
Anomaly Discovery and Resolution
in Web Access Control Policies

Hongxin Hu, Gail-Joon Ahn and Ketan Kulkarni
Arizona State University
Tempe, AZ 85287, USA

{hxhu,gahn,kakulkar}@asu.edu

ABSTRACT
The advent of emerging technologies such as Web services, service-
oriented architecture, and cloud computing has enabled us to per-
form business services more efficiently and effectively. However,
we still suffer from unintended security leakages by unauthorized
actions in business services while providing more convenient ser-
vices to Internet users through such a cutting-edge technological
growth. Furthermore, designing and managing Web access control
policies are often error-prone due to the lack of effective analysis
mechanisms and tools. In this paper, we represent an innovative
policy anomaly analysis approach for Web access control policies.
We focus on XACML (eXtensible Access Control Markup Lan-
guage) policy since XACML has become the de facto standard for
specifying and enforcing access control policies for various Web-
based applications and services. We introduce a policy-based seg-
mentation technique to accurately identify policy anomalies and
derive effective anomaly resolutions. We also discuss a proof-of-
concept implementation of our method called XAnalyzer and
demonstrate how efficiently our approach can discover and resolve
policy anomalies.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls

General Terms
Security, Management

Keywords
Access control policies, XACML, anomaly management

1. INTRODUCTION
With the explosive growth of Web applications and Web services

deployed on the Internet, the use of a policy-based approach has re-
ceived considerable attention to accommodate the security require-
ments covering large, open, distributed and heterogeneous comput-
ing environments. XACML (eXtensible Access Control Markup

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’11, June 15–17, 2011, Innsbruck, Austria.
Copyright 2011 ACM 978-1-4503-0688-1/11/06 ...$10.00.

Language) [27], which is a general purpose access control policy
language standardized by the Organization for the Advancement
of Structured Information Standards (OASIS), has been broadly
adopted to specify access control policies for various applications [3],
especially Web services. In an XACML policy, multiple rules may
overlap, which means one access request may match several rules.
Moreover, multiple rules within one policy may conflict, implying
that those rules not only overlap each other but also yield different
decisions. Conflicts in an XACML policy may lead to both safety
problem (e.g. allowing unauthorized access) and availability prob-
lem (e.g. denying legitimate access).

An intuitive means for resolving policy conflicts by a policy de-
signer is to remove all conflicts by modifying the policies. How-
ever, resolving conflicts through changing the policies is remark-
ably difficult, even impossible, in practice from many aspects. First,
the number of conflicts in an XACML policy is potentially large,
since an XACML policy may consist of hundreds or thousands of
rules. Second, conflicts in XACML policies are probably very com-
plicated, because one rule may conflict with multiple other rules,
and one conflict may be associated with several rules. Besides,
an XACML policy for a distributed application may be aggregated
from multiple parties. Also, an XACML policy may be maintained
by more than one administrator. Without a priori knowledge on
the original intentions of policy specification, changing a policy
may affect the policy’s semantics and may not resolve conflicts
correctly. Furthermore, in some cases, a policy designer may inten-
tionally introduce certain overlaps in XACML policy components
by implicitly reflecting that only the first rule is important. In this
case, conflicts are not an error, but intended, which would not be
necessary to be changed.

Since the conflicts in XACML policies always exist and are hard
to be eliminated, XACML defines four different combining algo-
rithms to automatically resolve conflicts [27]: Deny-Overrides, Permit-
Overrides, First-Applicable and Only-One-Applicable. Unfortu-
nately, XACML currently lacks a systematic mechanism for pre-
cisely detecting conflicts. Identifying conflicts in XACML policies
is critical for policy designers since the correctness of selecting
a combining algorithm for an XACML policy or policy set com-
ponent heavily relies on the information from conflict diagnosis.
Without precise conflict information, the effectiveness of combin-
ing algorithms for resolving policy conflicts cannot be guaranteed.

Another critical problem for XACML policy analysis is redun-
dancy discovery and removal. A rule in an XACML policy is re-
dundant if every access request that matches the rule also matches
other rules with the same effect. As the response time of an ac-
cess request largely depends on the number of rules to be parsed
within a policy, redundancies in a policy may adversely affect the
performance of policy evaluation. Therefore, policy redundancy

165

is treated as policy anomaly as well. With the significant growth
of Web applications deployed on the Internet, XACML policies
grow rapidly in size and complexity. Hence, redundancy elimi-
nation can be treated as one of effective solutions for optimizing
XACML policies and improving the performance of XACML eval-
uation.

Recently, policy anomaly detection has received a great deal
of attention [7, 10, 22, 28], especially, in firewall policy analy-
sis. Corresponding policy analysis tools, such as Firewall Pol-
icy Advisor [7] and FIREMAN [28], with the goal of discover-
ing firewall policy anomalies have been developed. However, we
cannot directly adopt those prior analysis approaches for XACML
due to several reasons. First, most prior approaches mainly have
the capability to detect pairwise policy anomalies, while a com-
plete anomaly detection should consider all policy components as
a whole piece. In other words, prior policy analysis approaches are
still needed to be improved [8]. Second, the structure of firewall
policies is flat but XACML has a hierarchical structure supporting
recursive policy specification. Third, a firewall policy only sup-
ports one conflict resolution strategy (first-match) to resolve con-
flicts but XACML has four rule/policy combining algorithms. Last
but not the least, a firewall rule is typically specified with fixed
fields, while an XACML rule can be multi-valued. Therefore, a
new policy analysis mechanism is desirable to cater those require-
ments from anomaly analysis in XACML policies.

In this paper, we introduce a policy-based segmentation tech-
nique, which adopts a binary decision diagram (BDD)-based data
structure to perform set operations, for policy anomaly discovery
and resolution. Based on this technique, an authorization space
defined by an XACML policy or policy set component can be di-
vided into a set of disjoint segments. Each segment associated with
a unique set of XACML components indicates an overlap relation
(either conflicting or redundant) among those components. Accu-
rate anomaly information is crucial to the success of anomaly res-
olution. For example, conflict diagnosis information provided by
a policy analysis tool can be utilized to guide the policy designers
in selecting appropriate combining algorithms. Moreover, we ob-
serve that current XACML conflict resolution mechanisms are too
restrictive by applying only one combining algorithm to resolve all
identified conflicts within an XACML policy or policy set compo-
nent. Also, many other desirable conflict resolution strategies ex-
ist [15, 18, 20], but cannot be directly supported by XACML. Thus,
we additionally propose a flexible and extensible policy conflict
resolution in this paper. Besides, we implement a policy analysis
tool XAnalyzer based on our approach. To evaluate the prac-
ticality of our tool, our experiments deal with both real-life and
synthetic XACML policies.

