Undirected Connectivity of Sparse Yao Graphs

Mirela Damian
Department of Computer Science, Villanova
University, Villanova, PA 19085, USA
mirela.damian@villanova.edu

Abstract

Given a finite set S of points in the plane and a real value $d>0$, the d-radius disk graph G^{d} contains all edges connecting pairs of points in S that are within distance d of each other. For a given graph G with vertex set S, the Yao subgraph $Y_{k}[G]$ with integer parameter $k>0$ contains, for each point $p \in S$, a shortest edge $p q \in G$ (if any) in each of the k sectors defined by k equally-spaced rays with origin p. Motivated by communication issues in mobile networks with directional antennas, we study the connectivity properties of $Y_{k}\left[G^{d}\right]$, for small values of k and d. In particular, we derive lower and upper bounds on the minimum radius d that renders $Y_{k}\left[G^{d}\right]$ connected, relative to the unit radius assumed to render G^{d} connected. We show that $d=\sqrt{2}$ is necessary and sufficient for the connectivity of $Y_{4}\left[G^{d}\right]$. We also show that, for $d \leq 5-\frac{2}{3} \sqrt{35}$, the graph $Y_{3}\left[G^{d}\right]$ can be disconnected, but $Y_{3}\left[G^{2 / \sqrt{3}}\right]$ is always connected. Finally, we show that $Y_{2}\left[G^{d}\right]$ can be disconnected, for any $d \geq 1$.

1. INTRODUCTION

Let S be a finite set of points in the plane and let $G=(S, E)$ be an arbitrary (undirected) graph with node set S. The directed Yao graph $\overrightarrow{Y_{k}}[G]$ with integer parameter $k>0$ is a subgraph of G defined as follows. At each point $p \in S, k$ equally-spaced rays with origin p define k cones. In each cone, pick a shortest edge $p q$ from G, if any, and add the directed edge $\overrightarrow{p q}$ to $\overrightarrow{Y_{k}}[G]$. Ties are broken arbitrarily. The undirected Yao graph $Y_{k}[G]$ ignores the directions of edges, and includes an edge $p q$ if and only if either $\overrightarrow{p q}$ or $\overrightarrow{q p}$ is in $\overrightarrow{Y_{k}}[G]$.
For a fixed real value $d>0$, let $G^{d}(S)$ denote the d-radius disk graph with node set S, in which two nodes $p, q \in S$ are adjacent if and only if $|p q| \leq d$. Most often we will refer to $G^{d}(S)$ simply as G^{d}, unless the point set S that defines G^{d} is unclear from the context. Under this definition, G^{1} is the unit disk graph (UDG), and G^{∞} is the complete Euclidean graph, in which any two points are connected by an edge. In this paper we study the connectivity of the undirected Yao graph $Y_{k}\left[G^{d}\right]$, for small values $k \in\{2,3,4\}$ and $d \geq 1$. Underlying our study is the assumption that G^{1} is con-

Abhaykumar Kumbhar Department of Computer Science, Villanova University, Villanova, PA 19085, USA
abhaykumar.kumbhar@villanova.edu

nected. (For example, G^{1} can be thought of as the graph connecting all pairs of points that are within distance no greater than the length of the bottleneck edge in a minimum spanning tree for S, normalized to one.) In this context, we investigate the following problem:

> Let S be an arbitrary set of points in the plane, and suppose that the unit radius graph G^{1} defined on S is connected. What is the smallest real value $d \geq 1$ for which $Y_{k}\left[G^{d}\right]$ is connected?

Throughout the paper, we will refer to the minimum value d that renders $Y_{k}\left[G^{d}\right]$ connected as the connectivity radius of $Y_{k}\left[G^{d}\right]$.
Our research is inspired by the use of wireless directional antennas in building communication networks. Unlike an omnidirectional antenna, which transmits energy in all directions, a directional antenna can concentrate its transmission energy within a narrow cone; the narrower the cone, the longer the transmission range, for a fixed transmission power level. Directional antennas are preferable over omnidirectional antennas, because they reduce interference and extend network lifetime, two criteria of utmost importance in wireless networks operating on scarce battery resources.

Directed Yao edges can be realized with narrow directional antennas (otherwise called laser-beam antennas, to imply a small cone angle, close to zero). One attractive property of Yao graphs is that they can be efficiently constructed locally, because each node can select its incident edges based on the information from nodes in its immediate neighborhood only. This enables each node to repair the communication structure quickly in the face of dynamic and kinetic changes, providing strong support for node mobility.

The limited number of antennas per node (1 to 4 in practice), raises the fundamental question of connectivity of Yao graphs Y_{k}, for small values of k. If the communication graph induced by antennas operating in omnidirectional mode is connected, by how much must an antenna radius increase to guarantee that k laserbeam antennas at each node, pointing in the direction
of the Y_{k} edges, preserve connectivity? In this paper we focus our attention on small k values (2,3 and 4) corresponding to the number of antennas commonly used in practice.

