Appears in the Proceedings of the 38" International Symposium on Computer Architecture

Energy-efficient Mechanisms for Managing Thread
Context in Throughput Processors

Mark Gebhartt

Daniel R. Johnsonz2t

David Tarjan?

mgebhart@cs.utexas.edu  djohnsd3Qillinois.edu  dtarjan@nuidia.com

Stephen W. Keckler!?

skeckler@nuidia.com

William J. Dally®+

'The University of Texas at Austin

bdally@nuidia.com erikl@nuidia.com

Erik Lindholm? Kevin Skadrons®

skadron@cs.virginia.edu

2University of lllinois at Urbana-Champaign

3NVIDIA “Stanford University >University of Virginia

ABSTRACT

Modern graphics processing units (GPUs) use a large num-
ber of hardware threads to hide both function unit and mem-
ory access latency. Extreme multithreading requires a com-
plicated thread scheduler as well as a large register file, which
is expensive to access both in terms of energy and latency.
We present two complementary techniques for reducing en-
ergy on massively-threaded processors such as GPUs. First,
we examine register file caching to replace accesses to the
large main register file with accesses to a smaller struc-
ture containing the immediate register working set of active
threads. Second, we investigate a two-level thread scheduler
that maintains a small set of active threads to hide ALU
and local memory access latency and a larger set of pend-
ing threads to hide main memory latency. Combined with
register file caching, a two-level thread scheduler provides a
further reduction in energy by limiting the allocation of tem-
porary register cache resources to only the currently active
subset of threads. We show that on average, across a vari-
ety of real world graphics and compute workloads, a 6-entry
per-thread register file cache reduces the number of reads and
writes to the main register file by 50% and 59% respectively.
We further show that the active thread count can be reduced
by a factor of 4 with minimal impact on performance, re-
sulting in a 36% reduction of register file energy.

Categories and Subject Descriptors

C.1.4 [Computer Systems Organization|: Processor Ar-
chitectures — Parallel Architectures

General Terms

Experimentation, Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISCA’11, June 4-8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

1. INTRODUCTION

Graphics processing units (GPUs) such as those produced
by NVIDIA [28] and AMD [5] are massively parallel pro-
grammable processors originally designed to exploit the con-
currency inherent in graphics workloads. Modern GPUs
contain hundreds of arithmetic units, tens of thousands of
hardware threads, and can achieve peak performance in ex-
cess of a TeraFLOP. As single-thread performance improve-
ments have slowed, GPUs have become more attractive tar-
gets for non-graphics workloads that demand high compu-
tational performance.

Unlike CPUs that generally target single-thread perfor-
mance, GPUs aim for high throughput by employing ex-
treme multithreading [13]. For example, NVIDIA’s recent
Fermi design has a capacity of over 20,000 threads inter-
leaved across 512 processing units [28]. Just holding the
register context of these threads requires substantial on-
chip storage — 2 MB in total for the maximally configured
Fermi chip. Further, extreme multithreaded architectures
require a thread scheduler that can select a thread to execute
each cycle from a large hardware-resident pool. Accessing
large register files and scheduling among a large number of
threads consumes precious energy that could otherwise be
spent performing useful computation. As existing and future
integrated systems become power limited, energy efficiency
(even at a cost to area) is critical to system performance.

In this work, we investigate two techniques to improve the
energy efficiency of the core datapath. Register file caching
adds a small storage structure to capture the working set of
registers, reducing the number of accesses to the larger main
register file. While previous work has mainly examined reg-
ister file caching to reduce latency for large CPU register
files [11], this paper examines architectures and policies for
register file caching aimed at reducing energy in throughput-
oriented multithreaded architectures. Our analysis of both
graphics and compute workloads on GPUs indicates sub-
stantial register locality. A small, 6-entry per-thread reg-

t First authors Gebhart and Johnson have made equal con-
tributions to this work and are listed alphabetically. This
research was funded in part by the U.S. Government. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Government.



MemCtrl |[ MemCtrl |[ MemCtrl | [TT ]1 [T ]] [T ]] [T I [ I
s [ s [ 15 | Main Register File Main Register File
il il 32 banks 4x128-bit Banks
[T [4RIW)
I I
SM|[SM|SM|SM [SM | SM | SM | SM Warp Scheduler ﬁ ﬁ ﬁ iI
Interconnect v | Operand BUffering
SIMT Lanes ﬁ ﬁ ﬁ ﬁ
SM|SM |SM | SM |SM | SM | SM | SM TTTITTTITTTTTT T [T T TT
ALU SFU ||MEM || TEX S M T
i 7 T T T T T ALU = E E
s [ s [ s | Shared Memory UM x
[ MemcCtrl ][ MemCtrl |[ MemCtrl ] 32 KB

(a) Full chip

(b) Streaming multiprocessor (SM)

(c) 4-Wide SIMT lane detail

Figure 1: Contemporary GPU architecture.

ister file cache reduces the number of reads and writes to
the main register file by 50% and 43% respectively. Static
liveness information can be used to elide writing dead val-
ues back from the register file cache to the main register
file, resulting in a total reduction of write traffic to the main
register file of 59%.

Multi-level scheduling partitions threads into two classes:
(1) active threads that are issuing instructions or waiting on
relatively short latency operations, and (2) pending threads
that are waiting on long memory latencies. The cycle-by-
cycle instruction scheduler need only consider the smaller
number of active threads, enabling a simpler and more energy-
efficient scheduler. Our results show that a factor of 4
fewer threads can be active without suffering a performance
penalty. The combination of register file caching and multi-
level scheduling enables a register file cache that is 21x
smaller than the main register file, while capturing over half
of all register accesses. This approach reduces the energy re-
quired for the register file by 36% compared to the baseline
architecture without register file caching.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on the design of contemporary
GPUs and characterizes register value reuse in compute and
graphics workloads. Section 3 describes our proposed mi-
croarchitectural enhancements, including both register file
caching and scheduling techniques. Section 4 describes our
evaluation methodology. Section 5 presents performance
and power results. Sections 6 and 7 discuss related work,
future work, and conclusions.

2. BACKGROUND

While GPUs are becoming increasingly popular targets for
computationally-intensive non-graphics workloads, their de-
sign is primarily influenced by triangle-based raster graph-
ics. Graphics workloads have a large amount of inherent
parallelism that can be easily exploited by a parallel ma-
chine. Texture memory accesses are common operations in
graphics workloads and tend to be fine-grained and diffi-
cult to prefetch. Graphics workloads have large, long-term
(inter-frame) working sets that are not amenable to caching;
therefore, texture cache units focus on conserving bandwidth
rather than reducing latency [13]. Because texture accesses
are macroscopically unpredictable, and frequent, GPUs rely
on massive multithreading to keep arithmetic units utilized.

Figure 1 illustrates the architecture of a contemporary
GPU, similar in nature to NVIDIA’s Fermi design. The
figure represents a generic design point similar to those dis-

cussed in the literature [6, 28, 35], but is not intended to
correspond directly to any existing industrial product. The
GPU consists of 16 streaming multiprocessors, 6 high-band-
width DRAM channels, and an on-chip level-2 cache. A
streaming multiprocessor (SM), shown in Figure 1(b), con-
tains 32 SIMT (single-instruction, multiple thread) lanes
that can collectively issue up to 32 instructions per cycle, one
from each of 32 threads. Threads are organized into groups
called warps, which execute together using a common phys-
ical program counter. While each thread has its own logi-
cal program counter and the hardware supports control-flow
divergence of threads within a warp, the streaming multi-
processor executes most efficiently when all threads execute
along a common control-flow path.

