
A control theory based approach for self-healing of un-handled runtimeA control theory based approach for self-healing of un-handled runtime
exceptionsexceptions

Benoit Gaudin, Emil Vassev, Mike Hinchey, Paddy Nixon

Publication datePublication date

01-01-2011

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Gaudin, B., Vassev, E., Hinchey, M.and Nixon, P. (2011) ‘A control theory based approach for self-healing of
un-handled runtime exceptions’, available: https://hdl.handle.net/10344/1730 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

A Control Theory Based Approach for Self-Healing of
Un-handled Runtime Exceptions

Benoit Gaudin1, Emil I. Vassev1, Michael G. Hinchey1 and Patrick Nixon2

1. Lero - The Irish Software Engineering Research Center, University of Limerick, Ireland
firstName.lastName@lero.ie

2. University of Tasmania, Hobart, Australia
Paddy.Nixon@utas.edu.au

ABSTRACT
This work presents an approach to self-healing that deals
with un-handled exceptions within an executing program.
More precisely, we propose an approach based on control
theory that automatically disables system functionalities that
have led to runtime exceptions. This approach requires the
system to be instrumented prior to deployment so that it
can later interact with a supervisor. This supervisor en-
codes the only sequences of actions (method calls) of the
system that are permitted. We describe an implementation
that automatically generates instrumentation for Java sys-
tems. We introduce an extension of Supervisory Control
theory that enables automatic computation of a supervi-
sor/controller model ensuring that an observed trace leading
to an un-handled runtime exception cannot occur anymore.
We demonstrate the efficacy of this approach through a com-
prehensive example.

Keywords
Self-Healing, Software Control, Software Maintenance, Su-
pervisory Control Theory.

1. INTRODUCTION
This work deals with software self-healing in order to au-

tomatically generate and apply patches when facing runtime
faults. More specifically, we consider legacy systems and au-
tomatically provide them with self-healing capabilities that
allow for handling of runtime exceptions. We assume that
the systems under consideration went through the different
life cycle phases (design, implementation, testing, deploy-
ment). Typically, possible faults such as IO and NullPointer
exceptions are not all detected during the testing phase, and
remain in the system. These faults are usually reported by
the user whenever their corresponding symptoms are ob-
served at runtime. Faults related to exceptions may occur
because of an inappropriate implementation as explained in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

e.g. [18]. For instance, a lack of checking in the way users
may use the application can lead to such exceptions, e.g.
Format Exceptions may occur from wrong user inputs into
fields.

This work is part of the EU FP7 FastFIX project [1].
FastFIX involves several companies and tackles problems
of industrial relevance. This project aims to develop ap-
proaches and techniques in order to identify failure symp-
toms, changes in user behavior as well as to perform failure
replication, patch generation and patch deployment. Auto-
nomic computing principles (see e.g. [13]) are considered in
order to achieve these goals.

However, as explained in [10], although Autonomic Com-
puting (AC) has yielded to many impressive achievement,
it has not yet accomplished some of its very desired goals.
Some of the AC techniques related to control theories for
instance have proven to be very successful for power man-
agement but their applicability to other types of systems
such as general software systems remain unclear. Moreover,
introducing autonomic features to a system by implement-
ing feedback loops requires careful design to ensure that the
system does not diverge from its desired goals. In this work,
we describe and implement an approach to control software
system, hence providing it with autonomic features. With
this capabilities the system can automatically adapt to avoid
further occurrences of observed runtime exceptions. More-
over the design of such control approach is itself automated
from the source code of the software system under consid-
eration, avoiding error that could be introduced by manual
design.

Other techniques than control have been considered in the
past for the self-healing of software systems. As pointed out
in [8], self-healing is historically very much related to fault-
tolerance. Moreover, fault-tolerance approaches mostly rely
on resource redundancy (see e.g. [21]) and has led to simi-
lar approaches for self-healing (hardware redundancy, soft-
ware variants, etc). Other works on self-healing such as [19]
rely on similarities between faults and solutions previously
applied. More recently, the authors of [5] have considered
the use of workarounds in order to automatically implement
faulty functionality using different part of the system (e.g.
changing an item in an online shopping basket is equivalent
to deleting it then adding the desired one).

In this work, our healing approach does not rely on system
redundancy or on previously applied solution. However it
has a similar view to [5] in the sense that it prevents the
execution of faulty behaviors, assuming that the intended

goal can be achieved a different way or that the system was
used in an appropriate manner.

The approach that we introduce aims to automatically
provide legacy systems with self-healing capabilities. In this
work, Self-healing is performed through monitoring, excep-
tion catching and control.

The sequences of method calls of the system are monitored
during execution and are matched to a model of the possible
behaviors of the system. Runtime exceptions are also assim-
ilated to method calls and are not taken into account by this
model. When such an exception occurs for the first time, the
sequence of method calls containing this exception does not
match the system model and the healing process is triggered.
This process consists of synthesizing a new model of the sys-
tem that ensures that futur system executions cannot lead
to this exception. This new model is saved into a file that
can be seen as a patch and is loaded from this file when the
system restarts. The system executions are then controlled
according to this model so that sequences of method calls
that lead to the previously detected runtime exception are
prevented.

Therefore, our approach relies on method calls and ex-
ception monitoring as well as system control. In this paper
we describe this approach and how Java programs can be
automatically instrumented in order to provide them with
monitoring and control facilities. This is achieved using
the Javassist library [2]. The control mechanism relies on
a model which is automatically synthesized form a previ-
ous model of the system and a previously observed sequence
of method calls leading to an exception. Such synthesis is
performed based on Supervisory Control theory on Discrete
Event Systems [22].

Previous works on software control have been investigated
such as [14] which provide general ideas on software control,
in [6, 4] network communications and self-management re-
quirements are controlled in order to ensure good perfor-
mance and system policies are controlled in order to avoid
conflicts (e.g. [17]). However, an important aspect of con-
trolling systems is to ensure their stability, i.e. demon-
strating that the control achieves what the designer have
intended. As explained in [20], this is of great importance
whenever system self-management is considered, where the
system is left running without human intervention. [9] goes
further and states that the lack of understanding of how au-
tomated actions affect system behavior is seen as one of the
main reasons why automatic approaches are not more used.

