Abstraction for Epistemic Model Checking of
Dining Cryptographers-based Protocols *

Omar I. Al-Bataineh and Ron van der Meyden

School of Computer Science and Engineering,
University of New South Wales

Abstract. The paper describes an abstraction for protocols that are
based on multiple rounds of Chaum’s Dining Cryptographers protocol.
It is proved that the abstraction preserves a rich class of specifications
in the logic of knowledge, including specifications describing what an
agent knows about other agents’ knowledge. This result can be used to
optimize model checking of Dining Cryptographers-based protocols, and
applied within a methodology for knowledge-based program implementa-
tion and verification. Some case studies of such an application are given,
for a protocol that uses the Dining Cryptographers protocol as a prim-
itive in an anonymous broadcast system. Performance results are given
for model checking knowledge-based specifications in the concrete and
abstract models of this protocol, and some new conclusions about the
protocol are derived.

1 Introduction

Relations of abstraction (and their converse, refinement) are valuable tools for
program verification. In this approach, we relate a (structurally complex) con-
crete program to a (simpler) abstract program by means of a relation that is
known to preserve the properties that we wish to verify in the concrete program.
When such a relation can be shown to hold, we are able to verify these proper-
ties in the concrete program by showing that they hold in the abstract program,
which is generally easier in view of the lesser structural complexity of the abstract
program. In particular, model checkers can be expected to run more efficiently
on the abstract program than on the concrete program, and abstraction is often
used to bring the verification problem within the bounds of feasibility for model
checking. Conversely, starting with the abstract program, and having verified
that this satisfies the desired properties, we may derive the concrete program

* This material is based on research sponsored by the Air Force Research Laboratory,
under agreement number FA2386-09-1-4156. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government. Version of October 12, 2010.

and conclude that this also satisfies these properties. This perspective is the
basis for “correctness-by-construction” or top-down refinement approaches to
program verification.

Our contribution in this paper is to establish the correctness of an abstraction
relation for abstract programs based on use a trusted third party for anonymous
broadcast, which is implemented in the related concrete programs by means
of the Dining Cryptographers protocol proposed by Chaum [4]. That Chaum’s
protocol implements anonymous broadcast is, of course, well-known, but we show
that this statement holds in a more general sense than is usually considered in
the literature, where the focus is generally on the very particular property of
anonymity. Specifically, we consider a broad class of properties formulated in
the logic of knowledge, including properties in which agent knowledge is nested,
such as “Alice knows that Bob knows that p”. We show that the abstraction
relation between programs based on the trusted third party and programs based
on the Dining Cryptographers protocol preserves all properties from this class.

As an application of this result, we consider a protocol from Chaum’s paper
[4] that uses multiple rounds of the Dining Cryptographers protocol to build
a more general anonymous broadcast system. We have previously studied this
protocol from the perspective of a model checking based methodology for the
implementation of knowledge-based programs [2], by treating the specification
of the protocol as a knowledge-based program containing nested knowledge for-
mulas.

Knowledge-based programs [9] are an abstract, program-like form of speci-
fication, that describe how an agent’s actions are related to conditions stated
in terms of the agent’s knowledge. The advantage of this level of abstraction
is that it provides a highly intuitive description of the intentions of the pro-
grammer, that has been argued to be easier to verify than the complex imple-
mentations one typically finds for highly optimized distributed programs [14, 9].
Knowledge-based programs cannot be directly implemented, however, so they
must be implemented by concrete programs in which the knowledge conditions
are replaced by concrete predicates of the agent’s local state. The implementa-
tion relation between a knowledge-based program and a putative implementation
holds when these concrete predicates are equivalent to the knowledge formulas
that they replace (interpreted with respect to the system generated by running
the putative implementation). Our partially-automated methodology for the im-
plementation of knowledge-based programs uses a model checker for the logic of
knowledge to check whether this equivalence holds, and if it does not, uses the
counter-examples generated by the model checker to generate a revised putative
implementation. (This process is iterated until an implementation is found.)

In our previous work on the application of this methodology, we consid-
ered model checking problems generated in this way from a knowledge-based
program based on multiple rounds of the Dining Cryptographers protocol. Our
experience was that the model checking problems we considered were close to
the bounds of feasibility for our model checker even for instances with small
numbers of agents, and we were prevented from considering instances of scale

as a result. In the present paper, we apply our abstraction result in order to
optimize the model checking problem, by performing model checking on the ab-
stracted (trusted third party) version of the programs we consider rather than
the concrete (Dining Cryptographers based) versions. We give performance re-
sults showing the difference, which indicate that the abstraction is effective in
reducing the model checking runtime by several orders of magnitude, enabling
systems involving larger numbers of rounds of the Dining Cryptographers pro-
tocol and larger numbers of agents to be model checked. We use the efficiency
gains to extend our previous analysis of the knowledge based program to larger
numbers of agents, leading to an improved understanding of its implementations.

The structure of the paper is as follows. We begin in Section 2 by introducing
the logic of knowledge, which provides the specification language for the prop-
erties that are preserved by our abstraction technique, and give its semantics in
terms of a class of Kripke structures. We define a notion of bisimulation on these
Kripke structures that provides the semantic basis for our program abstraction
technique. In Section 3, we introduce a simple programming language used to
represent our concrete and abstract programs. In Section 4, we introduce the Din-
ing Cryptographers protocol and, in Section 5, its abstraction using a trusted
third party. In Section 6 we state and prove correct the abstraction relation.
The remainder of the paper deals with our application of this result. We recall
the two-phase protocol in Section 7. In Section 8 we describe knowledge-based
programs and an approach to the use of model checking to identify their imple-
mentations. In Section 9 we recall our formulation of the two-phase protocol as
a knowledge-based program and describe the associated verification conditions.
Section 10 discusses the comparative performance of model checking in the con-
crete and abstract models when using the model checker MCK. We highlight
some of the interesting conclusions we are able to make about implementations
of the knowledge-based program for the round-based protocol in Section 11. We
discuss related work in Section 12. Finally, in Section 13, we draw some conclu-
sions and discuss future directions.

2 Epistemic Logic and Bisimulations

Epistemic logics are a class of modal logics that include operators whose mean-
ing concerns the information available to agents in a distributed or multi-agent
system. In epistemic model checking, one is generally concerned with the combi-
nation of such operators with temporal operators, and a semantics using a class
of structures known in the literature as interpreted systems [9] that combines
temporal and epistemic expressiveness. We focus here on a simpler framework
that omits temporal operators, since we are mostly interested, in our applica-
tion, on what knowledge agents have after some program has run, and this also
simplifies the statement and proof of our results.

Suppose that we are interested in systems comprised of agents from a set Agt
whose states are described using a set Var of boolean variables.! The syntax of
the logic of knowledge L(v,r ag¢) is given by the following grammar:

pu=T|v[-¢|oAQ| Kid

where v € Var is a variable and i € Agt is an agent. (We freely use standard
boolean operators that can be defined using the two given.) Intuitively, the
meaning of K;¢ is that agent ¢ knows that ¢ is true.

The semantics for the language is given in terms of Kripke structures of the
form M = (Agt, W, {~;}icag, Var,), where

. Agt is the set of agents,

. W is a set of worlds, or situations,

. for each i € Agt, ~; is an equivalence relation on W,
Var is a set of variables,

m: W x Var — {0,1} is a valuation.