Fermi supports 48 active warps for a total of 1,536 active
threads per SM. To accommodate this large set of threads,
GPUs provide vast on-chip register file resources. Fermi
provides 128KB of register file storage per streaming mul-
tiprocessor, allowing an average of 21 registers per thread
at full scheduler occupancy. The total register file capacity
across the chip is 2MB, substantially exceeding the size of
the L2 cache. GPUs rely on heavily banked register files
in order to provide high bandwidth with simple register file
designs [27, 35]. Despite aggressive banking, these large reg-
ister file resources not only consume area and static power,
but result in high per-access energy due to their size and
physical distance from execution units. Prior work exam-
ining a previous generation NVIDIA GTX280 GPU (which
has 64 KB of register file storage per SM), estimates that
nearly 10% of total GPU power is consumed by the register
file [16]. Our own estimates show that the access and wire
energy required to read an instruction’s operands is twice
that of actually performing a fused multiply-add [15]. Be-
cause power-supply voltage scaling has effectively come to
an end [18], driving down per-instruction energy overheads
will be the primary way to improve future processor perfor-
mance.

2.1 Baseline SM Architecture

In this work, we focus on the design of the SM (Fig-
ures 1(b) and 1(c)). For our baseline, we model a contem-
porary GPU streaming multiprocessor with 32 SIMT lanes.
Our baseline architecture supports a 32-entry warp sched-
uler, for a maximum of 1024 threads per SM, with a warp
issuing a single instruction to each of the 32 lanes per cycle.
We model single-issue, in-order pipelines for each lane. Each
SM provides 32KB of local scratch storage known as shared
memory. Figure 1(c) provides a more detailed microarchi-



100% -+
-
8 90%
3 80% -
g
a 70%
(7]
g 60%
S 50% ® Read >2 Times
<=t 40% - ™ Read 2 Times
S 30% - M Read 1 Time
;é; 20% - M Read 0 Times
(S)
E 10% -
0% -
(o} N < < X
& . Q &
A'\b &’5&0 \é@% \\'z’b

&
(a) Number of reads per register value.

Figure 2: Value usage

tectural illustration of a cluster of 4 SIMT lanes. A cluster
is composed of 4 ALUs, 4 register banks, a special func-
tion unit (SFU), a memory unit (MEM), and a texture unit
(TEX) shared between two clusters. Eight clusters form a
complete 32-wide SM.

A single-precision fused multiply-add requires three reg-
ister inputs and one register output per thread for a total
register file bandwidth of 96 32-bit reads and 32 32-bit writes
per cycle per SM. The SM achieves this bandwidth by sub-
dividing the register file into multiple dual-ported banks (1
read and 1 write per cycle). Each entry in the SM’s main
register file (MRF) is 128 bits wide, with 32 bits allocated to
the same-named register for threads in each of the 4 SIMT
lanes in the cluster. Each bank contains 256 128-bit registers
for a total of 4KB. The MRF counsists of 32 banks for a total
of 128KB per SM, allowing for an average of 32 registers per
thread, more than Fermi’s 21 per thread. The trend over
the last several generations of GPUs has been to provision
more registers per thread, and our traces make use of this
larger register set.

The 128-bit registers are interleaved across the register
file banks to increase the likelihood that all of the operands
for an instruction can be fetched simultaneously. Instruc-
tions that require more than one register operand from the
same bank perform their reads over multiple cycles, elimi-
nating the possibility of a stall due to a bank conflict for a
single instruction. Bank conflicts from instructions in differ-
ent warps may occur when registers map to the same bank.
Our MRF design is over-provisioned in bandwidth to reduce
the effect of these rare conflicts. Bank conflicts can also
be reduced significantly via the compiler [37]. The operand
buffering between the MRF and the execution units repre-
sents interconnect and pipeline storage for operands that
may be fetched from the MRF on different cycles.

2.2 GPU Value Usage Characterization

Prior work in the context of CPUs has shown that a large
fraction of register values are consumed a small number of
times, often within a few instructions of being produced [14].
Our analysis of GPU workloads indicates that the same
trend holds. Figure 2(a) shows the number of times a value
written to a register is read for a set of real-world graph-
ics and compute workloads. Up to 70% of values are read

Percent of All Values Produced

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

M Value Lifetime >3
Value Lifetime 3

' M Value Lifetime 2

M Value Lifetime 1

Qg(/

o &
A.\sz 0\1800
&S
(b) Lifetime of values that are read only once.

&

& [N

characterization.

only once, and only 10% of values are read more than 2
times. HPC workloads show the highest level of register
value reuse with 40% of values being read more than once.
Graphics workloads, labeled Shader, show reuse character-
istics similar to the remaining compute traces. Figure 2(b)
shows the lifetime of all dynamic values that are read only
once. Lifetime is defined as the number of instructions be-
tween the producer and consumer (inclusive) in a thread. A
value that is consumed directly after being produced has a
lifetime of 1. Up to 40% of all dynamic values are read only
once and are read within 3 instructions of being produced.
In general, the HPC traces exhibit longer lifetimes than the
other compute traces, due in part to hand-scheduled opti-
mizations in several HPC codes where producers are hoisted
significantly above consumers for improved memory level
parallelism. Graphics traces also exhibit a larger propor-
tion of values with longer lifetimes due to texture instruc-
tions, which the compiler hoists to improve performance.
These value usage characteristics motivate the deployment
of a register file cache to capture short-lived values and dra-
matically reduce accesses to the main register file.

3. ENERGY-EFFICIENT MULTI-
THREADED MICROARCHITECTURES

This section details our microarchitectural extensions to
the GPU streaming multiprocessor (SM) to improve energy
efficiency, including register file caching and a simplified
thread scheduler.

3.1 Register File Cache

Section 2.2 shows that up to 40% of all dynamic register
values are read only once and within 3 instructions of being
produced. Because these values have such short lifetimes,
writing them into the main register file wastes energy. We
propose a register file cache (RFC) to capture these short-
lived values. The RFC filters requests to the main register
file (MRF) and provides several benefits: (1) reduced MRF
energy by reducing MRF accesses; (2) reduced operand de-
livery energy, since the RFC can be physically closer to the
ALUs than the MRF; and (3) reduced MRF bandwidth re-
quirements, allowing for a more energy-efficient MRF. The
majority of this paper focuses on (1) while we discuss (2)
and (3) in Section 5.4.



Decode/ |\ reco | mrr1 | MRE2 | BX€Ute | ma | Writeback

Fetch Schedule 1

(a) Baseline pipeline.

Decode/ | Tag MRF 0 mre1 | MRF 2/ | Execute | ___ Writeback

Fetch Schedule § Check RFC 1

(b) Pipeline with register file cache.
Figure 3: GPU pipelines.

