by a distance function and
by a tuple of subsets called the generators or the sites. Consider the follow-
ing question: does a small change of the sites, e.g., of their position or shape,
yield a small change in the corresponding Voronoi cells? This question is by
all means natural and fundamental, since in practice one approximates the sites
either because of inexact information about them, because of inevitable numer-
ical errors in their representation, for simplification purposes and so on, and it
is important to know whether the resulting Voronoi cells approximate the real
ones well. The traditional approach to Voronoi diagrams, and, in particular, to
(variants of) this question, is combinatorial. However, it seems that there has
been a very limited discussion in the geometric sense (the shape of the cells),
mainly an intuitive one, without proofs, in Euclidean spaces. We formalize this
question precisely, and then show that the answer is positive in the case of Rd,
or, more generally, in (possibly infinite dimensional) uniformly convex normed
spaces, assuming there is a common positive lower bound on the distance be-
tween the sites. Explicit bounds are given, and we allow infinitely many sites of
a general form. The relevance of this result is illustrated using several pictures
and many real-world and theoretical examples and counterexamples.
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1. Introduction

1.1. Background. The Voronoi diagram (the Voronoi tessellation, the Voronoi
decomposition, the Dirichlet tessellation) is one of the basic structures in compu-
tational geometry. Roughly speaking, it is a certain decomposition of a given space
X into cells, induced by a distance function and by a tuple of subsets (Pk)k∈K ,
called the generators or the sites. More precisely, the Voronoi cell Rk associated
with the site Pk is the set of all the points in X whose distance to Pk is not greater
than their distance to the union of the other sites Pj .

Voronoi diagrams appear in a huge number of fields in science and technology
and have many applications. They have been the subject of research for at least
160 years, starting formally with L. Dirichlet [17] and G. Voronoi [58], and of
extensive research during the last 40 years. For several well written surveys on
Voronoi diagrams which contain extensive bibliographies and many applications,
see [7], [8], [44], and [23].

Consider the following question:

Question 1.1. Does a small change of the sites, e.g., of their position or shape,
yield a small change in the corresponding Voronoi cells?

This question is by all means natural, because in practice, no matter which al-
gorithm is being used for the computation of the Voronoi cells, one approximates
the sites either because of lack of exact information about them, because of in-
evitable numerical errors occurring when a site is represented in an analog or a
digital manner, for simplification purposes and so on, and it is important to know
whether the resulting Voronoi cells approximate well the real ones.

For instance, consider the Voronoi diagram whose sites are either shops (or large
shopping centers), antennas, or other facilities in some city/district such as post
offices. See Figures 1-2.

Each Voronoi cell is the domain of influence of its site and it can be used for
various purposes, among them estimating the number of potential costumers [57]
or understanding the spreading patterns of mobile phone viruses [60]. In reality,
each site has a somewhat vague shape, and its real location is not known exactly.
However, to simplify matters we regard each site as a point (or a finite collection
of points if we consider firms of shops) located more or less near the real location.
As a result, the resulting cells only approximate the real ones, but we hope that
the approximation will be good in the geometric sense, i.e., that the shapes of the
corresponding real and approximate cells will be almost the same. (See Section
4 for many additional examples, including ones with infinitely many sites or in
higher/infinite dimensional spaces.) As the counterexamples in Section 6 show, it
is definitely not obvious that this is the case.

A similar question to Question 1.1 can be asked regarding any geometric struc-
ture/algorithm, and, in our opinion, it is a fundamental question which is analo-
gous to the question about the stability of the solution of a differential equation
with respect to small changes in the initial conditions.
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Figure 1. 10 shopping centers
(or post offices) in a flat city.
Each shopping center is repre-
sented by a point.

Figure 2. In reality each shop-
ping center/post office is not a
point and its location is approx-
imated. The combinatorial struc-
ture is somewhat different and the
Voronoi cells are not exactly poly-
gons, but still, their shapes are al-
most the same as in Figure 1.

The traditional approach to Voronoi diagrams, and, in particular, to (variants
of) Question 1.1, is combinatorial. For instance, as already mentioned in Auren-
hammer [7, p. 366], the combinatorial structure of Voronoi diagrams (in the case
of the Euclidean distance with point sites), i.e., the structure of vertices, edges and
so on, is not stable under continuous motion of the sites, but it is stable “most of
the time”. A more extensive discussion about this issue, still with point sites but
possibly in higher dimensions, can be found in Weller [61], Vyalyi et al. [59], and
Albers et al. [2].

However, it seems that this question, in the geometric sense, has been raised
or discussed only rarely in the context of Voronoi diagrams. In fact, after a com-
prehensive survey of the literature about Voronoi diagrams, we have found only
very few places that have a very brief, particular, and intuitive discussion which
is somewhat related to this question. The following cases were mentioned: the
Euclidean plane with finitely many sites [32], the Euclidean plane with finitely
many point sites [7, p. 366], and the d-dimensional Euclidean space with finitely
many point sites [2] (see also some of the references therein). It was claimed there
without proofs and exact definitions that the Voronoi cells have a continuity prop-
erty: a small change in the position or the shape of the sites yields a small change
in the corresponding Voronoi cells.

Another continuity property was discussed by Groemer [25] in the context of
the geometry of numbers. He considered Voronoi diagrams generated by a lattice
of points in a d-dimensional Euclidean space, and proved that if a sequence of
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lattices converges to a certain lattice (meaning that the basis elements which
generate the lattices converge with respect to the Euclidean distance to the basis
which generates the limit lattice), then the corresponding Voronoi cells of the
origin converge, with respect to the Hausdorff distance, to the cell of the origin of
the limit lattice. His result is, in a sense and in a very particular case, a stability
result, but it definitely does not answer Question 1.1 (which, actually, was not
asked at all in [25]) for several reasons: first, usually the sites or the perturbed
ones do not form a (infinite) lattice. Second, in many cases they are not points
(singletons). Third, a site is usually different from the perturbed site (in [25] the
discussed sites equal {0}). In this connection, we also note that Groemer’s proof
is very restricted to the above setting and it uses arguments based on compactness
and no explicit bounds are given.

It is quite common in the computational geometry literature to assume “ideal
conditions”, say infinite precision in the computation, exact and simple input, and
so on. These conditions are somewhat non-realistic. Issues related to the stability
of geometric structures under small perturbations of their building blocks (not nec-
essarily the geometric stability) are not so common in the literature, but they can
be found in several places, e.g., in [1, 3, 6, 9, 11, 12, 15, 21, 30, 33, 40, 41, 50, 55].
However, in many of the above places the discussion has combinatorial character-
istics and there are several restrictive assumptions: for instance, the underlying
setting is usually a finite dimensional space (in many cases only R

2 or R3), with
the Euclidean distance, and with finitely many objects of a specific form (merely
points in many cases). In addition, the methods are restricted to this setting. In
contrast, the infinite dimensional case or the case of (possibly infinitely many)
general objects or general norms have never been considered.

1.2. Contribution of this paper. We discuss the question of stability of Voronoi
diagrams with respect to small changes of the corresponding sites. We first formal-
ize this question precisely, and then show that the answer is positive in the case
of Rd, or, more generally, in the case of (possibly infinite dimensional) uniformly
convex normed spaces, assuming there is a common positive lower bound on the
distance between the sites. Explicit bounds are presented, and we allow infinitely
many sites of a general form. We also present several counterexamples which show
that the assumptions formulated in the main result are crucial. We illustrate the
relevance of this result using several pictures and many real-world and theoretical
examples and counterexamples. To the best of our knowledge, the main result
and the approach used for deriving it are new. Two of our main tools are: a
new representation theorem which characterizes the Voronoi cells as a collection
of line segments and a new geometric lemma which provides an explicit geometric
estimate.

1.3. The structure of the paper. In Section 2 we present the basic definitions
and notations. Exact formulation of Question 1.1 and informal description of the
main result are given in Section 3. The relevance of the main result is illustrated
using many theoretical and real-world examples in Section 4. The main result is
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presented in Section 5, and we discuss briefly some aspects related to its proof.
In Section 6 we present several interesting counterexamples showing that the as-
sumptions imposed in the main result are crucial. We end the paper in Section 7
with several concluding remarks. Since the proof of the main result is quite long
and technical, and because the main goal of this paper is to introduce the issue
and to discuss it in a qualitative manner, rather than going deep into technical
details, proofs were omitted from the main body of the text. Full proofs can be
found in the appendix (Section 8) and a preliminary version in [47].

2. Notation and basic definitions

In this section we present our notation and basic definitions. In the main dis-
cussion we consider a closed and convex set X 6= ∅ in some uniformly convex

normed space (X̃, | · |) (see Definition 2.3 below), real or complex, finite or infi-
nite dimensional. The induced metric is d(x, y) = |x − y|. We assume that X
is not a singleton, for otherwise everything is trivial. We denote by [p, x] and
[p, x) the closed and half open line segments connecting p and x, i.e., the sets
{p+ t(x− p) : t ∈ [0, 1]} and {p+ t(x− p) : t ∈ [0, 1)} respectively. The (possibly
empty) boundary of X with respect to the affine hull spanned by X is denoted by
∂X . The open ball with center x ∈ X and radius r > 0 is denoted by B(x, r).

Definition 2.1. Given two nonempty subsets P,A ⊆ X, the dominance region
dom(P,A) of P with respect to A is the set of all x ∈ X whose distance to P is
not greater than their distance to A, i.e.,

dom(P,A) = {x ∈ X : d(x, P ) ≤ d(x,A)}.

Here d(x,A) = inf{d(x, a) : a ∈ A} and in general we denote d(A1, A2) =
inf{d(a1, a2) : a1 ∈ A1, a2 ∈ A2} for any nonempty subsets A1, A2.

Definition 2.2. Let K be a set of at least 2 elements (indices), possibly infinite.
Given a tuple (Pk)k∈K of nonempty subsets Pk ⊆ X, called the generators or the
sites, the Voronoi diagram induced by this tuple is the tuple (Rk)k∈K of non-empty
subsets Rk ⊆ X, such that for all k ∈ K,

Rk = dom(Pk,
⋃

j 6=k

Pj) = {x ∈ X : d(x, Pk) ≤ d(x, Pj) ∀j ∈ K, j 6= k}.

