

© ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in ITiCSE '11

Proceedings of the 16th annual joint conference on Innovation and technology in computer

science education, ISBN: 978-1-4503-0697-3 http://doi.acm.org/10.1145/1999747.1999805

Improving compilers education through symbol tables animations

Jaime Urquiza-Fuentes, Francisco Manso, Jesús Ángel Velázquez-Iturbide

& Manuel Rubio-Sánchez

ITiCSE '11 Proceedings of the 16th annual joint conference on Innovation and

technology in computer science education, 203-207.

DOI: http://dx.doi.org/10.1145/1999747.1999805

http://doi.acm.org/10.1145/1999747.1999805
http://dx.doi.org/10.1145/1999747.1999805

Improving Compilers Education through Symbol

Tables Animations∗

Jaime Urquiza-Fuentes, Francisco Manso,

J. Ángel Velázquez-Iturbide & Manuel Rubio-Sánchez

LITE - Laboratory of Information Technologies in Education

Rey Juan Carlos University, Madrid, Spain

jaime.urquiza@urjc.es, f.manso@alumnos.urjc.es

angel.velazquez@urjc.es, manuel.rubio@urjc.es

27 June 2011

Abstract

This paper presents the evaluation of an educational tool focused on

the visualization of the symbol table in the context of a compiler course.

In a first evaluation we used simulation exercises and tested basic con-

cepts of symbol tables. We detected efficiency improvements, students

who used the tool completed the exercises with the same grading and sig-

nificantly faster than the students who did not use the tool. In addition

students’ opinion was positive. In a second evaluation we used more active

tasks, and tested students’ skills on writing parser specifications regarding

symbol table management. We have detected significant improvements.

Students who used the tool outperformed those who did not use the tool

in a 22%.

keywords: Evaluation, compiler visualization, symbol table.

1 Introduction

Visualization has been widely used in computer science education. There are
various surveys on using visualization as an aid for computer science education,
e.g. [5]. At present there are tools which visualize program execution [10] or
algorithms and data structures [2, 17].

There are also tools aimed at visualizing the relevant processes in compilers
and language processors. It is a very common practice to divide a compiler

∗ c©ACM, 2011. This is the author’s version of the work. It is posted here by per-
mission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the sixteenth annual conference on Innovation and tech-
nology in computer science education (ITiCSE ’11). ACM, New York, NY, USA, 203-207
http://doi.acm.org/10.1145/1999747.1999805

1

construction course in two different parts. One of them involves the lexical
and syntactical analysis of source code based on the formal languages theory
techniques. Here many tools can be found in the literature as JFlap [13, 14]
focused on authomata theory and formal languages, and VAST [1], CUPV [6],
APA1 [7] or GYacc [9] focused on parsing algorithms. The other part includes
processes like syntax directed translation, with tools like as JACCIE[8], Lisa
[11] or VCOCO [12], code generation and execution with tools like the PIPPIN
Machine [3] and symbol table use or type checking for which we have not found
any visualization tool aimed at education.

We have developed SOTA2 [4] (SymbOl Table Animation), an educational
tool aimed at visualizing, from a high level point of view, the working of a symbol
table during the source code analysis. This paper reports on an experience about
enhancing compilers teaching using the visualizations produced by this tool.

The rest of the paper is structured as follows. In the next section we describe
the tool. In the section three we detail the experience used to evaluate the
educational impact of the tool and its results. Finally, in the fourth section we
address our conclusions and some future work.

2 Symbol Table Visualization with the Tool

In this section we describe our static and dynamic graphical representations
of the symbol table concepts and the tool used to produce them. The main
objective is to visualize the actual state of the symbol table, and the operations
performed on it during the source code analysis. The tool has been designed for
both, classroom and self study sessions.

The interface of the tool, see Fig. 1, is divided into three areas: the program
area, the current state area and the messages area. The program area, on the
left side of the interface, shows the source code of the program being analyzed.
Currently, we work with a modification of the Pascal language called SimplePas-
cal, its description is shown in the help of the tool. The current state area, on
the upper right zone of the interface, shows the graphical representation of the
current state of the symbol table, and the last operations (identifier insertion,
scope creation and successful or failed searches) performed on it. Finally, the
messages area, at the bottom right zone of the interface, shows brief textual de-
scriptions of all the operations performed on the symbol table until the current
state has been reached.