Figure 3 highlights the pipeline modifications required to
implement register file caching. Figure 3(a) shows a baseline
pipeline with stages for fetch, decode/schedule, register file
access (3 cycles to account for fetching and delivering mul-
tiple operands), one or more execute stages, and writeback.
The pipeline with register file caching adds a stage to check
the register file cache tags to determine if the operands are
in the RFC. Operands not found in the RFC are fetched
over multiple cycles from the MRF as before. Operands in
the cache are fetched during the last stage allocated to MRF
access. The RFC is multiported and all operands present in
the RFC are read in a single cycle. We do not exploit the
potential for reducing pipeline depth when all operands can
be found in the RFC, as this optimization has a small ef-
fect on existing throughput-oriented architectures and work-
loads. The tag-check stage does not affect back-to-back in-
struction latencies, but adds a cycle to the branch resolution
path. Our results show that this additional stage does not
reduce performance noticeably, as branches do not dominate
in the traces we evaluate.

RFC Allocation: Our baseline RFC design allocates
the result of every operation into the RFC. We explored
an extension that additionally allocates RFC entries for an
instruction’s source operands. We found that this policy re-
sults in 5% fewer MRF reads with a large RFC, but also
pollutes the RFC, resulting in 10-20% more MRF writes.
Such a policy requires additional RFC write ports, an ex-
pense not justified by our results.

RFC Replacement: Prior work on register file caches in
the context of CPUs has used either LRU replacement [11] or
a combination of FIFO and LRU replacement[36] to deter-
mine which value to evict when writing a new value into the
RFC. While our baseline RFC design uses a FIFO replace-
ment policy, our results show that using LRU replacement
results in only an additional 1-2% reduction in MRF ac-
cesses. Compared to prior work on CPU register file caching,
our RFC can only accommodate very few entries per thread
due to the large thread count of a throughput processor,
reducing the effectiveness of LRU replacement.

RFC Eviction: While the default policy writes all val-
ues evicted from the RFC to the MRF, many of these values
will not actually be read again. In order to elide writebacks
of dead values, we consider a combined hardware/software
RFC design. We extend our hardware-only RFC design with
compile-time generated static liveness information, which in-
dicates the last instruction that will read a particular regis-
ter instance. This information is passed to the hardware by
an additional bit in the instruction encoding. Registers that
have been read for the last time are marked dead in the RFC
and their values need not be written back to the MRF. This
optimization is conservative and never destroys valid data
that could be used in the future. Due to uncertain control
flow in the application, some values that are actually dead
will be unnecessarily written back to the MRF.

Pending Warps

FFREE o

All Warps Ready

B °°°

=

C D3

(=

Select <

AllAl[A]]A >

W3-

s sl
TITITTTITITTII0T [TTTTTTTTTTTTITTT
SIMT Lanes SIMT Lanes
[HIENEEENERENENEE TITTTTITTTITITITTT

(a) Single-level (b) Two-level

Figure 4: Warp schedulers.

Our results show that 6 RFC entries per thread captures
most of the register locality and keeps the storage overhead
per thread moderate. However, with 6 (4 byte) entries per
thread, 32 threads per warp, and 32 warps per SM, the RFC
would require 24 KB per SM. While this proposed baseline
RFC is 5 times smaller than the MRF, its large size limits
the potential energy savings.

3.2 Two-Level Warp Scheduler

To reduce the storage requirements of the RFC, we intro-
duce a two-level warp scheduler. The warp scheduler, shown
in Figure 4(a), is responsible for keeping the SIMT cores
supplied with work in the face of both pipeline and memory
latencies. To hide long latencies, GPUs allocate a large num-
ber of hardware thread contexts for each set of SIMT cores.
This large set of concurrently executing warps in turn in-
creases scheduler complexity, thus increasing area and power
requirements. Significant state must be maintained for each
warp in the scheduler, including buffered instructions for
each warp. In addition, performing scheduling among such
a large set of candidate warps necessitates complex selec-
tion logic and policies. The scheduler attempts to hide two
distinct sources of latency in the system: (1) long, often un-
predictable latencies, such as loads from DRAM or texture
operations; and (2) shorter, often fixed or bounded latencies
due to ALU operations, branch resolution, or accesses to the
SM’s local shared memory. A large pool of available warps is
required to tolerate latencies in the first group, but a much
smaller pool of warps is sufficient to tolerate common short
latencies. The latency of arithmetic operations and shared
memory accesses along with the amount of per-thread ILP
influences the number of threads required to saturate the
hardware. Reducing the set of warps available for selection
on a given cycle can reduce both the complexity and energy
overhead of the scheduler. One important consequence of
reducing the number of concurrently active threads is that
it reduces the immediate-term working set of registers.

We propose a two-level warp scheduler that partitions
warps into an active set eligible for execution and an in-
active pending set. The smaller set of active warps hides
common short latencies, while the larger pool of pending
warps is maintained to hide long latency operations and pro-
vide fast thread switching. Figure 4 illustrates a traditional
single-level warp scheduler and our proposed two-level warp
scheduler. All hardware-resident warps have entries in the
outer level of the scheduler and are allocated MRF entries.



[TTTTTIITTTTTITT
MRF

[T e eI

| o e e o e e e e e

[A[A]a]A] } Active Warps

[ Select J

(LT REC

SIMT Lanes
T T [T [T
ALU SFU ||MEM|| TEX
T T OO (T

[T

| Shared Memory I
(a) High level SM architecture

Figure 5: Modified GPU microarchitecture.

I l I
MRF

4x128-bit Banks (1R1W)
| l |
¢ § 8

| Operand Buffering

| N | S

I Operand Routing

IS
RFC 4x32-bit
(3R1W) Banks

cCmnw
=m<Z
x m -

(b) Detailed microarchitecture

(a) High level SM architecture: MRF with 32 128-bit wide

banks, multiported RFC (3R/1W per lane). (b) Detailed SM microarchitecture: 4-lane cluster replicated 8

times to form 32 wide machine.

The outer scheduler contains a large set of entries where
pending warps may wait on long latency operations to com-
plete, with the number of pending entries required primarily
influenced by the memory latency to be hidden. The inner
level contains a much smaller set of active warps available
for selection each cycle and is sized such that it can cover
shorter latencies due to ALU operations, branch resolution,
shared memory accesses, or cache hits. When a warp en-
counters a stall-inducing event, that warp can be removed
from the active set but left pending in the outer scheduler.
Introducing a second level to the scheduler presents a variety
of new scheduling considerations for selection and replace-
ment of warps from the active set.

Scheduling: For a two-level scheduler, we consider two
common scheduling techniques: round-robin and greedy. For
round-robin, we select a new ready warp from the active
warp pool each cycle using a rotating priority. For greedy,
we continue to issue instructions from a single active warp
for as long as possible, without stalling, before selecting an-
other ready warp. Our single-level scheduler has the same
options, but all 32 warps remain selectable at all times. We
evaluate the effectiveness of these policies in Section 5.