1.1 Prior Results

Yao graphs have been extensively studied in the area of computational geometry, and have been used in constructing efficient wireless communication networks 5 , 8, 7, 4. Applying the Yao structure on top of a dense communication graph, in order to obtain a sparser graph, is a very natural idea. Most existing results concern Yao graphs $Y_{k}\left[G^{\infty}\right]$ with $k \geq 6$. These graphs exhibit nice spanning properties, in the sense that the length of a shortest path between any two nodes $p, q \in Y_{k}\left[G^{\infty}\right]$ is only a constant times the Euclidean distance $|p q|$ separating p and $q[2,1,3]$. In the context of using laserbeam antennas to realize Y_{k} however, these results could only be applied if 6 or more antennas were available at each node, which is a rather impractical requirement. Few results exist on Yao graphs Y_{k}, for small values of k (below 6). It has been shown that $Y_{2}\left[G^{\infty}\right]$ and $Y_{3}\left[G^{\infty}\right]$ are not spanners $\left[6\right.$, and that $Y_{4}\left[G^{\infty}\right]$ is a spanner $[1]$. However, as far as we know, no results exist on $Y_{k}\left[G^{d}\right]$, for any fixed radius $d \geq 1$.

1.2 Our Results

We develop lower and upper bounds on the connectivity radius of Y_{2}, Y_{3} and Y_{4}, relative to the unit radius. (Recall that our assumption that the unit radius disk graph G^{1} is connected.) We prove tight lower and upper bounds equal to $\sqrt{2} \approx 1.414$ on the connectivity radius d of $Y_{4}\left[G^{d}\right]$. Surprisingly, we prove a smaller upper bound equal to $\frac{2}{\sqrt{3}} \approx 1.155$ on the connectivity radius d of $Y_{3}\left[G^{d}\right]$. This is somewhat counterintuitive, as one would expect that fewer outgoing edges per node (3 in the case of Y_{3}, compared to 4 in the case of Y_{4}) would necessitate a higher connectivity radius, however our results show that this is not always the case. We also derive a lower bound of $5-\frac{2}{3} \sqrt{35} \approx 1.056$ on the connectivity radius d of $Y_{4}\left[G^{d}\right]$, leaving a tiny interval [1.056, 1.155] on which the connectivity of Y_{4} remains uncertain. Finally, we show that $Y_{2}\left[G^{d}\right]$ can be disconnected, for any fixed value $d \geq 1$.

1.3 Definitions

Let S be a fixed set of points in the plane. At each node $p \in S$, let $r_{1}, r_{2}, \ldots, r_{k}$ denote the k rays originating at p, with r_{1} horizontal along the $+x$ axis (see Figure 1 for $k=3$). Let $C_{i}(p)$ to denote the half-open cone delimited by r_{i} and r_{i+1}, including r_{i} but exclud$\operatorname{ing} r_{i+1}$. (Here we use r_{k+1} to mean r_{1}.) For any point $p \in S$, let $x(p)$ denote the x-coordinate of p and $y(p)$ denote the y-coordinate of p. For any $p, q \in S$, let $|p q|$

Figure 1: Rays and (half-open, half-closed) cones used in constructing Y_{3}.
denote the Euclidean distance between p and q. For any point $p \in S$ and any real value $\delta>0$, let $D(p, \delta)$ be the closed disk with center p and radius δ.

2. CONNECTIVITY OF Y_{4}

In this section we derive tight lower and upper bounds on the connectivity radius d for $Y_{4}\left[G^{d}\right]$. Recall that our work relies on the assumption that G^{1} is connected.

Theorem 2.1. There exist point sets S with the property that $G^{1}(S)$ is connected, but $Y_{4}\left[G^{d}\right]$ is disconnected, for any $1 \leq d<\sqrt{2}$.

Proof. We construct a point set S that meets the conditions of the theorem. Note that $d<\sqrt{2}$ implies that $1-\sqrt{d^{2}-1}>0$, meaning that there exists a real value ε such that $0<\varepsilon<1-\sqrt{d^{2}-1}$, which is equivalent to

$$
1+(1-\varepsilon)^{2}>d^{2}
$$

Let p and q be the endpoints of a vertical segment of length 1, with p below q. In Figure 2 the segment $p q$ is shown slightly slanted to the left, merely to reinforce our convention that $p q \in C_{2}(p)$ and $q p \in C_{4}(q)$. Shoot