The rest of this paper is organized as follows. Section 2 overviews
the XACML policy and briefly discusses anomalies in XACML
policies. We describe the underlying data structure for XACML
representation based on binary decision diagrams in Section 3. Sec-
tion 4 presents our conflict detection and resolution approaches.
In Section 5, we address our redundancy discovery and removal
approaches. In Section 6, we discuss the implementation of our
tool XAnalyzer and the evaluation of our approach. Section 7
overviews the related work and we conclude this paper in Section 8.

2. PRELIMINARIES

2.1 XACML Overview
XACML has become the de facto standard for describing ac-

cess control policies and offers a large set of built-in functions,
data types, combining algorithms, and standard profiles for defining

application-specific features. At the root of all XACML policies is
a policy or a policy set. A policy set is composed of a sequence
of policies or other policy sets along with a policy combining al-
gorithm and a target. A policy represents a single access control
policy expressed through a target, a set of rules and a rule combin-
ing algorithm. The target defines a set of subjects, resources and
actions the policy or policy set applies to. For an applicable pol-
icy or policy set, the corresponding target should be evaluated to
be true; otherwise, the policy or policy set is skipped when eval-
uating an access request. A rule set is a sequence of rules. Each
rule consists of a target, a condition, and an effect. The target of a
rule decides whether an access request is applicable to the rule and
it has a similar structure as the target of a policy or a policy set;
the condition is a boolean expression to specify restrictions on the
attributes in the target and refine the applicability of the rule; and
the effect is either permit or deny. If an access request satisfies
both the target and condition of a rule, the response is sent with the
decision specified by the effect element in the rule. Otherwise, the
response yields NotApplicable which is typically considered
as deny.

An XACML policy often has conflicting rules or policies, which
are resolved by four different combining algorithms: Deny-Overrides,
Permit-Overrides, First-Applicable and Only-One-Applicable [27].
Figure 1 shows an example XACML policy. The root policy set
PS1 contains two policies, P1 and P2, which are combined us-
ing First-Applicable combining algorithm. The policy P1 has three
rules, r1, r2 and r3, and its rule combining algorithm is Deny-
Overrides. The policy P2 includes two rules r4 and r5 with Deny-
Overrides combining algorithm. In this example, there are four
subjects: Manager, Designer, Developer and Tester; two resources:
Reports and Codes; and two actions: Read and Change. Note that
both r2 and r3 define conditions over the Time attribute.

2.2 Anomalies in XACML Policies
An XACML policy may contain both policy components and

policy set components. Often, a rule anomaly occurs in a policy
component, which consists of a sequence of rules. On the other
hand, a policy set component consists of a set of policies or other
policy sets, thus anomalies may also arise among policies or policy
sets. Thus, we address XACML policy anomalies at both policy
level and policy set level.

• Anomalies at Policy Level: A rule is conflicting with other
rules, if this rule overlaps with others but defines a different
effect. For example, the deny rule r1 is in conflict with the
permit rule r2 in Figure 1 because rule r2 allows the access
requests from a designer to change codes in the time interval
[8:00, 17:00], which are supposed to be denied by r1; and
a rule is redundant if there is other same or more general
rules available that have the same effect. For instance, if we
change the effect of r2 to Deny, r3 becomes redundant since
r2 will also deny a designer to change reports or codes in the
time interval [12:00, 13:00].

• Anomalies at Policy Set Level: Anomalies may also oc-
cur across policies or policy sets in an XACML policy. For
example, considering two policy components P1 and P2 of
the policy set PS1 in Figure 1, P1 is conflicting with P2, be-
cause P1 permits the access requests that a developer changes
reports in the time interval [8:00, 17:00], but which are de-
nied by P2. On the other hand, P1 denies the requests allow-
ing a designer to change reports or codes in the time interval
[12:00, 13:00], which are permitted by P2. Supposing the
effect of r2 is changed to Deny and the condition of r2 is re-
moved, r4 is turned to be redundant with respect to r2, even

166

Figure 1: An example XACML policy.

though r2 and r4 are placed in different policies P1 and P2,
respectively.

Most prior anomaly detection work only treat a policy anomaly
as an inconsistent or redundant relation between two rules. How-
ever, a policy anomaly may involve in multiple rules. For example,
in Figure 1, access requests that a designer changes codes in the
time interval [12:00, 13:00] are permitted by r2, but denied by both
r1 and r3. Thus, this conflict associates with three rules. For an-
other example, suppose the effect of r3 is changed to Permit and
the subject of r3 is replaced by Manager and Developer. If we
only examine pairwise redundancies, r3 is not a redundant rule.
However, if we check multiple rules simultaneously, we can iden-
tify r3 is redundant considering r2 and r5 together. We observe
that precise anomaly diagnosis information is crucial for achieving
an effective anomaly resolution. In this paper, we attempt to design
a systematic approach and corresponding tool not only for accurate
anomaly detection but also for effective anomaly resolution.

3. UNDERLYING DATA STRUCTURE
Our policy-based segmentation technique introduced in subse-

quent sections requires a well-formed representation of policies
for performing a variety of set operations. Binary Decision Di-
agram (BDD) [13] is a data structure that has been widely used
for formal verification and simplification of digital circuits. In this
work, we leverage BDD as the underlying data structure to repre-
sent XACML policies and facilitate effective policy analysis.

Given an XACML policy, it can be parsed to identify subject,
action, resource and condition attributes. Once these attributes are
identified, all XACML rules can be transformed into Boolean ex-
pressions [9]. Each Boolean expression of a rule is composed of
atomic Boolean expressions combined by logical operators ∨ and
∧. Atomic Boolean expressions are treated as equality constraints
or range constraints on attributes (e.g. Subject = “student”) or
on conditions (e.g. 8 : 00 ≤ T ime ≤ 17 : 00).