CU W N

Intuitively, W is the set of situations that the agents consider that they could be
in, and w ~; w’ if, when the actual situation is w, agent ¢ considers it possible
that they are in situation w’. The value 7(w,v) is the truth value of variable
v in situation w. Such a Kripke structure M is fit for the language L vy, agi)
if Agt’ C Agt and Var’ C Var. The semantics of the language is given by the
relation M, w = ¢, where M is a Kripke structure fit for Lvar agr), w is a world
of M, and ¢ is a formula, meaning intuitively that the formula ¢ holds at the
world w. The definition is given inductively by

1. M,w kv if n(w,v) =1, for v € Var.

2. M,w | —¢ if not M,w [¢,

3. Myw k= ¢ A s if Myw | ¢y and M, w = ¢o,

4. M,w = K;¢ if M,w' |E ¢ for all w’ € W with w ~; w’, for i € Agt.

Intuitively, the final clause says that agent i knows ¢ if it does not consider it
possible that not ¢. We write M = ¢, and say that ¢ is valid in M, if M,w |= ¢
for all w € W. The Kripke structure model checking problem is to compute, given
M and ¢, whether M = ¢. We will use this formulation of the model checking
problem as the basis for another notion of model checking, to be introduced
below, that concerns a way of generating M from a program.

One of the difficulties to be faced in model checking, the state space explosion
problem, is the potentially large size of the set of worlds W of the structures M
of interest. Abstractions are useful techniques for mitigating state space explo-
sion problem. They are often applied as a preliminary step to model checking.
Systems often encode details that are irrelevant to the properties that we aim to
verify. Abstraction techniques enable us to eliminate such unnecessary, redun-
dant details. However, abstractions must be sound, in the sense that properties
that hold in the abstract model must also hold in the concrete model.

1 'We use the term “variable” rather than “proposition” in this paper, since our atomic
propositions arise as boolean variables in a program.

For Kripke structures, bisimulations may provide an effective way to simplify
redundant structure while preserving properties of interest. We formulate here a
version that is suited to our application, in which we allow both the set of agents
and the set of propositions to vary in the structures we consider.

Suppose we are given a set of variables Var, a set of agents Agt, and two
Kripke structures

M = (AgtM, WM7 {Nz]'v[}ieAgtMﬂ VG'TM’WM)

and
N = (AgtNa WN7 {Niv}iEAgtNa V(M”N, TrN)

such that Agt C Agt,, NAgty and Var € Var™ N Var™ . (Note that these condi-

tions imply that both M and N are fit for L(var ag).) A (Var, Agt)-bisimulation

R between M and N is defined to be a binary relation ® C WM x W¥ such

that:

1. Atoms: 7 (w,v) = 7V (w’, v) whenever wRw’ and v € Var;

2. Forth: if i € Agt, and wy,ws are two worlds in M and w; is a world in N
such that w; NéM wy and wiRuq, then there is a world us € Wi such that
Uy Nf\' uo and woRus; and

3. Back: if i € Agt and uy,us are two worlds in N and w; is a world in M such
that u; Nﬁv ug and uyRwi, then there is a wy € Wy such that wy ~M wy

2
and uoRws.

If there exists an (Var, Agt)-bisimulation £ between M and N such that wRu,
then we write (M, w) ~(vqr, agt) (IV,). If there exists an (Var, Agt)-bisimulation
R between M and N such that for every u € W™ there exists w € W such
that uRw and, conversely, for every w € W there exists u € WM™ such that
uRw, then we write M (v, agt) N. The following result shows that (Var, Agt)-
bisimulation preserves properties in the language L vqr agt)-

Lemma 1. If M and N are Kripke structures and u and w are worlds of M
and N such that (M,w) =(var agt) (N, w), then for all ¢ € Liyar ag) we have
M,u = ¢ if and only if Nyw |= @. If M X (var agry N then for all ¢ € Livar, g
we have M |= ¢ if and only if N |= .

We omit the proof since it is a minor variant of well-known results in the
literature. In our applications of this result, we will consider a complex, con-
crete structure M and a simper, more abstract structure N, and show that
M ~(var,agty N. This enables us to verify M |= ¢ using the model checking
problem N | ¢, which is likely to be computationally easier in view of the
smaller size of N. However, we need to also develop an abstraction technique for
the programs that generate these Kripke structures. We develop this technique
in the following sections.

3 A Programming Language and its Semantics

We use a small multi-agent programming language equipped with a notion of
observability. All variables are Boolean, and expressions are formed from vari-
ables using the usual Boolean operators. The language has the following atomic
actions, in which ¢ and j are agents, z is a variable name and e is an expression:

1. i: 2 := e — agent i evaluates e and assigns the result to z,

2. i: rand(x) — agent 7 assigns a random value to z,

3. 1:e— j.or — agent ¢ evaluates e and transmits the result across a private
channel to agent j, who assigns it to its variable x,

4. 1 : broadcast(x) — agent ¢ broadcasts the value of the variable z to all other
agents.

Note that we write .z for agent i’s variable x (the variables i.z and j.x are
considered distinct when ¢ # j) but may omit the agent name when this is
clear from the context. In particular, in an atomic action ¢ : a, any variable x
not explicitly associated with an agent refers to i.z. For example, we may write
1:x:=1y® zrather than i : .z := i.y ® i.z. Similarly, when e is an expression in
which agent indices are omitted, and 7 is an agent, the expression i.e refers to the
result of replacing each occurrence of a variable name x in e that is not already
associated to an agent index with ¢.x. Thus i.(y ® j.z) represents i.y ® j.z.

Each atomic action reads and writes certain variables. Specifically, the action
i:x:= e reads the (agent i) variables in e and writes i.z, the action i : rand(x)
reads nothing and writes .z, the action i : e — j.x reads the (agent i) variables
in e and writes j.z, and the action ¢ : broadcast(z) reads x and writes nothing. A
joint action is a set of atomic actions in which no variable is written more than
once. Intuitively, a joint action is executed by first evaluating all the expressions
and then performing a simultaneous assignment to the variables.

A program is given by a sequence of joint actions A1;...; A,. A program for
agent i is a program in which each atomic action j : @ in any step has j =i. We
permit parallelism within an agent, in the sense that we do not require that a
joint action contains at most one atomic action for each agent. If we are given

for each agent i a program P; = A%;...; Al all of the same length n, then we
may form the joint program ||;P; = (U; A%);...; (U AY).

Some well-formedness conditions are required on agent programs. An ob-
servability mapping is a function ov mapping each agent to a set of variables,
intuitively, the set of variables that it may observe. A program runs in the con-
text of an observability mapping, and modifies that mapping. We say that a

joint action A is enabled at an observability map ov if

1. no variable written to by A is in ov(i) for any agent ¢ (that is, all variables
written to are new variables), and

2. for each atomic action ¢ : := e and i : e — j.z in A, the expression i.e
contains only variables in ov(i), and

3. for each action i.broadcast(x) we have i.xz € ov(i).

These constraints may be understood as access control constraints stating that
agent ¢ may read only the variables in ov(i) and may write only new variables.

Executing the action A transforms the observability map ov to the observ-
ability map ov[A] such that ov[A](4) is the result of adding to ov(i)

1. all variables i.z such that an action of the form ¢ : x := e or i : rand(z) or
j:e—i.x occurs in A, and
2. all variables j.x such that j : broadcast(x) occurs in A.