Figure 2: Point set S and $G^{1}(S) \equiv G^{d}(S)$, with $d<\sqrt{2} ; Y_{4}\left[G^{d}\right]$ is disconnected.
a horizontal ray from p leftward, then slightly rotate it clockwise about p by a tiny angle α, so that the ray lies entirely in $C_{2}(p)$. Distribute points $a_{1}, a_{2}, \ldots, a_{r}$ in this order along this ray such that $\left|p a_{1}\right|=1-\varepsilon$, and $\left|a_{i} a_{i+1}\right|=1$, for each i. Let b_{i} be the point symmetric to a_{i} with respect to the midpoint of $p q$. Let

$$
S=\left\{p, q, a_{i}, b_{i} \mid 1 \leq i \leq r\right\}
$$

In the limit, as α approaches 0 , the angle $\angle a_{1} p q$ approaches $\pi / 2$ and $\left|a_{1} q\right|=\sqrt{1+(1-\varepsilon)^{2}}>d$. This means that $a_{1} q$ is not an edge in G^{d}. Because $\left|a_{i} b_{j}\right|>$ $\left|a_{i} q\right| \geq\left|a_{1} q\right|>d$ for each $i, j \geq 1$, we have that no a-point is directly connected to a b-point in G^{d}. It follows that the graph G^{d} is a path (depicted in Figure 22 .

We now show that $p q \notin Y_{4}\left[G^{d}\right]$, which along with the fact that G^{d} is a path, yields that claim that $Y_{4}\left[G^{d}\right]$ is disconnected. First note that $\overrightarrow{p q}$ is not an edge in $Y_{4}\left[G^{d}\right]$. This is because a_{1} is in the same cone $C_{2}(p)$ as q, and $\left|p a_{1}\right|=1-\varepsilon<1=|p q|$. Similarly, $\overrightarrow{q p}$ is not an edge in $Y_{4}\left[G^{d}\right]$, because b_{1} is in the same cone $C_{4}(q)$ as p, and $\left|q b_{1}\right|=1-\varepsilon<1=|q p|$. We conclude that $Y_{4}\left[G^{d}\right]$ is disconnected.

Upper Bound $d=\sqrt{2}$.
We now show that $Y_{4}\left[G^{d}\right]$ is always connected for $d=\sqrt{2}$, matching the lower bound from Theorem 2.1 First we introduce a few definitions. For any pair of

Figure 3: Theorem 2.2; $d_{\infty}(b, c)<d_{\infty}(a, b)$ (a) b, c lie on the same side of the bisector (b) b, c lie on opposite sides of the bisector.
points a, b, let $d_{\infty}(a, b)$ denote the L_{∞} distance between a and b, defined as

$$
d_{\infty}(a, b)=\max \{|x(a)-x(b)|,|y(a)-y(b)|\}
$$

Let $\mathscr{S}(a, b)$ be the square with corner a whose boundary contains b, of side length $d_{\infty}(a, b)$ (see Figure 3a). The following inequalities follow immediately from the fact that $a b$ is a line segment inside $\mathscr{S}(a, b)$:

$$
\begin{equation*}
d_{\infty}(a, b) \leq|a b| \leq d_{\infty}(a, b) \sqrt{2} \tag{1}
\end{equation*}
$$

Theorem 2.2. For any point set S such that $G^{1}(S)$ is connected, $Y_{4}\left[G^{\sqrt{2}}\right]$ is also connected.

Proof. The proof is by contradiction. Assume to the contrary that G^{1} is connected, but $Y_{4}\left[G^{\sqrt{2}}\right]$ is disconnected. Then $Y_{4}\left[G^{\sqrt{2}}\right]$ has at least two connected components, say J_{1} and J_{2}. Since $G^{1} \subseteq G^{\sqrt{2}}$ is connected, there is an edge $p q \in G^{1}$, with $p \in J_{1}$ and $q \in J_{2}$. To derive a contradiction, consider two points
$a, b \in S$, with $a \in J_{1}$ and $b \in J_{2}$, that minimize $d_{\infty}(a, b)$. Then

$$
\begin{aligned}
d_{\infty}(a, b) & \leq d_{\infty}(p, q) & & (\text { by choice of } a b) \\
& \leq|p q| & & (\text { by } 11) \\
& \leq 1 & & \left(\text { because } p q \in G^{1}\right)
\end{aligned}
$$

This along with the second inequality from (1) implies $|a b| \leq \sqrt{2}$, therefore $a b \in G^{\sqrt{2}}$. To simplify our analysis, rotate S so that b lies in the lower half of $C_{1}(a)$.

If $a b \in Y_{4}\left[G^{\sqrt{2}}\right]$, then $a b$ connects J_{1} and J_{2}, contradicting our assumption that J_{1} and J_{2} are disjoint connected components. So $a b \notin Y_{4}\left[G^{\sqrt{2}}\right]$. However $a b \in$ $G^{\sqrt{2}}$ and $b \in C_{1}(a)$, therefore there is $\overrightarrow{a c} \in Y_{4}\left[G^{\sqrt{2}}\right]$, with $c \in C_{1}(a)$ and $|a c| \leq|a b|$. If c lies inside $\mathscr{S}(a, b)$, then $d_{\infty}(b, c)<d_{\infty}(a, b)$, because each of the horizontal and vertical distance between b and c is strictly smaller than the side length of $\mathscr{S}(a, b)$. This along with the fact that $b c$ connects J_{1} and J_{2}, contradicts our choice of $a b$. So c must lie outside of $\mathscr{S}(a, b)$ (but not outside of $D(a,|a b|)$, because $|a c| \leq|a b|)$.