EXAMPLE 1. Consider the example XACML policy in Figure 1
in terms of atomic Boolean expressions. The Boolean expression
for rule r1 is:

(Subject = “Designer” ∨ Subject = “Tester”) ∧
(Resource = “Codes”) ∧ (Action = “Change”)

The Boolean expression for rule r2 is:
(Subject = “Designer” ∨ Subject = “Tester”) ∧
(Resource = “Reports” ∨ Resource = “Codes”) ∧
(Action = “Read” ∨ Action = “Change”) ∧
(8 : 00 ≤ T ime ≤ 17 : 00)

Boolean expressions for XACML rules may consist of atomic
Boolean expressions with overlapping value ranges. In such cases,
those atomic Boolean expressions are needed to be transformed
into a sequence of new atomic Boolean expressions with disjoint
value ranges. Agrawal et al. [5] have identified different categories
of such atomic Boolean expressions and addressed corresponding
solutions for those issues. We adopt similar approach to construct
our Boolean expressions for XACML rules.

Table 1: Atomic Boolean expressions and corresponding
Boolean variables for P1.

Unique Atomic Boolean Expression Boolean Variable
Subject = “Designer” S1
Subject = “Tester” S2
Subject = “Developer” S3
Subject = “Manager” S4
Resource = “Reports” R1
Resource = “Codes” R2
Action = “Read” A1
Action = “Change” A2
8 : 00 ≤ Time < 12 : 00 C1
12 : 00 ≤ Time < 13 : 00 C2
13 : 00 ≤ Time ≤ 17 : 00 C3

We encode each of the atomic Boolean expression as a Boolean
variable. For example, an atomic Boolean expression
Subject=“Designer" is encoded into a Boolean variable S1. A
complete list of Boolean encoding for the example XACML policy
in Figure 1 is shown in Table 1. We then utilize the Boolean encod-
ing to construct Boolean expressions in terms of Boolean variables
for XACML rules.

EXAMPLE 2. Consider the example XACML policy in Figure 1
in terms of Boolean variables. The Boolean expression for rule r1

is:
(S1 ∨ S2) ∧ (R2) ∧ (A2)

The Boolean expression for rule r2 is:
(S1 ∨ S2) ∧ (R1 ∨ R2) ∧ (A1 ∨ A2) ∧ (C1 ∨ C2 ∨ C3)

167

BDDs are acyclic directed graphs which represent Boolean ex-
pressions compactly. Each nonterminal node in a BDD represents
a Boolean variable, and has two edges with binary labels, 0 and 1
for nonexistent and existent, respectively. Terminal nodes represent
Boolean value T (True) or F (False). Figures 2(a) and 2(b) give
BDD representations of two rules r1 and r2, respectively.

Figure 2: Representing and operating on rules of XACML pol-
icy with BDD.

Once the BDDs are constructed for XACML rules, performing
set operations, such as unions (∪), intersections (∩) and set differ-
ences (\), required by our policy-based segmentation algorithms
(see Algorithm 1 and Algorithm 2) is efficient as well as straight-
forward. Figure 2(c) shows an integrated BDD, which is the inter-
section of BDDs of r1 and r2. Note that the resulting BDD from
the intersection operation may have less number of nodes due to
the canonical representation of BDD.

4. CONFLICT DETECTION AND RESOLU-
TION

We first introduce a concept of authorization space, which adopts
aforementioned BDD-based policy representation to perform pol-
icy anomaly analysis. This concept is defined as follows.

DEFINITION 1. (Authorization Space). Let Rx, Px and PSx

be the set of rules, policies and policy sets, respectively, of an
XACML policy x. An authorization space for an XACML policy
component c ∈ Rx ∪ Px ∪ PSx represents a collection of all ac-
cess requests Qc to which a policy component c is applicable.

4.1 Conflict Detection Approach
Our conflict detection mechanism examines conflicts at both pol-

icy level and policy set level for XACML policies. In order to pre-
cisely identify policy conflicts and facilitate an effective conflict
resolution, we present a policy-based segmentation technique to
partition the entire authorization space of a policy into disjoint au-
thorization space segments. Then, conflicting authorization space
segments (called conflicting segment in the rest of this paper), which
contain policy components with different effects, are identified.
Each conflicting segment indicates a policy conflict.

4.1.1 Conflict Detection at Policy Level
A policy component in an XACML policy includes a set of rules.

Each rule defines an authorization space with the effect of either
permit or deny. We call an authorization space with the effect
of permit permitted space and an authorization space with the
effect of deny denied space.

Algorithm 1 shows the pseudocode of generating conflicting seg-
ments for a policy component P . An entire authorization space de-
rived from a policy component is first partitioned into a set of dis-
joint segments. As shown in lines 16-32 in Algorithm 1, a function
called Partition() accomplishes this procedure. This function
works by adding an authorization space s derived from a rule r to
an authorization space set S. A pair of authorization spaces must
satisfy one of the following relations: subset (line 19), superset
(line 24), partial match (line 27), or disjoint (line 31). Therefore,
one can utilize set operations to separate the overlapped spaces into
disjoint spaces.

Algorithm 1: Identify Disjoint Conflicting Authorization
Spaces of Policy P

Input: A policy P with a set of rules.
Output: A set of disjoint conflicting authorization spaces CS for P .
/* Partition the entire authorization space of P into disjoint spaces*/1
S.New();2
S ←− Partition_P(P);3
/* Identify the conflicting segments */4
CS.New();5
foreach s ∈ S do6

/* Get all rules associated with a segment s */7

R
′ ←− GetRule(s);8

if ∃ri ∈ R
′
, rj ∈ R

′
, ri �= rj and ri.Effect �= rj .Effect then9

CS.Append(s);10

Partition_P(P)11
R←− GetRule(P);12
foreach r ∈ R do13

sr ←− AuthorizationSpace(r);14
S ←− Partition(S, sr);15

return S;16

Partition(S, sr)17
foreach s ∈ S do18

/* sr is a subset of s*/19
if sr ⊂ s then20

S.Append(s \ sr);21
s←− sr ;22
Break;23

/* sr is a superset of s*/24
else if sr ⊃ s then25

sr ←− sr \ s;26

/* sr partially matches s*/27
else if sr ∩ s �= ∅ then28

S.Append(s \ sr);29
s←− sr ∩ s;30
sr ←− sr \ s;31

S.Append(sr);32
return S;33

Conflicting segments are identified as shown in lines 6-9 in Al-
gorithm 1. A set of conflicting segments CS : {cs1, cs2, . . . , csn}
from conflicting rules has the following three properties:

1. All conflicting segments are pairwise disjoint:
csi ∩ csj = ∅, 1 ≤ i 	= j ≤ n;

2. Any two different requests q and q
′

within a single conflict-
ing segment (csi) are matched by exact same set of rules:
GetRule(q) = GetRule(q

′
),∀q ∈ csi, q

′ ∈ csi, q 	= q
′
;

and

3. The effects of matched rules in any conflicting segments con-
tain both “Permit" and “Deny."

Figure 3 gives a representation of the segments of authorization
space derived from the policy P1 in the XACML example policy

168

Figure 3: Disjoint segments of authorization space for policy
P1 in the example XACML policy.

shown in Figure 1 1. We can notice that five unique disjoint seg-
ments are generated. In addition, three conflicting segments cs1,
cs2 and cs3 are identified. They represent three policy conflicts,
where conflicting segment cs1 is associated with a rule set consist-
ing of two rules r1 and r2, conflicting segment cs2 is related to a
rule set including three rules r1, r2 and r3, and conflicting segment
cs3 is associated with a rule set containing two rules r2 and r3.

4.1.2 Conflict Detection at Policy Set Level
There are two major challenges that need to be taken into consid-

eration when we design an approach for XACML analysis at policy
set level.

1. XACML supports four rule/policy combining algorithms: First-
Applicable, Only-One-Applicable, Deny-Overrides, and Permit-
Overrides.

2. An XACML policy is specified recursively and therefore has
a hierarchical structure. In XACML, a policy set contains a
sequence of policies or policy sets, which may further con-
tain other policies or policy sets.

Each authorization space segment also has an effect, which is de-
cided by XACML components covered by this segment. For non-
conflicting segments, the effect of a segment equals to the effect of
components covered by this segment. Regarding conflicting seg-
ments, the effect of a segment depends on the following four cases
of combining algorithm (CA), which is used by the owner (a policy
or a policy set) of the segment.

1. CA=First-Applicable: In this case, the effect of a conflicting
segment equals to the effect of the first component covered
by the conflicting segment.

2. CA=Permit-Overrides: The effect of a conflicting segment
is always assigned with “Permit,” since there is at least
one component with “Permit” effect within this conflicting
segment.

3. CA=Deny-Overrides: The effect of a conflicting segment al-
ways equals to “Deny.”

4. CA=Only-One-Applicable: The effect of a conflicting seg-
ment equals to the effect of only-applicable component.

To support the recursive specifications of XACML policies, we
parse and model an XACML policy as a tree structure, where each
terminal node represents an individual rule, each nonterminal node
whose children are all terminal nodes represents a policy, and each
nonterminal node whose children are all nonterminal nodes repre-
sents a policy set. At each nonterminal node, we store the target
1For the purposes of brevity and understandability, we employ a
two dimensional geometric representation for each authorization
space segment. Note that a rule in an XACML policy typically
has multiple fields, thus a complete representation of authorization
space should be multi-dimensional.

and combining algorithm. At each terminal node, the target and
effect of the corresponding rule are stored.

Algorithm 2 shows the pseudocode of identifying disjoint con-
flicting authorization spaces for a policy set PS based on the tree
structure. In order to partition authorization spaces of all nodes
contained in a policy set tree, this algorithm recursively calls the
partition functions, Partition_P() and Partition_PS(),
to deal with the policy nodes (lines 16-17) and the policy set nodes
(lines 19-20), respectively. Once all children nodes of a policy set
are partitioned, we can then represent the authorization space of
each child node (E) with two subspaces permitted subspace (EP)
and denied subspace (ED) by aggregating all “Permit" segments
and “Deny" segments, respectively, as follows:{

EP =
⋃

si∈SE
si if Effect(si) = Permit

ED =
⋃

si∈SE
si if Effect(si) = Deny

(1)

where SE denotes the set of authorization space segments of the
child node E.

For example, Figure 4 shows the result of aggregating authoriza-
tion spaces shown in Figure 3. Two subspaces P P

1 and P D
1 are

constructed for the policy P1, which is a child node of the policy
set PS1 in our example XACML policy.

Figure 4: Aggregation of authorization spaces.

In order to generate segments for the policy set PS, we can then
leverage two subspaces (EP and ED) of each child node (E) to
partition existing authorization space set belonging to PS (lines
28-29). Figure 5 represents an example of the segments of autho-
rization space derived from policy set PS1 in our example policy
(Figure 1). We can observe that seven unique disjoint segments are
generated, and two of them cs1 and cs2 are conflicting segments,
where cs1 is related to P P

1 and P D
2 , and cs2 is associated with P D

1

and P P
2 . They indicate two conflicts occurring in PS at policy set

level.

Figure 5: Disjoint segments of authorization space for policy
set PS1 in the example XACML policy.

4.2 Fine-Grained Conflict Resolution
Once conflicts within a policy component or policy set compo-

nent are identified, a policy designer can choose appropriate con-
flict resolution strategies to resolve those identified conflicts. How-
ever, current XACML conflict resolution mechanisms have limita-
tions in resolving conflicts effectively. First, existing conflict res-
olution mechanisms in XACML are too restrictive and only allow
a policy designer to select one combining algorithm to resolve all

169

Algorithm 2: Identify Disjoint Conflicting Authorization
Spaces of Policy Set PS

Input: A policy set PS with a set of policies or other policy sets.
Output: A set of disjoint conflicting authorization spaces CS for PS.
/* Partition the entire authorization space of PS into disjoint spaces*/1
S.New();2
S ←− Partition_PS(PS);3
/* Identify the conflicting segments */4
CS.New();5
foreach s ∈ S do6

E ←− GetElement(s);7
if ∃ei ∈ E, ej ∈ E, ei �= ej and ei.Effect �= ej .Effect then8