Replacement: A two-level scheduler must consider when
to remove warps from the active set. Only warps which are
ready or will be ready soon should be kept in the active set;
otherwise, they should be replaced with ready warps to avoid
stalls. Replacement can be done preemptively or reactively,
and depending on the size of the active set and the latencies
of key operations, different policies will be appropriate. We
choose to suspend active warps when they consume a value
produced by a long latency operation. Instructions marked
by the compiler as sourcing an operand produced by a long-
latency operation induce the warp to be suspended to the
outer scheduler. We consider texture operations and global
(cached) memory accesses as long-latency. This preemptive
policy speculates that the value will not be ready immedi-
ately, a reasonable assumption on contemporary GPUs for
both texture requests and loads that may access DRAM.
Alternatively, a warp can be suspended after the number of
cycles it is stalled exceeds some threshold; however, because

long memory and texture latencies are common, we find this
strategy reduces the effective size of the active warp set and
sacrifices opportunities to execute instructions. For stalls
on shorter latency computational operations or accesses to
shared memory (local scratchpad), warps retain their active
scheduler slot. For different design points, longer computa-
tional operations or shared memory accesses could be trig-
gers for eviction from the active set.

3.3 Combined Architecture

While register file caching and two-level scheduling are
each beneficial in isolation, combining them substantially
increases the opportunity for energy savings. Figure 5(a)
shows our proposed architecture that takes advantage of reg-
ister file caching to reduce accesses to the MRF while em-
ploying a two-level warp scheduler to reduce the required size
of an effective RFC. Figure 5(b) shows the detailed SM mi-
croarchitecture which places private RFC banks adjacent to
each ALU. Instructions targeting the private ALUs are most
common, so co-locating RFC banks with each ALU provides
the greatest opportunity for energy reduction. Operands
needed by the SFU, MEM, or TEX units are transmitted
from the RFC banks using the operand routing switch.

To reduce the size of the RFC, entries are only allocated to
active warps. Completed instructions write their results to
the RFC according to the policies discussed in Section 3.1.
When a warp encounters a dependence on a long latency op-
eration, the two-level scheduler suspends the warp and evicts
dirty RFC entries back to the MRF. To reduce writeback
energy and avoid polluting the RFC, we augment the allo-
cation policy described in Section 3.1 to bypass the results
of long latency operations around the RFC, directly to the
MRF. Allocating entries only for active warps and flushing
the RFC when a warp is swapped out increases the number
of MRF accesses but dramatically decreases the storage re-
quirements of the RFC. Our results show that combining
register file caching with two-level scheduling produces an
RFC that (1) is 21 times smaller than the MRF, (2) elim-
inates more than half of the reads and writes to the MRF,
(3) has negligible impact on performance, and (4) reduces
register file energy by 36%.



Avg. Dynamic Avg.
Category Examples Traces Warp Insts. Threads
Video Processing | H264 Encoder, Video Enhancement 19 60 million 99K
Simulation Molecular Dynamics, Computational Graphics, Path Finding 11 691 million 415K
Image Processing | Image Blur, JPEG 7 49 million 329K
HPC DGEMM, SGEMM, FFT 18 44 million 129K
| Shader | 12 Modern Video Games | 155 |  S5million [ 13K |
Table 1: Trace characteristics.
RFC Entries Active Warps | Parameter | Vale |
per Thread 1 [ 6 [ S MRF Read/Write Energy 8/11 pJ
)
L 70 1 iy Ve e
4 5100 1.2/3.8 7400 1.2/4.4 9600 1.9/6.1 Wi = 300 7
6 7400 | 1.2/4.4 |10800| 1.7/5.4 |14300| 2.2/6.7 N llrte capacitance oo V/ ﬁlm
8 9600 | 1.9/6.1 |14300| 2.2/6.7 | 18800 | 3.4/10.9 >-18ge 2 YOS
/ / / Wire Energy (32 bits) 1.9 pJ/mm

Table 2: RFC area and read/write energy for 128-bit accesses.

| Parameter | Value |
Execution Model In-order
Execution Width 32 wide SIMT
Register File Capacity 128 KB
Register Bank Capacity 4 KB
Shared Memory Capacity 32 KB

Shared Memory Bandwidth
SM External Memory Bandwidth

32 bytes / cycle
32 bytes / cycle

ALU Latency 8 cycles

Special Function Latency 20 cycles
Shared Memory Latency 20 cycles
Texture Instruction Latency 400 cycles
DRAM Latency 400 cycles

Table 4: Simulation parameters.

4. METHODOLOGY

As described in Section 2.1, we model a contemporary
GPU SIMT processor, similar in structure to the NVIDIA
Fermi streaming multiprocessor (SM). Table 4 summarizes
the simulation parameters used for our SM design. Standard
integer ALU and single-precision floating-point operations
have a latency of 8-cycles and operate with full throughput
across all lanes. While contemporary NVIDIA GPUs have
longer pipeline latencies for standard operations [35], 8 cy-
cles is a reasonable assumption based on AMD’s GPUs [4].
As with modern GPUs, various shared units operate with a
throughput of less than the full SM SIMT width. Our tex-
ture unit has a throughput of four texture (TEX) instructions
per cycle. Special operations, such as transcendental func-
tions, operate with an aggregate throughput of 8 operations
per cycle.

Due to the memory access characteristics and program-
ming style of the workloads we investigate, we find that sys-
tem throughput is relatively insensitive to cache hit rates
and typical DRAM access latency. Codes make heavy use of
shared memory or texture for memory accesses, using most
DRAM accesses to populate the local scratchpad memory.
Combined with the large available hardware thread count,
the relatively meager caches provided by modern GPUs only

Table 3: Modeling parameters.

minimally alter performance results, especially for shader
workloads. We find the performance difference between no
caches and perfect caches to be less than 10% for our work-
loads, so we model the memory system as bandwidth con-
strained with a fixed latency of 400 cycles.

4.1 Workloads

We evaluate 210 real world instruction traces, described
in Table 1, taken from a variety of sources. The traces are
encoded in NVIDIA’s native ISA. Due to the large num-
ber of traces we evaluate, we present the majority of our
results as category averages. 55 of the traces come from
compute workloads, including high-performance and scien-
tific computing, image and video processing, and simulation.
The remaining 155 traces represent important shaders from
12 popular games published in the last 5 years. Shaders
are short programs that perform programmable rendering
operations, usually on a per-pixel or per-vertex basis, and
operate across very large datasets with millions of threads
per frame.

4.2 Simulation Methodology

We employ a custom trace-based simulator that models
the SM pipeline and memory system described in Sections 3
and 4. When evaluating register file caching, we simulate
all threads in each trace. For two-level scheduling, we simu-
late execution time on a single SM for a subset of the total
threads available for each workload, selected in proportion
to occurrence in the overall workload. This strategy reduces
simulation time while still accurately representing the be-
havior of the trace.