In other words, the Voronoi cell Rk associated with the site Pk is the set of all
x ∈ X whose distance to Pk is not greater than their distance to the union of the
other sites Pj.

In general, the Voronoi diagram induces a decomposition of X into its Voronoi
cells and the rest. If K is finite, then the union of the cells is the whole space.
However, if K is infinite, then there may be a “neutral cell”: for example, if X is
the Euclidean plane, K = N = {1, 2, 3, . . .} and Pk = R × {1/k}, then no point
in the lower half-plane R × (−∞, 0] belongs to any Voronoi cell. In the above
definition and the rest of the paper we ignore the neutral cell.

We now recall the definition of strictly and uniformly convex spaces.
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Definition 2.3. A normed space (X̃, | · |) is said to be strictly convex if for all

x, y ∈ X̃ satisfying |x| = |y| = 1 and x 6= y, the inequality |(x + y)/2| < 1 holds.

(X̃, | · |) is said to be uniformly convex if for any ǫ ∈ (0, 2] there exists δ ∈ (0, 1]

such that for all x, y ∈ X̃, if |x| = |y| = 1 and |x−y| ≥ ǫ, then |(x+y)/2| ≤ 1−δ.

Roughly speaking, if the space is uniformly convex, then for any ǫ > 0 there
exists a uniform positive lower bound on how deep the midpoint between any two
unit vectors must penetrate the unit ball, assuming the distance between them is
at least ǫ. In general normed spaces the penetration is not necessarily positive,
since the unit sphere may contain line segments. R2 with the max norm | · |∞ is a
typical example for this. A uniformly convex space is always strictly convex, and
if it is also finite dimensional, then the converse is true too. The m-dimensional
Euclidean space R

m, or more generally, inner product spaces, the sequence spaces
ℓp, the Lebesgue spaces Lp(Ω) (1 < p < ∞), and a uniformly convex product of
a finite number of uniformly convex spaces, are all examples of uniformly convex
spaces. See Clarkson [13] and, for instance, Goebel-Reich [22] and Lindenstrauss-
Tzafriri [38] for more information about uniformly convex spaces.

From the definition of uniformly convex spaces we can obtain a function which
assigns to the given ǫ a corresponding value δ(ǫ). There are several ways to obtain
such a function, but for our purpose we only need δ to be increasing, and to satisfy
δ(0) = 0 and δ(ǫ) > 0 for any ǫ ∈ (0, 2]. One choice, which is not necessarily the
most convenient one, is the modulus of convexity, which is the function δ : [0, 2] →
[0, 1] defined by

δ(ǫ) = inf{1− |(x+ y)/2| : |x− y| ≥ ǫ, |x| = |y| = 1}.

For specific spaces we can take more convenient functions. For instance, for the
spaces Lp(Ω) or ℓp , 1 < p < ∞, we can take

δ(ǫ) = 1− (1− (ǫ/2)p)1/p , for p ≥ 2,

δ(ǫ) = 1− (1− (ǫ/2)q)1/q , for 1 < p ≤ 2 and 1

p
+ 1

q
= 1.

We finish this section with the definition of the Hausdorff distance, a definition
which is essential for the rest of the paper.

Definition 2.4. Let (X, d) be a metric space. Given two nonempty sets A1, A2 ⊆
X, the Hausdorff distance between them is defined by

D(A1, A2) = max{ sup
a1∈A1

d(a1, A2), sup
a2∈A2

d(a2, A1)}.

Note that the Hausdorff distance D(A1, A2) is definitely different from the usual
distance d(A1, A2) = inf{d(a1, a2) : a1 ∈ A1, a2 ∈ A2}. As a matter of fact,
D(A1, A2) ≤ ǫ if and only if d(a1, A2) ≤ ǫ for any a1 ∈ A1, and d(a2, A1) ≤ ǫ for
any a2 ∈ A2. In addition, if D(A1, A2) < ǫ, then for any a1 ∈ A1 there exists
a2 ∈ A2 such that d(a1, a2) < ǫ, and for any b2 ∈ A2 there exists b1 ∈ A1 such that
d(b2, b1) < ǫ. These properties explain why the Hausdorff distance is the natural
distance to be used when discussing approximation and stability in the context of
sets: suppose that our resolution is at most r, i.e., we are not able to distinguish
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between two points whose distance is at most some given positive number r. If it
is known that D(A1, A2) < r, then we cannot distinguish between the sets A1 and
A2, at least not by inspections based only on distance measurements. As a result
of the above discussion, the intuitive phrase “two sets have almost the same shape”
can be formulated precisely: the Hausdorff distance between the sets is smaller
than some given positive parameter (note that a set and a rigid transformation of
it usually have different shapes).

3. Exact formulation of the main question and informal

formulation of the main result

The exact formulation of Question 1.1 is based on the concept of Hausdorff
distance for reasons which were explained at the end of the previous section.

Question 3.1. Suppose that (Pk)k∈K is a tuple of non-empty sets in X . Let
(Rk)k∈K be the corresponding Voronoi diagram. Is it true that a small change
of the sites yields a small change in the corresponding Voronoi cells, where both
changes are measured with respect to the Hausdorff distance? More precisely, is
it true that for any ǫ > 0 there exists ∆ > 0 such that for any tuple (P ′

k)k∈K ,
the condition D(Pk, P

′
k) < ∆ for each k ∈ K implies that D(Rk, R

′
k) < ǫ for each

k ∈ K, where (R′
k)k∈K is the Voronoi diagram of (P ′

k)k∈K?

The main result (Theorem 5.1) says that the answer is positive. Here is an
informal description of it:

Answer 3.2. Suppose that the underlying subset X is a closed and convex set

of a (possibly infinite dimensional) uniformly convex normed space X̃ . Suppose
that a certain boundedness condition on the distance between points in X and the
sites holds, e.g., when X is bounded or when the sites form a (distorted) lattice.
If there is a common positive lower bound on the distance between the sites, and
the distance to each of them is attained, then indeed a small enough change of the
(possibly infinitely many) sites yields a small change of the corresponding Voronoi
cells, where both changes are measured with respect to the Hausdorff distance; in
other words, the shapes of the real cells and the corresponding perturbed ones are
almost the same. Moreover, explicit bounds on the changes can be derived and
they hold simultaneously for all the cells. There are counterexamples which show
that the assumptions imposed above are crucial.

The condition that the distance to a site is attained holds, e.g., when the site
is either a closed subset contained in a (translation of a) finite dimensional space,
or a compact set, or a convex and closed subset in a uniformly convex Banach
space. The sites can always be assumed to be closed, since the distance and the
Hausdorff distance preserve their values when the involved subsets are replaced
by their closures. The “certain boundedness condition on the distance between
points in X and the sites” is a somewhat technical condition expressed in (2) (see
also Remark 5.2).



8 DANIEL REEM

4. The relevance of the main result

In Section 1 we explained why Question 1.1 is natural and fundamental, and
mentioned the real-world example of a Voronoi diagram induced by shops/cellular
antennas. The goal of this section is to illustrate further the relevance of the
main result using a (far from being exhaustive) list of real-world and theoretical
exampls. In these examples the shape or the position of the real sites are obviously
approximated, and the main result (Theorem 5.1) ensures that the approximate
Voronoi cells and the real ones have almost the same shape, and no unpleasant
phenomenon such as the one described in Figures 5-8 can occur.

One example is in molecular biology for modeling the proteins structure (Richards
[48], Kim et al. [34], Bourquard et al. [10]), where the sites are either the
atoms of a protein or special selected points in the amino acids and they are
approximated by spheres/points. Another example is related to collision detec-
tion and robot motion (Goralski-Gold [24], Schwartz et al. [51]), where the sites
are the (static or dynamic) obstacles located in an environment in which a vehi-
cle/airplane/ship/robot/satellite should move. A third example is in solid state
physics (Ashcroft-Mermin [5]; here the common terms are “the first Brillouin zone”
or “the Wigner-Seitz cell” instead of “the Voronoi cell”), where the sites are in-
finitely many point atoms in a (roughly) periodic structure which represents a
crystal. A fourth example is in material engineering (Li-Ghosh [36]), where the
sites are cracks in a material.

A fifth example is in numerical simulations of various dynamical phenomena,
e.g., gas, fluid or urban dynamics (Slotterback et al. [53], Mostafavi et al. [43]).
Here the sites are certain points/shapes taken from the sampled data of the simu-
lated phenomena, and the cells help to cluster and analyze the data continuously.
A sixth example is in astrophysics (Springel et al. [54]) where the (point) sites are
actually huge regions in the universe (of diameter equals to hundreds of light years)
used in simulations performed for understanding the behavior of (dark) matter in
the universe. A seventh example is in image processing and computer graphics,
where the sites are either certain important features/parts in an image (Tagare et
al. [56], Dobashi et al. [18], Sabha-Dutré [49]) used for processing/analyzing it,
or they are points form a useful configuration such as (an approximate) centroidal
Voronoi diagram (CVD) which induces cells having good shapes (Du et al. [19],
Liu et al. [39], Faustino-Figueiredo [20]).

An eighth example is in computational geometry, and it is actually a large
collection of familiar problems in this field where Voronoi cells appear and being
used, possibly indirectly: (approximate) nearest neighbor searching/the post office
problem, cluster analysis, (approximate) closest pairs, motion planning, finding
(approximate) minimum spanning trees, finding good triangulations, and so on.
See, e.g., Aurenhammer [7], Aurenhammer-Klein [8], Clarkson [14], Indyk [31],
and Okabe et al. [44]. Here the sites are either points or other shapes, and the
space is usually R

n with some norm. In some of the above problems our stability
result is clearly related because of the analysis being used (e.g., cluster analysis) or
because the position/shapes of the sites are approximated (e.g., motion planning,
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the post office problem). However, it may be related also because in many of
the previous problems the difficulty/complexity of finding an exact solution is too
high, so one is forced to use approximate algorithms, to impose a general position
assumption, and so on. Now, by perturbing slightly the sites (moving points,
replacing a non-smooth curve by an approximating smooth one, etc.,) one may
obtain much simpler and tractable configurations and now, using the geometric
stability of the Voronoi cells, one may estimate how well the obtained solution
approximates the best/real one.