In this paper, we consider the Supervisory Control on Dis-
crete Event Systems. This theory considers models of the
behaviors of the system and intended behaviors (called con-
trol objective) and to our knowledge, it has never been ap-
plied to software systems before. It applies to formal models
and provides algorithms for automatic computation of the
behaviors of the system under control. Moreover, the control
applied do not create new behaviors but restrict the initial
behaviors of the system instead, contributing to a stable so-
lution, i.e. no undesired behaviors emerge. Finally models
under consideration are represented with Finite State Ma-
chines. As our approach deals with the behaviors of the
system (i.e. sequences of method calls) rather than with its
variables. This makes automatic model extraction and syn-
thesis scalable even for large application. We are currently
able to extract finite state machines from the source code of
the JEdit application [3] for all of its 6500 methods in about

3 minutes.
This paper contributes to several aspects related to the

self-healing of legacy Java programs and supervisory con-
trol theory. It presents a control based approach for auto-
matic introduction of self-healing features into existing Java
program. It also describes an implementation of the self-
healing mechanism that relies on the synthesis of a model
representing correct system behaviors and that can be seen
as a system patch. Finally, this paper demonstrates that
this approach is theoretically sound.

In Section 2, we present some background on Autonomic
Computing and Supervisory Control Theory for Discrete
Event System initiated by [16] through examples. Section 3
describes our approach to automatically apply this theory to
Java programs, discussing the automation of model extrac-
tion and detailing the implementation for automatic code
instrumentation. In Section 4, we extend the supervisory
Control theory in order to handle the case of system traces
that lead to runtime exceptions. Then Finally, our approach
is illustrated on a calculator example.

2. BACKGROUND
The approach described in this paper relies on self-healing

principles and control theory. Some background on both
these topics are presented in Sections 2.1 and 2.2.

2.1 Autonomic Computing and Self-Healing
Self-adaptive systems possess the ability to adapt to changes

or situations. In particular, they can modify their behavior
in order to optimize or repair themselves.

Software systems are becoming increasingly complex, thus
leading to increased overhead of maintenance and support.
These problems motivate the need of autonomic software
paradigm with so called self-* properties such as self-healing,
self-configuring, self-managing, self-optimizing and so on.

To achieve the so called self-* capability the system needs
to continuously monitor its execution environment, input
parameters and produced output as well as detect require-
ments violations.

Analyze
Data

Act

Collect
Data

Figure 1: The autonomic feedback loop.

The different steps involved in self-* properties are usu-
ally presented as the autonomic feedback loop as presented
in Figure 1. An autonomic system must be able to collect
information about itself and its environment, analyse the
collected data with respect to some knowledge about its be-
haviors. From this analysis, decisions can be made regarding
whether the current observations are satisfying or whether
some actions should be performed in order to ensure proper
behaviors of the system.

The analysis and decision part can be implemented in
separate module from the system itself, that must then be
able to observe and act onto the system. The system entry
points that allow for observation and action are respectively
called sensors and actuators. In our approach these points
are implemented through program instrumentation and the
analysis is based on control theory. The analysis phase is
actually twofold. If the current observation corresponds to
some method calls, then the analysis phase is performed by
a supervisor which decides whether this method should be
executed in order to prevent the occurrence of previously
observed un-handled runtime exceptions. If the current ob-
servation corresponds to the occurrence of an un-handled
exception, then the analysis phase consists of automatically
computing a new model of the supervisor that will be able
to prevent the observed exception to occur again. The lat-
ter case rely on the Supervisory Control theory on Discrete
Event Systems, for which basics are presented in Section2.2.

2.2 Supervisory Control of Discrete Event Sys-
tems

As systems have become more and more complex, mak-
ing sure that their behaviors fulfill given requirements is an
important challenge. Although testing and verification have
proven to be extremely useful, some faults usually still re-
mains in the system and are only discovered at runtime. In
order to deal with this issue in the case of runtime excep-
tions, we propose to control the system at runtime, using a
supervisor which interacts with the system in order to pre-
vent it from executing paths leading to these exceptions.
Figure 2 represents a feedback control architecture, where
the system is monitored by a supervisor which can prevent
some behaviors of the system from occurring.

Supervisor
S

System
G

Observations:
Sequence s

Allowed
Actions: S(s)

Figure 2: The Control Feedback Loop.

Moreover, considering the increasing system complexity
again, implementing such mechanisms and designing a su-
pervisor that achieve the desired objective are very challeng-
ing tasks.

Supervisory Control on Discrete Event Systems ([16]) is a
formal theory that aims to automatically design a model for
a supervisor ensuring some safety property. The Supervisory
Control Theory defines notions and techniques that allow
for existence and automatic computation of a model of the
supervisor, given a model of the system as well as the prop-
erty to be ensured. In this theory, models of a system G are
represented by languages over alphabets of events, denoted
L(G). These languages correspond to sets of sequences of
events, each representing a possible behavior/execution of
the system.

Although not as general as languages, Finite State Ma-
chine (FSM) are used to model the possible behaviors of the

system as well as the supervisor and the properties to be
ensured by control. Regarding the modeling of supervisors,
Figure 2 shows that they can be seen as a function that takes
a given sequence s and returns to the system a set of allowed
events after s. The function S representing the supervisor
can be encoded by a FSM GS such that for all s ∈ L(S),
S(s) represents the set of events that can be triggered from
the state reached in GS after sequence s.

Supervisors ensure a given property, called control objec-
tive. Such a property is modeled as a FSM as well, generat-
ing a set of “safe” behaviors and meaning that the behaviors
that are not encoded by this FSM are undesired.

The main goal of the Supervisory Control theory is to au-
tomatically synthesizes a model of a supervisor that ensures
that the system behaviors are all included in the ones de-
scribed by the control objective. The theory also considers
that not every event can or should be disabled by a super-
visor. Such events are said to be uncontrollable. Events
corresponding to some sensor reading or the tic of a clock
are typically uncontrollable.