CS.Append(s);9

Partition_PS(PS)10

S
′′

.New();11
C ←− GetChild(PS);12
foreach c ∈ C do13

S
′
.New();14

/* c is a policy*/15
if IsPolicy(c) = true then16

S
′ ←− Partition_P(c);17

/* c is a policy set*/18
else if IsPolicySet(c) = true then19

S
′ ←− Partition_PS(c)20

EP .New();21
ED .New();22

foreach s
′ ∈ S

′
do23

if Effect(s
′
) = Permit then24

EP ←− EP ∪ s
′
;25

else if Effect(s
′
) = Deny then26

ED ←− ED ∪ s
′
;27

S
′′ ←− Partition(S

′′
, EP);28

S
′′ ←− Partition(S

′′
, ED);29

return S
′′

;30

identified conflicts within a policy or policy set component. A pol-
icy designer may want to adopt different combining algorithms to
resolve different conflicts. Second, XACML offers four conflict
resolution strategies. However, many conflict resolution strategies
exist [15, 18, 20], but cannot be specified in XACML. Thus, it is
necessary to seek a comprehensive conflict resolution mechanism
for more effective conflict resolution. Towards this end, we in-
troduce a flexible and extensible conflict resolution framework to
achieve a fine-grained conflict resolution as shown in Figure 6.

4.2.1 Effect Constraint Generation from Conflict Res-
olution Strategy

Our conflict resolution framework introduces an effect constraint
that is assigned to each conflicting segment. An effect constraint for
a conflicting segment defines a desired response (either permit or
deny) that an XACML policy should take when any access request
matches the conflicting segment. The effect constraint is derived
from the conflict resolution strategy associated with the conflicting
segment. A policy designer chooses an appropriate conflict resolu-
tion strategy for each identified conflict by examining the features
of conflicting segment and associated conflicting components. In
our conflict resolution framework, a policy designer is able to adopt
different strategies to resolve conflicts indicated by different con-
flicting segments. In addition to four standard XACML conflict
resolution strategies, user-defined strategies [20], such as Recency-
Overrides, Specificity-overrides and High-Authority-Overrides, can
be implied in our framework as well.

Figure 6: Fine-grained conflict resolution framework.

4.2.2 Conflict Resolution Based on Effect Constraints
A key feature of adopting effect constraints in our framework is

that other conflict resolution strategies assigned to resolve different
conflicts by a policy designer can be automatically mapped to stan-
dard XACML combining algorithms, without changing the way
that current XACML implementations perform. As illustrated in
Figure 6, an XACML combining algorithm can be derived for a tar-
get component by examining all effect constraints of the conflicting
segments. If all effect constraints are “Permit,” Permit-Overrides
is selected for the target component to resolve all conflicts. In case
that all effect constraints are “Deny,” Deny-Overrides is assigned
to the target component. Then, if the target component is a policy
set and all effect constraints can be satisfied by applying Only-One-
Applicable combining algorithm, Only-One-Applicable is selected
as the combining algorithm of the target component. Otherwise,
First-Applicable is selected as the combining algorithm of the tar-
get component. In order to resolve all conflicts within the target
component by applying First-Applicable, the process of reorder-
ing conflicting components is compulsory. Therefore, the first-
applicable component in each conflicting segment has the same ef-
fect with corresponding effect constraint.

5. REDUNDANCY DISCOVERY AND RE-
MOVAL

Our redundancy discovery and removal mechanism also leverage
the policy-based segmentation technique to explore redundancies
at both policy level and policy set level. We give a definition of
rule redundancy as follows, which serves as a foundation of our
redundancy elimination approach.

DEFINITION 2. (Rule Redundancy). A rule r is redundant in
an XACML policy p iff the authorization space derived from the re-
sulting policy p′ after removing r is equivalent to the authorization
space defined by p.

5.1 Redundancy Elimination at Policy Level
We employ following four steps to identify and eliminate rule re-

dundancies at policy level: authorization space segmentation, prop-
erty assignment for rule subspaces, rule correlation break, and re-
dundant rule removal.

170

(a) Authorization space segmentation (b) Property assignment (c) Redundancy removal

Figure 7: Example of eliminating redundancies at policy level.

5.1.1 Authorization Space Segmentation
We first perform the policy segmentation function Partition_P()

defined in Algorithm 1 to divide the entire authorization space of
a policy into disjoint segments. We classify the policy segments
in following categories: non-overlapping segment and overlapping
segment, which is further divided into conflicting overlapping seg-
ment and non-conflicting overlapping segment. Each non-overlapping
segment associates with one unique rule and each overlapping seg-
ment is related to a set of rules, which may conflict with each
other (conflicting overlapping segment) or have the same effect
(non-conflicting overlapping segment). Figure 7(a) illustrates an
authorization space segmentation for a policy with eight rules. In
this example, two policy segments s4 and s6 are non-overlapping
segments. Other policy segments are overlapping segments, in-
cluding two conflicting overlapping segments s1 and s3, and two
non-conflicting overlapping segments s2 and s5.

5.1.2 Property Assignment for Rule Subspaces
In this step, every rule subspace covered by a policy segment

is assigned with a property. Four property values, removable (R),
strong irremovable (SI), weak irremovable (WI) and correlated (C),
are defined to reflect different characteristics of rule subspace. Re-
movable property is used to indicate that a rule subspace is remov-
able. In other words, removing such a rule subspace does not make
any impact on the original authorization space of an associated pol-
icy. Strong irremovable property means that a rule subspace cannot
be removed because the effect of corresponding policy segment can
be only decided by this rule. Weak irremovable property is assigned
to a rule subspace when any subspace belonging to the same rule
has strong irremovable property. That means a rule subspace be-
comes irremovable due to the reason that other portions of this rule
cannot be removed. Correlated property is assigned to multiple
rule subspaces covered by a policy segment, if the effect of this
policy segment can be determined by any of these rules. We next
introduce three processes to perform the property assignments to
all of rule subspaces within the segments of a policy, considering
different categories of policy segments.

Process1: Property assignment for the rule subspace covered by a
non-overlapping segment. A non-overlapping segment con-
tains only one rule subspace. Thus, this rule subspace is
assigned with strong irremovable property. Other rule sub-
spaces associated with the same rule are assigned with weak
irremovable property, excepting the rule subspaces that al-
ready have strong irremovable property.

Process2: Property assignment for rule subspaces covered by a
conflicting segment. We present this property assignment
process based on the following three cases of rule combin-
ing algorithm (CA).