Let e be the lower right corner of $\mathscr{S}(a, b)$, and let f be intersection point between the boundary of $D(a,|a b|)$ and the horizontal ray through a in the direction of e (see Figure 3a). We will be using the fact that

$$
\begin{equation*}
|b e|>|e f| \tag{2}
\end{equation*}
$$

(This follows from the fact that $\angle b f e=\angle f b a>\angle f b e$, and the Law of Sines applied on $\triangle b e f$.)

We now derive a contradiction to our choice of $a b$ as follows. If both b and c lie in the lower half of $C_{1}(a)$, as depicted in Figure 3 a , then $|y(b)-y(c)|<d_{\infty}(a, b)$. Also $|x(b)-x(c)|<|e f|$, which by inequality (2) is no longer than $d_{\infty}(a, b)$. It follows that $d_{\infty}(b, c)<$ $d_{\infty}(a, b)$, which along with the fact that $b c$ connects J_{1} and J_{2}, contradicts our choice of $a b$. If b and c lie on opposite sides of the bisector of $C_{1}(a)$, as depicted in Figure 3 , then the vertical distance from c to the top side of $\mathscr{S}(a, b)$ is smaller than $|e f|$, which in turn is smaller than $|b e|$ (by inequality (2)). It follows that $|y(c)-y(b)|<d_{\infty}(a, b)$. Also, because c lies strictly to the right of a, we have that $|x(c)-x(b)|<d_{\infty}(a, b)$. These together show that $d_{\infty}(b, c)<d_{\infty}(a, b)$. This along with the fact that $b c$ connects J_{1} and J_{2}, contradicts our choice of $a b$.

Theorems 2.1 and 2.2 together establish matching lower and upper bounds (equal to $\sqrt{2}$) for the connectivity radius of Y_{4}.

3. CONNECTIVITY OF Y_{3}

The Yao graph Y_{3} has three outgoing edges per node, compared to four outgoing edges in the case of Y_{4}. So one would expect that the radius necessary to maintain Y_{3} connected would exceed the radius necessary to
maintain Y_{4} connected. However, our results show that an antenna radius equal to $\frac{2}{\sqrt{3}}<\sqrt{2}$ suffices to maintain Y_{3} connected. This is a surprising result, given that a radius of $\sqrt{2}$ is necessary and sufficient to maintain Y_{4} connected, as established in the previous section.

Theorem 3.1. There exist point sets S with the property that $G^{1}(S)$ is connected, but $Y_{3}\left[G^{d}\right]$ is disconnected, for any $1 \leq d<5-\frac{2}{3} \sqrt{35}$.

Proof. We construct a point set S that satisfies the conditions of the theorem. Start with an isosceles trapezoid $p a_{1} b_{1} q$ of unit altitude and bases $p q$ and $a_{1} b_{1}$, with $|p q|=1$ and $\left|a_{1} b_{1}\right|=1+\varepsilon$, for some small real value $0<\varepsilon<1$, to be determined later. Place a point x on $p a_{1}$ at distance $\left|p a_{1}\right| / 3$ from p, and a second point y on $q b_{1}$ at distance $\left|q b_{1}\right| / 3$ from b_{1}. Then simply reflect $p x$ about the vertical line through p, and $q y$ about the vertical line through q. As we will later see, this places $p x$ and $p q$ in the same cone of p (after a 90° counterclockwise rotation), so that $p x$ and $p q$ compete in the edge selection process at p.

The result is the shaded polygon depicted in Figure 4a. Simple calculations show that the vertical dis-

Figure 4: (a) Construction of $p x a_{1} b_{1} y q$ (b) Point set S and $G^{d}(S)$, with $1 \leq d<10 / 9$.
tance between x and y is $1 / 3$, and the horizontal distance between x and y is

$$
1-\frac{1}{3} \cdot \frac{\varepsilon}{2}-\frac{2}{3} \cdot \frac{\varepsilon}{2}=1-\frac{\varepsilon}{2}
$$

It follows that $|x y|^{2}=\left(\frac{1}{3}\right)^{2}+\left(1-\frac{\varepsilon}{2}\right)^{2}=1+\frac{9 \varepsilon^{2}-36 \varepsilon+4}{36}$. We will later require that $|x y|>d$ and $\left|a_{1} b_{1}\right|>d$, so that neither $x y$ nor $a_{1} b_{1}$ is a candidate for $Y_{3}\left[G^{d}\right]$. These two inequalities reduce to

$$
\left\{\begin{array}{l}
9 \varepsilon^{2}-36 \varepsilon+40-36 d>0 \\
1+\varepsilon>d
\end{array}\right.
$$