As for a theoretical example of a different nature, we mention Kopecká et al.
[35] in which the stability results described here have been used, in particular,
for proving the existence of a zone diagram (a concept which was first introduced
by Asano et al. [4] in the Euclidean plane with point sites) of finitely many
compact sites which are strictly contained in a (large) compact and convex subset
of a uniformly convex space, and also for proving interesting properties of Voronoi
cells there.

Another example is for the infinite dimensional Hilbert space L2(I) for some
I (perhaps an interval or a finite dimensional space): functions in it are used in
signal processing and in many other areas in science and technology. In practice
the signals (functions) can be distorted, e.g., because of noise, and in addition,
they are approximated by finite series (e.g., finite Fourier series) or integrals (e.g.,
Fourier transform). Given several signals, the (approximate) Voronoi cell of a
given signal may help, at least in theory, to cluster or analyze data related to the
sites. Such an analysis can be done also when the signal is considered as a point in
a finite dimensional space of a high dimension. See, for instance, Conway-Sloane
[16, pp. 66-69, 451-477] (coding) and Shannon [52] (communication) for a closely
related discussion (in [52] Voronoi diagrams are definitely used in various places,
but without their explicit name).

We mention several additional examples related to our stability result, some-
times in a somewhat unexpected way. For instance, Voronoi diagrams of infinitely
many sites generated by a Poisson process (Okabe et al. [44, pp. 39, 291-410]),
Voronoi diagrams of atom nuclei used for the mathematical analysis of stability
phenomena in matter (Lieb-Yau [37]), Voronoi diagrams of infinitely many lattice
points in a multi-dimensional Euclidean space which appear in the original works
of Dirichlet [17] and Voronoi [58] (see also Groemer [25] and Gruber-Lekkerkerker
[26] regarding the geometry of numbers and quadratic forms; Groemer used his
stability result for deriving the Mahler compactness theorem [42]), and packing
problems such as the Kepler conjecture and the Dodecahedral conjecture (Hales
[27],[28], Hales-McLaughlin [29]; because of continuity arguments needed in the
proof) or those described in Conway-Sloane [16].

5. The main result and some aspects related to its proof

In this section we formulate the main result and discuss briefly issues related to
its proof. See also the remarks after Theorem 5.1 for several relevant clarifications.
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Figure 3. Illustration of Theo-
rem 5.1: five sites in a square
in (R2, ℓp) where the parameter is
p = 3.14159.

Figure 4. The sites have been
slightly perturbed: the two points
have merged, the “sin” has
shrunk, and so on. The cells have
been slightly perturbed.

Theorem 5.1. Let (X̃, | · |) be a uniformly convex normed space. Let X ⊆ X̃ be
closed and convex. Let (Pk)k∈K, (P

′
k)k∈K be two given tuples of nonempty subsets

of X with the property that the distance between each x ∈ X and each Pk, P
′
k is

attained. For each k ∈ K let Ak =
⋃

j 6=k Pj, A
′
k =

⋃
j 6=k P

′
j. Suppose that the

following conditions hold:

(1) η := inf{d(Pk, Pj) : j, k ∈ K, j 6= k} > 0,

(2) ∃ρ ∈ (0,∞) such that for all k ∈ K and for all x ∈ X

the open ball B(x, ρ) intersects Ak.

For each k ∈ K let Rk = dom(Pk, Ak), R
′
k = dom(P ′

k, A
′
k) be, respectively, the

Voronoi cells associated with the original site Pk and the perturbed one P ′
k. Then

for each ǫ ∈ (0, η/6) there exists ∆ > 0 such that if D(Pk, P
′
k) < ∆ for each k ∈ K,

then D(Rk, R
′
k) < ǫ for each k ∈ K.

See Figures 3, 4 for an illustration. The pictures were produced using the
algorithm described in [46].

Remark 5.2. The assumption mentioned in (2) may seem somewhat complicated
at a first glance, but it actually expresses a certain uniform boundedness condition
on the distance between any point in X to its neighbor sites. No matter which
point x ∈ X and which site Pk are chosen, the distance between x and the collection
of other sites Pj , j 6= k cannot be arbitrary large. A sufficient condition for it to
hold is when a uniform bound on the diameter of the cells (including the neutral
one, if it is nonempty) is known in advance, e.g., when X is bounded or when the
sites form a (distorted) lattice. But (2) can hold even if the cells are not bounded,
e.g., when the setting is the Euclidean plane and Pk = R×{k} where k runs over
all integers.
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Remark 5.3. In general, we have ∆ = O(ǫ2). However, if there is a positive lower
bound on the distance between the sites and the boundary of X (relative to the
affine hull spanned by X), i.e., if the sites are strictly contained in the (relative)
interior of X , then actually the better estimate ∆ = O(ǫ) holds. The constants
inside the big O can be described explicitly: when ∆ = Cǫ2 we can take

C =
1

16(ρ+ 5η/12)
· δ

(
η

12ρ+ 5η

)
,

and when ∆ = Cǫ we can take

C = min

{
1

16
δ

(
η

12ρ+ 5η

)
,
d(
⋃

k∈K Pk, ∂X)

8(ρ+ η/6)

}
.

In the second case, in addition to ǫ < η/6, the inequality ǫ ≤ 8 · d(
⋃

k∈K Pk, ∂X)
should be satisfied too.

The proof of Theorem 5.1 is quite long and technical, and hence it is given in the
appendix. Despite this, we want to say a few words about the proof and some of
the difficulties which arise along the way. First, as the counterexamples mentioned
in Section 6 show, one must take into account all the assumptions mentioned in
the formulation of the theorem.

Second, in order to arrive to the generality described in the theorem, one is forced
to avoid many familiar arguments used in computational geometry and elsewhere,
such as Euclidean arguments (standard angles, trigonometric functions, normals,
etc.), arguments based on lower envelopes and algebraic arguments (since the in-
tersections between the graphs generating the lower envelope may be complicated
and since the boundaries of the cells may not be algebraic), arguments based
on continuous motion of points, arguments based on finite dimensional properties
such as compactness (since in infinite dimensional spaces closed and bounded balls
are not compact), arguments based on finiteness (since we allow infinitely many
sites and sites consist of infinitely many points) and so on. Our way to overcome
these difficulties is to use a new representation theorem for dominance regions as
a collection of line segments (Theorem 5.4 below) and a new geometric lemma
(Lemma 5.5 below) which enables us to arrive to the explicit bounds mentioned
in the theorem. As a matter of fact, we are not aware of any other way to obtain
these explicit bounds even in a square in the Euclidean plane with point sites.
These tools also allow us to overcome the difficulty of a potential infinite accumu-
lated error due to the possibility of infinitely many sites/sites with infinitely many
points/infinite dimension.

Theorem 5.4. Let X be a closed and convex subset of a normed space (X̃, | · |),
and let P,A ⊆ X be nonempty. Suppose that for all x ∈ X the distance between
x and P is attained. Then dom(P,A) is a union of line segments starting at the
points of P . More precisely, given p ∈ P and a unit vector θ, let

T (θ, p) = sup{t ∈ [0,∞) : p + tθ ∈ X and d(p + tθ, p) ≤ d(p + tθ, A)}.
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Then

dom(P,A) =
⋃

p∈P

⋃

|θ|=1

[p, p+ T (θ, p)θ].

When T (θ, p) = ∞, the notation [p, p+T (θ, p)θ] means the ray {p+tθ : t ∈ [0,∞)}.

Lemma 5.5. Let (X̃, | · |) be a uniformly convex normed space and let A ⊆ X̃ be

nonempty. Suppose that y, p ∈ X̃ satisfy d(y, p) ≤ d(y, A) and d(p, A) > 0. Let
x ∈ [p, y). Let σ ∈ (0,∞) be arbitrary. Then d(x, p) < d(x,A)− r for any r > 0
satisfying

r ≤min

{
σ,

4d(p, A)

10
, d(y, x)δ

(
d(p, A)

10(d(x,A) + σ + d(y, x))

)}
.

The proof of Lemma 5.5 is based on the strong triangle inequality of Clarkson
[13, Theorem 3]. It is interesting to note that although this inequality was formu-
lated in the very famous paper [13] of Clarkson, it seems that it has been almost
totally forgotten, and in fact, despite a comprehensive search we have made in the
literature, we have found evidences to its existence only in [13] and later in [45].

6. Counterexamples

In this section we mention several counterexamples which show that the as-
sumptions in Theorem 5.1 are essential.

If the space is not uniformly convex, then the Voronoi cells may not be stable
as shown in Figures 5-8. Here the setting is point sites in a square in R

2 with the
max norm.

The positive common lower bound expressed in (1) is necessary even in a square
in the Euclidean plane. Consider X = [−10, 10]2, P1,β = {(0, β)} and P2,β =
{(0,−β)}, where β ∈ [0, 1]. As long as β > 0, the cell dom(P1,β, P2,β) is the
upper half of X . However, if β = 0, then dom(P1,0, P2,0) is X . A more interesting
example occurs when considering in X the rectangle P1,β = [−a, a] × [−10,−β]
and the line segment P2 = [−10, 10] × {0}, where a, β ∈ [0, 1]. If β = 0, then
d(P1,0, P2) = 0, and the cell dom(P1,0, P2) contains the rectangle [−a, a] × [0, 10].
However, if β > 0, then this cell does not contain this rectangle.

The assumption expressed in (2) is essential even in the Euclidean plane with
two points. Indeed, given β ≥ 0, let P1,β = {(β, 1)} and P2 = {(0,−1)}. Then
dom(P1,0, P2) is the upper half space. However, if β > 0, then the half space
dom(P1,β, P2) contains points (x, y) with y → −∞. Thus the Hausdorff distance
between the original cell dom(P1,0, P2) and the perturbed one dom(P1,β, P2) is ∞,
so there can be no stability.