1. CA=First-Applicable: In this case, the first rule sub-
space covered by the conflicting segment is assigned
with strong irremovable property. Other rule subspaces
in the same segment are assigned with removable prop-
erty. Meanwhile, other rule subspaces associated with
the same rule are assigned with weak irremovable prop-
erty except the rule subspaces already having strong ir-
removable property.

2. CA=Permit-Overrides: All subspaces of “deny" rules
in this conflicting segment are assigned with remov-
able property. If there is only one “permit" rule sub-
space, this case is handled which is similar to the First-
Applicable case. If any “permit" rule subspace has
been assigned with weak irremovable property, other
rule subspaces without irremovable property are assigned
with removable property. Otherwise, all “permit"
rule subspaces are assigned with correlated property.

3. CA=Deny-Overrides: This case is dealt with as the
same as Permit-Overrides case.

Process3: Property assignment for rule subspaces covered by a
non-conflicting overlapping segment. If any rule subspace
has been assigned with weak irremovable property, other rule
subspaces without irremovable property are assigned with
removable property. Otherwise, all subspaces within the seg-
ment are assigned with correlated property.

Figure 7(b) shows the result of applying our property assignment
mechanism, which performs three property assignment processes
in sequence, to the example presented in Figure 7(a). We can eas-
ily identify that r3 and r8 are removable rules, where all subspaces
are with removable property. However, we need to further exam-
ine the correlated rules r2, r4 or r7, which contain some subspaces
with correlated property. The extension with correlation break al-
gorithm remains in our future work. Figure 7(c) depicts the result
of redundancy removal for the example.

5.2 Redundancy Elimination at Policy Set Level
Similar to the solution of conflict detection at policy set level,

we handle the redundancy removal for a policy set based on an

171

XACML tree structure representation. If the children nodes of the
policy set is a policy node in the tree, we perform
RedundancyEliminate_P() function to eliminate redundan-
cies. Otherwise, RedundancyEliminate_PS() function is
excused recursively to eliminate redundancy in a policy set com-
ponent.

After each component of a policy set PS performs redundancy
removal, the authorization space of PS can be then partitioned into
disjoint segments by performing Partition() function. Note
that, in the solution for conflict detection at policy set level, we
aggregate authorization subspaces of each child node before per-
forming space partition, because we only need to identify conflicts
among children nodes to guide the selection of policy combining
algorithms for the policy set. However, for redundancy removal at
policy set level, both redundancies among children nodes and rule
(leaf node) redundancies, which may exist across multiple policies
or policy sets, should be discovered. Therefore, we keep the orig-
inal segments of each child node and leverage those segments to
generate the authorization space segments of PS. Figure 8 demon-
strates an example of authorization space segmentation of a policy
set PS with three children components P1, P2 and P3. The autho-
rization space segments of PS are constructed based on the original
segments of each child component. For instance, a segment s

′
2 of

PS covers three policy segments P1.s1, P2.s1 and P3.s2, where
Pi.sj denotes that a segment sj belongs to a policy Pi.

Figure 8: Example of authorization space segmentation at pol-
icy set level for redundancy discovery and removal.

The property assignment step at policy set level is similar to the
property assignment step at policy level, except that the policy com-
bining algorithm Only-One-Applicable needs to be taken into con-
sideration at policy set level. The Only-One-Applicable case is han-
dled similar to the First-Applicable case. We first check whether the
combining algorithm is applicable or not. If the combining algo-
rithm is applicable, the only-applicable subspace is assigned with
strong irremovable property. Otherwise, all subspaces within the
policy set’s segment are assigned with removable property.

After assigning properties to all segments of children compo-
nents of PS, we next examine whether any child component is
redundant. If a child component is redundant, this child compo-
nent and all rules contained in the child component are removed
from PS. Then, we examine whether there exist any redundant
rules. In this process, the properties of all rule subspaces covered
by a removable segment of a child component of PS needs to be
changed to removable. Note that when we change the property of
a strong irremovable rule subspace to removable, other subspaces
in the same rule with dependent weak irremovable property need to
be changed to removable correspondingly.

6. IMPLEMENTATION AND EVALUATION
We have implemented a policy analysis tool called XAnalyzer

in Java. Based on our policy anomaly analysis mechanism, it con-
sists of four core components: segmentation module, effect con-
straint generation module, strategy mapping module, and property
assignment module. The segmentation module takes XACML poli-
cies as an input and identifies the authorization space segments by
partitioning the authorization space into disjoint subspaces. XAnalyzer
utilizes APIs provided by Sun XACML implementation [4] to parse
the XACML policies and construct Boolean encoding. JavaBDD [2],
which is based on BuDDy package [1], is employed by XAnalyzer
to support BDD representation and authorization space operations.
The effect constraint generation module takes conflicting segments
as an input and generates effect constraints for each conflicting
segment. Effect constraints are generated based on strategies as-
signed to each conflicting segment. The strategy mapping module
takes conflict correlation groups and effect constraints of conflict-
ing segments as inputs and then maps assigned strategies to stan-
dard XACML combining algorithms for examined XACML policy
components. The property assignment module automatically as-
signs corresponding property to each subspace covered by the seg-
ments of XACML policy components. The assigned properties are
in turn utilized to identify redundancies.

Table 2: XACML policies used for evaluation.
Policy Rule (#) Policy (#) Policy Set (#)

1 (CodeA) 4 2 5
2 (SamplePolicy) 6 2 1
3 (GradeSheet) 13 1 0

4 (Pluto) 22 1 0
5 (SyntheticPolicy-1) 147 30 11

6 (Continue-a) 312 276 111
7 (Continue-b) 336 305 111

8 (SyntheticPolicy-2) 456 65 40
9 (SyntheticPolicy-3) 572 114 75
10 (SyntheticPolicy-4) 685 188 84

We evaluated the efficiency and effectiveness of XAnalyzer
for policy analysis on both real-life and synthetic XACML poli-
cies. Our experiments were performed on Intel Core 2 Duo CPU
3.00 GHz with 3.25 GB RAM running on Windows XP SP2. In our
evaluation, we utilized five real-life XACML policies, which were
collected from different sources. Three of the policies, CodeA,
Continue-a and Continue-b are XACML policies used in [14]; among
them, Continue-a and Continue-b are designed for a real-world
Web application supporting a conference management. GradeSheet
is utilized in [11]. The Pluto policy is employed in ARCHON 2

system, which is a digital library that federates the collections of
physics with multiple degrees of meta data richness. Since it is hard
to get a large volume of real-world policies due to the reason that
they are often considered to be highly confidential, we generated
four large synthetic policies SyntheticPolicy-1, SyntheticPolicy-2,
SyntheticPolicy-3 and SyntheticPolicy-4 for further evaluating the
performance and scalability of our tool. We also use SamplePolicy,
which is the example XACML policy represented in Figure 1, in
our experiments. Table 2 summarizes the basic information of each
policy including the number of rules, the number of policies, and
the number of policy sets.