The students can edit their own programs or use a set of predefined demon-
stration programs –with a name and a textual description– available via web.
Teachers can contribute to these demonstrations with their own programs. Next
we describe how the symbol table concepts are visualized, from both points of
view static and dynamic.

1this tool has not name, APA is the title acronym of the paper where it is described
2http://www.escet.urjc.es/∼jurquiza/research-iticse.html#sota

2

Figure 1: Graphical user interface of the tool

2.1 Static visualization

When the symbol table structure is made up of different scopes, the most suit-
able visualization is the tree structure. In this tree, the nodes represent the
scopes, and the arcs define the parent-children scope relations. The tree will
grow to the right for new procedures and functions, and to the bottom for
anonymous scopes. Fig. 2 shows a source code and its corresponding structure:
the root scope with three children scopes corresponding to subprograms –Fact,
Add and Proc–, and finally an anonymous scope in the subprogram Proc.

In addition to the structure of the symbol table, the tool highlights the last
operations performed on the symbol table. On the one hand, there are opera-
tions that modify the symbol table structure, thus the last scope created and
the last identifier inserted are highlighted. In Fig. 3, the last scope created cor-
responds to the procedure “Proc”, and the last identifier inserted, corresponds
to the variable “b3”.

On the other hand, search operations and their results are highlighted: the
current search scope, and the failed and successful search operations in the
scopes. The scope where the compiler is searching the item is highlighted in
red. If the search fails, the failed scope is marked with a diagonal line in red.
If the search successes, the found item is highlighted in green. The following
three figures show the three possibilities. In Fig. 4 the compiler is searching
within the anonymous scope. In Fig. 5 a failed search in the anonymous scope

3

Figure 2: Source code and the corresponding tree structure of the symbol table

Figure 3: The last scope created and the last identifier inserted are highlighted
in blue color.

is shown, but the search operation continues in the parent scope. Finally, in
Fig. 6 is visualized a successful search, finishing in the root environment.

2.2 Symbol Table Animation

Animating the symbol table structure consists in a sequence of steps. Each step
in the animation corresponds to an action performed on the symbol table during
the program compilation. In the case of search operations, each step is mapped
to the search operations performed on the different scopes during the search
process. The process begin at the current scope and ends when the searched
item is found, or the root scope is reached. Animations can be controlled with

Figure 4: Entry search in an anonymous environment

4

Figure 5: Failed search in the anonymous scope, the new search scope is the
parent scope

Figure 6: A successful search in the root scope

typical VCR controls: begin, end, pause, play and speed selection. In addition,
the tool allows to select the immediately previous or next animation step with
the buttons “previous step” and “next step”, or a concrete execution state,
selected with the time bar.

To allow the user to have always accessible information about the performed
actions at the moment, the tool provides a messages area. This area shows a
message for each operation performed on the symbol table and its result: new
scope creation, item insertion and search operations. In addition, the students
can choose the kind of messages visible through a filter utility for the messages.

When a message is selected, the corresponding –the moment in which the
action was performed– location in the source code is highlighted in yellow. E.g.
in Fig. 7 it can be seen how when selecting a successful search message, the
corresponding token in the source code is highlighted.

Figure 7: Highlighting the token in the source code related to the messages

5

3 Educational evaluation

Visualizations can help students to understand concepts studied, but an evalu-
ation is needed to know their actual educational impact. Next we describe the
two evaluations performed with this tool.

3.1 First evaluation

This evaluation [16] was conducted as a controlled experiment with pre-post-
test measurements. It was divided in two sessions, a theoretical session where
concepts of the symbol table were explained and an exercises/laboratory session.
The task performed by the treatment group consisted in mentally simulating
how the symbol table structure would be built for a given source code, and
assessing it with the tool.

We tested the effectiveness, efficiency and user’s opinion about the tool. The
effectiveness was measured with a knowledge test where, given a source code,
the students had to draw the corresponding symbol table structure and answer
questions about scopes and visibility errors. The efficiency was measured in
terms of the time used to solve exercises during the exercises/laboratory session
and to answer the knowledge test. Finally, students’ opinion was collected with a
questionnaire regarding ease of use, technical quality, usefulness and the support
to the symbol table concepts.