Simple calculations yield the solution

$$
\begin{align*}
& 1 \leq d<5-\frac{2}{3} \sqrt{35} \tag{3}\\
& d-1<\varepsilon<2-\frac{2}{3} \sqrt{9 d-1} \tag{4}
\end{align*}
$$

By the triangle inequality, $\left|x a_{1}\right|<2 / 3+\varepsilon / 2$. It can be easily verified that the above constraints on ε and d
yield $\left|x a_{1}\right|<1$. Similarly, each of $p x, q y$ and $y b_{1}$ has length less than 1. Also note that

$$
|x q|>|x y|>d
$$

since the horizontal distance between x and q is greater than the horizontal distance between x and y, and the vertical distance is $1 / 3$ in both cases. Similarly, $\left|a_{1} y\right|>$ $|x y|>d$.

We are now ready to construct S. Start by rotating the polygon $p x a_{1} b_{1} y q$ counterclockwise by 90°, so that it lies on its side, as in Figure 4p. Shoot a horizontal ray rightward from a_{1}, then rotate it slightly clockwise so that it lies entirely in $C_{3}\left(a_{1}\right)$. Distribute points $a_{2}, a_{3}, \ldots, a_{r}$ at unit intervals along this ray. Let b_{i} be the reflection of a_{i} with respect to the horizontal through the midpoint of $p q$, for each $i>1$. Our point set is

$$
S=\left\{p, q, x, y, a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{r}\right\}
$$

The graph G^{1} is a path (depicted in Figure 4b) and is therefore connected. We now show that $Y_{3}\left[G^{d}\right]$ is disconnected.

By construction, the following inequalities hold: $\left|a_{1} b_{1}\right|$ $>d ;|x q|>|x y|>d ;\left|a_{1} q\right|>\left|a_{1} y\right|>|x y|>d ;$ and $\left|a_{i} b_{i+j}\right|>\left|a_{i} b_{i}\right| \geq\left|a_{1} b_{1}\right|>d$, for any $i \geq 1$ and any $j \geq 0$ (because $\angle a_{i} b_{i} b_{i+j}$ is obtuse). By symmetry, similar arguments hold for the b-points as well. It follows that the graph G^{d} is a path identical to G^{1}, therefore the removal of any edge from G^{d} disconnects it.

Next we show that $p q \notin Y_{3}\left[G^{d}\right]$, which along with the observation above implies that $Y_{3}\left[G^{d}\right]$ is disconnected. By construction, $|p x|<|p q|$. This along with the fact that both x and q lie in the same cone $C_{1}(p)$, implies that p does not select $p q$ for inclusion in $Y_{3}\left[G^{d}\right]$. Similarly, $|q y|<|q p|$. This along with the fact that both y and p lie in the same cone $C_{3}(q)$, implies that q does not select $q p$ for inclusion in $Y_{3}\left[G^{d}\right]$. These together show that $p q \notin Y_{3}\left[G^{d}\right]$, therefore $Y_{3}\left[G^{1}\right]$ is disconnected.

Upper Bound $d \leq 2 / \sqrt{3}$.

Next we derive an upper bound on the connectivity radius for Y_{3}. The approach adopted here is somewhat similar to the one employed in the proof of Theorem 2.2, but it uses a generalized distance function d_{R} (in place of d_{∞}), to measure the distance between two connected components. We define d_{R} as follows. For any point $a \in S$ and any point $b \in C_{i}(a)$, let $R(a, b)$ denote the closed rhombus with corner a and edges parallel to r_{i} and r_{i+1}, whose boundary $\partial R(a, b)$ contains b (see Figure 5). (Recall that $C_{i}(a)$ is the half-open cone with apex a that includes r_{i} and excludes r_{i+1}.) Define $d_{R}(a, b)$ to be the side length of $R(a, b)$. Clearly, $d_{R}(a, a)=0$. Because our approach does not use the triangle inequality on d_{R}, we skip the proof that d_{R} is a distance metric, and focus instead on the symmetry
property of d_{R} (Property (i) of Lemma 3.2 below), and the relationship between d_{R} and the Euclidean distance.

Lemma 3.2. For any pair of points $a, b \in S$ the following properties hold:
(i) $d_{R}(a, b)=d_{R}(b, a)$.
(ii) $|a b| \leq d_{R}(a, b)$.
(iii) $|a b| \geq d_{R}(a, b) \frac{\sqrt{3}}{2}$.

Proof. To simplify our analysis, rotate S so that $b \in C_{1}(a)$, as depicted in Figure 6. Consider the quadrilateral bcef from Figure 6a, with sides $c e \in \partial R(a, b)$ and $b f \in \partial R(b, a) ; b c$ and $e f$ are parallel, since they are both parallel to r_{2}; and $\angle c e f$ and $\angle b f e$ are each 60°. These together show that bcef is an isosceles trapezoid, meaning that $|c e|=|b f|$. Since $|c e|=d_{R}(a, b)$ and $|b f|=d_{R}(b, a)$, Property (i) holds.