We conducted two separate sets of experiments for the evaluation
of conflict detection approach and the evaluation of redundancy re-
moval approach, respectively. Also, we performed evaluations at
both policy level and policy set level. Table 3 summarizes our eval-
uation results.

[Evaluation of Conflict Detection]: Time required by XAnalyzer

2http://archon.cs.odu.edu/

172

Table 3: Conflict detection and redundancy removal algorithms evaluation.
Policy Partitions BDD Conflict Detection Redundant Removal

(#) Nodes (#) Policy Level(#) Policy Set Level(#) Time (s) Policy Level(#) Policy Set Level(#) Time (s)
1 (CodeA) 6 16 1 1 0.082 1 0 0.087

2 (SamplePolicy) 8 34 0 2 0.090 0 2 0.095
3 (GradeSheet) 18 45 0 4 0.098 0 2 0.113

4 (Pluto) 34 78 0 5 0.136 0 3 0.147
5 (SyntheticPolicy-1) 205 112 8 14 0.329 7 4 0.158

6 (Continue-a) 439 135 9 17 0.583 10 7 0.214
7 (Continue-b) 468 146 10 21 0.635 12 6 0.585

8 (SyntheticPolicy-2) 523 209 29 17 0.896 14 8 0.623
9 (SyntheticPolicy-3) 614 227 39 19 0.948 16 9 0.672

10 (SyntheticPolicy-4) 814 265 56 19 1.123 21 11 0.803

Figure 9: Evaluation of redundancy removal approach.

for conflict detection highly depends upon the number of segments
generated for each XACML policy. The increase of the number of
segments is proportional to the number of components contained
in an XACML policy. From Table 3, we observe that XAnalyzer
performs fast enough to handle larger size XACML policies, even
for some complex policies with multiple levels of hierarchies along
with hundreds of rules, such as two real-life XACML policies Continue-
a and Continue-b and four synthetic XACML policies. The time
trends observed from Table 3 are promising, and hence provide the
evidence of efficiency of our conflict detection approach.

[Evaluation of Redundancy Removal]: In the second set of ex-
periments, we evaluated our redundancy analysis approach based
on those experimental XACML policies. The evaluation results
shown in Table 3 also indicate the efficiency of our redundancy
analysis algorithm. Moreover, we conducted the evaluation of ef-
fectiveness by comparing our redundancy analysis approach with
traditional redundancy analysis approach [7, 22], which can only
identify redundancy relations between two rules. Figure 9 depicts
the results of our comparison experiments. From Figure 9, we ob-
served that XAnalyzer could identify that an average of 6.2% of
total rules are redundant. However, traditional redundancy anal-
ysis approach could only detect an average 3.7% of total rules as
redundant rules. Therefore, the enhancement for redundancy elim-
ination was clearly observed by our redundancy analysis approach
compared to traditional redundancy analysis approach in our ex-
periments.

7. RELATED WORK
Many research efforts have been devoted to XACML. However,

most existing research work focus on modeling and verification of
XACML policies [6, 12, 17, 14, 19]. None of them dealt with
anomaly analysis in XACML policies. We discuss a few of those
work here.

In [12], the authors formalized XACML policies using a process
algebra known as Communicating Sequential Processes (CSP). This

work utilizes a model checker to formally verify properties of poli-
cies, and to compare access control policies with each other. Fisler
et al. [14] introduced an approach to represent XACML policies
with Multi-Terminal Binary Decision Diagrams (MTBDDs). A
policy analysis tool called Margrave was developed. Margrave can
verify XACML policies against the given properties and perform
change-impact analysis based on the semantic differences between
the MTBDDs representing the policies. Ahn et al. [6] presented
a formalization of XACML using answer set programming (ASP),
which is a recent form of declarative programming, and leveraged
existing ASP reasoners to conduct policy verification.

Several work presenting policy analysis tools with the goal of de-
tecting policy anomalies in firewall are closely related to our work.
Al-Shaer et al. [7] designed a tool called Firewall Policy Advisor
which can only detect pairwise anomalies in firewall rules. Yuan et
al. [28] presented a toolkit, FIREMAN, which can detect anoma-
lies among multiple firewall rules by analyzing the relationships
between one rule and the collections of packet spaces derived from
all preceding rules. However, the anomaly detection procedures of
FIREMAN are still incomplete [8]. Our tool, XAnalyzer, could
conduct a complete examination of policy anomaly and provide
more accurate anomaly diagnosis information for policy analysis.
On the other hand, as we discussed previously, XACML policy and
firewall policy have some significant distinctions. Hence, directly
applying prior policy anomaly analysis approaches to XACML are
not suitable.

Some XACML policy evaluation engines, such as Sun PDP [4]
and XEngine [21], have been developed to handle the process of
evaluating whether a request satisfies an XACML policy. During
the process of policy enforcement, conflicts can be checked if a re-
quest matches multiple rules having different effects, and then con-
flicts are resolved by applying predefined combining algorithms in
the policy. In contrast, our tool XAnalyzer focuses on policy
analysis at policy design time. XAnalyzer can identify all con-
flicts within a policy and help policy designers select appropriate
combining algorithms for conflict resolution prior to the policy en-
forcement. Additionally, XAnalyzer has the capability of dis-
covering and eliminating policy redundancies that cannot be dealt
with by policy evaluation engines.