These definitions are generalised to programs: the program P = Ai;...; A, is
enabled at the observability map ov if for each ¢ = 1...n, the action A; is enabled
at ov[A1]...[Ai—1], and we define ov[P] to be ov[4]...[A4,].

Ezample 1. Consider a two-agent system with agents 4, j. The action {i : x :=
J-y} is not enabled at the observability map ov given by {j — {j.y}}. However,
the program {j : broadcast(y)};{i : © := j.y} is enabled at ov, since the action
{j : broadcast(y)} is enabled at ov, and transforms ov to ov[{j : broadcast(y)}] =
{j— {4y}, i— {j.y}}, at which the action {i : x := j.y} is enabled.

We say that an observability map is consistent with a Kripke structure M =
(Agt, W,{~i}icagt, Var,m) when for all agents ¢, if v is a variable in ov() then
v € Var, and for all worlds w,w’ € W such that w ~; w’ we have m(w,v) =
m(w',v). Intuitively, ov is consistent with M if all variables declared to be local
to agent ¢ by ov are in fact defined and semantically local to agent ¢ in M.

The program P is enabled at a Kripke structure M if there exists an observ-
ability map ov such that

1. ov is consistent with M,
2. P is enabled at ov, and
3. all variables x written by P are not defined in M (i.e., z € Var).

In particular, note that if a single joint action A is enabled at M, then for all
variables = read by A, and all worlds w, the value 7(w,z) is defined. Conse-
quently, we may also evaluate at w any expression e required to be computed
by A. We write 7(w, e) for the result.

We can now give a semantics of programs, in which a program applied to
a Kripke structure representing the initial states of information of the agents,
transforms the structure into another Kripke structure representing the states
of information of the agents after running the program. The definition is given
inductively, on an action-by-action basis. Let M = (Agt, W, {~;}icag:, Var,)
be a Kripke structure and A a joint action. We define a Kripke structure M[A] =
(Agt',\ W' {~!}icagr, Var',m') as follows. Let V be the set of variables i.z such
that A includes the atomic action i : rand(x). Intuitively, such actions increase
the amount of non-determinism in the system, whereas all other actions have
deterministic effects. We define Agt’ = Agt and take W’ to be the set of states
of the form (w, k) where w € W and x : V — {0, 1} is an assignment of boolean
values to the variables in V. We may write w + k for the pair (w, k). In case
V' is the empty set, k is always the null function, so we may write just w for

(w, k). The set Var' of variables defined in M|[A] is obtained by adding to Var
all variables written to by A. The assignment 7’ is obtained by extending m to
these new variables by defining 7’ as follows on worlds w + :

if v € Var then n'(w + k,v) = w(w,v) ,

if i : x := e occurs in A then 7'(w + &, i.2) = w(w,i.e) ,
if i : rand(x) occurs in A then 7'(w + &, i.2) = k(i.x), and
if j: e — i.x occurs in A then 7' (w + k,i.x) = w(w, j.e).

Ll

Finally, the indistinguishability relations ~/} are defined using the observability
map ov[A]: we define w + k ~; w' + k" when w ~; w and for all variables
x in ov[A](i) \ ov(i), we have 7'(w + k,z) = 7'(w' + k', x). Intuitively, this
reflects that the agent recalls any information it had in the structure M, and
adds to this information that it is able to observe in the new state. Note that
in fact w+ k ~; w’ + £’ implies 7’ (w + k,x) = 7' (w’ + k', x) for all variables
x € ov[A](4), since we have assumed that for € ov(i) we have that w ~; w
implies m(w, z) = 7(w’,). Moreover, since the set ov[A](7) \ ov(7) is just the set
of variables written to by A that are made observable to 4, this observation also
yields that the definition of M[A] is independent of the choice of observation

map ov consistent with M.

4 Chaum’s Dining Cryptographers Protocol

Chaum’s Dining Cryptographers protocol is an example of an anonymous broad-
cast protocol: it allows an agent to send a message without revealing its identity.
Chaum introduces the protocol with the following story:

Three cryptographers are sitting down to dinner at their favourite restau-
rant. Their waiter informs them that arrangements have been made with
the maitre d’hotel for the bill to be paid anonymously. One of the cryp-
tographers might be paying for the dinner, or it might have been NSA
(U.S National Security Agency). The three cryptographers respect each
other’s right to make an anonymous payment, but they wonder if NSA
is paying. They resolve their uncertainty fairly by carrying out the fol-
lowing protocol:

Each cryptographer flips an unbiased coin behind his menu, between him
and the cryptographer on his right, so that only the two of them can see
the outcome. Each cryptographer then states aloud whether the two
coins he can see-the one he flipped and the one his left-hand neighbor
flipped—fell on the same side or on different sides. If one of the cryp-
tographers is the payer, he states the opposite of what he sees. An odd
number of differences uttered at the table indicates that a cryptographer
is paying; an even number indicates that NSA is paying (assuming that
the dinner was paid for only once). Yet if a cryptographer is paying, nei-
ther of the other two learns anything from the utterances about which
cryptographer it is.

Chaum shows that this protocol solves the problem, and notes that it can
be considered as a mechanism enabling a signal to be anonymously transmitted,
under the assumption that at most one of the agents wishes to transmit. He goes
on to generalize the idea to n-agent settings where, in place of the ring of coins,
we have a graph representing the key-sharing arrangement.

The more general protocol can be represented in our programming language
as follows. We assume that there is a set Agt of agents, who share secrets based
on a (directed) key sharing graph G = (Agt, E) in which the vertices are the
agents in Agt and the edges £ C Agt x Agt describe the keysharing arrrangement
amongst the agents. We model keysharing by assuming that for each edge e =
(i,7), agent i generates the key corresponding to the edge, and communicates
the key to j across a secure channel. For each edge e = (i,5) we write e; for
the source agent i and es for the destination agent j. For each agent i we define
in(i) ={e € E| e =i} and out(i) = {e € E | ey = i}. Accordingly, we use
two variables for each edge e = (i, j): the variable i.k. stores i’s copy of the key
corresponding to the edge, and the variable j.k. stores j’s copy. We write keys(%)
for in(i) U out(i), i.e., the set of edges incident on i. The protocol DC;(m) of
an agent i € Agt (in which the message represented by the expression i.m is
transmitted anonymously by agent i) consists of the following five steps:

DC;(m) = {i: rand(ke) | e € out(i)};
{i: ke = ea.ke | € € out(i)}
{7’ hi=me® ®e€keys(i) kﬂ};
{i : broadcast(b)};
{i:rr:=Q®jcag j.b}

Figure 1: The protocol DC

We write DC(m) for the joint program ||;c 44 DC;(m).

Intuitively, the protocol DC operates by first generating keys and setting up
the key sharing graph, and then having each of the agents make a public an-
nouncement encrypted using all the keys available to them. The directionality of
an edge in the key sharing graph indicates who generates the key corresponding
to the edge, viz, the source agent of the edge. The first step of the protocol cor-
responds to each agent generating the key values for which they are responsible.
In the second step, these keys are shared with the other agent on the edge by
transmission across a secure channel. Each agent now has the value of each of
the key edges on which it is incident, and computes the xor of its message with
all these key values in the 3rd step, and broadcasts the result in the 4th step.
In the final step of the protocol, each agent computes the xor of the messages
broadcast as the result of the protocol.