In order to take such events into account, the alphabet of
the system is assumed to be composed of a set of controllable
events (Ac ⊆ A) and uncontrollable events (Au ⊆ A). Each
event of the system is either controllable or uncontrollable.

Controlling a system consists of restricting its possible be-
haviors taking into account the controllable nature of the
system events. In order to achieve this, Ramadge and Won-
ham (see e.g. [22]) introduce a property called Controllabil-
ity. A system G′ whose behaviors correspond to a subset of
the ones of G is controllable w.r.t Au and G if L(G′).Au ∩
L(G) ⊆ L(G′).

A controllable set of behaviorsG′ ensures that no sequence
of uncontrollable events can complete a sequence of G′ into
a sequence of G that is no longer in G′. In other words, the
controllability condition ensures the stability of G′ through
uncontrollable sequences. This condition must hold for the
behaviors generated by any supervisor.

We now define the basic supervisory control problem, which
can be stated as the following:

Basic Supervisory Control Problem (BSCP): Given
a system G and a control objective K, compute the maximal
controllable set of behaviors included in the ones of both G
and K.

Ramadge and Wonham (see e.g. [22]) have shown that
a solution to the BSCP exists if and only if the maximal
controllable set of behaviors included in the ones of both
G and K is not empty. They also provided an algorithm
computing this FSM which encodes a most permissive su-
pervisor ensuring the control objective (see e.g. [22]). This
algorithm can be seen as a function that takes as inputs a set
of uncontrollable events Au, a FSM representing the control
objective K and a FSM representing the behaviors of the
system G. We denote this function SupCont and therefore
SupCont(Au,K,G) represents a solution of the BSCP.

The complexity of this algorithm is linear in the number
of events, the number of states of the model of G and the
number of states of K. We now illustrate the concepts in-
troduced in this section with Example 1.

Example 1. This example considers a system which can
perform 2 actions: action 1 and action 2. The set of possible
behaviors of the system is described in Figure 3. From its

end2
act2act1

end1

timeout

end1

failure

timeout

failure

end2

Figure 3: An FSM G modeling a system which can
perform 2 actions during which failures can occur.

initial state, the system can perform either action 1 or action
2. If action 1 is performed, then the system enters a state
where event end1 can be triggered. This corresponds to a
proper termination of action 1, leading the system back into
its initial state where a choice between executing action 1 or
action 2 can be made again. In some cases, a timeout event
may occur after event act1, indicating that the time usually
required to complete action 1 has elapsed. This does not
represent a fault but indicates that the system is not evolving
in an optimal manner. If a timeout is observed, action 1
may still be ended, which is represented by the occurrence of
event end1. However, after a timeout has occurred, a failure
can also occur, leading the system into a deadlock state.

As this system is symmetrical, similar behaviors can be
executed if action 2 is performed.

A \ {act1}

act1

end1

A

A \ {failure,end1}

Figure 4: A control objective K stating that a fail-
ure must not occur the first time action 1 is being
performed.

Figure 4 provides an example of control objective. This
FSM states that once the system has started, any event can
be observed from it, however, the first time act1 is observed,
end1 must be observed before a failure occurs. Once end1
is observed, then any event can be observed again. Such a
control objective actually aims to enforce that a failure does
not happen the first time action 1 is being performed.

Given FSMs of both the system and the control objective,
Supervisory Control theory provides techniques for comput-
ing a model of a supervisor that enforces the control ob-
jective, taking into account that some events are not con-
trollable. In this example, it is assumed that events ’fail-
ure’ and ’timeout’ are uncontrollable. Figure 5 represents
the most permissive supervisor ensuring the control objective
presented in Figure 4, i.e. no larger controllable behavior can
be prevented by control while still ensuring it.

This supervisor actually states that in order to prevent a
failure from occurring the first time action 1 is being per-
formed, there is no other alternative but to prevent action 1
to be performed at all. Therefore, applying SupCont in order
to fulfill the control objective, shows that the system must be
downgraded to only be able to perform action 2.

end2

act2 timeout failure

end2

Figure 5: An FSM modeling a supervisor for system
G and control objective K.

In Example 1, the model of the system encodes possible
failures. However, this is unfortunately not always possible,
especially for software system. In Section 4, we will show
how we can use the definitions and results of this section in
the case where the model of the system is not complete and
the control objective is derived from a sequence whose last
event corresponds to a runtime exception.

3. INTRODUCING SELF-HEALING CAPA-
BILITIES FOR UN-HANDLED JAVA EX-
CEPTIONS

3.1 General Approach
In the course of this research, we apply Supervisory Con-

trol (see Section 2.2) to provide systems with self-healing
capabilities. Basically, our approach aims to automatically
generate a supervisor system that coexists with the origi-
nal system and drives it in order to avoid critical situations.
Currently, our approach works on Java applications only
with full access to the source code and consists of two main
stages: preparation and control.

In the preparation stage, the source code is automatically
analysed and a FSM of the behaviors of the Java applica-
tion is built. This FSM initially also models a supervisor
behaviors and covers all the execution paths of the targeted
application as long as no un-handled runtime exception has
been discovered. Further, the supervisor code is automat-
ically generated and integrated in the original code which
is also instrumented to allow for the supervisory control at
runtime (see Figure 6). Therefore, we deploy and execute
the new instrumented application embedding a supervisor.

In the control stage, the embedded supervisor runs non-
intrusively in respect to the functionality provided by the
application. While running, the supervisor follows the cycle
shown in Figure 1 where the three phases are as following:

• Collect Data: The supervisor monitors the method
calls and exceptions occurrences.

• Analyse Data: Before the execution of each method,
the collected data is analysed by considering the gener-
ated FSM. If the method call in question is not autho-
rized by the FSM model, then the method execution is
prevented. Otherwise, the method executes normally.
If an un-handled runtime exception occurs during the
execution of that method, then a new supervisor FSM

is synthesized in order to handle future faulty method
calls.