Some work addressed the general conflict resolution mechanisms
for access control including Fundulaki et al. [15], Fisler et al. [14]
and Jajodia et al. [18]. Especially, Li et al. [20] proposed a policy
combining language PCL, which can be utilized to specify a variety
of user-defined combining algorithms for XACML. These conflict
resolution mechanisms can be accommodated in our fine-grained
conflict resolution framework.

Other related work includes XACML policy integration [24, 25,
26] and XACML policy optimization [21, 23]. Since anomaly dis-
covery and resolution are challenging issues in policy integration
and redundancy elimination can contribute in policy optimization,
all of those related work are orthogonal to our work.

173

8. CONCLUSION
We have proposed an innovative mechanism that facilitates sys-

tematic detection and resolution of XACML policy anomalies. A
policy-based segmentation technique was introduced to achieve the
goals of effective and efficient anomaly analysis. In addition, we
have described an implementation of a policy anomaly analysis
tool called XAnalyzer. Our experimental results showed that a
policy designer could easily discover and resolve anomalies in an
XACML policy with the help of XAnalyzer. We believe our sys-
tematic mechanism and tool will significantly help policy managers
support an assurable Web application management service.

As our future work, the coverage of our approach needs to be
further extended with respect to obligations and user-defined func-
tions in XACML. In addition, we would like to extend our tool
with information visualization techniques [16], providing an intu-
itive cognitive sense for policy anomaly to facilitate a more effec-
tive policy management. Moreover, we would explore how our
anomaly analysis mechanism can be applied to other existing ac-
cess control policy languages.

Acknowledgments
This work was partially supported by the grants from National Sci-
ence Foundation (NSF-IIS-0900970 and NSF-CNS-0831360) and
Department of Energy (DE-SC0004308 and DE-FG02-03ER25565).

9. REFERENCES
[1] Buddy version 2.4.

http://sourceforge.net/projects/buddy.
[2] Java BDD. http://javabdd.sourceforge.net.
[3] OASIS eXtensible Access Control Markup Language

(XACML) TC. http:
//www.oasis-open.org/committees/xacml/.

[4] Sun XACML Implementation.
http://sunxacml.sourceforge.net.

[5] D. Agrawal, J. Giles, K. Lee, and J. Lobo. Policy ratification.
In Sixth IEEE International Workshop on Policies for
Distributed Systems and Networks, 2005, pages 223–232,
2005.

[6] G. Ahn, H. Hu, J. Lee, and Y. Meng. Representing and
Reasoning about Web Access Control Policies. In 34th
Annual IEEE Computer Software and Applications
Conference, pages 137–146. IEEE, 2010.

[7] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in
distributed firewalls. In IEEE INFOCOM, volume 4, pages
2605–2616. Citeseer, 2004.

[8] J. Alfaro, N. Boulahia-Cuppens, and F. Cuppens. Complete
analysis of configuration rules to guarantee reliable network
security policies. International Journal of Information
Security, 7(2):103–122, 2008.

[9] A. Anderson. Evaluating xacml as a policy language. In
Technical report. OASIS, 2003.

[10] F. Baboescu and G. Varghese. Fast and scalable conflict
detection for packet classifiers. Computer Networks,
42(6):717–735, 2003.

[11] A. Birgisson, M. Dhawan, U. Erlingsson, V. Ganapathy, and
L. Iftode. Enforcing authorization policies using
transactional memory introspection. In Proceedings of the
15th ACM conference on Computer and communications
security, pages 223–234. ACM New York, NY, USA, 2008.

[12] J. Bryans. Reasoning about XACML policies using CSP. In
Proceedings of the 2005 workshop on Secure web services,
page 35. ACM, 2005.

[13] R. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on computers,
100(35):677–691, 1986.

[14] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of
access-control policies. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages
196–205, New York, NY, USA, 2005. ACM.

[15] I. Fundulaki and M. Marx. Specifying access control policies
for XML documents with XPath. In Proceedings of the ninth
ACM symposium on Access control models and technologies,
pages 61–69. ACM New York, NY, USA, 2004.

[16] I. Herman, G. Melançon, and M. Marshall. Graph
visualization and navigation in information visualization: A
survey. IEEE Transactions on Visualization and Computer
Graphics, pages 24–43, 2000.

[17] G. Hughes and T. Bultan. Automated verification of access
control policies. Computer Science Department, University
of California, Santa Barbara, CA, 93106:2004–22.

[18] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical
language for expressing authorizations. In IEEE Symposium
on Security and Privacy, pages 31–42, Oakland, CA, May
1997.

[19] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web access
control policies. In Proceedings of the 16th international
conference on World Wide Web, page 686. ACM, 2007.

[20] N. Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo, and
D. Lin. Access control policy combining: theory meets
practice. In Proceedings of the 14th ACM symposium on
Access control models and technologies, pages 135–144.
ACM, 2009.

[21] A. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: A fast and
scalable xacml policy evaluation engine. ACM SIGMETRICS
Performance Evaluation Review, 36(1):265–276, 2008.

[22] E. Lupu and M. Sloman. Conflicts in policy-based
distributed systems management. IEEE Transactions on
software engineering, 25(6):852–869, 1999.

[23] S. Marouf, M. Shehab, A. Squicciarini, and
S. Sundareswaran. Statistics & Clustering Based Framework
for Efficient XACML Policy Evaluation. In IEEE
International Symposium on Policies for Distributed Systems
and Networks, pages 118–125. IEEE, 2009.

[24] P. Mazzoleni, B. Crispo, S. Sivasubramanian, and E. Bertino.
XACML Policy Integration Algorithms. ACM Transactions
on Information and System Security, 11(1), 2008.

[25] Q. Ni, E. Bertino, and J. Lobo. D-algebra for composing
access control policy decisions. In Proceedings of the 4th
International Symposium on Information, Computer, and
Communications Security, pages 298–309. ACM, 2009.

[26] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo. An algebra for
fine-grained integration of xacml policies. In Proceedings of
the 14th ACM symposium on Access control models and
technologies, pages 63–72. ACM, 2009.

[27] XACML. OASIS eXtensible Access Control Markup
Language (XACML) V2.0 Specification Set.
http://www.oasis-open.org/committees/xacml/, 2007.

[28] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra,
and C. Davis. Fireman: A toolkit for firewall modeling and
analysis. In 2006 IEEE Symposium on Security and Privacy,
page 15, 2006.

174

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