7. Concluding Remarks

We conclude the paper with the following remarks. First, despite the counterex-
amples mentioned above, some of the assumptions can be weakened, with some
caution. For instance, under a certain compactness assumption and a certain geo-
metric condition that the sites should satisfy, the main result can be generalized
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Figure 5. Four sites in a square
in (R2, ℓ∞). The cell of P1 =
{(0, 0)} is displayed. The other
sites are P2 = {(2, 0)},P3 =
{(−2, 0)}, P4 = {(0,−2)}.

Figure 6. Now either P4 is the
square [−β, β]× [−2− β,−2+ β]
or P1 = {(β, β)}, β > 0 arbitrary
small. The two lower rays have
disappeared. No stability.

Figure 7. The full diagram of
Figure 5. Note the large inter-
section between cells 1,2, and 3.
For emphasizing this intersection,
each cell is represented as a union
of rays (see Theorem 5.4 for more
information) and some rays were
emphasized.

Figure 8. The full diagram of
Figure 6 when P1 = {(β, β)}.
Cells 2,3 have been (significantly)
changed too.
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to normed spaces which are not uniformly convex. A particular case of these
assumptions is when the space is m-dimensional with the | · |∞ norm, the sites
are positively separated, and no two points of different sites are on a hyperplane
perpendicular to one of the standard axes.

Second, an interesting (but not immediate) consequence of the main result is
that it implies the stability of the (multi-dimensional) volume, namely a small
change in the sites yields a small change in the volumes of the corresponding
Voronoi cells.

Third, it can be shown that the function T defined in Theorem 5.4 also has a
certain continuity property if the space is uniformly convex and this expresses a
certain continuity property of the boundary of the cells.

Fourth, the estimate for ∆ from Remark 5.3 is definitely not optimal and it can
be improved, but, as simple examples show, ∆ cannot be too much larger and its
estimate should be taken into account when performing a relevant analysis. There
is nothing strange in this and the situation is analogous to the familiar case of real
valued functions. For instance, consider f : R → R defined by f(x) = 0, x < 0,
f(x) = (1/β)x, x ∈ [0, β], f(x) = 1, x > β, where β > 0 is given. Although f is
continuous, a “large” change near x = 0 (of more than β) will cause a large change
to f .
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4. T. Asano, J. Matoušek, and T. Tokuyama, Zone diagrams: Existence, uniqueness, and
algorithmic challenge, SIAM J. Comput. 37 (2007), no. 4, 1182–1198, a preliminary version
in SODA 2007, pp. 756-765.

5. N. W. Ashcroft and N. D. Mermin, Solid state physics, Holt, Rinehart and Winston, New
York, 1976.

6. D. Attali, J-D. Boissonnat, and H. Edelsbrunner, Stability and computation of medial axes:
a state of the art report, Mathematical Foundations of Scientific Visualization, Computer
Graphics, and Massive Data Exploration (B. Hamann T. Möller and B. Russell, eds.),
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8. Appendix 1: proof of the main theorem

This appendix is devoted for the proofs. In the sequel, unless otherwise stated,

(X̃, | · |) is a normed space; X is a nonempty closed and convex subset of X̃ ;
P, P ′, A, and A′ are nonempty subsets of X ; (Pk)k∈K and (P ′

k)k∈K are two tuples of
nonempty subsets of X representing the sites and the perturbed ones respectively;
it is assumed that the distance between any point x ∈ X and each of the subsets
P, P ′, Pk, P

′
k (for any k ∈ K) is attained; for each k ∈ K, we let Ak =

⋃
j 6=k Pj and

A′
k =

⋃
j 6=k P

′
j; unit vectors will usually be denoted by θ or φ.

The following simple lemma is needed for proving the representation theorem
below it.

Lemma 8.1. Let ∅ 6= A ⊆ X̃. Suppose that y, p ∈ X̃ satisfy d(y, p) ≤ d(y, A).
Then d(x, p) ≤ d(x,A) for any x ∈ [p, y].

Proof. Let a ∈ A. Since d(y, p) ≤ d(y, a) and x ∈ [p, y], we have

d(y, x) + d(x, p) = d(y, p) ≤ d(y, a) ≤ d(y, x) + d(x, a).

Thus d(x, p) ≤ d(x, a) for each a ∈ A, so d(x, p) ≤ d(x,A). �

Theorem 8.2. (The representation theorem) Suppose that for all x ∈ X the
distance between x and P is attained. Then dom(P,A) is a union of line segments
starting at the points of P . More precisely, given p ∈ P and a unit vector θ, let

(3) T (θ, p) = sup{t ∈ [0,∞) : p+ tθ ∈ X and d(p+ tθ, p) ≤ d(p+ tθ, A)}.

Then

(4) dom(P,A) =
⋃

p∈P

⋃

|θ|=1

[p, p+ T (θ, p)θ].

When T (θ, p) = ∞, the notation [p, p+T (θ, p)θ] means the ray {p+tθ : t ∈ [0,∞)}.

Proof. Given p ∈ P and |θ| = 1, let T (θ, p) be defined as in (3). Obviously the set
which defines T is nonempty and T (θ, p) ≥ 0. If T (θ, p) = 0, then [p, p+T (θ, p)θ] ⊆
dom(P,A). Otherwise, the segment [p, p + sθ] is contained in dom(P,A) for any
s ∈ [0, T (θ, p)) by the definition of T (θ, p) and Lemma 8.1. If T (θ, p) = ∞, then
this simply means that the ray {p + tθ : t ∈ [0,∞)} is contained in dom(P,A),
so [p, p + T (θ, p)θ] ⊆ dom(P,A) by our notation. Otherwise, T (θ, p) is finite.
To see that p + T (θ, p)θ ∈ dom(P,A), we simply use the fact that the function
t 7→ d(p + tθ, p) − d(p + tθ, A) is non-positive for all t ∈ [0, T (θ, p)), and that
it is continuous. All the points are in X because it is closed and convex. Thus⋃

p∈P

⋃
|θ|=1

[p, p+ T (θ, p)θ] ⊆ dom(P,A).

Now let y ∈ dom(P,A). By assumption, d(y, P ) = d(y, p) for some p ∈ P . If
y = p, then y is in the union

⋃
q∈P

⋃
|θ|=1

[q, q+T (θ, q)θ]. Otherwise, let t = d(y, p)

and θ0 = (y − p)/t. Then θ0 ∈ {θ : |θ| = 1}. In order to show that y is in the
union

⋃
q∈P

⋃
|θ|=1

[q, q + T (θ, q)θ], it suffices to show that y ∈ [p, p + T (θ0, p)θ0].

Since d(y, p) ≤ d(y, A) and y = p + tθ ∈ X , this is a simple consequence of the
definition of T (θ0, p). �
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The following elementary lemma will be useful later.

Lemma 8.3. Let X̃ be a normed space.

(a) Given x, y, z ∈ X̃, x 6= y, z 6= y,

(5)

∣∣∣∣
z − y

|z − y|
−

x− y

|x− y|

∣∣∣∣ ≤ min

{
2
|z − x|

|x− y|
, 2

|z − x|

|z − y|

}
.

(b) Let X ⊆ X̃ be nonempty and convex. Let p and y, p 6= y be two points in X.
Suppose that the open ball BH(p, R) = B(p, R) ∩H, relative to the affine hull
H spanned by X, is contained in X. If x ∈ (p, y), then BH(x, r) ⊂ X for any
r ≤ min{d(x, y), d(x, p), Rd(x, y)/(2d(p, y))}.

Proof. (a) From the triangle inequality,
∣∣∣∣
z − y

|z − y|
−

x− y

|x− y|

∣∣∣∣ =
∣∣∣∣
|x− y|(z − y)− |z − y|(x− y)

|z − y||x− y|

∣∣∣∣ =
∣∣∣∣
(|x− y| − |z − y|)(z − y) + |z − y|((z − y)− (x− y))

|z − y||x− y|

∣∣∣∣ ≤
2|x− z||z − y|

|z − y||x− y|
=

2|x− z|

|x− y|
.

The inequality |(z − y)/|z − y| − (x− y)/|x− y|| ≤ 2|z − x|/|z − y| is proved
in a similar way.

(b) Let z ∈ BH(x, r). If z = x, then obviously z ∈ X . Now assume that z 6= x. By
assumption d(y, x) ≥ r and z ∈ B(x, r). Thus y 6= z. Let θ1 = (x−y)/|x−y| =
(p− y)/|p− y| and θ2 = (z − y)/|z − y|. The point y + d(p, y)θ2 is in H since
[y, z] ⊂ H . This point is also in B(p, R) since

|(y + d(p, y)θ2)− p| = |(y + d(p, y)θ2)− (y + d(p, y)θ1)| = d(p, y)|θ1 − θ2|

≤ 2|p− y||z − x|/|x− y| < 2|p− y|r/|x− y| ≤ R

by part (a) and the choice of r. Therefore y + d(p, y)θ2 ∈ BH(p, R) ⊆ X . In
addition,

d(z, y) ≤ d(z, x) + d(x, y) < r + d(x, y) ≤ d(p, x) + d(x, y) = d(p, y),

and hence z ∈ [y, y + d(p, y)θ2] ⊆ X .
�

The following technical proposition is central.

Proposition 8.4. Suppose that d(P,A) > 0. Let ǫ > 0 be such that ǫ ≤ d(P,A)/6
and suppose that the following conditions hold:

(6) There exists λ ∈ (0, ǫ) such that for each p ∈ P, y ∈ dom(P,A), x ∈ [p, y],

if d(x, y) = ǫ/2, then d(x, p) ≤ d(x,A)− λ.