The results of the experiment showed that there was no effectiveness im-
provement. But the treatment group performed significantly faster than the
control group in completing the exercises (63,7%) and the test (32%), so there
is efficiency improvement. Finally, the questionnaire about the tool showed that
the students considered that the tool was easy to use, that its technical features
had good quality, that its visualization features were very useful, and that the
representation of the symbol table concepts was helpful. This acceptance of the
tool by the students was also supported by actual use of the tool, 75% of the
students used the tool to prepare the exam of the subject.

3.2 Second Evaluation

We have performed two changes with respect to the previous evaluation, see
details at [15]. On the one hand, the difference between student’s opinion and
pedagogical effectiveness of the previous evaluation leaded us to question the
design of the knowledge tests. In the previous evaluation we focused on how
the symbol table works, some of these concepts are close to visibility and scope,
both seen in most of structured programming courses. In this evaluation we
add an exercise about the parser specification dedicated to the symbol table
management.

On the other hand, following the Hundhausen et al’s [5] conclusions, we focus
the tasks on what students do with the tool, rather than what the tool shows
to students.

6

Figure 8: Protocol of the second evaluation

3.2.1 Subjects

57 students enrolled in the evaluation, the participation was voluntary. We
divided participants in two groups, the control group (n=34, called CG) and
the treatment group (n=23, called TG). Groups formation were independent
from the experiment. Students in the CG followed a typical methodology in
symbol table teaching, while TG followed a methodology adapted with the tool.

3.2.2 Variables of the evaluation

We have used one independent variable, the use of the tool, and one dependent
variable, pedagogical effectiveness. The measurement instrument is a knowl-
edge test with questions regarding: the construction process of structure of the
symbol table –given a source code the student has to draw the symbol table
structure and answer questions about scopes, identifiers and errors, e.g. how
many scopes (named and anonymous) have been created during the compiling
process? – and the parser specification that builds the symbol table during com-
pilation –given a grammar and the API specification for building the symbol
table structure, the student has to insert semantic actions into the grammar
using the API to produce the parser specification that builds the symbol table
structure.

3.2.3 Tasks and protocol

The protocol was divided in four steps, and lasted three weeks, see Fig. 8.
At the beginning of the first week all the participants completed the pretest.
During the second week each group attended to the theoretical (2 hours long)
and lab (1 hours long) sessions. During the third week, again all the participants
completed the post test.

7

Figure 9: An example of coding exercise of the second evaluation

The CG followed a typical teaching methodology without animations. The
theoretical session consisted of teacher’s explanations, examples and simple ex-
ercises. The tasks proposed in the exercises session were simulation exercises
about the construction of the structure of the symbol table of given source codes.
Students completed up to four exercises in this session.

The TG followed a teaching methodology adapted to the use of the ani-
mations generated by the tool. The theoretical session consisted of teacher’s
explanations, examples and simple exercises supported by the tool. The tasks
proposed in the lab session were two kinds of exercises: simulation and coding.
First, the teacher gives a source code to the students. While they mentally
simulate the construction process of the corresponding symbol table they use
the tool to assess themselves. The second kind of exercise, coding, ask students
to reverse their mental process. The teacher provides a schema of a symbol ta-
ble structure. This schema specifies child and anonymous scopes, and visibility
errors. Fig. 9 shows an example of a coding exercise. The students have to
write the source code that produces such structure. Again they can use the tool
to assess their solution. Students of the TG completed one simulation exercise
and up to eight coding exercises.

3.2.4 Results

We have studied students’ scores in the post-test. Considering all the questions,
we did not find post-test significant differences between both groups. Then we
studied both kinds of questions separately. Regarding the construction process
of the symbol table structure, we did not find post-test significant differences.
But we found significant differences in the question regarding the parser speci-
fication (t(39.84) = −2.8348, p < .01). Learning improvements of the CG were
.1578, while those of the TG were .3817. Since the pre-test scores of both groups
in this question were not significantly different (t(50.588) = −1.8581, p > .05),
TG outperformed CG in more than 22% regarding parser specification for sym-
bol table structure building.

8

4 Conclusions

We have evaluated the use of symbol table animations in a compiler course.
Animations are generated with a specialized software visualization tool, this
tool has been designed to help in teaching and learning concepts of the symbol
table. In the first evaluation we did not detected effectiveness improvements,
but students who used the tool were faster completing exercises and knowledge
test, and had a positive opinion about the tool: they believe that the tool helps
in classroom and self-study and actually use the tool to prepare the exam.