• Act: The supervisor enters in this phase if special ac-
tions are required. Such actions are performed when
an unauthorized method call is attempted or an un-
handled exception has arisen. Thus, in the first case,
the supervisor prevents the execution of an unautho-
rized method, and in the second case, supervisor FSM
is synthesized to help the supervisor prevent future ex-
ecution of such a sequence of method calls leading to
the unhandled exception.

In order for the system to fully benefit from this new
supervisor, it usually needs to be restarted. A new
supervisor can be seen as a patch for the system and
the user is advised to restart the system in order to
take this patch into account.

Source
Code

Finite State
Machine

Model of
Faulty

Sequences

Model of a
Supervisor

Instrumented
Code

Supervisory
Control

Model
Extraction

Runtime
Monitoring

and
Control

Initial
Supervisor

Model
Instrumentation

Faulty
Sequence

Observation

Input

Supervisor
Model

Synthesis
Input

Figure 6: Approach for automatic control of soft-
ware

Figure 6 depicts our approach. The application source
code is used to build the Supervisory Control FSM covering
all the execution paths in terms of method calls. More-
over, the source code is automatically instrumented to in-
tegrate the supervisory control features (sensors and actu-
ators). At runtime, the supervisor embedded in the ap-
plication monitors and controls the program execution by
consulting the FSM. Whenever an un-handled runtime ex-
ception has arisen, it is caught through instrumentation and
a model of the faulty sequence of method calls is automati-
cally derived from it. Further, Supervisory Control Theory
is applied in order to synthesize a model of a supervisor.

3.2 Model Extraction
In this paper, we consider Finite State Machines (FSM) to

model the behavior of the system as well as the properties
to be ensured by control. The model of the system is 1)
automatically modified in order to ensure a given property
and 2) the obtained new model represents a supervisor that
is used to monitor and control the system at runtime as
illustrated in Figure 2.

Considering nowadays systems complexity, manually build-
ing Finite State Machines that represent the system behav-
ior is tedious and error-prone. Therefore, approaches for
automatically extracting FSM from the system source code

(a) An example of method
declaration.

0

1

4

2

method2

method3

3

6

method4 method4

method3

5

method5

method3

method2

(b) An FSM modeling the
system behaviors.

Figure 7: Illustration of FSM extraction.

have been considered. For instance, Bandera (see e.g. [7])
allows for model extraction from Java programs.

These Finite State Machines are actually more complex
than the ones described in Section 2 as they consider pro-
gram variables. The different states of the FSM correspond
to different values of the variables of the system. These
FSM are therefore state oriented and their number of states
depends on the possible value range of the system variables.

More recently, the authors of [12] considered an approach
to extract FSM from several programming languages such as
Java and C. Their approach is behavior oriented and consid-
ers method calls rather than system variables. The resulting
extraction process is lightweight and the size of the extracted
FSM remains reasonable for analysis. In this work , we take
a similar approach, however our models need to be complete
in terms of possible observations that can be made at run-
time. This is due to the fact that the model of the supervisor
is used for control, which requires that every possible obser-
vations of the system made at runtime are encoded in the
supervisor.

In order to illustrate our approach, Figure 7 presents some
code sample and the corresponding FSM extracted from this
piece of code. The method calls are extracted and corre-
spond to the edges of the generated FSM. Branching (e.g.
IF, SWITCH statements, etc) and loops (e.g. FOR and
WHILE statements, etc) are also taken into account.

We have implemented an Eclipse plugin for FSM extrac-
tion from Java programs. So far, our implementation follows
the Java 1.6 specification regarding loops and branching.
However, it does not yet take into account concurrency in-
troduced by threading and graphical components. Although
our current implementation does not provide a model for
multi-threaded and graphical applications, it allows for ex-
traction of a FSM for each of their method, assuming it
is single threaded. This was applied to JEdit [3] and shows
that the approach scales to application with more than 6500
methods.

Finally, although concurrency can introduce some state
explosion when combining FSM representing methods run-
ning in parallel, we plan on applying supervisory control
techniques developed in [11], which make it possible to avoid
this issue.

3.3 Instrumentation
As illustrated in Figure 2, our approach relies on the use

of a supervisor that can observe the behavior of the system
and after each observed sequence provides a set of allowed
events. In this section, we illustrate how this mechanism can
be implemented through the use of code instrumentation.
First of all, as described in Section 2.2, the supervisor can be
seen as a function that, given a sequence of events s, returns
the set of allowed events after this sequence. Implementing
such a method is straightforward whenever a FSM of the
supervisor is available. If q represents the current state of
the FSM reached after sequence s, then the set of allowed
events after s corresponds to the events that can be triggered
from q.

Updating the current state q of the model of the supervisor
requires to monitor the application. Moreover, preventing
method bodys to be executed requires to act on the system
execution. Finally as described in Section 3.1, runtime ex-
ceptions must be caught and trigger the synthesis of a new
model of the supervisor. Catching such exceptions can also
be done through instrumentation.

Our instrumentation process relies on the Javassist li-
brary [2] and is illustrated in Figure 8.

void m()
 {
 ...
 method body
 ...
 }

Static Class Supervisor
 {
 FSM supervisor;
 State currentState;
 List methodSequence;

 boolean accepts(...){...}

 void newSupervisor(...){...}
 }

insertBefore(...)
addCatch(...)

Initially
implemented

classes

Controller class
automatically

added

Figure 8: The instrumentation process.

Javassist offers many facilities to instrument Bytecode
among which insertBefore and addCatch. Given a method m
of a Java program, the insertBefore method allows to insert
Java code that will be executed before the body of m and the
addCatch method allows to catch runtime exceptions that
are not already handled by method m.

Javassist also makes it possible to add new .class files to
some existing program and to refer to the corresponding
classes in the code inserted through the insertBefore and
addCatch methods. In this work, we use this functionality
to introduce a new Supervisor class. This class is declared
as static and possess three attributes: an FSM representing
the model of the supervisor, a state representing the current
state of this model, and a sequence of observed method calls.
This FSM is instantiated from a file containing the model of
the supervisor and the current state can be instantiated as
the initial state of this FSM. The Supervisor class also con-
tains a static method called Supervisor.accepts which takes
a string representing a method name (e.g. m) and returns
a boolean. The value of this boolean is true if and only if
the model of the supervisor encodes that m can be triggered

from the current state of the model. Whenever the execu-
tion of m is authorized, Supervisor .accepts also updates the
current state of the model as well as the sequence of observed
method calls.