5 An Abstraction of the Dining Cryptographers Protocol

We are interested in protocols in which the DC protocol is used as a basic
building block, and in model checking the agent’s knowledge in the resulting
protocols. In order to optimize this model checking problem, we now introduce a
protocol that we will show to be an abstraction of the DC protocol that preserves
epistemic properties.

The abstracted version of the protocol omits the use of keys, but adds to the
set of agents a trusted third party 7" who computes the result of the protocol
on behalf of the agents, and then broadcasts it. Here, we take Agt® = Agt U
{T'}. The protocol DC¥(m) for agent ¢ is given in four steps, see Figure 2. We

DC{(m) = {i:m — T.x;}; (for i € Agt) DC%(m) = {};
{h {T:y = Qicagt i}
{}; {T : broadcast(y)};
{i:rr:=y} {}

Figure 2: The abstract protocol DC*

write DC*(m) for the joint program ||;c agre DC{(m). Intuitively, in the abstract
protocol, the agents transmit their bits across a secure channel to the trusted
third party, who computes the exclusive-or and broadcasts it.

Note that since the protocol DC® makes no use of randomization, the set
of worlds of the structure M[DC?(m)| is identical to the set of worlds of the
structure M; only the set of defined variables and the indistinguishability relation
change. We can characterize the indistinguishability relations of M[DC*(m)] as
follows, where we introduce the abbreviation @m for ®;c 44+ 7.m.

Lemma 2. If M is a Kripke structure at which DC’“() is enabled, and u,v
are worlds of M[DC®(m)| then u ~ [DC (m)] iff u ~M v and 7 (u,®@m) =
M (v, @m).

The program DC(m) makes use of randomization, so the structure M[DC/(m)]
has more worlds than the structure M. More specifically, it can be seen that the
worlds of M[DC(m)] have the form ((w, k1), k2), where £ assigns boolean val-
ues to the variables i.k. for e € E and 7 = e;, and ko assigns boolean values
to the variables i.k. for e € E and i = e5. Note that by the second step of the
protocol, we always have k1(e1.k.) = ka(ea.ke) for all e € E. We may therefore
abbreviate such a world to w + k, where k : E — {0,1}, and we have

1. aMIPC (w4 K, e1.k.) = K(e),
2. pMIPC (y 4k, e9.ke) = K(e),
3. 7TM[DC‘(m)](w + K, 1. b) = ﬂ'(’w 7. m) ® ®eekeys() H() and
4. MIPC (4 gy irr) = @jeagr TP (w + K, 4.b).

Note that the final equation may be simplified as follows:

aM[DC(m)] (WK, 1.rr) = Qjcag aM[DC(m)] (w+ K, j.b)
= @jeage (TP (W + ks, jm) © Gcereys(s) £(e))
= (®jeAgt WM(wajm))
= M (w, @m)

where the third step follows using the fact each term x(e) occurs twice, once for
e € keys(ey) and once for e € keys(ez). Based on this representation, we can
characterize the indistinguishability relations of M[DC(m)] as follows:

Lemma 3. If M is a Kripke structure at which DC(m) is enabled, and u + k
and v + A are worlds of M[DC(m)] then u + K NZM[DC(m)] v+ A aff

1. u~My and
2. k(e) = A(e) for all e € keys(i) and
3. ﬂ'M(u,j,m) ® ®e€keys(j)’%(e) = 7T'M(’U,j.m) ® ®e€keys(j)/\(e) fOT a’”] € Agt

6 Proof of Abstraction

The following is implicit? in the proof of a key result concerning the DC protocol
that is proved in Chaum [4] (Section 1.4).

Lemma 4. For all i € Agt and for all functions k : E — {0,1} and p : Agt —
{0,1} and p' : Agt — {0,1} such that @icag (i) = Qicage ' (3), there exists a
function A : E — {0,1} such that k | keys(i) = X | keys(i) and for all j € Agt,
we have /1'(]) ® ®e€keys(j) H(e) = :U'/(]) ® ®e€keys(j))\(6)

Note that the variables introduced by DC(m) are the variables i.k,, i.b and
i.rr for i € Agt and e € E. The variables introduced by DC?(m) are T.x;, T.y
and i.rr for i € Agt. Hence the set of variables introduced by both protocols
is the set {i.rr | i € Agt}. The following result states that these variables are
introduced by these protocols in such a way as to extend a bisimulation between
given concrete and abstract structures to the new variables.

Theorem 1. Suppose that M =~y aqe M® for a set of variables V containing all
variables in the expressions i.m fori € Agt, and let DC(m) be enabled at M and
DC?(m) be enabled at M*. Then M[DC(m)] v ufirr|icagt},age M*[DC*(m)].

Proof. Let M = (W, Agt, {~;}ic agt, Prop, 7) and let
M* = <Wa7 Agta> {Ng}ieAgt‘IvPTOpa7 7Ta> .

We write
M[DC(m)] = (W', Agt,{~}icagt, Prop’, ")

2 Chaum’s result is stated probabilistically, but the proof is largely non-probabilistic
and establishes this result.

and
Me[DC*(m)] = (W* , Agt*, {~] }icagts, Prop® , 7") .

As noted above, we have We' = We and
W ={w+r|weW, k: E—{0,1}}.

Let R C W x W* be the bisimulation relation witnessing M ~v, 44 M*. We
define the relation ® C (W’ x W) as follows: w + £ Rw’ if wRw'. We claim
that this relation witnesses M[DC(m)] Ry uirr |icagty,age M [DC(m)].

Atoms: We need to check that for all v € V U {i.rr|i € Agt}, if w+ s Rw’
then 7' (w + k,v) = 7 (w’,v). For propositions v € V, this is immediate from
the facts that w + kR w’ implies wRw’, that R is a (V, Agt)-bisimulation, and
that 7' (w + k,v) = 7(w,v) and 7 (w',v) = 7%w’,v). For the variables i.rr,
we argue as follows. Note that since the variables in i.m are included in V, it
follows that 7/(w + x,i.m) = 7 (w,i.m), and hence that ©'(w + k,®m) =
7 (w',®m). As noted above, we have ' (w + k,i.rr) = ' (w + &, ®m). By the
program for DC®(m), we also have 7% (v’ i.rr) = 7 (w’, ®@m). Combining these
equations yields 7' (w + k,i.rr) = 7o (w’,i.rr). Thus, we have that R preserves
all propositions in V' U {i.rr|i € Agt}.

Forth: Let i € Agt, u+r,v+A € W', and let u® € W such that u+x ~ v+
and u+k R u®. We need to show that there exists v* € W such that v+ R v
and u® ~% %, We argue as follows. From u + & R u® it follows that uRu® .
Also, from u + k ~, v + X it follows by Lemma 3 that u ~; v. Since R is a
bisimulation, we obtain that there exists a world v* € W such that u® ~¢ v®
and vRv®. Since W = W we may define v? to be v®. It is immediate from
the definition of) and the fact that vRv® that v+ AMRv® . To show u® ~9 v
we use the characterization of N?l of Lemma 2. We already have that u® ~;
by construction, so it remains to show 7%(u® , @m) = 7%(v* , @m).