Now note that $R(a, b)$ is the union of two equilateral triangles of side length $d_{R}(a, b)$, adjacent alongside the bisector of $C_{1}(a)$. Also note that $a b$ is a segment that connects a to the opposite side in one of these triangles - call it T. It follows that $a b$ is no longer than the side of T (thus yielding inequality (ii)), and no shorter than the height of T (thus yielding inequality (iii)). This completes the proof.

Following is an intermediate result that will help prove our main upper bound result stated in Theorem 3.4 This intermediate result will simply rule out some configurations that will occur in the analysis of the main result. To follow the logical sequence of our analysis, the reader can skip ahead to Theorem 3.4, and refer back to Lemma 3.3 only when called upon from Theorem 3.4

Lemma 3.3. Let $a, b, c \in S$ be such that $b, c \in C_{i}(a)$, for some $i \in\{1,2,3\}$, and $|a c| \leq|a b|$. Furthermore, assume that both b and c lie either in the half of $C_{i}(a)$ adjacent to r_{i} (excluding the bisector points), or in the half of $C_{i}(a)$ adjacent to r_{i+1} (including the bisector points). Then $d_{R}(b, c)<d_{R}(a, b)$.

Proof. To simplify our analysis, rotate S so that both b and c lie in the lower half of $C_{1}(a)$ (adjacent to $\left.r_{1}\right)$. Let $\delta=d_{R}(a, b)$. By Lemma 3.2 (ii), $|a b| \leq \delta$. This along with $|a c| \leq|a b|$ implies that $c \in D(a, \delta)$. More precisely, c lies in a circular sector of angle 60°, formed by the intersection between $D(a, \delta)$ and the lower half of $C_{1}(a)$.

If $c \in C_{1}(b)$, then $R(a, b)$ and $R(b, c)$ are similar (see Figure 7). This along with the fact that c lies in a same 60°-sector as b implies that $d_{R}(b, c)<d_{R}(a, b)$. (The inequality is strict due to the fact that the lower half of the cone $C_{1}(a)$ does not include the upper bounding ray.) If $c \in C_{3}(b)$, then $b \in C_{1}(c)$ (see Figure 8a). This

Figure 5: Rhombus $R(a, b)$ of side length $d_{R}(a, b)$.

Figure 6: Lemma 3.2; (a) $d_{R}(a, b)=d_{R}(b, a)$ (b) Relationship between $d_{R}(a, b)$ and $|a b|$.

Figure 7: Lemma 3.3, case $c \in C_{1}(b): d_{R}(b, c) \leq$ $d_{R}(a, b)$.

Figure 8: Lemma 3.3; $d_{R}(b, c) \leq d_{R}(a, b)$ (a) $c \in$ $C_{3}(b) \mathbf{(b)} c \in C_{2}(b)$.
case is similar to the previous one: $R(a, b)$ and $R(c, b)$ are similar, and $d_{R}(b, c)=d_{R}(c, b)<d_{R}(a, b)$. Finally, if $c \in C_{2}(b)$, then $c \in R(b, a)$ (see Figure 8 b), and $R(b, c) \subset R(b, a)$. It follows that $d_{R}(b, c)<d_{R}(b, a)=$ $d_{R}(a, b)$.

Theorem 3.4. For any point set S such that $G^{1}(S)$ is connected, $Y_{3}\left[G^{d}\right]$ is also connected, for $d=\frac{2}{\sqrt{3}}$.

Proof. The proof is by contradiction. Assume to the contrary that G^{1} is connected, but $Y_{3}\left[G^{d}\right]$ is disconnected. Then $Y_{3}\left[G^{d}\right]$ has at least two connected components, say J_{1} and J_{2}. Since $G^{1} \subseteq G^{d}$ is connected, there is an edge $p q \in G^{1}$, with $p \in J_{1}$ and $q \in J_{2}$. To derive a contradiction, consider two points $a, b \in S$, with $a \in J_{1}$ and $b \in J_{2}$, that minimize $d_{R}(a, b)$. Then $d_{R}(a, b) \leq d_{R}(p, q) \leq d \cdot|p q|$. This latter inequality follows from inequality (iii) of Lemma 3.2 , and the d value from the lemma statement. This along with inequality (ii) of Lemma 3.2 and the fact that $|p q| \leq 1$, implies that $|a b| \leq d_{R}(a, b) \leq d$, therefore $a b \in G^{d}$.

Figure 9: Theorem 3.4; case when a and d lie on a same side of the bisector of $C_{2}(b)$.