Therefore, implementing the monitoring of method calls
and updating at runtime the model of the current state of
the model of supervisor accordingly can simply be achieved
by instrumenting each method m with:

insertBefore(”Supervisor.accepts(m); ”) (1)

With this approach whenever an authorized method is
called at runtime, it is indicated to the Supervisor class
which can then update the current state of the model.

The inserted code can also be augmented so that the body
of unauthorized method calls are not executed. This should
only be done for controllable methods while uncontrollable
methods will be instrumented as described in Statement (1).
In this work, we assume that only methods that do not re-
turn any value can be controllable and are instrumented
using Javassist as follows:

insertBefore(”If (!Supervisor.accepts(m)) return; ”) (2)

Statement (2) indicates that whenever a method m is
called, it is first checked if calling this method from the
current state of the supervisor model is authorized. If it
is the case, then the body of the method is executed nor-
mally and the current state is updated. If the method call
is not authorized then the method exits before its body is
executed.

Method Supervisor.accepts and the instrumentation pre-
sented in Statements (1) and (2) make it possible for a su-
pervisor modeled by an FSM to control a Java program as
illustrated in Figure 2.

However, more instrumentation is necessary in order for
the overall system to be able to capture runtime exceptions
and then trigger the healing process, i.e. synthesis of a new
supervisor model.

Instrumenting Java Bytecode in order to catch runtime
exceptions can also be easily be achieved through the Javas-
sist addCatch method. This method takes to arguments: the
type of exceptions under consideration and the code to be ex-
ecuted whenever such an exception is caught. In this work,
we consider exceptions of type java.lang.Exception, which
represents any type of exception. We also implemented a
newSupervisor method in the Supervisor class. This meth-
ods takes into account an observed sequence as well as the
current model of the supervisor and synthesizes a new model
of the supervisor. This method is called whenever an a run-
time exception occurs and the code is instrumented for this
purpose the following way:

addCatch(”newSupervisor();”, java.lang.Exception) (3)

Javassist makes it quite easy to automatically instrument
legacy Java code in order to interact with a supervisor mod-
eled as an FSM. The difficulty of this approach resides in
the synthesis of a new supervisor that will ensure in the
future that an observed exception cannot occur anymore,
i.e. an algorithm for Supervisor.newSupervisor. Supervisory
Control Theory offers results and algorithms that help an-
swering this problem. However, the existing theory needs to

be augmented in order to fully achieve our goal. This the-
ory indeed assumes that model of the system is complete,
i.e. no event that are not part of the model can occur. We
here consider incomplete models as runtime exceptions are
not part of it.

Section 4 recalls some notations and results of the Supervi-
sory Control Theory and then introduces new theoretical re-
sults from which an algorithm for the Supervisor.newSupervisor
method can be derived.

4. SUPERVISORY CONTROL WITH INCOM-
PLETE MODELS

This section deals with the theoretical aspect of our ap-
proach. It provides definitions and results that allow for an
automatic computation of a model of a supervisor that can
prevent execution of traces leading to some runtime excep-
tion previously observed. The results provided in Section 4.2
ensures that the obtained model is correct as well as permis-
sive, i.e. it ensures the objective while restricting as little
behaviors of the system as possible.

4.1 Notations
For Discrete Event Systems (DES), languages over alpha-

bets are often considered. Alphabets represents finite sets of
events. A language L over an alphabet A represents a set of
sequences of events in A. The set of all possible sequences of
events in A is denoted A∗. Therefore for a language L over
alphabet A, L ⊆ A∗. The concatenation of two sequences
(resp. languages) s and s′ (resp. L and L′) is denoted s.s′

(resp. L.L′). Moreover, given a sequence s ∈ A∗, sequence
s′ ∈ A∗ is a prefix of s if it exists s′′ ∈ A∗ such that s′s′′ = s.
The set of all prefixes of s (resp. L ⊆ A∗) is denoted s (resp.
L).

Languages can represent infinite sets of sequences. In the
case of regular languages, they can be represented using Fi-
nite State Machines1. An FSM is a 5-tuple (A,Q, q0, Qm, δ),
where A is a finite alphabet (set of events), Q a finite set
of states, q0 ∈ Q is the initial state of the FSM, Qm is
its set of marked states and δ : Q × A → Q is the par-
tial transition function. Intuitively, δ(q, σ) is defined if and
only if event σ can be triggered from state q. This can be
extended to sequences s = σ1 . . . σn ∈ A∗, i.e. δ(q, s) is de-
fined whenever it exists states q1, . . . , qn such that δ(q, σ1)
exists and equals q1 and for all i ∈ {1, . . . , n− 1} δ(qi, σi+1)
exists and equals qi+1. Moreover, for a state q, δ(q) repre-
sents the set of events that can be triggered from state q,
i.e. δ(q) = {σ ∈ A| δ(q, σ) is defined}.

For a sequence of events s ∈ A∗, s is a possible behavior
of the system if δ(q0, s) is defined. If it is, then δ(q0, s) rep-
resents the state that the system reaches after the sequence
of event s occurred. Lm(G) represents the marked language
of the FSM, i.e. {s ∈ A∗| δ(q0, s) ∈ Qm}. The set of be-
haviors of system G is the language generated by its FSM
and is denoted L(G). It corresponds to the language con-
taining all the possible prefixes of sequences of Lm(G), i.e.

L(G) = Lm(G). A language L is said to be prefix-closed if
L = L.

In the following, whenever FSMs are graphically repre-
sented, its initial state is represented by a circle which is the

1For simplicity, we will only consider regular languages in
this work, although the results presented in Section 4 can
be extended to any language over finite alphabets.