From the fact that vRv“l, and that all variables in i.m are in V, we have
that (v, @m) = (v, @m). Similarly, from uRu® , we have that 7(u, @m) =
7*(u® , @m). Further, since u++ ~/ v+, it follows by Lemma 3 that 7(u, ©m) =
7(v, ®m). Combining these equations yields 7%(u® @ m) = n%(v* , ®m), giving
the remainder of what we require for the conclusion that u®’ ~¢ v

Back: Let 1 € Agt, u+ k € W/, and let u? ,v¥ € W such that u + r Ru?
and u® ~& v*. We need to show that there exists v + A € W’ such that
u+ K~ v+ Aand v+ ARv* . We identify the world v € W as follows. From
o/ we have (by Lemma 3)

u 4 kRu” we have that uRu® and from u? ~
that u® ~% v*. Since R is a bisimulation, there exists a value v € W such that

’
a
Y

’
a
i U

’
u ~; v and vRv® .

’ ’
From u® ~§ v®

" and Lemma 2, we obtain that 7% (u®, @m) = 7@ (v*, ®@m),
hence also 7%(u® ,®m) = 7%(v® ,@m). From the fact that R is a bisimulation
preserving the propositions V', we get from uwRu® and vRv® that m(u, ®m) =
7 (us,@m) and m(v,®m) = 7%(v*,®m). Combining these equations yields
w(u, @m) = 7(v, @m).

Note that vRv® implies that v + AR v for all A : E — {0,1}, giving half of
what we require. It therefore remains to find a value of A such that u+x ~/ v+A.
Since we already have u ~; v, this requires, by Lemma 3, that we find A such that
r(e) = Ae) for all e € keys(i) and 7 (u, j.m) ® ®cepeys(jyrle) = 7 (v, j.m) ®
Qcekeys(j)A(e) for all j € Agt. Since m(u,®m) = m(v,®m), the existence of
such a function A is guaranteed by Lemma 4, on taking p(i) = m(u,i.m) and
w (i) = (v, i.m). O

This result gives us that, modulo bisimulation, the programs DC(m) and
DC(m) have the same effect on the agent’s mutual states of knowledge. We
have a similar result if we consider the effect of joint actions A:

Lemma 5. Let M and M’ be Kripke structures such that M =~y ag M’', and
let A be a joint action, writing variables Va, such that A is enabled at both M
and M'. Then M[A] ~vyv,, ag M'[A],

Proof. Suppose R is a bisimulation witnessing M =y, a4 M’, and we represent
the worlds of M[A] as w+ k where w is a world of M and x : V4 — {0, 1}, where
7MIAl(w + k,v) = k(v) for v € V4. (This requires some constraints on the set of
w + K, to handle the case of variables v € V4 that are not written by 4 : rand(v)
statements.) The worlds of M'[A] may be similarly represented as w + x where
w is a world of M.

Then it is easily shown that the relation r’ defined by u + x R’ v + A if uRv
and k = A is a bisimulation. O

Combining Theorem 1 and Lemma 5, we obtain the following by a straight-
forward induction. (Note that we use fresh variables k., b, rr, z; and y in each of
the instances of DC; and DCY.)

Theorem 2. Let M and M® be Kripke structures with M =~y age M*®, and let

P = Ql; DC(ml), QQ; DC(mg), e DC(mk), Qk+1 and
P = Q1; DC%(my); Q2; DC*(mya); ... DO (my); Qi1

where the Q; are programs involving agents Agt. Let V' be the set of all variables
written by the programs Q;, as well as the variables i.rr introduced by the DC
instances. Assume that the Q; and m; read only variables from V UV'. Then if
P is enabled at M, and P® writes no variable in M®, then P® is enabled at M®
and M[P] VUV, Agt Ma[Pa].

This result states that if we have a complex protocol P, constructed by using
multiple instances of the DC protocol interleaved with other actions, then we
abstract P by abstracting each of the instances of DC' to DC®, while preserving
the truth values of all epistemic formulas. This enables optimization of model
checking epistemic formulas in M[P] by applying model checking to M[P?] in-
stead. (Note that always M = M.)

7 The Two-phase Anonymous Broadcast Protocol

As noted above, the basic version of the Dining Cryptographers protocol enables
a signal to be anonymously transmitted under the assumption that at most
one agent wishes to transmit. One of Chaum’s considerations is the use of the
protocol for more general anonymous broadcast applications, and he writes:

The cryptographers become intrigued with the ability to make messages
public untraceably. They devise a way to do this at the table for a state-
ment of arbitrary length: the basic protocol is repeated over and over;
when one cryptographer wishes to make a message public, he merely
begins inverting his statements in those rounds corresponding to 1’s in a
binary coded version of his message. If he notices that his message would
collide with some other message, he may for example wait for a num-
ber of rounds chosen at random from some suitable distribution before
trying to transmit again.

As a particular realization of this idea, he discusses grouping communication
into blocks and the use of the following two-phase broadcast protocol using slot-
reservation:

In a network with many messages per block, a first block may be used
by various anonymous senders to request a “slot reservation” in a second
block. A simple scheme would be for each anonymous sender to invert
one randomly selected bit in the first block for each slot they wish to
reserve in the second block. After the result of the first block becomes
known, the participant who caused the ith bit in the first block sends in
the ith slot of the second block.

This idea has been implemented as part of the Herbivore system[11].

Chaum’s discussion leaves open a number of questions concerning the pro-
tocol. For example, what exact test is applied to determine whether there is a
collision? Which agents are able to detect a collision? Are there situations where
some agent expects to receive a message, but a collision occurs that it does not
detect (although some other agent may do so?) Under what exact circumstances
does an agent know that some agent has sent a message?” When can a sender be
assured that all others have received the message?

In previous work, we have studied such questions in a 3-agent version of the
protocol [2]. Our approach was to model the protocol as a knowledge-based pro-
gram and to use epistemic model checking as a tool to help us identity precisely
the conditions under which an agent obtains some types of knowledge of interest.
The approach helped us to identify some unexpected situations in which relevant
knowledge is obtained. We recap the definition of knowledge-based programs and
our formulation of the 2-phase protocol as a knowledge-based program in the
following sections, after which we study this knowledge-based program further
using the abstraction developed above.

8 Implementation of Knowledge-based Programs

Knowledge-based programs [9] are like standard programs, except that expres-
sions may refer to an agent’s knowledge. That is, in a knowledge-based program
for agent 7, we may find statements of the form “v := ¢”, where ¢ is a formula of
the logic of knowledge, i.e., a boolean combination of atomic formulas concerning
the agent’s observable variables and formulas of the form K.

Unlike standard programs, knowledge-based programs cannot in general be
directly executed, since the satisfaction of the knowledge subformulas depends
on the set of all runs of the program, which in turn depends on the satisfaction
of these knowledge subformulas. This apparent circularity is handled by treat-
ing a knowledge-based program as a specification, and defining when a concrete
standard program satisfies this specification. We give a formulation of the se-
mantics of knowledge-based programs tailored to the programming language of
the present paper.