To simplify our analysis, rotate S so that $b \in C_{1}(a)$. Because J_{1} and J_{2} are not connected in $Y_{3}\left[G^{d}\right]$, and because $a \in J_{1}$ and $b \in J_{2}$, we have that $a b \notin Y_{3}\left[G^{d}\right]$. However $a b \in G^{d}$ and $b \in C_{1}(a)$, therefore there is $\overrightarrow{a c} \in Y_{3}\left[G^{d}\right]$, with $c \in C_{1}(a)$ and $|a c| \leq|a b|$. If both b and c lie in the same half of $C_{1}(a)$ (bounded by one ray and the bisector of $\left.C_{1}(a)\right)$, then by Lemma 3.3 we have that $d_{R}(b, c)<d_{R}(a, b)$. This along with the fact that $b c$ connects J_{1} and J_{2}, contradicts our choice of $a b$. Then b and c must lie on either side of the bisector of $C_{1}(a)$, as depicted in Figure 9 .

Assume without loss of generality that b lies in the lower half (excluding the bisector) of $C_{1}(a)$, and c lies in the upper half (including the bisector) of $C_{1}(a)$. Next we focus on $C_{2}(b)$. Because $a \in C_{2}(b), b a \in G^{d}$, and $b a \notin Y_{3}\left[G^{d}\right]$, there must exist $\overrightarrow{b e} \in Y_{3}\left[G^{d}\right]$, with $e \in$ $C_{2}(b)$ and $|b e| \leq|a b|$. As before, if e and a lie in the same half of $C_{2}(b)$ (bounded by one ray and the bisector of $\left.C_{2}(b)\right)$, then by Lemma 3.3 we have that $d_{R}(e, a)<d_{R}(b, a)=d_{R}(a, b)$. This along with the fact that ae connects J_{1} and J_{2} contradicts our choice of $a b$. It follows that a and e lie on either side of the bisector of $C_{2}(b)$, as depicted in Figure 10 .

Figure 10: Theorem 3.4; case when a and d lie on opposite sides of the bisector of $C_{2}(b)$.

We now show that $d_{R}(c, e)<d_{R}(a, b)$. Let δ_{1} be the length of the projection of $c e$ on the ray r_{2} in the (horizontal) direction of r_{1}. Similarly, let δ_{2} be the length of the projection of $c e$ on r_{1} in the direction of r_{2}. (See Figure 10.) Then $d_{R}(c, e)=\max \left\{\delta_{1}, \delta_{2}\right\}$. We prove that $d_{R}(c, e)<d_{R}(a, b)$ by showing that each of δ_{1} and δ_{2} is smaller than $d_{R}(a, b)$.

Figure 11: Theorem 3.4, (a) c inside $R(b, a)$ (b) $d_{R}(c, e)<d_{R}(a, b)$.

First note that c must lie outside of $R(b, a)$. Otherwise, if c were to lie inside $R(b, a)$, then $R(b, c) \subset R(b, a)$ (see Figure 11a). This would immediately imply that $d_{R}(b, c)<d_{R}(b, a)=d_{R}(a, b)$, which along with the fact that $b c$ connects J_{1} and J_{2}, would contradict our choice of $a b$. So c lies inside $D(a,|a b|)$ (because $|a c| \leq|a b|)$, but outside of $R(b, a)$. Similar arguments show that e lies inside $D(b,|a b|)$, but outside of $R(a, b)$. Let $p q$ be the top left side of $R(b, a)$ (marked with a thick line in Figure 10. By the observations above, c and e cannot lie below p or above q. This implies that the horizontal projection of $c e$ on the ray r_{2} is strictly shorter than the horizontal projection of $p q$ on $r_{2}: \delta_{1}<d_{R}(a, b)$. (The claim on strictly shorter comes from the fact that $c \in C_{1}(a, b)$, and $C_{1}(a, b)$ does not include r_{2}.) Also, because c and e lie between the two lines through a and b parallel to r_{2}, the projection of $c e$ on r_{1} in the direction of r_{2} is strictly shorter than the projection of $a b$ on
r_{1} in the direction of $r_{2}: \delta_{2}<d_{R}(a, b)$.
We have established that $d_{R}(c, e)<d_{R}(a, b)$ (the rhombus $R(c, e)$ is depicted in Figure 11b). This along with the fact that $c e$ connects J_{1} and J_{2}, contradicts our choice of $a b$. We conclude that G^{d} is connected.

Observe that our results leave a tiny gap between the lower bound of $5-\frac{2}{3} \sqrt{35} \approx 1.056$ from Theorem 3.1 and the upper bound of $\frac{2}{\sqrt{3}} \approx 1.155$ from Theorem 3.4 on the connectivity radius d for $Y_{3}\left[G^{d}\right]$. Nevertheless, both bounds beat the tight bound $d=\sqrt{2} \approx 1.414$ for the connectivity radius of $Y_{4}\left[G^{d}\right]$.