4.3 Energy Model

We model the energy requirements of several 3-read port,
1-write port RFC configurations using synthesized flip-flop
arrays. We use Synopsys Design Compiler with both clock-
gating and power optimizations enabled and commercial 40
nm high-performance standard cell libraries with a clock tar-
get of 1GHz at 0.9V. We estimate access energy by perform-
ing several thousand reads and writes of uniform random
data across all ports. Table 2 shows the RFC read and write
energy for four 32-bit values, equivalent to one 128-bit MRF



100% 100%
90% - 90% -
80% - 80% -
70% - 70% -
60% - 60%
50% - 50% -+
40% 40% -+
30% 1 “-Simulation 30% 7
20% Shader 20% -
10% @HPC 10% -+

0% e 0%

4 Image
#®Video

MRF Accesses Avoided
MRF Accesses Avoided

12 3 45 6 7 8 9 10 11 12 13
Number of Entries per Thread

(a) Read accesses avoided

12 3 4 5 6 7 8 9 1011 12 13
Number of Entries per Thread

(b) Write accesses avoided

100%
90% -
80% -
70% -+
60% -+
50% -+

MRF Accesses Avoided

#Image 40% *Image
#Video 30% - #®Video
--Simulation " --Simulation
Shader 20% 7 Shader
®HPC 10% 1 ®HPC

% -
12 3 4 5 6 7 8 9 1011 12 13
Number of Entries per Thread

(c) Write accesses avoided (SW liveness)

Figure 6: Reduction of MRF accesses by baseline register file cache.

- 100% r—l
g prn A Peaet 2" s
2 80% _;f".
2 d
o 60% = y S
(]
(%]
D A0% gt
g 0% Read Traffic Avoided
w ° - Write Traffic Avoided J
s 0%
Video Simulation Image HPC

Figure 7: Per-trace reduction in MRF accesses with a 6 entry RFC per thread (one point per trace).

entry. We model the main register file (MRF) as a collection
of 32 4KB, 128-bit wide dual-ported (1 read, 1 write) SRAM
banks. SRAMs are generated using a commercial memory
compiler and are characterized similarly to the RFC for read
and write energy at 1GHz.

We model wire energy based on the methodology of [20]
using the parameters listed in Table 3, resulting in energy
consumption of 1.9pJ per mm for a 32-bit word. From a
Fermi die photo, we estimate the area of a single SM to be
16 mm? and assume that operands must travel 1 mm from
a MRF bank to the ALUs. Each RFC bank is private to a
SIMT lane, greatly reducing distance from the RFC banks
to the ALUs. The tags for the RFC are located close to
the scheduler to minimize the energy spent accessing them.
Section 5.4 evaluates the impact of wire energy. Overall,
we found our energy measurements to be consistent with
previous studies [8] and CACTI [24] after accounting for
differences in design space and process technology.

5. EVALUATION

This section demonstrates the effectiveness of register file
caching and two-level scheduling on GPU compute and graph-
ics workloads. We first evaluate the effectiveness of each
technique individually and then show how the combination
reduces overall register file energy. As power consumption
characteristics are specific to particular technology and im-
plementation choices, we first present our results in a tech-
nology-independent metric (fraction of MRF reads and writes
avoided), and then present energy estimates for our chosen
design points.

5.1 Baseline Register File Cache

Figures 6(a) and 6(b) show the percentage of MRF read
and write traffic that can be avoided by the addition of the

baseline RFC described in Section 3.1. Even a single-entry
RFC reduces MRF reads and writes, with the knee of the
curve at about 6 entries for each per-thread RFC. At 6 RFC
entries, this simple mechanism filters 45-75% of MRF reads
and 35-75% of MRF writes. RFC effectiveness is lowest
on HPC traces, where register values are reused more fre-
quently and have longer average lifetimes, a result of hand
scheduling.

As discussed in Section 2.2, many register values are only
read a single time. Figure 6(c) shows the percentage of MRF
writes avoided when static liveness information is used to
identify the last consumer of a register value and avoid writ-
ing the value back to the MRF on eviction from the RFC.
Read traffic does not change, as liveness information is used
only to avoid writing back dead values. With 6 RFC entries
per thread, the use of liveness information increases the frac-
tion of MRF accesses avoided by 10-15%. We present the
remaining write traffic results assuming static liveness infor-
mation is used to avoid dead value writebacks.

Figure 7 plots the reduction in MRF traffic with a 6-entry
RFC for each individual compute trace. For these graphs,
each point on the z-axis represents a different trace from one
of the sets of compute applications. The traces are sorted on
the z-axis by the amount of read traffic avoided. The lines
connecting the points serve only to clarify the two categories
and do not imply a parameterized data series. The effec-
tiveness of the RFC is a function of both the inherent data
reuse in the algorithms and the compiler generated schedule
in the trace. Some optimizations such as hoisting improve
performance at the expense of reducing the effectiveness of
the RFC. All of the traces, except for a few hand-scheduled
HPC codes, were scheduled by a production NVIDIA com-
piler that does not optimize for our proposed register file



100%

90% ,,.,rfr #Game 1
o _r -+-Game 2
< 80% / -+Game 3
§ 70% +Game 4
] !/
I 60% / f/_/ ~Game 5
4 -~Game 6
1]
50% - -
g ° e —Game 7
& 40% —Game 8
& 30% —Game 9
=
20% —+Game 10
-=Game 11
0/
10% ~Game 12
0% |

(a) Read accesses avoided

MRF Accesses Avoided

100%
90% #Game 1
-+-Game 2
80% -+Game 3
70% +Game 4
60% ~-Game 5
50% --Game 6
~—Game 7
40% —Game 8
30% —Game 9
20% —+-Game 10
-=Game 11
10% ~Game 12
0% +—————rrrr T

(b) Write accesses avoided (with liveness info)

Figure 8: Graphics per-trace reduction in MRF accesses with a 6 entry RFC per thread (one point per trace).

E 32 1I- TT-T e o Y

wn 28

g 24

S 20

(o]

?n

S

']

s 8

Q 4

- 0 2 346812162432 2 3 4 6 812162432 2 3 4 6 812162432 2 3 4 6 812162432 2 3 4 6 812162432

HPC Image Simulation Video Shader

Figure 9: Average IPC with + /-1 standard deviation for a range of active warps.

cache. To provide insight into shader behavior, Figure 8 Figure 10 shows a breakdown of both compute and shader

shows results for a 6-entry per thread cache for individual
shader traces grouped by games and sorted on the z-axis by
MRF accesses avoided. Due to the large number of traces,
individual datapoints are hard to observe, but the graphs
demonstrate variability both within and across each game.
Across all shaders, a minimum of 35% of reads and 40%
of writes are avoided, illustrating the general effectiveness
of this technique for these workloads. While the remainder
of our results are presented as averages, the same general
trends appear for other RFC configurations.

5.2 Two-Level Warp Scheduler

Next, we consider the performance of our two-level warp
scheduler rather than the typical, more complex, single level
scheduler. Figure 9 shows SM instructions per clock (IPC)
for a scheduler with 32 total warps and a range of active
warps, denoted below each bar. Along with the arithmetic
mean, the graph shows standard deviation across traces for
each scheduler size. The scheduler uses a greedy policy in the
inner level, issuing from a single warp until it can no longer
issue without a stall, and uses a round-robin policy when
replacing active warps with ready pending warps from the
outer level. The single-level scheduler (all 32 warps active)
issues in the same greedy fashion as the inner level. A two-
level scheduler with 8 active warps achieves nearly identical
performance to a scheduler with all 32 warps active, while
scheduling 6 active warps experiences a 1% performance loss
on compute and a 5% loss on graphics shaders.

traces for a few key active scheduler sizes. The figure shows
an all-warps-active scheduler along with three smaller ac-
tive scheduler sizes. A system with 8 active warps achieves
nearly the same performance as a single-level warp sched-
uler, whereas performance begins to deteriorate significantly
with fewer than 6 active warps. The effectiveness of 6 to 8
active warps can be attributed in part to our pipeline param-
eters; an 8-cycle pipeline latency is completely hidden with
8 warps, while a modest amount of ILP allows 6 to perform
nearly as well. Some traces actually see higher performance
with fewer active warps when compared with a fully active
warp scheduler; selecting among a smaller set of warps until
a long latency stall occurs helps to spread out long latency
memory or texture operations in time.