In the second evaluation we used more active tasks and tested how students
designed parser specifications for symbol table management. The tool allowed
us to practice coding exercises. Although they could be solved without the tool,
actually the amount of exercises would be drastically low, taking into account:
the time used by students to think about the problem, write the solution (pen
and paper) and the time used by the teacher assessing the different solutions
proposed by the students. The students who used the tool produced significantly
better parser specifications, they outperformed the students who followed a
typical teaching methodology in a 22%.

Note that writing parser specifications is one of the most important objec-
tives of a compiler course. With the tool we have improved students’ skills on
writing these specifications regarding the symbol table management.

We have designed effective symbol table visualizations and their effective
educational use. Our future work consists in the development of an API that
generates these visualizations. Thus students can visualize the symbol table
management in their own parser specifications.

5 Acknowledgments

This work was supported by project TIN2008-04103/TSI of the Spanish Min-
istry of Science and Innovation. Also, the authors thank to the former members
of the research team, Micael Gallego and Francisco Gortázar, for the time and
effort that they dedicated to this project.

References

[1] F. Almeida-Martnez, J. Urquiza-Fuentes, and J. Velzquez-Iturbide. Visual-
ization of syntax trees for language processing courses. Journal of Universal
Computer Science, 15(7):1546–1561, 2009.

[2] T. Chen and T. Sobh. A tool for data structure visualization and user-
defined algorithm animation. In Frontiers in Education Conference, 2001.
31st Annual, volume 1, pages TID –2–7 vol.1, Los Alamitos, CA, USA,
2001. IEEE Computer Society Press.

[3] R. Decker and S. Hirshfield. The pippin machine: simulations of language
processing. J. Educ. Resour. Comput., 1(4):4–17, December 2001.

9

[4] M. Gallego-Carrillo, F. Gortázar-Bellas, J. Urquiza-Fuentes, and J. A.
Velázquez-Iturbide. Sota: a visualization tool for symbol tables. SIGCSE
Bull., 37:385–385, June 2005.

[5] C. Hundhausen, S. Douglas, and J. Stasko. A meta-study of algorithm
visualization effectiveness. J. Visual Lang. Comput., 13(3):259–290, 2002.

[6] A. Kaplan and D. Shoup. Cupv – a visualization tool for generated parsers.
SIGCSE Bull., 32(1):11–15, March 2000.

[7] S. Khuri and Y. Sugono. Animating parsing algorithms. SIGCSE Bull.,
30(1):232–236, March 1998.

[8] N. Krebs and L. Schmitz. Visual syntax tools.
http://www2.cs.unibw.de/Tools/Syntax/english
/index.hmtl, 2004.

[9] M. E. Lovato and M. F. Kleyn. Parser visualizations for developing gram-
mars with yacc. SIGCSE Bull., 27(1):345–349, March 1995.

[10] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing programs
with jeliot 3. In AVI ’04: Proceedings of the working Conference on Ad-
vanced Visual Interfaces, pages 373–376, New York, NY, USA, 2004. ACM
Press.

[11] M. Mwernik and V. Zumer. An educational tool for teaching compiler
construction. IEEE Trans. Educ., 46(1):61–68, February 2003.

[12] R. D. Resler and D. M. Deaver. Vcoco: a visualisation tool for teaching
compilers. SIGCSE Bull., 30(3):199–202, August 1998.

[13] S. Rodger and T. Finley. JFLAP - An Interactive Formal Languages and
Automata Package. Jones and Bartlett, Sudbury, MA, USA, 2006.

[14] S. H. Rodger, E. Wiebe, K. M. Lee, C. Morgan, K. Omar, and J. Su.
Increasing engagement in automata theory with jflap. SIGCSE Bull.,
41(1):403–407, March 2009.

[15] J. Urquiza-Fuentes and F. Manso. DLSI1-URJC 2011-03: A second evalua-
tion of SOTA. Technical report, Depto. de Lenguajes y Sistemas Informti-
cos I - Universidad Rey Juan Carlos, 2011.

[16] J. Urquiza-Fuentes, J. Velázquez-Iturbide, M. Gallego-Carrillo, and
F. Gortázar-Bellas. An evaluation of a symbol table visualization tool. In
Proc. of 8th International Symposium on Computers in Education (SIIE
2006), pages 198–205, 2006.

[17] J. Velázquez-Iturbide, C. Pareja-Flores, and J. Urquiza-Fuentes. An ap-
proach to effortless construction of program animations. Comput. Educ.,
50(1):179–192, 2008.

10