4. CONNECTIVITY OF Y_{2}

The point set S depicted in Figure 2 can be extended to show that $Y_{2}\left[G^{d}\right]$ can be disconnected, for arbitrarily large d. To see this, fix a real value $d \geq 1$, and distribute enough points a_{i} at unit interval along the leftward ray from p, such that the leftmost point a_{r} is far enough from q - in particular, we require that it satisfies the inequality $\left|a_{r} q\right|>d$. Similarly, we require that the rightmost point point b_{r} satisfies $\left|b_{r} p\right|>d$ (which follows immediately by symmetry). (Note that in this case $d=\Omega(|S|)$.) Recall that the leftward ray from p is almost horizontal, so q and all the b-points lie above a_{r}.

We now show that $Y_{2}\left[G^{d}\right]$ is disconnected. First note that a_{1} is the point closest to p in $C_{1}(p)$, and that $C_{2}(p)$ is empty. Therefore, the only edge $Y_{2}\left[G^{d}\right]$ incident to p is $p a_{1}$. Also note that, for any $i<r, a_{i+1}$ is the point closest to a_{i} in $C_{1}\left(a_{i}\right)$, and a_{i-1} is the point closest to a_{i} in $C_{2}\left(a_{i}\right)$ (here we use a_{0} to refer to the point p). Finally, q is the point closest to a_{r} in $C_{1}\left(a_{r}\right)$. However, because $\left|a_{r} q\right|>d, a_{r} q$ is not in G^{d} and therefore $a_{r} q$ is not in $Y_{2}\left[G^{d}\right]$. The arguments are symmetric for q and the b-points in S. This shows that there is no edge in $Y_{2}\left[G^{d}\right]$ connecting a point in $\left\{q, b_{i} \mid 1 \leq i \leq r\right\}$ to a point in $\left\{p, a_{i} \mid 1 \leq i \leq r\right\}$. We conclude that $Y_{2}\left[G^{d}\right]$ is disconnected for connectivity radius values $d=\Omega(|S|)$.

5. CONCLUSION

In this paper we establish matching lower and upper bounds on the connectivity radius for Y_{4}, and a tight interval on the connectivity radius for Y_{3}. Reducing the gap between the lower and upper ends of this interval remains open. These results show that a small increase in the radius of a directional antenna, (compared to the unit radius of an omnidirectional antenna,) renders an efficient communication graph for mobile wireless networks, provided that each node orients its $k \in\{3,4\}$ antennas in the direction of the Y_{k} edges. (Nodes are assumed to send messages in directional mode, and receive messages in omnidirectional mode). One key advantage of these graphs is that they can be quickly constructed locally, providing strong support for node mobility. We
also establish that the connectivity radius for Y_{2} may be arbitrarily large, which indicates that Y_{2} is not a suitable communication graph for wireless networks that use narrow (laser-beam) directional antennas.

6. REFERENCES

[1] Prosenjit Bose, Mirela Damian, Karim Douïeb, Joseph O'Rourke, Ben Seamone, Michiel Smid, and Stefanie Wuhrer. $\pi / 2$-Angle Yao graphs are spanners. In ISAAC'10: Proc. of the 21st International Symposium on Algorithms and Computation, volume 6507, 2010.
[2] Prosenjit Bose, Anil Maheshwari, Giri Narasimhan, Michiel H. M. Smid, and Norbert Zeh. Approximating geometric bottleneck shortest paths. Computational Geometry: Theory and Applications, 29(3):233-249, 2004.
[3] Mirela Damian and Kristin Raudonis. Yao graphs span Theta graphs. In COCOA '10: Proc. of the 4 th International Conference on Combinatorial Optimization and Applications, LNSC 6509:181-194, 2010.
[4] Xiang-Yang Li, Wen-Zhen Song, and Weizhao Wang. A unified energy-efficient topology for unicast and broadcast. In MobiCom '05: Proceedings of the 11th Annual Int. Conference on Mobile Computing and Networking, pages 1-15, 2005.
[5] Xiang-Yang Li, Peng-Jun Wan, and Yu Wang. Power efficient and sparse spanner for wireless ad hoc networks. In ICCCN '01: Proceedings of the Tenth International Conference on Computer Communications and Networks, pages 564-567, 2001.
[6] Nawar Molla. Yao spanners for wireless ad hoc networks. Technical report, M.S. Thesis, Department of Computer Science, Villanova University, December 2009.
[7] Wen-Zhan Song, Yu Wang, Xiang-Yang Li, and Ophir Frieder. Localized algorithms for energy efficient topology in wireless ad hoc networks. In MobiHoc '04: Proceedings of the 5th ACM Int. Symposium on Mobile Ad Hoc Networking and Computing, pages 98-108, 2004.
[8] Xiang-Yang Li, Peng-Jun Wan, Yu Wang, and Ophir Frieder. Sparse power efficient topology for wireless networks. In HICSS '02: Proceedings of the 35th Annual Hawaii International Conference on System Sciences, volume 9, page 296.2, Washington, DC, USA, 2002. IEEE Computer Society.