Figure 9: A basic calculator example.

target of a transition with no source state. Marked states are
represented as double circles. However, unless stated oth-
erwise, we assume that languages are prefix-closed (i.e. all
the states are marked) and we only consider simple circles to
represent the states in this case. Finally, the prefix-closure
of a FSM is simply obtained by considering that all its state
are marked, i.e. Qm = Q.

4.2 Extension to Incomplete Models
In Section 2.2, the model of the system is assumed to be

complete, i.e. all the possible sequences that can be observed
while monitoring the system are encoded in the model. How-
ever, this requirement may not always be fulfilled. Consid-
ering the example of Figure 3 again, events act1, act2, end1,
end2 could represent methods implemented in a program
and events ’timeout’ and ’failure’ could represent some ex-
ceptions. The loop and branching of the FSM presented in
Figure 3 could represent the loop and branching present in
the program. Although exceptions ’timeout’ and ’failure’ are
captured by the model, hence by the program, there may be
exceptions that are not captured by the program but may
occur at runtime.

In this section, we extend the formalism introduced in
Section 2.2 in order to take into account the possible incom-
pleteness of the model towards un-handled exceptions. We
assume that the model is represented by a FSM on an al-
phabet A and more events can be observed while monitoring
the system at runtime. The overall set of events is denoted
A′ and is a super-set of A. A may for instance correspond
to all the methods and exceptions declared in the program
while A′ may corresponds to A to which some possible run-
time exceptions that do not appear in the program source
code are added. Traces of the system are represented by
sequences of events in A′. The occurrence of some of these
traces is not desired but can be observed at runtime. We
aim to automatically compute a supervisor for the system
that will prevent the occurrence of such traces.

In order to introduce and illustrate, we consider a concrete
case, presented in Example 2.

Example 2. We consider a basic calculator with a graph-
ical interface, presented in Figure 9.

Figure 10 represents a Finite State Machine over an al-
phabet A modeling the behaviors of the calculator. A cor-
responds to the set of all the methods associated to events
triggered when clicking the buttons represented in Figure 9,
i.e. 0, . . . , 9,+,−, ∗, /,= and ’clear’. For instance, event ’0’
represents the call of the method activated when button ’0’ is
pressed. The FSM of Figure 10 encodes the possible visible

0

2

3

1

0,..,9

0,..,9,=
+,-,*,/

0,..,9

All \ {0,..,9}

clear

0,..,9

clear

=

+,-,*,/,=

+,-,*,/

clear

Figure 10: A model of the calculator behaviors.

behaviors of the calculator.
In this example, we assume that the exception related to

the division by zero has not been handled by the programmer.
In this case, a sequence such as presented in Figure 11 can
be observed. Event ’exception’ represents the occurrence of
an exception corresponding to a division by zero that is ob-
servable at runtime. We now denote A′ = A ∪ {exception}
and Au = {exception,=,+,−, ∗, /}.

0 2/ 30 4= 5exception13

Figure 11: An undesired sequence s, exhibiting the
possible occurrence of an un-handled runtime excep-
tion.

Example 2 presents a program and a possible undesired
sequence of events that can be observed at runtime. It is
important to note that not all the events of this sequence
are responsible for the occurrence of an exception. The ex-
ception would indeed occur even if the first event of that
sequence did not correspond to ’3’ but to any other digit.
The occurrence of the exception is hence due to the division
by zero and not what precedes it. Figure 12 represents some
ending subsequence of the one of Figure 11 and it actually
captures an undesired ending to any sequence, regardless
what would precede it.

Other works such as [15] also suggest that the cause of
symptoms usually occurs soon before the symptoms are ob-
served. This entails that it is sufficient to only consider the
end of an undesired sequence that was observed in order to
capture what characterizes the cause of faults.

0 1/ 20 3= 4exception

Figure 12: Ending of the undesired sequence s pre-
sented in Figure 11.

We now formalise the notions and problem presented in
Example 2.

Basic Supervisory Control Problem with Incomplete-
ness (BSCPwI): Given a system represented by an in-
complete model G over an alphabet A and a sequence s ∈

A∗.(A′ \A), compute the maximal controllable set of behav-
iors included in G preventing any behavior ending by s.

Intuitively, s represents the ending of a sequence observed
during the execution of the system. However, s is not part
of the system model G. Therefore, s represents new infor-
mation about the possible ending sequences of the system
behaviors. The BSCPwI assumes that no behavior should
end by s and states that such behaviors must be prevented
by control in order to remain in a subset of G.

In this section, as s represents a sequence ending a possible
execution of the system, we introduce a transformation that
adds prefixes to s.

Definition 1 (pre-completion). Let A and A′ be two
alphabets such that A ⊆ A′ and let s be a sequence over A′.
The pre-completion of s with respect to A is denoted by TA(s)
and is defined by TA(s) = A∗.s.

Given a sequence s over alphabet A′, Definition 1 defines
the set of all sequences of events over A that are followed by
s.

An FSM modeling the pre-completion of G with respect
to A is simply obtained by adding transitions to each state
of G. For each state q ∈ Q\Qm, these transitions are labeled
with all events of A that cannot already be triggered from
that state. These transitions

• either lead to δ(q0, a) with label ’a’, for all event ’a’
such that a ∈ δ(q0),

• or they lead to the initial state of the system labeled
with all other events in A that cannot already be trig-
gered from q.

Therefore, the complexity of the pre-completion algorithm
is linear with respect to the number of states of the FSM.

Lemma 1. Let A and A′ be two alphabets such that A ⊆
A′. For any language L over alphabet A and sequence s ∈
(A′)∗, we have L ⊆ TA(s).

Lemma 1 shows that for any undesired sequence s such as
described in BSCPwI, the prefix-closure of its pre-completion
TA(s) represents an over-approximation of any language G
over alphabet A.

System controllability is only relevant for complete mod-
els of the system. In order to overcome this issue, an new
notion relevant to the BSCPwI and related to controllability
is defined in Definition 2.