(7)

There exists λ′ ∈ (0, ǫ) such that for each p′ ∈ P ′, y′ ∈ dom(P ′, A′), x′ ∈ [p′, y′]

if d(x′, y′) = ǫ/2, then d(x′, p′) ≤ d(x′, A′)− λ′.
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Suppose that there are two positive numbers M,M ′ such that

(8) sup{T (θ, p) : p ∈ P, |θ| = 1} ≤ M, sup{T ′(θ′, p′) : p′ ∈ P ′, |θ′| = 1} ≤ M ′,

where T ′(θ′, p′) is defined as in (3), but with A′ instead of A. Let ǫ1, ǫ3 be positive
numbers satisfying

(9) ǫ1 + ǫ3(3 + 4M/ǫ) < λ/2, ǫ1 + ǫ3(3 + 4M ′/ǫ) < λ′/2.

If

(10) D(A,A′) < ǫ1, D(P, P ′) < ǫ3,

then D(dom(P,A), dom(P ′, A′)) < ǫ.

Proof. We first note that 5ǫ ≤ d(P ′, A′). Indeed, let p′ ∈ P ′ and a′ ∈ A′ be given.
By (10) and (9) there are p ∈ P and a ∈ A such that d(p, p′) < ǫ3 < ǫ/2 and
d(a′, a) < ǫ1 < ǫ/2, so

(11) 6ǫ ≤ d(p, a) ≤ d(p, p′) + d(p′, a′) + d(a′, a) < ǫ+ d(p′, a′),

which implies that 5ǫ ≤ d(P ′, A′). We will show that there exists ǫ̃ ∈ (0, ǫ) such
that D(dom(P,A), dom(P ′, A′)) ≤ ǫ̃ < ǫ. In fact, we will show that we can take
ǫ̃ := ǫ − ǫ3. In order to prove that D(dom(P,A), dom(P ′, A′)) ≤ ǫ̃, it suffices
to show that for any y ∈ dom(P,A) there exists y′ ∈ dom(P ′, A′) such that
d(y, y′) < ǫ̃, and that for any z′ ∈ dom(P ′, A′) there exists z ∈ dom(P,A) such
that d(z′, z) < ǫ̃. We will show the first inequality, since the proof of the second
one is similar using (7),(8), and (9) with λ′ and M ′.

Let y ∈ dom(P,A). By Theorem 8.2 we can write y = p + tθ for some p ∈ P ,
a unit vector θ, and t ∈ [0, T (θ, p)]. By (8) we have t ≤ M . By (10) there is
p′ ∈ P ′ such that d(p, p′) < ǫ3. Suppose first that t ≤ ǫ. Let y′ = y. Then y′ ∈ X ,
d(y, y′) < ǫ− ǫ3, and d(y′, p′) ≤ d(y′, p) + d(p, p′) < 2ǫ. In addition,

(12) 5ǫ ≤ d(P ′, A′) ≤ d(p′, A′) ≤ d(p′, y′) + d(y′, A′) < 2ǫ+ d(y′, A′).

Hence d(y′, p′) < 2ǫ < d(y′, A′) and y′ ∈ dom(P ′, A′).
Now assume that ǫ < t. Then t = d(p, y) ≤ d(p, p′) + d(p′, y) < ǫ3 + |y − p′|.

Hence 0 < t−ǫ3 < |y−p′| since t−ǫ3 > t−ǫ/2 ≥ ǫ/2 > 0. Let θ′ = (y−p′)/|y−p′|
and denote ǫ2 = 2ǫ3/ǫ. Then, using Lemma 8.3(a),

(13) |θ − θ′| =

∣∣∣∣
y − p

|y − p|
−

y − p′

|y − p′|

∣∣∣∣ ≤
2|p− p′|

|y − p|
<

2ǫ3
ǫ

= ǫ2.

Let x = p + (t − 0.5ǫ)θ. Then x ∈ [p, y] and d(x, y) = ǫ/2, so by (6) we have
d(x, p) ≤ d(x,A)− λ. Let y′ = p′ + (t− 0.5ǫ)θ′. Because t− ǫ/2 < |y− p′| (see the
discussion above (13)) we have y′ ∈ [p′, y] ⊆ X . In addition,

d(y, y′) ≤ d(y, x)+d(x, y′) ≤ ǫ/2+(t−0.5ǫ)|θ−θ′|+d(p, p′) < ǫ/2+Mǫ2+ǫ3 < ǫ−ǫ3
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by (8) and (9). Recalling that d(y′, A) ≤ d(y′, A′) +D(A,A′) holds in general, we
have

d(y′, p′) ≤ d(y′, x) + d(x, p) + d(p, p′) < Mǫ2 + ǫ3 + d(x,A)− λ+ ǫ3

≤ Mǫ2 + ǫ3 + d(x, y′) + d(y′, A′) +D(A,A′) + ǫ3 − λ

< 2Mǫ2 + 3ǫ3 + ǫ1 + d(y′, A′)− λ < d(y′, A′)− λ/2,

where we used (9) and ǫ2 = 2ǫ3/ǫ in the last inequality. Thus d(y′, p′) < d(y′, A′).
Consequently, in both cases we have d(y, y′) < ǫ̃ := ǫ − ǫ3 and y′ ∈ dom(P ′, A′),
as required. �

Proposition 8.5. Suppose that inf{d(Pk, Pj) : j, k ∈ K, j 6= k} > 0. Let ǫ > 0
be such that ǫ ≤ inf{d(Pk, Pj) : j, k ∈ K, j 6= k}/6. Suppose that the following
conditions hold:

(14)
∃λ ∈ (0, ǫ) such that for each k ∈ K, p ∈ Pk, y ∈ dom(Pk, Ak), and x ∈ [p, y]

if d(x, y) = ǫ/2, then d(x, p) ≤ d(x,Ak)− λ.

(15)

∃λ′ ∈ (0, ǫ) such that for each k ∈ K, p′ ∈ P ′
k, y

′ ∈ dom(P ′
k, A

′
k), and x′ ∈ [p′, y′]

if d(x′, y′) = ǫ/2, then d(x′, p′) ≤ d(x′, A′
k)− λ′.

Let
Rk = dom(Pk, Ak), R′

k = dom(P ′
k, A

′
k).

Suppose that there are M,M ′ ∈ (0,∞) such that for all k ∈ K,
(16)

sup{Tk(θ, p) : p ∈ P, |θ| = 1} ≤ M, sup{T ′
k(θ

′, p′) : p′ ∈ P ′, |θ′| = 1} ≤ M ′,

where Tk(θ, p) and T ′
k(θ

′, p′) are defined as in (3), but with Ak and A′
k instead of

A. Let ǫ4 be a positive number satisfying

(17) 4(1 +M/ǫ)ǫ4 < λ/2, 4(1 +M ′/ǫ)ǫ4 < λ′/2.

If

(18) D(Pk, P
′
k) < ǫ4 ∀k ∈ K,

then D(Rk, R
′
k) < ǫ for each k ∈ K.

Proof. From the condition ǫ ≤ d(Pk, Pj)/6 for each k 6= j it follows that ǫ ≤
d(Pk,

⋃
j 6=k Pj)/6. In addition, the assumption D(Pk, P

′
k) < ǫ4 for all k ∈ K

implies D(
⋃

i∈I Pi,
⋃

i∈I P
′
i ) ≤ ǫ4 for any I ⊆ K, and in particular this is true for

I = K\{k}, i.e., D(Ak, A
′
k) ≤ ǫ4. Indeed, we only have to observe that given

y ∈
⋃

i∈I Pi, there exists j ∈ I such that y ∈ Pj , so

d(y,
⋃

i∈I

P ′
i ) ≤ d(y, P ′

j) ≤ D(Pj, P
′
j) < ǫ4,

and the inequality follows. Let ǫ3 := ǫ4 and ǫ1 := ǫ4 + r, where r is defined as
the minimum of the two positive numbers (λ/2 − 4ǫ4(1 + M/ǫ))/4 and (λ′/2 −
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4ǫ4(1 +M ′/ǫ))/4. Then ǫ1 + ǫ3(3 + 4M/ǫ) < λ/2 and ǫ1 + ǫ3(3 + 4M ′/ǫ) < λ′/2.
In addition D(Pk, P

′
k) < ǫ3 and D(Ak, A

′
k) ≤ ǫ4 < ǫ1 for each k ∈ K. Thus all

the conditions of Proposition 8.4 are satisfied for each k ∈ K with P = Pk and
A = Ak. Hence D(Rk, R

′
k) < ǫ. �

The following lemma provides a simple sufficient condition for (8) to hold.

Lemma 8.6. Suppose that the following condition holds:

(19) ∃ρ ∈ (0,∞) such that ∀x ∈ X the open ball B(x, ρ) intersects A.

Then

(a) sup{T (θ, p) : |θ| = 1, p ∈ P} ≤ ρ.
(b) d(x,A) < ρ and d(x,A′) < ρ+D(A,A′) for each x ∈ X.
(c) sup{T ′(θ′, p′) : |θ′| = 1, p′ ∈ P ′} ≤ ρ+D(A,A′).

In the same way, if Ak =
⋃

j 6=k Pj for each k ∈ K and the following condition
holds:

(20) ∃ρ ∈ (0,∞) such that for all k ∈ K and for all x ∈ X

the open ball B(x, ρ) intersects Ak,

then all the above claims remain true with Tk, Pk, Ak instead of T, P, A.

Proof. (a) Let p ∈ P be arbitrary and let θ be an arbitrary unit vector. Let t = ρ
and x = p+ tθ. If x /∈ X then T (θ, p) ≤ t, since otherwise there is some s > t
such that p+sθ ∈ X and d(p+sθ, p) ≤ d(p+sθ, A) by the definition of T (see
(3)). Hence x ∈ [p, p+ sθ] ⊆ X , a contradiction. Now assume that x ∈ X . By
(19) there exists a ∈ A such that d(x, a) < ρ = d(x, p), so d(x,A) < d(x, p).
By the definition of T and Lemma 8.1 we conclude that T (θ, p) ≤ ρ in this
case too.

(b) Let x ∈ X . By (19) we know that d(x,A) < ρ. Since d(x,A′) ≤ d(x,A) +
D(A,A′) holds in general, we have d(x,A′) < ρ+D(A,A′).