Suppose that we have a concrete program P of the same syntactic structure
as the knowledge-based program P, in which each knowledge-based expression ¢
is replaced by a concrete predicate py of the local variables of the agent. Starting
at an initial Kripke Structure My, the concrete program P generates a set of runs
that form the worlds of a Kripke Structure My[P]. We now say that P is an im-
plementation of the knowledge-based program P from My if for each joint action
A in the program P, corresponding to a joint action A in the knowledge-based
program, if we write P = Py; A; Py, where Py and P; are programs, then for each
knowledge condition ¢ occurring in A, we have My[Py] = py < ¢. That is, the
concrete condition is equivalent to the knowledge condition in the implementa-
tion at each point in the program where it is used. (In a more general formulation,
where knowledge conditions may contain temporal operators, knowledge-based
programs may have no implementations, a behaviourally unique implementa-
tion, or many implementations, but for the restricted language we consider it
can be shown that there is a unique implementation.)

We now describe a partially automated process, using epistemic model check-
ing, that can be followed to find implementations of knowledge-based programs
P. The user begins by introducing a local boolean variable v, for each knowl-
edge formula ¢ = K;% in the knowledge-based program, and replacing ¢ by v.
Treating vy as a “history variable”, the user may also add to the program state-
ments of the form vy := e, relying on their intuitions concerning situations under
which the epistemic formula ¢ will be true. This produces a standard program
P that is a candidate to be an implementation of the knowledge-based program
P. (It has, at least, the correct syntactic structure.) To verify the correctness of
P as an implementation of P, the user must now check that the variables vy are
being maintained so as to be equivalent to the knowledge formulas that they are
intended to express. This can be done using epistemic model checking, where
we verify formulas of the form vy < K;1 at points in the program where the
condition ¢ is used.

In general, the user’s guess concerning the concrete condition that is equiv-
alent to the knowledge formula may be incorrect, and the model checker will

report the error. In this case, the model checker can be used to generate an
error trace, a partial run leading to a situation that falsifies the formula being
checked. The next step of our process requires the user to analyse this error
trace (by inspection and human reasoning) in order to understand the source of
the error in their guess for the concrete condition representing the knowledge
formula. As a result of this analysis, a correction of the assignment(s) to the
variable vg is made by the user (this step may require some ingenuity on the
part of the user.) The model checker is then invoked again to check the new
guess. This process is iterated until a guess is produced for which all the for-
mulas of interest are found to be true, at which point an implementation of the
knowledge-based program has been found. We refer the reader to our previous
work [2] for further discussion and examples of the application of this iterative
process. (We deemphasize the process in the present paper, and focus on the
results.)

9 The Two-phase Broadcast Protocol as a
Knowledge-based Program

We now give a formulation of Chaum’s two-phase protocol (see Section 7) as
a knowledge-based program, and discuss the associated verification conditions.
(The knowledge-based program is similar to that given in our earlier work, but
includes some improvements.)

We assume that there are n agents, and Agt = {1..n}. Figure 3 represents
the 2-phase protocol by giving a knowledge-based program for agent i. The
local variable slot-request, assumed to be defined in the structure from which
the program is run, records the slot number (in the range 1..n) that this agent
will attempt to reserve. If slot-request=0, then the agent will not attempt to
reserve any slot. The variable message, also assumed to be defined, records the
single bit message that the agent wishes to anonymously broadcast (if any). The
program introduces the variables rcvd0 and rcvdl, as well as a variable dlvrd.
(Additional new variables, are implicit in the instances of DC;.)

The term conflict(s) in the knowledge-based program represents that there
is a conflict on slot s. This is a global condition that is defined as

conflict(s) = \/ (i.slot-request = s = j.slot-request) .
i)

i.e., there exist two distinct agents ¢ and j both requesting slot s.

The term sender(i, z) represents that an agent is sending message x. Thus,
the variable rcvdO is assigned to be true if the agent learns that someone is
trying to send the bit 0, and similarly for rcvdl[s]. However, there are some
subtleties in the implementation that lead us to consider two distinct versions
of the program. In one version, called strong reception, we use the definition

sender(i,z) = \/(j.message =z A j.slot-request # 0) .
J#i

P, =
local variables:
slot-request: [0..n],
message: Bool,
rcvd0, rcvdl, dlvrd: Bool;
/ /reservation phase
for (s =1; s <n; s++)

{
}

//transmission phase
for (s =1; s < n; s++)

{

DC;(slot-request=s);

DC;(if (slot-request = s A —K;(conflict(s))
then message
else false));
}
rcvd0:= K;(sender(i,0));
rcvdl := K;(sender(i,1));
dlvrd:= A cp,. ((message =z A slot-request # 0) =
Ki(\4; Kjsender(j, z)))
}

Figure 3: The knowledge-based program CDC

That is, we take an agent to have received the bit 0 if it knows that some other
agent is sending the message x. In the other, that we refer to as weak reception,
we define

sender(i,z) = \/(j.message =z A j.slot-request # 0) .
J
That is, we take an agent to have received the bit 0 if it knows that some agent
is sending the message z, possibly itself. Since an agent always knows its own
message , it trivially knows sender (s, x) if it is trying to send a message (i.e.,
i.slot-request # 0), so this may seem very weak. However, since other agents
may consider it possible that the agent is not seeking to send a message, we
see that it becomes of greater interest in the context of an agent’s knowledge of
delivery of its message, represented by the assignment for the variable dlvrd.

We note that this representation of the 2-phase protocol as a knowledge-
based program is speculative: an agent transmits in a slot so long as it does not
know that there is a conflict. This allows that a collision will occur during the
transmission phase.

Since an agent may attempt to reserve a slot, and then back off, or may send
in a reserved slot without success because of a collision during the transmission
phase, the protocol does not guarantee that the message will be delivered. In
this case, the agent is required to retry the transmission in the next run of
the protocol. So that it can determine whether a retry is necessary, the final

assignment to the variable dlvrd captures whether the agent knows that its
(anonymous) transmission has been successful. this assignment captures that
the transmission is successful if the agent knows that the other agents know
that some agent is sending its message. We similarly refer to weak delivery and
strong delivery depending on which version of the predicate sender (i, z) is used.?

We remark that the knowledge-based program is interpreted with respect to
the assumption of perfect recall, and implementations may make use of of history
variables to capture observations that the agent makes during the running of the
protocol. Thus, by placing the reception and delivery assignments at the end of
the program (rather than just after each DC instance), we ensure that the agents
are able to behave optimally by making use of all information they gather during
the running of the program. As we discuss below, this allows us to capture some
subtle sources of information.

In Figure 4, we give the generic structure of a possible implementation of the
knowledge-based program, as we seek using our partially-automated process. The
variable kc [s] is used to represent the epistemic condition concerning conflict in
the knowledge-based program (i.e., =K;(conflict(s))). Thus, in verifying that
we have an implementation, the key condition to be checked is whether kc[s] <
—K;(conflict(s)) just after this variable is assigned. The main difficulty in
finding an implementation is to find the appropriate concrete assignment (to
take the place of the “?77”) for this variable that will make this condition valid.
Similarly we seek assignments to the variables rcvd0[s], recvdl[s] that give
these the intended meaning.

We note that each of the instances of the protocol DC; introduces additional
variables, which may be used in the concrete predicates we substitute for the
“?7?77”. In particular, they introduce round result variables, which we denote by
rr(t] for ¢ € {1..2n}. Here rr[t] represents the round result variable from the
t-th instance of DC}; in the implementation. The implementations also introduce
key variables k. and b, which need to be separated in the different instances: we
may similarly use k.[t] and b[t] to denote the ¢-th instance of such a variable.

We now discuss the formulas that are used to verify the implementation.
As discussed above, these conditions need to be verified at specific stages of
the program, viz., the step before the occurrence of the knowledge formula of
interest.