Definition 2 (Partial Controllability [11]). Let Au,
A and A′ be three alphabets such that Au ⊆ A′, A ⊆ A′ and
(A′ \A) ⊆ Au. We also consider three languages: L and L′′

over alphabet A such as L′′ ⊆ L as well as language L′ over
alphabet A′ such that L ⊆ L′. L′′ is partially controllable
w.r.t to Au \A, Au, L and L′ if

• L′′ is controllable with respect to Au and L.

• L′′ is controllable with respect to Au \A and L′.

Partial controllability was introduced in [11] as a local
condition allowing for global controllability for concurrent
systems, i.e. systems composed of components being exe-
cuted in parallel. With the notations of Definition 2, partial

controllability ensures that sequences of language L′′ cannot
be extended in L by a sequence over Au that can itself be
extended by a sequence of Au \ A in L′. In other words, if
L represents the incomplete model of a system and L′′ rep-
resents a set of sequences containing L and possibly ending
with events in Au \A, then the sequence of a partially con-
trollable cannot be completed by a sequence in A∗u that is
in L′ but not in L. This notion is then very relevant to the
BSCPwI.

Lemma 2 (from [11]). Given Au \ A, Au, L and L′,
it exists a unique partially controllable language w.r.t. Au \
A, Au, L and L′. This language is denoted SupPC((Au \
A), Au, L, L

′) and equals SupCont(Au,SupCont((Au\A)L,L′), L).

Lemma 2 shows the existence of a maximal partially con-
trollable language and also provides an algorithm for it that
rely on the SupCont one. We can also deduce the complex-
ity of this algorithm from the one of SupCont: quadratic in
the number of state of the FSM representing L and linear
in the number of state of the FSM representing L′.

We now introduce the main theoretical result of this work.
Theorem 1 shows that both pre-completion and partial con-
trollability contribute to defining a solution to the BSCPwI.

Theorem 1. Let Au, A and A′ be three alphabets such
that A ⊆ A′, Au ⊆ A′ and (A′ \ A) ⊆ Au. We consider a
sequence s ∈ (A∗.(A′\A)) and a language L over alphabet A.
If L represents an incomplete model of a system behaviors
and s the ending of an undesired sequence of events, then

SupPC((Au \A), Au, L, TA(s))

is a solution to the BSCPwI.

Theorem 1 provides a solution to the BSCPwI. Intuitively,
considering s represents the ending s of a sequence that lead
to a runtime exception, this solution consists of transforming
s into TA(s) and considering the result of this transforma-
tion as an (over-approximated) model of the system. Then
the model of the system L itself is considered as a control
objective to which restrict TA(s). This restriction is per-
formed taking into account the controllable status of the
system actions. (Au \A) simply represents the possible run-
time exceptions ending sequence s while Au represents the
set of actions of the system that are uncontrollable (contain-
ing runtime exceptions). Algorithm SupPC from [11] is then
applied and results into a model of a supervisor preventing
sequences ending by s to be executed in the future.

Proof. In this proof, we denote

SupPC = SupPC((Au \A), Au, L, TA(s))

By Definition, SupPC is the maximal sub-language of L
that is partially controllable w.r.t (Au\A), Au, L and TA(s).
This entails that SupPC is included in L and is controllable
w.r.t. Au and L.

Moreover, as s ∈ A∗.(A′ \ A) and L ⊆ A∗, it means that
no sequence of L ends by s. Now as SupPC ⊆ L, this implies
that no sequence of SupPC ends by s.

Therefore it is now sufficient to show that SupPC is the
largest language fulfilling the above properties. A sequence
of the form s′σ ∈ A∗, with s′ ∈ SupPC and s′σ ∈ L\SupPC,
would only exist if one of the following held:

1. s′σ /∈ TA(s).

2. s′σ either violates the controllability condition w.r.t.
Au and L or violates the controllability condition w.r.t.
Au \A and TA(s).

However point 1. does not hold as s′σ ∈ L and from
Lemma 1, we have L ⊆ TA(s). Moreover point 2 does not
hold either as SupPC is a maximal partially controllable
language w.r.t. Au \ A, Au, L and TA(s). Therefore such a
sequence s′σ cannot exist and SupPC is maximal.

Example 3. In this example, we illustrate the definitions
and results introduced in this section with the calculator ex-
ample presented in Example 2. The problem to be solved is
to control the application so that sequences ending by the
sequence s of Figure 12 cannot be executed. Of course, it
is desired that the possible behaviors of the application are
restricted as little as possible while ensuring this goal. This
problem corresponds to the BSCPwI and a solution to it is
provided by Theorem 1. This solution consists of applying
the SupPC algorithm which relies on SupCont and is pre-
sented in [11]. This algorithm is applied with set of uncon-
trollable events Au = {exception,=,+,−, ∗, /}, its subset
Au \ A = {exception}, the control objective represented by
the FSM of the calculator presented in Figure 10 and the
system represented by the FSM of Figure 13.

0

A \ {/}

1/ 20 3= 4exception

A \ {0,/}
A \ {=,/}

A \ {/}

/ /

/

Figure 13: A FSM representing TA(s).

Initially the application is controlled by a supervisor whose
model is the one of the system, i.e. the FSM of Figure 10.
During the program execution, when a sequence ends as de-
scribed in Figure 12, then a new model of the supervisor is
synthesized using the result of Theorem 1, which leads to the
model given in Figure 14.

Comparing this model to the one of Figure 10, one can
remark that from every state, clicking the ’/’ button is now
treated differently and leads to states where the action associ-
ated to clicking button ’0’ is not allowed. This solution takes
into account that the action associated to clicking button ’=’
is uncontrollable and could not be prevented by control, even
after clicking button ’/’ followed by button ’0’.

5. CONCLUSION
This work presents an approach for automatically equip-

ping Java programs with a mechanism for self-healing of
un-handle runtime exceptions. This approach relies on the
Supervisory Control Theory on Discrete Event Systems and
the program is automatically instrumented so that it can in-
teract with a supervisor. This supervisor is able to prevent
some method executions in order to avoid the occurrence of
previously observed exceptions. Whenever a new possible
exception is observed, our system automatically synthesizes
a new supervisor which will prevent the execution of similar
sequences of method calls that lead to this exception.