(c) IfD(A,A′) = ∞, then the assertion holds trivially. Assume now thatD(A,A′) <
∞. By part (b) the open ball B(x, ρ+D(A,A′)) intersects A′ for each x ∈ X
and the proof continues as in part (a) with ρ+D(A,A′) instead of ρ.

The proofs in the case where (20) holds are the same as above. �

The next lemma is the key step in establishing (6),(7), (14), and (15) in the
case of uniformly convex normed spaces. It improves upon Lemma 8.1 under the
additional assumptions that (X̃, | · |) is uniformly convex and d(p, A) > 0. Its proof
is based on the following definition and on a special case of the forgotten strong
triangle inequality of Clarkson [13, Theorem 3]. See page 6 for the definition of
uniformly convex spaces and the meaning of the function δ. Clarkson’s theorem,
which is formulated in [13] for uniformly convex Banach spaces, has nothing to do
with completeness and it remains true without this assumption.

Definition 8.7. Given two non-vanishing vectors x, y ∈ X̃, the angle (or Clark-
son’s angle, or the normed angle) α(x, y) between them is the distance between
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their directions, i.e., it is defined by

α(x, y) =

∣∣∣∣
x

|x|
−

y

|y|

∣∣∣∣ .

Theorem 8.8. (Clarkson) Let x1, x2 be two non-vanishing vectors in a uniformly

convex normed space (X̃, | · |). If x1 + x2 6= 0, then

(21) |x1 + x2| ≤ |x1|+ |x2| − 2δ(α1)|x1| − 2δ(α2)|x2|,

where αl = α(xl, x1 + x2), l = 1, 2.

Lemma 8.9. Let (X̃, | · |) be a uniformly convex normed space and let ∅ 6= A ⊆ X̃.

Suppose that y, p ∈ X̃ satisfy d(y, p) ≤ d(y, A) and d(p, A) > 0. Let x ∈ [p, y). Let
σ ∈ (0,∞) be arbitrary. Then d(x, p) < d(x,A)− r for any r > 0 satisfying

(22) r ≤ min

{
σ,

4d(p, A)

10
, d(y, x)δ

(
d(p, A)

10(d(x,A) + σ + d(y, x))

)}
.

Proof. The assertion is obvious if either p = y or p = x, so assume p 6= y and
p 6= x from now on. Let a ∈ A satisfy d(x, a) < d(x,A) + r. We distinguish
between two cases. Suppose first that the angle α(x− y, a− y) is greater or equal
to d(p, A)/(10(d(x,A) + σ + d(y, x))). By the assumption, the strong triangle
inequality (21) and the fact that δ is increasing,

d(y, x) + d(x, p) = d(y, p) ≤ d(y, A) ≤ d(y, a)

≤ d(y, x) + d(x, a)− 2δ(α(x− y, a− y))d(y, x)− 2δ(α(a− x, a− y))d(x, a)

< d(y, x) + d(x,A) + r − 2r − 0.

Hence d(x, p) + r < d(x,A) as required. We note that all the angles are well
defined, since 0 < d(x, p) ≤ d(x, a) by Lemma 8.1, and 0 < d(y, p) ≤ d(y, a), 0 <
d(y, x) by assumption. In addition, the expression in (22) is well defined, since
d(p, A) ≤ d(p, x) + d(x,A) ≤ 2d(x,A) by Lemma 8.1, so the argument inside δ is
in the interval [0, 0.2] ⊆ [0, 2]. In addition, the minimum in (22) is positive since
all the numbers inside δ are positive and the space is uniformly convex.

Assume now that α(x− y, a− y) < d(p, A)/(10(d(x,A) + σ + d(y, x))). Since x
is between p and y, the unit vector θ = (p − y)/|p − y| satisfies p = y + d(y, p)θ
and x = y + d(y, x)θ. Let φ = (a − y)/|a − y|. Let z = y + d(y, a)θ. Since
d(y, p) ≤ d(y, a), it follows that p is between z and x (and maybe p = z). Because
α(x−y, a−y) = d(θ, φ) and r ≤ σ, it follows from the assumption on α(x−y, a−y)
that

d(z, a) = d(θ, φ)d(y, a) <
d(p, A)(d(y, x) + d(x, a))

10(d(x,A) + σ + d(y, x))
<

d(p, A)

10
.

Thus
d(p, A) ≤ d(p, a) ≤ d(p, z) + d(z, a) < d(p, z) + d(p, A)/10,

so 9d(p, A)/10 < d(p, z). Since p is between z and x, the choice of r in (22) implies

d(x,A) + 4d(p, A)/10 ≥ d(x,A) + r > d(x, a) ≥ d(x, z)− d(a, z)

= d(x, p) + d(p, z)− d(a, z) > d(x, p) + 9d(p, A)/10− d(p, A)/10.
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Therefore d(x, p) + r < d(x,A) in this case too. �

We are now ready for formulating and proving the main stability result (denoted
by Theorem 5.1 in the main body of the text).

Theorem 8.10. Let (X̃, | · |) be a uniformly convex normed space, and let X ⊆ X̃
be closed and convex. Let (Pk)k∈K, (P

′
k)k∈K be two given tuples of subsets of X

with the property that the distance between each x ∈ X and each Pk, P
′
k is attained.

Suppose that
η := inf{d(Pk, Pj) : j, k ∈ K, j 6= k} > 0,

and let Ak =
⋃

j 6=k Pj , A
′
k =

⋃
j 6=k P

′
j for each k ∈ K. Suppose also that (20)

holds. For each k ∈ K let Rk = dom(Pk, Ak), R
′
k = dom(P ′

k, A
′
k) be, respectively,

the Voronoi cells associated with the original site Pk and the perturbed one P ′
k.

Then for each ǫ ∈ (0, η/6) there there exists ∆ > 0, namely ∆ = min{Cǫ2, 0.5ǫ}
for any positive C satisfying

C ≤
1

16(ρ+ 5η/12)
· δ

(
η

12ρ+ 5η

)
,

such that if the inequality D(Pk, P
′
k) < ∆ holds for each k ∈ K, then D(Rk, R

′
k) < ǫ

for each k ∈ K.

Proof. Let ǫ ∈ (0, η/6) be given. We will show that all the conditions needed in
Proposition 8.5 are satisfied. Let k ∈ K be given. As in the first lines of the proof
of Proposition 8.5, we have D(Ak, A

′
k) ≤ sup{D(Pj, P

′
j) : j 6= k} ≤ ∆, and hence

D(Ak, A
′
k) < ǫ ≤ η/6. Let M = ρ and M ′ = ρ + η/6 where ρ is from (20). By

Lemma 8.6(a) and Lemma 8.6(c) (with P = Pk, P
′ = P ′

k, A = Ak, A
′ = A′

k) we
obtain (16).

Let p′ ∈ P ′
k be given. We claim that 5η/6 ≤ d(p′, A′

k). Indeed, let a′ ∈ A′
k be

arbitrary. Since D(Pk, P
′
k) < ∆ ≤ ǫ/2 and D(Ak, A

′
k) < ǫ/2 + β for any β > 0,

there are p ∈ Pk and a ∈ Ak such that d(p, p′) < ǫ/2 and d(a′, a) < ǫ/2 + β.
Therefore

η ≤ d(p, Ak) ≤ d(p, a) ≤ d(p, p′) + d(p′, a′) + d(a′, a) < ǫ+ β + d(p′, a′),

Since a′ and β were arbitrary and since 5η/6 ≤ η − ǫ we have 5η/6 ≤ d(p′, A′
k)

as claimed. Since 6ǫ ≤ η we also conclude that 5ǫ ≤ d(p′, A′
k). In addition,

0.5ǫ < 2ǫ < 4d(p, Ak)/10 and 0.5ǫ < 2ǫ ≤ 4d(p′, A′
k)/10 for any p ∈ Pk and

p′ ∈ P ′
k.

Let σ = η/6. Then obviously 0.5ǫ < ǫ ≤ σ. By Lemma 8.6(b) we know that
d(x,Ak) ≤ ρ and d(x,A′

k) ≤ ρ + η/6 for each x ∈ X . As a result, from the
monotonicity of δ, 0 ≤ δ ≤ 1, 5η/6 ≤ min{d(p, Ak), d(p

′, A′
k)}, and from Lemma

8.9 it follows that

(23) λ′ = λ = 0.5ǫ · δ

(
η

12ρ+ 5η

)

satisfy (14) and (15) (the minimum in the expression in the right hand side of
(22) is the third element and both λ and λ′ are smaller than this element). Let
ǫ4 = ∆. Then ǫ4 ≤ Cǫ2 ≤ ǫλ′/(8(M ′ + η/4)) < λ′/(8(1 +M ′/ǫ)) and hence (17)
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is satisfied. As a result, we conclude from Proposition 8.5 that D(Rk, R
′
k) < ǫ, as

required. �

From Theorem 8.10 we see that ∆ = O(ǫ2). However, under the (practical)
additional assumption that the sites are strictly contained in the interior of the
world X , we can obtain a better bound, namely ∆ = O(ǫ). The proof is based on
the following assertions. We recall that ∂X is the boundary of X relative to the
affine hull spanned by X and that the distance from a point to the empty set is
infinity.

Proposition 8.11. Suppose that d(P,A) > 0 and let ǫ > 0 satisfy ǫ ≤ d(P,A)/6.
Suppose that d(P, ∂X) > 0 and d(P ′, ∂X) > 0. Assume that (6) and (7) hold and
that there are two positive numbers M,M ′ such that (8) hold. Suppose that ǫ1 and
ǫ3 are two positive numbers such that the following inequalities hold:

(24)
ǫ1 + 3ǫ3 < min {λ/2, λ′/2} ,

ǫ3 < min

{
d(P, ∂X)ǫ

4max{M,M ′}
,

d(P ′, ∂X)ǫ

4max{M,M ′}

}
.

If

(25) D(A,A′) < ǫ1, D(P, P ′) < ǫ3,

then D(dom(P,A), dom(P ′, A′)) < ǫ.