For selection among active warps, we compared round-
robin and greedy policies. Round-robin performs worse as
the active thread pool size is increased beyond a certain
size. This effect occurs because a fine-grained round-robin
interleaving tends to expose long-latency operations across
multiple warps in a short window of time, leading to many
simultaneously stalled warps. For the SPMD code common
to GPUs, round-robin scheduling of active warps leads to
consuming easily extracted parallel math operations with-
out overlapping memory accesses across warps. On the other
hand, issuing greedily often allows a stall-inducing long la-
tency operation (memory or texture) in one warp to be dis-
covered before switching to a new warp, overlapping the
latency with other computation.



32 32
—~ 28 ~ 28
= =
wv v
2 2
s 24 3 B & 24
N el N
o M H o0
] i 3
£ 2 —=—4 Active Warps £ 20 [ U —=—4 Active Warps
E v V =6 Active Warps %_i v =6 Active Warps
16 -8 Active Warps | 16 ! =8 Active Warps |
’ -+ 32 Active Warps =+ 32 Active Warps
12 12
Compute Traces (Sorted) Shader Traces (Sorted)
(a) 2-Level scheduling: compute (b) 2-Level scheduling: shader
Figure 10: IPC for various active warp set sizes (one point per trace).
100% 100%
90% 90%
E 80% E 80% r./?._gnzl:lii
s 70% s 70% A—A—n—a—A
> >
ﬁ 60% j 60% -
& 50% @ 50% -
S 40% - S 40% - /* g
< -4lmage < -4Almage
= 30% - #Video = 30% /./ #Video
S 20% - <#Simulation| = 20% - / --Simulation
Shader Shader
10% Te ®HPC 10% 4 @ HPC
0% T T T T T T T T T T T T 1 O% T T T T T T T T T T T T 1

1 2 3 45 6 7 8 9 10 11 12 13

Number of Entries per Thread
(a) MRF read accesses avoided

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of Entries per Thread
(b) MRF write accesses avoided (SW liveness)

Figure 11: Effectiveness of RFC when combined with two-level scheduler.

5.3 Combined Architecture

Combining register file caching with two-level scheduling
produces an effective combination for reducing accesses to a
large register file structure. A two-level scheduler dramati-
cally reduces the size of the RFC by allocating entries only
to active warps, while still maintaining performance compa-
rable to a single-level scheduler. A consequence of two-level
scheduling is that when a warp is deactivated, its entries in
the RFC must be flushed to the MRF so that RFC resources
can be reallocated to a newly activated warp.

Figure 11 shows the effectiveness of the RFC in combina-
tion with a two-level scheduler as a function of RFC entries
per thread. Compared to the results shown in Figure 6,
flushing the RFC entries for suspended warps increases the
number of MRF accesses by roughly 10%. This reduction
in RFC effectiveness is more than justified by the substan-
tial (4-6x) reduction in RFC capacity requirements when
allocating only for active warps.

We explore extending our baseline design by using static
liveness information to bypass values that will not be read
before the warp is deactivated around the RFC, directly to
the MRF. Additionally, we use static liveness information
to augment the FIFO RFC replacement policy to first evict
RFC values that will not be read before the next long latency

operation. These optimizations provide a modest 1-2% re-
duction in MRF accesses. However, bypassing these values
around the RFC saves energy by avoiding RFC accesses and
reduces the number of RFC writebacks to the MRF by 30%.

5.4 Energy Savings

MRF Traffic Reduction: Figure 12 shows the energy
consumed in register file accesses for a range of RFC config-
urations, normalized to the baseline design without an RFC.
Each bar is annotated with the amount of storage required
for the RFC bank per SIMT lane. The RFC architectures
include two-level scheduling with 4, 6, or 8 active warps and
4, 6, or 8 RFC entries per thread. The energy for the RFC
configurations is based on the results in Section 5.3 and in-
clude accesses to the RFC, the MRF, and the RFC/MRF
accesses required to flush RFC entries on a thread swap.
The addition of a register file cache substantially reduces
energy consumption, 20% to 40% for a variety of design
points. Generally, an RFC with 6 entries per thread pro-
vides the most energy savings for our SM design point. A
design with 6 RFC entries per thread and 8 active warps
reduces the amount of energy spent on register file accesses
by 25% without a performance penalty. This design requires
192 bytes of storage for the RFC bank per SIMT lane for a



1 =
S o = 4 Entries per
& %0.8 Thread
£ 3 B 6 Entries per
(=]
5 30'6 A Thread
a3 s .
o 804 g [ 8 Entries per
8 = o Thread
> E ~
2 £0.2
T -=—Performance
c 2
w
0
4 Active 6 Active 8 Active 4 Active 6 Active 8 Active
Warps Warps Warps Warps Warps Warps
Compute Shaders

Figure 12: Energy savings due to MRF traffic reduction, bars show register file access energy consumed
relative to baseline without RFC (lower is better), lines show performance (higher is better).

total of 6,144 bytes per SM. Additional energy can be saved
at the expense of performance for some workloads. In the 8-
active, 6-entry configuration, if every access was to the RFC
and the MRF was never accessed, the maximum idealized
energy savings would be 58%.

Wire Energy: Our proposed design presents several op-
portunities to reduce the energy expended moving data be-
tween the MRF and the ALUs. MRF banks are shared
across 4 SIMT lanes, forcing operands to be distributed
a greater distance to reach the ALUs compared with the
per-lane RFC banks. The operand buffering used to en-
able multi-cycle operand collection represents a large piece
of logic and interconnect that takes significant energy to tra-
verse. Operands from the RFC are fetched in a single cycle,
avoiding multi-cycle operand buffering. Further, the RFC
banks can be located much closer to the ALUs, reducing
wiring energy for ALU operations, while not adversely af-
fecting the wiring energy to the shared units. To evaluate
the potential energy savings from operand delivery we focus
on the expected reduction in wire distance using the energy
parameters in Table 3. While Figure 12 assumes zero wiring
overhead for either the MRF or RFC, the bottom three rows
of Table 5 show the normalized register file energy savings
when accounting for both the reduction in MRF accesses
and various wiring distances between the RFC and ALUs,
with 8 active warps and 6 RFC entries per thread. Assum-
ing the MRF is 1lmm from the ALUs, locating the RFCs
0.2mm from the ALUs boosts energy savings to 35% for the
compute traces and 37% for the shader traces. We expect
additional savings to come from the reduction in multi-cycle
operand buffering and multiplexing of values coming from
the MRF, an effect not quantified here.