0,0

2,0

3,0

1,0

0,..,9

0,..,9,=

+,-,*

0,..,9

A \ {0,..,9,/}

clear
0,..,9clear

=

+,-,*,=

+,-,*

2,1

+,-,*,=
/

1,..9clear/

/

/

0,1

/ /

A \ {0,..,9,/}

1,..,9

clear

Figure 14: A supervisor preventing the occurrence
of the trace in Figure 12.

Our approach relies on a Finite State Machine (FSM)
modeling the possible sequences of method calls of the pro-
gram. This FSM does not take into account the values of
the program variables but rather its behavior. Although our
current implementation does not yet allow for the automatic
computation of such an FSM for the whole program, we can
already extract FSMs for each of its methods. This approach
has been applied to the JEdit application [3] and makes it
possible to extract FSMs for all of its methods (over 6500)
in about 3 minutes. While so far our implementation takes
into account Java structures such as branchings and loops,
our main future work in this direction consists of also tak-
ing into account the concurrency between threads as well as
graphical components, hence allowing for automatic FSM
extraction from industrial applications.

Also in our approach, models of a supervisor are automat-
ically computed from a control objective that is itself derived
from the ending of a sequence of method calls leading to an
exception. The size of this ending sequence together with
the initial model of the program impact on the relevance of
the obtained solution. Our future works will consider cri-
teria on how to set an appropriate value for the size of the
ending sequence. We will also investigate validation results
and techniques for the relevance of automatically computed
supervisors, whenever solutions for several possible sequence
sizes are considered.

Finally, in some cases such as the calculator example pre-
sented in this paper, the application does not need to be
restarted after a new supervisor has been automatically com-
puted. However, our approach usually requires such a restart.
In order to overcome this issue, we are planning on integrat-
ing checkpointing techniques with Supervisory Control con-
cepts in order to avoid application restarts whenever a new
supervisor is synthesized.

6. REFERENCES
[1] Fastfix. https://services.txt.it/fastfix-project/?q=welcome.
[2] Javassit. http://www.csg.is.titech.ac.jp/ chiba/javassist/.

[3] Jedit. http://www.jedit.org/.

[4] S. Abdelwahed, N. Kandasamy, and S. Neema. A
control-based framework for self-managing distributed
computing systems. In WOSS ’04: Proceedings of the 1st

ACM SIGSOFT workshop on Self-managed systems, pages
3–7, New York, NY, USA, 2004. ACM.

[5] A. Carzaniga, A. Gorla, and M. Pezzè. Healing Web
applications through automatic workarounds. International
Journal on Software Tools for Technology Transfer
(STTT), 10(6):493–502, 2008.

[6] K.-H. Cho. Robust supervisory control of communication
networks. Science and Technology, 2001. KORUS ’01.
Proceedings. The Fifth Russian-Korean International
Symposium on, 1:46 –47 vol.1, jun. 2001.

[7] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach,
C. Pasareanu, and H. Zheng. Bandera: Extracting
finite-state models from Java source code. In Software
Engineering, 2000. Proceedings of the 2000 International
Conference on, pages 439–448. IEEE, 2002.

[8] R. de Lemos. ICSE 2003 WADS Panel: Fault Tolerance and
Self-Healing. 2003.

[9] Y. Diao, J. Hellerstein, S. Parekh, R. Griffith, G. Kaiser,
and D. Phung. Self-managing systems: A control theory
foundation. Selected Areas in Communications, IEEE
Journal on, 23(12):2213–2222, 2005.

[10] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey. Fulfilling
the vision of autonomic computing. Computer, 43:35–41,
2010.

[11] B. Gaudin and H. Merchand. An efficient modular method
for the control of concurrent discrete event systems: A
language-based approach. Discrete Event Dyn Syst,
17(2):179–209, Apr 2007.

[12] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from
6,000 projects: lightweight cross-project anomaly detection.
In ISSTA ’10: Proceedings of the 19th international
symposium on Software testing and analysis, pages
119–130, New York, NY, USA, 2010. ACM.

[13] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36:41–50, 2003.

[14] M. M. Kokar, K. Baclawski, and Y. A. Eracar. Control
theory-based foundations of self-controlling software. IEEE
Intelligent Systems, 14:37–45, 1999.

[15] K. Pan, S. Kim, and E. J. Whitehead, Jr. Toward an
understanding of bug fix patterns. Empirical Softw. Engg.,
14(3):286–315, 2009.

[16] P. J. Ramadge and W. Wonham. Supervisory control of
discrete event processes. In Feedback Control of Linear and
Nonlinear Systems, volume 39 of LNCIS, pages 202–214.
Springer-Verlag , Berlin, Germany, 1982.

[17] D. Reilly, A. Taleb-Bendiab, A. Laws, and N. Badr. An
instrumentation and control-based approach for distributed
application management and adaptation. In Proceedings of
the first workshop on Self-healing systems, pages 61–66.
ACM, 2002.

[18] H. Shah, C. Gorg, and M. Harrold. Why do developers
neglect exception handling? In Proceedings of the 4th
international workshop on Exception handling, pages
62–68. ACM, 2008.

[19] O. Shehory. A self-healing approach to designing and
deploying complex, distributed and concurrent software
systems. In ProMAS’06: Proceedings of the 4th
international conference on Programming multi-agent
systems, pages 3–13, Berlin, Heidelberg, 2007.
Springer-Verlag.

[20] R. Taylor and C. Tofts. Self managed systems-a control
theory perspective. In Self-Star Workshop, 2004.

[21] W. Torres-Pomales. Software fault tolerance: A tutorial.
NASA Langley Research Center, Hampton, Virginia,
TM-2000-210616, 2000.

[22] W. M. Wonham. Notes on control of discrete-event
systems. Technical Report ECE 1636F/1637S, Department
of Electrical and Computer EngineeringUnivertsity of
Toronto, July 2003.

	A control theory based approach for self-healing of un-handled runtime exceptions