Proof. The proof is in the same spirit as the proof of Proposition 8.4 and many
details are similar and hence they have been omitted here. First, exactly as in
the first lines of proof there we have 5ǫ ≤ d(P ′, A′). As explained there, it suffices
to show that for any y ∈ dom(P,A) there exists y′ ∈ dom(P ′, A′) such that
d(y, y′) < ǫ̃ := ǫ− ǫ3.

Let y ∈ dom(P,A). By Theorem 8.2 we can write y = p+ tθ for some p ∈ P , a
unit vector θ, and t ∈ [0, T (θ, p)]. By (8) we have t ≤ M . By (25) there is p′ ∈ P ′

such that d(p, p′) < ǫ3. Suppose first that t ≤ ǫ. Let y′ = y. Then y′ ∈ dom(P ′, A′)
exactly as in the proof of Proposition 8.4, and obviously d(y, y′) < ǫ− ǫ3.

Now assume that ǫ < t. Let x = p+(t−0.5ǫ)θ. Then x ∈ [p, y] and d(x, y) = ǫ/2,
so by (6) we have d(x, p) ≤ d(x,A)− λ. Let θ′ = θ and y′ = p′ + (t− ǫ/2)θ′. Then
d(x, y′) = d(p, p′) < ǫ3, and hence y′ ∈ X by Lemma 8.3(b) and the second
inequality in (24) (in this connection note that since λ < ǫ it follows that ǫ3 <
0.5ǫ ≤ {d(x, y), d(x, p)}). In addition,

d(y, y′) ≤ d(y, x) + d(x, y′) = ǫ/2 + d(p, p′) < ǫ/2 + ǫ3 < ǫ− ǫ3

by (24). Recalling that d(y′, A) ≤ d(y′, A′) +D(A,A′) holds in general, we have

d(y′, p′) ≤ d(y′, x) + d(x, p) + d(p, p′) < ǫ3 + d(x,A)− λ+ ǫ3

≤ 2ǫ3 + d(x, y′) + d(y′, A′) +D(A,A′)− λ

< 3ǫ3 + ǫ1 + d(y′, A′)− λ < d(y′, A′)− λ/2,

where we used the first inequality in (24) in the last inequality above. Thus
d(y′, p′) < d(y′, A′) and then y′ ∈ dom(P ′, A′). Therefore, in both cases we have
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d(y, y′) < ǫ̃ = ǫ−ǫ3 and y′ ∈ dom(P ′, A′), and hence D(dom(P,A), dom(P ′, A′)) <
ǫ. �

Proposition 8.12. Suppose that inf{d(Pk, Pj) : j, k ∈ K, j 6= k} > 0 and let
ǫ > 0 be such that ǫ ≤ inf{d(Pk, Pj) : j, k ∈ K, k 6= j}/6. Suppose also that
d(
⋃

k∈K Pk, ∂X) > 0 and d(
⋃

k∈K P ′
k, ∂X) > 0. Suppose also that (14) and (15)

hold. Let
Rk = dom(Pk, Ak), R′

k = dom(P ′
k, A

′
k).

Suppose that there are M,M ′ ∈ (0,∞) such that for all k ∈ K, (16) hold. Let ǫ4
be a positive number satisfying

(26) ǫ4 < min

{
λ

8
,
λ′

8
,
d(
⋃

k∈K Pk, ∂X)ǫ

4max{M,M ′}
,
d(
⋃

k∈K P ′
k, ∂X)ǫ

4max{M,M ′}

}
.

If

(27) D(Pk, P
′
k) < ǫ4 ∀k ∈ K,

then D(Rk, R
′
k) < ǫ for each k ∈ K.

Proof. From the condition ǫ ≤ d(Pk, Pj)/6 for each k 6= j it follows that ǫ ≤
d(Pk,

⋃
j 6=k Pj)/6. In addition, as in the proof of Proposition 8.5 the assumption

D(Pk, P
′
k) < ǫ4 for all k ∈ K implies that D(Ak, A

′
k) ≤ ǫ4 for all k ∈ K. Let

ǫ3 := ǫ4 and ǫ1 := ǫ4+ r, where r is defined to be the minimum of the two positive
numbers (λ/2 − 4ǫ4)/4 and (λ′/2 − 4ǫ4)/4. Then (24) is satisfied for P = Pk for
each k ∈ K because of (26). In addition D(Pk, P

′
k) < ǫ3 and D(Ak, A

′
k) ≤ ǫ4 < ǫ1

for each k ∈ K. Thus all the conditions of Proposition 8.11 are satisfied for each
k ∈ K. Hence D(Rk, R

′
k) < ǫ. �

Theorem 8.13. Let (X̃, | · |) be a uniformly convex normed space, and let X ⊆ X̃
be closed and convex. Let (Pk)k∈K, (P

′
k)k∈K be two given tuples of subsets of X with

the property that the distance between each x ∈ X and each Pk and P ′
k is attained.

Suppose that d(
⋃

k∈K Pk, ∂X) > 0 and d(
⋃

k∈K P ′
k, ∂X) > 0. For each k ∈ K

let Ak =
⋃

j 6=k Pj, A
′
k =

⋃
j 6=k P

′
j and let Rk = dom(Pk, Ak), R

′
k = dom(P ′

k, A
′
k) be,

respectively, the Voronoi cells associated with the original site Pk and the perturbed
one P ′

k. Suppose that

η := inf{d(Pk, Pj) : j, k ∈ K, j 6= k} > 0,

and that (20) holds. Then for each ǫ > 0 satisfying ǫ ≤ min{η/6, 8·d(
⋃

k∈K Pk, ∂X)}
there exists ∆ > 0, namely ∆ = Cǫ for any C > 0 satisfying

C ≤ min

{
1

16
δ

(
η

12ρ+ 5η

)
,
d(
⋃

k∈K Pk, ∂X)

8(ρ+ η/6)

}

such that if the inequality D(Pk, P
′
k) < ∆ holds for each k ∈ K, then D(Rk, R

′
k) < ǫ

for each k ∈ K.

Proof. The proof is almost identical to the proof of Theorem 8.10 with the excep-
tion of a small verification which is explained in the next paragraph. The values
of λ and λ′ are the same those given in (23) and one verifies that with M = ρ,
M ′ = ρ+ η/6, and ǫ4 = ∆ the conditions of Proposition 8.12 are satisfied.
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The small verification that mentioned above and should be done is that the
inequality ǫ4 ≤ d(

⋃
k∈K P ′

k, ∂X)ǫ/(4max{M,M ′}) holds. This is true for the fol-
lowing reason: if ∂X = ∅, then the right hand side in this inequality is infinity.
Otherwise, let b ∈ ∂X and p′ ∈

⋃
k∈K P ′

k be given. Then p′ ∈ P ′
k for some k ∈ K.

Since δ ≤ 1 it follows that C ≤ 1/16 and hence ǫ4 ≤ ǫ/16 ≤ 0.5d(
⋃

k∈K Pk, ∂X).
Because D(Pk, P

′
k) < ǫ4 it follows that d(p′, p) < ǫ4 for some p ∈ Pk and therefore

d(
⋃

k∈K

Pk, ∂X) ≤ d(p, b) ≤ d(p, p′) + d(p′, b) < ǫ4 + d(p′, b)

≤ 0.5d(
⋃

k∈K

Pk, ∂X) + d(p′, b)

Since p′ and b were arbitrary it follows that 0.5d(
⋃

k∈K Pk, ∂X) ≤ d(
⋃

k∈K P ′
k, ∂X).

Recalling that 4max{M,M ′} = 4(ρ+ η/6), we conclude that

ǫ4 ≤
0.5 · d(

⋃
k∈K Pk, ∂X)ǫ

4(ρ+ η/6)
≤

d(
⋃

k∈K P ′
k, ∂X)ǫ

4(ρ+ η/6)
.

�

9. Appendix 2: A continuity property of T

This appendix is devoted to a discussion on the continuity of T (·, p) in uniformly
convex spaces which was mentioned briefly in Section 7. This result is related to
the main result and the approach used for deriving it is similar.

The following definition plays an important role.

Definition 9.1. Let X be a closed and convex subset of a normed space. Let
p ∈ X. Let Θp := {θ : |θ| = 1, p + tθ ∈ X for some t > 0} be the set of all
directions such that rays emanating from p in these directions intersect X not only
in p. Let θ ∈ Θp. Let L(θ) ∈ (0,∞] be the length of the line segment generated
from the intersection of X and the ray emanating from p in the direction of θ.
The point p is said to have the emanation property (or to satisfy the emanation
condition) in the direction of θ if for each ǫ > 0 there exists β > 0 such that for
any φ ∈ Θp, if |φ− θ| < β, then the intersection of X and the ray emanating from
p in the direction of φ is a line segment of length at least L(θ)− ǫ. In other words,
L(φ) ≥ L(θ)− ǫ. The point p is said to have the emanation property if it has the
emanation property in the direction of every θ ∈ Θp. A subset C of X is said to
have the emanation property if each p ∈ C has the emanation property.

As an illustration, in the following examples each point p in the set X satisfies
the emanation condition. First example: X is any bounded closed convex set
and p ∈ X is an arbitrary point in the interior of X relative to the affine hull
spanned by X ; second example: the boundary of the bounded closed and convex
X is strictly convex (if a 6= b are two points in the boundary, then the open line
segment (a, b) is contained in the interior of X relative to the affine hull spanned
by X) and p ∈ X is arbitrary. Any ball in a strictly convex space has a strictly
convex boundary; third example: X is a cube (of any finite dimension) and p ∈ X
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is arbitrary; fourth example: X is a closed linear subspace and p ∈ X is arbitrary.
The proof of the third example is by direct computation. The proof of the first and
the second examples is based on Lemma 9.2 below and, e.g., on Lemma 8.3(b).

Before formulating Lemma 9.2 we note that the reason we consider only Θp

and not the whole unit sphere is that in general it may happen that L(φ) = 0
for unit vectors φ arbitrary close to θ (consider e.g., X = [0, 1]2 in the Eu-

clidean plane, p = (0, 0), θ = (1, 0), and φn = (
√
1− 1/n2,−1/n), n ∈ N or

X = [0, 1]2 × {0} in R
3 with the Euclidean norm, p = (0, 0, 0), θ = (1, 0, 0), and

φn = (
√
1− 1/n2, 0,−1/n), n ∈ N) and hence the condition L(φ) ≥ L(θ)− ǫ does

not hold. Intuitively, rays in the directions of φ /∈ Θp go out X immediately and
they do not affect the “events” inside X .