5.5 Discussion

To put our energy savings in context, we present a high-
level GPU power model. A modern GPU chip consumes
roughly 130 Watts [16]. If we assume that 1/3 of this power
is spent on leakage, the chip consumes 87 Watts of dynamic
power. We assume that 30% of dynamic power is consumed
by the memory system and 70% of dynamic power is con-
sumed by the SMs [23]. This gives a dynamic power of 3.8
Watts per SM for a chip with 16 SMs. The register file con-

10

servatively consumes 15% of the SM power [16], about 0.6
Watts per SM. The register file system power is split be-
tween bank access power, wire transfer power, and operand
routing and buffering power. Our detailed evaluation shows
that our technique saves 36% of register file access and wire
energy. A detailed evaluation of operand buffering and rout-
ing power is beyond the scope of this paper. For the purpose
of this high-level model, we assume that our technique saves
36% of the full register file system power, about 0.2 Watts
per SM, for a chip wide savings of 3.3 Watts. This rep-
resents 5.4% of SM power and 3.8% of chip-wide dynamic
power. While 3.3 Watts may appear to be a small portion
of overall chip power, today’s GPUs are power limited and
improvements in energy efficiency can be directly translated
to performance increases. Making future high-performance
integrated systems more energy-efficient will come from a
series of architectural improvements rather than from a sin-
gle magic bullet. While each improvement may have a small
effect in isolation, collectively they can be significant.

In addition to the energy savings from simplifying the fre-
quently traversed datapaths from operand storage to ALUs,
the RFC and two-level scheduler provide two additional op-
portunities for energy savings. First, an RFC with 6 en-
tries per thread reduces the average MRF bandwidth re-
quired per instruction by half. We expect that this effect
can be leveraged to build a more energy-efficient MRF with
less aggregate bandwidth, without sacrificing performance.
Second, the two-level scheduler greatly simplifies schedul-
ing logic relative to a complex all-warps-active scheduler,
an energy-intensive component of the SM that must make
time-critical selections among a large number of warps. By
reducing the number of active warps, a two-level scheduler
also reduces storage requirements for buffered instructions
and scheduling state. Additionally, reduced ALU latencies
can decrease the average short-term latency that the inner
scheduler must hide, allowing fewer active warps to maintain
throughput, further reducing RFC overhead. ALU latency
of 4 cycles increases IPC for a 4-active scheduler by 5%,
with smaller increases for 6 and 8. Finally, prior work on a
previous generation GPU has shown that instruction fetch,
decode, and scheduling consumes up to 20% of chip-level
power [16], making the scheduler an attractive target for
energy reduction.



Normalized Register File Energy
MRF to ALU (mm) | RFC to ALU (mm) || Compute Shaders
0 0 0.76 0.74
1 1 0.87 0.86
1 0.2 0.65 0.63
1 0 0.63 0.60

Table 5: Combined access and wire energy savings for 8-active scheduler, 6-entry RFC.

6. RELATED WORK

Previous work on ILP-oriented superscalar schedulers has
proposed holding instructions dependent on long-latency op-
erations in separate waiting instruction buffers [22] for tol-
erating cache misses and using segmented [29] or hierarchi-
cal [10] windows. Cyclone proposed a two-level scheduling
queue for superscalar architectures to tolerate events of dif-
ferent latencies [12].

A variety of multithreaded architectures have been pro-
posed in the literature [34]. The Tera MTA [2] provided
large numbers of hardware thread contexts, similar to GPUs,
for latency hiding. Multithreaded machines such as Sun’s
Niagara [21] select among smaller numbers of threads to
hide latencies and avoid stalls. AMD GPUs [3, 5] multiplex
a small number of very wide (64 thread) wavefronts issued
over several cycles. Tune proposed balanced multithread-
ing, an extension to SMT where additional virtual thread
contexts are presented to software to leverage memory-level
parallelism, while fewer hardware thread contexts simplify
the SMT pipeline implementation [33]. Intel’s Larabee [30]
proposed software mechanisms, similar to traditional soft-
ware context switching, for suspending threads expected to
become idle due to texture requests. MIT’s Alewife [1] used
coarse-grained multithreading, performing thread context
switches only when a thread relied upon a remote mem-
ory access. Mechanisms for efficient context switching have
been proposed which recognize that only a subset of values
are live across context switches [25].

Prior work has found that a large number of register val-
ues are only used once and within a short period of time
from when they are produced [14]. Swensen and Patt show
that a 2-level register file hierarchy can provided nearly all
of the performance benefit of a large register file on scien-
tific codes [32]. Prior work has examined using register file
caches in the context of CPUs [11, 36, 19, 26, 9, 7], much
of which was focused on reducing the latency of register file
accesses. Rather than reduce latency, we aim to reduce the
energy spent in the register file system. Shioya et al. de-
signed a register cache for a limited-thread CPU that aims
to simplify the design of the MRF to save area and energy
rather than reducing latency [31]. Other work in the context
of CPUs considers register file caches with tens of entries per
thread [11]. Since GPUs have a large number of threads, the
register file cache must have a limited number of entries per
thread to remain small. Zeng and Ghose propose a register
file cache that saves 38% of the register file access energy
in a CPU by reducing the number of ports required in the
main register file [36]. Each thread on a GPU is executed
in-order, removing several of the challenges faced by register
file caching on a CPU, including preserving register values
for precise exceptions [17] and the interaction between reg-
ister renaming and register file caching. The ELM project
considered a software controlled operand register file, pri-
vate to an ALU, with a small number of entries to reduce

11

energy on an embedded processor [8]. In ELM, entries were
not shared among a large number of threads and could be
persistent for extended periods of time. Past work has also
relied on software providing information to the hardware to
increase the effectiveness of the register file cache [19].

AMD GPUs use clause temporary registers to hold short
lived values during a short sequence of instructions that does
not contain a change in control-flow [5]. The software ex-
plicitly controls allocation and eviction from these registers
and values are not preserved across clause boundaries. Ad-
ditionally, instructions can explicitly use the result of the
previous instruction [3]. This technique can eliminate reg-
ister accesses for values that are consumed only once when
the consuming instruction immediately follows the produc-
ing instruction.

7. CONCLUSION

Modern GPU designs are constrained by various require-
ments, chief among which is high performance on throughput-
oriented workloads such as traditional graphics applications.
This requirement leads to design points which achieve per-
formance through massive multithreading, necessitating very
large register files. We demonstrate that a combination of
two techniques, register file caching and two-level schedul-
ing, can provide power savings while maintaining perfor-
mance for massively threaded GPU designs. Two-level sched-
uling reduces the hardware required for warp scheduling and
enables smaller, more efficient register file caches. Coupled
with two-level scheduling, register file caching reduces traffic
to the main register file by 40-80% with 6 RFC entries per
thread. This reduction in traffic along with more efficient
operand delivery reduces energy consumed by the register
file by 36%, corresponding to a savings of 3.3 Watts of total
chip power, without affecting throughput.