The first formula of interest concerns the correctness of the guess for the
knowledge condition —K;(conflict(s)) (in case of the speculative implementa-
tion, or K;(—conflict(s)) (in the case of the conservative implementation). In
the implementation, this condition is represented by the variable kc[s].

Specification 1: kc[s] correctly represents knowledge of the existence of a
conflict in slot s = 1..3.

i.kc[s] & —K;(conflict(s)) (1)

3 We remark that in case of weak delivery, replacing the expression
;i Kjsender(j,z) by A, Kjsender(j,z) in the assignment to dlvrd would
have no effect, since in the weak case it always holds that (i.message =
z A i.slot-request # 0) = K;(sender(i,x)).

P={

local variables:
slot-request: [0..n],
message: Bool,
rcvd0, rcvdl, dlvrd: Bool,
kc[n]: Bool;

/ /reservation phase

for (s =1; s <3; s++)

{
}

//transmission phase
for (s =1; s <n; s++)

DC;(slot-request== s);

kels] :=777;
DC;(if (slot-request==s A kc[s])
then message
else false);
}
rcvdl := 777;
rcvdl := 777;
dlvrd:= 777

}

Figure 4: A generic implementation of CDC

Next, the protocol has some positive goals, viz., to allow agents to broadcast
some information, and to do so anonymously. Successful reception of a bit is
intended to be represented by the variables rcvd0 and rcvdl. To ensure that
the assignments to these variables correctly implement their intended meaning
in the knowledge-based program, we use specifications of the following form.

Specification 2: reception variables correctly represent transmissions by others

i.rcvd0 < K;(sender(s,0) (2a)

and
i.rcvdl < K;(sender(i, 1)) (2b)

Similarly, we need to verify correct implementation of the agent’s knowledge
about whether its transmission is successful.
Specification 3: delivery variables correctly represent knowledge about delivery

i.d1vrd < A\ oo (i message = x Ai.slot-request # 0
= Ki(/\;; Kjsender(j,z)))

There are strong and weak versions of Specifications 2 and 3, depending on
the choice for sender(i, z).

Finally, the aim of the protocol is to ensure that when information is trans-
mitted, this is done anonymously. An agent may know that one of the other two

agents has a particular message value, but it may not know what that value is for
a specific agent. We may write the fact that agent ¢ knows the value of a boolean
variable by the notation K;(x), defined by K;(z) = K;(x)V K;(—z) . Using
this, we might first attempt to specify anonymity as /\j#(—'f(i(j.message)),
i.e., agent i knows no other’s message. Unfortunately, the protocol cannot be
expected to satisfy this: suppose that all agents manage to broadcast their mes-
sage and all messages have the same value z: then each knows that the other’s
value is . We therefore write the following weaker specification of anonymity:
Specification 4: The protocol preserves anonymity

\/ Ki(/\(j.message =2x))V /\(ﬁf(i(j.message)) .

x=0,1 J#i j#i

This is checked at the very end of the protocol.

10 Model Checking Performance

To verify the specifications for the knowledge-based program in a putative im-
plementation, we have applied the epistemic model checker MCK [10]. We refer
the reader to our previous work [2] for a description of some of the particulari-
ties of how this is done. Since the details are straightforward, we focus here on
how the abstraction developed in this paper impacts the performance of model
checking.

We would like to verify whether a putative implementation P implements
the knowledge-based program P from an initial structure Mj. This requires that
we model check the formulas from the previous section. Since these formulas
concern only the initial variables of the agents, and variables introduced outside
the scope of the DC; calls, it follows from Theorem 2 that we may verify instead
whether these formulas hold at appropriate times during the running of the
abstract program P® that we obtain by replacing each instance of DC; in P by
DCY.

We have performed some experiments in which we use MCK for this model
checking problem. MCK is a symbolic model checker, and model checking a for-
mula involves first building a symbolic (Binary Decision Diagram [15]) represen-
tation of the model itself, and then using this representation in the construction
of a symbolic representation of the situations where the particular formula of
interest is false. All specifications are checked using the perfect recall interpre-
tation of knowledge and the model checking algorithm for this semantics which
is described in [22] (which is flagged by spec_spr_xn in MCK). To estimate
individual formula timings, we deduct model construction times (estimated by
the time to model check the specification True), from the actual time for model
checking each specification (which includes model construction and formula ver-
ification time.) All experiments are conducted on a PC with Intel(R) Xeon(R) 4
x 3 GHZ, and 16 GB memory, using MCK 0.1.1. Where the execution crashed
due to a memory error, we report “x” in the tables.

Our methodology for identifying an implementation of the knowledge-based
program requires that we perform model checking on number of different approx-
imations to the final implementation, and, when a specification fails, using the
counter-example found to revise the approximation. Table 1 gives the runtimes
for the initial program, in which we guess the predicate False for the imple-
mentation of all knowledge formulas in the knowledge-based program. For each
specification = we give runtimes for model checking the specification in the con-
crete program and the abstract program (indicated by z%). We count the cost
of verifying all instances of the specification required to check the correctness of
the implementation at different times where the knowledge condition occurs in
the program. (With n agents, we need to check Specification 1 at n locations in
the implementation, but specifications 2-4 just once.) As we improve the approx-
imation, the program becomes more complex, and the model checking runtimes
increase. In Table 2 we give the runtimes for the final approximation, in which we
have identified a program that is verified as implementing the knowledge-based
program.

Specification
Model|Model®|| 1| 1¢ 2 | 2 3 | 3¢ 4 | 4
0.4 | 0.24 ||43| 5 [|5880| 41 ||6100| 4 |/6300| 5
29.15| 4.2 |x| 34| x [68| x |69 | x |70
x 63 x [4800(x [5400|| x |5500| x |b544

Otk W3

Table 1. Model Checking Runtimes (seconds)— initial approximation

Specification

Model|Model®|| 1| 1¢ 2 | 2 3 | 3¢ 4 | 4¢
0.45 | 0.4 |[|50] 16 ||7200| 127 ||7350| 34 ||7400| 18
135 6 x| 167 x |378] x [251| x |252
X 74 x (1096 x [1957| x [1979] x |1998

Ut W3

Table 2. Model Checking Runtimes (seconds) — final implementation

For a more detailed indication of the impact of the abstraction, Table 3 com-
pares the runtimes for model checking the anonymity specification (Specification
4) in the concrete and abstract programs for the final implementation after a
given number of rounds of the Dining Cryptographers Protocol. Note that the
maximum number of rounds of Dining Cryptographers in the 2-phase protocol
is twice the number of agents.

In all these experiments, the runtimes obtained indicate that the abstraction
results in a significant decrease of runtimes, (in some cases of several orders

Rounds
112 3 4 5 6 | 78910
3 concrete(|0.6(0.9| 2.2 | 18 | 3357350 - | - | - -
abstract|{0.5/0.6|0.7| 1.6 | 3.1 |[17.8| - | - | - -
concrete||340(575| 587 |1478|2661| x | x | x | - -
abstract|| 9 | 11 |11.2|11.7| 32 | 85 | 86 |249| - -
concrete|| x | x | x X X X X | x| x X

abstract|| 91 110|133 | 134 | 183 | 311 |752|722|950{1990

Agents| version

U U > W

Table 3. Model Checking Runtimes (seconds) for Specification 4

of magnitude) and helps to bring problems of larger scale (in particular, with
larger numbers of agents and greater numbers of rounds of the basic Dining
Cryptographers protocol) within the bounds of feasibility of model checking.