Lemma 9.2. Let X be any closed and convex subset of a normed space, let p ∈ X,
and let θ ∈ Θp be given. Assume that L(θ) < ∞ and that any point in the segment
(p, p + L(θ)θ) is in the interior of X relative to the affine hull H spanned by X.
Then p satisfies the emanation condition in the direction of θ.

Proof. L(θ) > 0 since θ ∈ Θp. Let ǫ ∈ (0, L(θ)) be given. Let z = p+ (L(θ)− ǫ)θ.
Then z is well defined and it is in the interior of the segment [p, p + L(θ)θ] and
hence there exists ρ > 0 such that the intersection of the ball B(z, ρ) and the affine
hull H is contained in X . Let r = ρ/(L(θ) − ǫ). For each φ ∈ Θp, if |φ − θ| < r,
then |(p+(L(θ)−ǫ)φ)−z| = (L(θ)−ǫ)|φ−θ| < ρ. Thus the point p+(L(θ)−ǫ)φ,
which is in H since φ ∈ Θp, is also in the ball B(z, ρ) and hence in X . Thus
L(φ) ≥ L(θ)− ǫ by the definition of L(φ). �

Example 9.3. The emanation condition does not hold in general. Consider the
Hilbert space ℓ2. Let (en)

∞
n=1

be the standard basis. Let y1 = e1 and for each n > 1
let yn = e1/2 + en/n. Let A = {−e1}. Let X be the closed convex hull generated
by A

⋃
{yn : n = 1, 2, . . .}. Let p = 0 and let θn = yn/|yn| for each n. Then p does

not satisfy the emanation condition in the direction of θ1. Indeed, limn→∞ θn = θ1
but L(θn) =

√
0.25 + 1/n2 < 0.99 = L(θ1)− 0.01 for each n > 1. The subset X is

in fact compact since the sequence (yn)
∞
n=1

converges.

Using the definition of the emanation condition, we can prove the continuity of
T (·, p). The proof is based on several lemmas.

Lemma 9.4. Let X be a convex subset of a normed space. Let p ∈ X and ∅ 6=
A ⊂ X be given. Suppose that d(p, A) > 0. Let ǫ ∈ (0, d(p, A)/6) and assume that
the following conditions hold:

(28) There exists λ ∈ (0, ǫ) such that for each y ∈ dom(p, A), x ∈ [p, y],

if d(x, y) = ǫ/2, then d(x, p) ≤ d(x,A)− λ,

(29) there exists M ∈ (0,∞) such that sup{T (θ, p) : |θ| = 1} ≤ M.

Let β be a positive number satisfying β ≤ λ/(4M). Let yi = p+ tiθi, i = 1, 2 where
t1 ≥ t2 + 0.5ǫ, t2 ≥ 0, and θi ∈ Θp, i = 1, 2. If y1 ∈ dom(p, A) and |θ1 − θ2| < β,
then d(y2, p) ≤ d(y2, A).
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Proof. Suppose first that t1 ≤ ǫ. Then

6ǫ ≤ d(p, A) ≤ d(p, y2) + d(y2, A) ≤ ǫ+ d(y2, A)

since t2 ≤ t1 ≤ ǫ. Therefore d(y2, p) ≤ ǫ < 5ǫ ≤ d(y2, A) as claimed.
Now consider the case where ǫ < t1. Let x = p + (t1 − ǫ/2)θ1 and z = p +

(t1 − ǫ/2)θ2. Note that z and also y2 are not necessarily in X , but this is not
important. By (29) we have t1 ≤ M . Hence d(x, z) = (t1 − ǫ/2)|θ1 − θ2| < Mβ.
Since d(x, y1) = ǫ/2, y1 ∈ dom(p, A), and x ∈ [p, y1], it follows from (28) and the
choice of β that

d(z, p) ≤ d(z, x) + d(x, p) < Mβ + d(x,A)− λ

< Mβ + d(x, z) + d(z, A)− λ ≤ d(z, A)− λ/2.

Since t2 ≤ t1 − 0.5ǫ it follows that y2 ∈ [p, z]. As a result, Lemma 8.1 implies that
d(y2, p) ≤ d(y2, A). �

Lemma 9.5. Let X be a closed and convex subset of a normed space. Let A ⊆ X.
Let p ∈ X and let θ ∈ Θp. Suppose that there exists M ∈ (0,∞) such that
T (φ, p) ∈ [0,M ] for all φ ∈ Θp, where T (φ, p) is defined with respect to A in (3).
Then for any ǫ ∈ (0,∞) there exists β > 0 such that for all φ ∈ Θp, if |θ−φ| < β,
then T (φ, p) < T (θ, p) + ǫ.

Proof. Suppose that this is not true. Then for some ǫ ∈ (0,∞) there exists a
sequence (φn)

∞
n=1

of elements in Θp such that θ = limn→∞ φn but T (φn, p) ≥
T (θ, p)+ ǫ. By assumption T (φn, p) ∈ [T (θ, p)+ ǫ,M+ ǫ] for all n. Therefore there
exists a subsequence (φnj

)∞j=1
such that t := limj→∞ T (φnj

, p) exists and satisfies
t ∈ [T (θ, p)+ǫ,M+ǫ]. Hence T (φnj

, p)φnj
→ tθ and limj→∞(p+T (φnj

, p)φnj
) = p+

tθ. Because X is closed it follows that p+tθ ∈ X . By Theorem 8.2 (with P = {p})
we know that p + T (φnj

, p)φnj
∈ dom(p, A) for each j. Therefore the inequality

d(p+ T (φnj
)φnj

, p)− d(p+ T (φnj
, p)φnj

, A) ≤ 0 holds for each j. Thus, from the
continuity of the distance function it follows that d(p + tθ, p) − d(p + tθ, A) ≤ 0.
As a result p+ tθ ∈ dom(p, A). But T (θ, p) < t since T (θ, p) ≤ t− ǫ, and this is a
contradiction to the definition of T (θ, p) (see (3)). �

Theorem 9.6. Let X be a closed and convex subset of a uniformly convex normed
space and let A be a subset of X. Let p ∈ X and suppose that η := d(p, A) > 0.
Suppose that (19) holds and that p has the emanation property. Then for each
ǫ ∈ (0, η/6) and each θ ∈ Θp there exists ∆ ∈ (0,∞) such that for each φ ∈ Θp, if
|θ − φ| < ∆, then |T (θ, p)− T (φ, p)| ≤ ǫ.

Proof. Let σ = η/6 and

λ = 0.5ǫ · δ

(
η

10(ρ+ η/4)

)
.

Then λ satisfies (28). Indeed, let x and y be such that y ∈ dom(p, A), x ∈ [p, y],
and d(x, y) = 0.5ǫ. We have d(x,A) < ρ by Lemma 8.6(b) since (19) holds. In
addition, 0 < λ ≤ 0.5ǫ < σ < 4η/10 and λ is not greater than the minimum in
(22). From Lemma 8.9 it follows that d(x, p) < d(x,A)− λ.
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From Lemma 9.5 there exists β1 > 0 such that for all φ ∈ Θp, if |θ − φ| < β1,
then T (φ, p) < T (θ, p)+ ǫ. Since p has the emanation property there exists β2 > 0
such that for all φ ∈ Θp, if |θ − φ| < β2, then L(φ) ≥ L(θ)− ǫ. Let

∆ = min{β1, β2, λ/(4ρ)}.

We claim that for each φ ∈ Θp, if |θ−φ| < ∆, then |T (θ, p)−T (φ, p)| ≤ ǫ. Indeed,
let φ ∈ Θp satisfy |θ − φ| < ∆. Then |θ − φ| < β1, so Lemma 9.5 implies that
T (φ, p) < T (θ, p) + ǫ.

Assume for contradiction that T (θ, p) > T (φ, p) + ǫ. Let t1 = T (θ, p), y1 =
p + t1θ, t2 = t1 − ǫ, and y2 = p + t2φ. In particular t2 > T (φ, p). Because
|θ − φ| < β2 it follows that L(φ) ≥ L(θ) − ǫ ≥ T (θ, p) − ǫ = t2. Therefore the
point y2, which is on the ray emanating from p in the direction of φ, is in X .
By Lemma 8.6(a) (with P = {p}) we know that (29) is satisfied with M = ρ.
In addition, since |θ − φ| < λ/(4ρ) and since y1 ∈ X and d(y1, p) ≤ d(y1, A)
(by Theorem 8.2), it follows from Lemma 9.4 that d(y2, p) ≤ d(y2, A). By the
definition of T (φ, p) we therefore have t2 ≤ T (φ, p), a contradiction. �

Remark 9.7. The conditions mentioned in Theorem 9.6 are necessary for the
continuity of T mentioned there. Indeed, the uniform convexity of the norm is
needed as can be seen in the case described in Figure 5 where p = (0, 0) and
A = {(0,−2), (2, 0), (−2, 0)}. The discontinuity of T (·, p) is at the four unit vectors
θ = (±1,±1). The emanation property is necessary since in Example 9.3 it can
be seen that T (·, p), p = 0, is discontinuous at θ = θ1. As for the assumption
d(p, A) > 0, consider X = [−1, 1]2 in the Euclidean plane where p = (0, 0) and
A = [−1, 1]× {0}. Then T (θ, p) is discontinuous at θ = (0, 1) because T (θ, p) = 1

but T (φ, p) = 0 for any φ of the form φ = (1/n,
√
1− 1/n2), n ∈ N. As for the

boundedness condition (19), let X = R
2 with the Euclidean norm, p = (0,−1),

and A = {(0, 1)}. Then T (·, p) is not continuous at θ = (1, 0), because T (θ, p) = ∞
but T (φ, p) < ∞ for any φ = (

√
1− 1/n2, 1/n), n ∈ N.
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