Several opportunities exist to extend this work to further
improve energy efficiency. Rather than rely on a hardware
register cache, allocation and eviction could be handled en-
tirely by software, eliminating the need for RFC tag checks.
The effectiveness of the RFC could be improved by apply-
ing code transformations that were aware of the RFC. Soft-
ware control in the form of hints could also be applied to
provide more flexible policies for activating or deactivating
warps in our two-level scheduler. As GPUs have emerged
as an important high performance computational platform,
improving energy efficiency through all possible means in-
cluding static analysis will be key to future increases in per-
formance.

Acknowledgments

We thank the anonymous reviewers and the members of
the NVIDIA Architecture Research Group for their com-
ments. This research was funded in part by DARPA con-
tract HR0011-10-9-0008 and NSF grant CCF-0936700.



8.
[1]

[6]

[7]

(8]

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

REFERENCES

A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz.
APRIL: A Processor Architecture for Multiprocessing. In
International Symposium on Computer Architecture, pages
104-114, June 1990.

R. Alverson, D. Callahan, D. Cummings, B. Koblenz,

A. Porterfield, and B. Smith. The Tera Computer System.
In International Conference on Supercomputing, pages 1-6,
June 1990.

AMD. R600-Family Instruction Set Architecture.
http://developer.amd.com/gpu_assets/R600_
Instruction_Set_Architecture.pdf, January 2009.
AMD. ATI Stream Computing OpenCL Programming
Guide. http://developer.amd.com/gpu/ATIStreamSDK/
assets/ATI_Strea.m_SDK_UpenCL_Progra.mming_Guide .pdf,
August 2010.

AMD. HD 6900 Series Instruction Set Architecture.
http://developer.amd.com/gpu/amdappsdk/assets/AMD_
HD_6900_Series_Instruction_Set_Architecture.pdf,
February 2011.

A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and
T. M. Aamodt. Analyzing CUDA Workloads Using a
Detailed GPU Simulator. In International Symposium on
Performance Analysis of Systems and Software, pages
163-174, April 2009.

R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi.
Reducing the Complexity of the Register File in Dynamic
Susperscalar Processors. In International Symposium on
Microarchitecture, pages 237-248, December 2001.

J. Balfour, R. Harting, and W. Dally. Operand Registers
and Explicit Operand Forwarding. IEEE Computer
Archiecture Letters, 8(2):60—-63, July 2009.

E. Borch, E. Tune, S. Manne, and J. Emer. Loose Loops
Sink Chips. In International Symposium on High
Performance Computer Architecture, pages 299-310,
February 2002.

E. Brekelbaum, J. Rupley, C. Wilkerson, and B. Black.
Hierarchical Scheduling Windows. In International
Symposium on Microarchitecture, pages 27-36, November
2002.

J. Cruz, A. Gonzlez, M. Valero, and N. P. Topham.
Multiple-banked Register File Architectures. In
International Symposium on Computer Architecture, pages
316-325, June 2000.

D. Ernst, A. Hamel, and T. Austin. Cyclone: A
Broadcast-free Dynamic Instrution Scheduler with
Selective Replay. In International Symposium on
Computer Architecture, pages 253—263, June 2003.

K. Fatahalian and M. Houston. A Closer Look at GPUs.
Communications of the ACM, 51(10):50-57, October 2008.
M. Franklin and G. S. Sohi. Register Traffic Analysis for
Streamlining Inter-operation Communication in Fine-grain
Parallel Processors. In International Symposium on
Microarchitecture, pages 236245, November 1992.

S. Galal and M. Horowitz. Energy-Efficient Floating Point
Unit Design. IEEE Transactions on Computers,
99(PrePrint), 2010.

S. Hong and H. Kim. An Integrated GPU Power and
Performance Model. In International Symposium on
Computer Architecture, pages 280-289, June 2010.

Z. Hu and M. Martonosi. Reducing Register File Power
Consumption by Exploiting Value Lifetime Characteristics.
In Workshop on Complexity-Effective Design, June 2000.
International Technology Roadmap for Semiconductors.
http://itrs.net/links/2009ITRS/Home2009.htm, 2009.

T. M. Jones, M. F. P. O’'Boyle, J. Abella, A. Gonzélez, and
O. Ergin. Energy-efficient Register Caching with Compiler
Assistance. ACM Transactions on Architecture and Code
Optimization, 6(4):1-23, October 2009.

P. Kogge et al. ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems. Technical

12

(21]

(22]

23]

[24]

[25]

[26]

27]

(28]

29]

(30]

(31]

(32]

33]

34]

(35]

(36]

37)

Report TR-2008-13, University of Notre Dame, September
2008.

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A
32-Way Multithreaded SPARC Processor. IEEE Micro,
25(2):21-29, March 2005.

A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and
E. Rotenberg. A Large, Fast Instruction Window for
Tolerating Cache Misses. In International Symposium on
Computer Architecture, pages 59-70, May 2002.

A. S. Leon, B. Langley, and J. L. Shin. The UltraSPARC
T1 Processor: CMT Reliability. In IEEE Custom
Integrated Circuits Conference, pages 555 =562, September
2007.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
CACTI 6.0: A Tool to Model Large Caches. Technical
report, HP Laboratories, April 2009.

P. R. Nuth and W. J. Dally. A Mechanism for Efficient
Context Switching. In International Conference on
Computer Design on VLSI in Computer & Processors,
pages 301-304, October 1991.

P. R. Nuth and W. J. Dally. The Named-State Register
File: Implementation and Performance. In International
Symposium on High Performance Computer Architecture,
pages 4-13, January 1995.

NVIDIA. Compute Unified Device Architecture
Programming Guide Version 2.0.
http://devloper.download.nvidia.com/compute/cuda/2_
0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf, June
2008.

NVIDIA. NVIDIA’s Next Generation CUDA Compute
Architecture: Fermi.
http://nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf,
2009.

S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A
Scalable Instruction Queue Design Using Dependence
Chains. In International Symposium on Computer
Architecture, pages 318-329, May 2002.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,

R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: A Many-core x86 Architecture for Visual
Computing. In International Conference and Ezhibition on
Computer Graphics and Interactive Techniques, pages
1-15, August 2008.

R. Shioya, K. Horio, M. Goshima, and S. Sakai. Register
Cache System not for Latency Reduction Purpose. In
International Symposium on Microarchitecture, pages
301-312, December 2010.

J. A. Swensen and Y. N. Patt. Hierarchical Registers for
Scientific Computers. In International Conference on
Supercomputing, pages 346-354, September 1988.

E. Tune, R. Kumar, D. M. Tullsen, and B. Calder.
Balanced Multithreading: Increasing Throughput via a
Low Cost Multithreading Hierarchy. In International
Symposium on Microarchitecture, pages 183—194,
December 2004.

T. Ungerer, B. Robi¢, and J. Silc. A Survey of Processors
with Explicit Multithreading. ACM Computing Surveys,
35(1):29-63, March 2003.

H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos. Demystifying GPU Microarchitecture
through Microbenchmarking. In International Symposium
on Performance Analysis of Systems and Software, pages
235-246, March 2010.

H. Zeng and K. Ghose. Register File Caching for Energy
Efficiency. In International Symposium on Low Power
Electronics and Design, pages 244—249, October 2006.

X. Zhuang and S. Pande. Resolving Register Bank
Conflicts for a Network Processor. In International
Conference on Parallel Architectures and Compilation
Techniques, pages 269-278, September 2003.