11 Implementations of the knowledge-based program

Using the optimization obtained from the abstraction, we have been able to
extend our previous analysis of the knowledge-based program in the 3-agent case
to the cases of 4 and 5 agents, gaining more insight into the n-agent case for
general n. We now describe the implementations we found for the program, which
demonstrate that the protocol contains some further subtle flows of information
beyond those we found in the 3 agent case.

One point worth noting is that, in addition to providing an optimization of
epistemic model checking, our abstraction result also provides information that
is useful in the search for an implementation of the knowledge-based program.
Observe that the variables k. do not occur in the abstract version of the pro-
tocol, nor in the formulas we need to check to verify an implementation. Thus,
in guessing a concrete predicate to be substituted for one of the knowledge con-
ditions, we can confine our attention to predicates that do not contain the k.
variables. Indeed, since i.b is computed from information already at agent ¢’s
disposal, we need only consider predicates based on agent i’s initial information
and the round result variables rr[k].

The first knowledge condition we need to implement, for Specification 1,
is = K;conflict(s). Plainly, one situation where an agent knows that there is
a conflict is when it attempts to reserve a slot and the round result for the
reservation is not 1. (So an even number of agents attempted to reserve the
slot.) Thus, one potential implementation for - K;conflict(s) is the assignment
kc[s] :== —(slot-request = s A rr[s] = 0). Model checking Specification 1 for
this predicate at the point of the s-th transmission confirms in all of the cases
n = 3,4,5 that this captures the knowledge condition —K;conflict(s) exactly
at this point: there are no other ways that the agent can know of a conflict on a
slot before transmitting on it, besides seeing a reservation clash. (In particular,
previous transmissions do not contain any relevant information.)

It is interesting to consider not just the knowledge condition —K;conflict(s)
that occurs in the program, but also the stronger condition K;—conflict(s) (the
formula K;—p = —K;p is a validity of the logic of knowledge). For example, if
an agent who is broadcasting on a slot knows that all other agents know the
slot is conflict free, then it knows that its message will be delivered. Thus, we
have also added a local variable conflict-free(s) to the implementation, for
s =1...n, and and sought assignments to this variable that satisfy the formula
i.conflict-free(s) < K,;—conflict(s). This turns out to be quite a subtle
matter.

To express this condition, it is useful to introduce a formula Cy = x where
x € {0,...,n} to express that the number of 0’s obtained as round results in the
reservation phase is . We may then note the following situations in the protocol
in which K;—conflict(s) holds.

— If Cy =0 or Cy = 1, then the agent knows there is no conflict on any slot.
Note that in this case there are at least n — 1 agents who are requesting the
at least n — 1 distinct slots with reservation round result 1, leaving at most
one further agent. If this agent had requested any of the slots with round
result 1, this would have caused a 2-way reservation clash, contradicting the
observed round result of 1. Hence this agent did not request any slot, and
all slots are conflict-free.

— If Cy > 2, then in general, an agent cannot determine whether or not there is
a conflict on any of the reserved slots, since there may be a 3-way clash on one
of these slots. However, in the particular case where Cy = 2 and the agent
itself does not request any slot (slot-request =0) then n — 2 agents are
accounted for by the n — 2 slots on which we see a reservation round result
of 1, and the remaining one agent cannot be assigned to ay slot without
changing the round result, and hence the count. Hence this agent cannot be
requesting a slot, and the agent knows that all slots are conflict-free.

— Note that if Cy = 2 or Cy = 3, and the agent requests a slot but detects a
collision at slot reservation time, then there must have been at least 2 agents
requesting this slot, leaving at most n — 2 agents for the n — 1 other slots,
where we see either n — 3 or n — 4 slots with reservation result of 1. This
means at least n— 1 or n— 2 agents are accounted for in total, so the number
of agents remaining to contribute to a further collision on the remaining n—1
other slots is at most 1. This agent can not be assigned to any slot without
changing the round result for that slot, so it must not be requesting a slot.
Thus, all the other n — 1 slots are collision free.

— The above cases use information from the reservation phase. Agents may
also be able to deduce that slots are conflict-free as a result of information
they obtain during the transmission phase. If Cy = 2 or Cy = 3, the agent
requests a slot and obtains a reservation round result of 1 for this slot, but
then detects a collision at transmission time, then there must have been at
least a 3-way collision on that agent’s slot, and by a similar argument to the
previous case, we deduce that all the other slots are collision free.

These conditions may be captured by the assignment

i.conflict-free(s) :=Cy =0V Cy =1V (Cy =2 Ai.slot-request =0)V
(Co=2VvCy=3)AV,_,(s#tAislot-request =t Arrft] =0))V
(Co=2VCy=3)AV,_ (s #tANislot-request =t Arrft] =1
Arr[n + t] # i.message))

The above formula states several concrete conditions under which the agent
knows there is no conflict on a particular slot s. We have verified by model
checking that for n = 3, 4, and 5 that, at the end of the protocol, for all slots
s we have i.conflict-free(s) & K;—conflict(s), and conjecture that it holds
for all n.

We remark that in the case of Cy = 0 or Cy = 1, this information is available
to all agents, and it is common knowledge* that all slots are conflict free. In
the other cases, collision freedom on a slot may be known to some agents but
not to others. For example, consider the situation with n = 4 and where the
slot-request and message values and round results are given as in Figure 5(a).
Here agent 2 sees a reservation collision and two 1’s elsewhere, so knows that
slots 1 and 4 are collision free. However, agent 1 does not know this, since the
scenario of Figure 5(b) is consistent from its viewpoint, and here there is a
collision on slot 4.

i 1(2|3}4 i 1|2|3}4
i.slot-request|4|3(1|3 i.slot-request|4(1|1|1

(a) i.message [1]0[1|0 (b) i.message [1(1|1|1
rrli 1{0{0|1 rr(i] 10|01

rr[4+4 [1(0/0|1 rr[4+4] |1/0/0|1

Figure 5: Collision Freedom is not Common Knowledge

As mentioned above, we consider in this paper a speculative version of the
knowledge-based program, in which an agent transmits its message in its re-
quested slot s in the transmission phase if —K,;conflict(s). One could also
study a conservative version, where an agent only transmits if K;—conflict(s).
The analysis above shows that this would lead to a much more complicated
implementation®, where, moreover, the agent would transmit only in the low
probability case when almost all other agents also have a message to send, and
they happen to pick distinct slots!

Returning to the implementation of the speculative version, we need to find
the appropriate assignments to the variables rcvd0, rcvdl and dlvrd, for which

4 A fact is common knowledge [13] if all agents know it, all agents know that all other
agents know it, and so on for all levels of iteration of knowledge.

® For a number of reasons, including the fact that we need an implementation of the
knowledge condition at all transmission steps, rather than just at the end of the
protocol, the above condition is not yet adequate for such an implementation.

we have strong and weak versions.

Strong Version: In this case, reception of a bit means that the agent knows
that some other agent is sending that bit . An obvious situation where this is
the case is where the agent is not itself sending in the slot, the reservation round
result is 1, and the bit z is observed as the round result in the corresponding
transmission slot. Note that there may still be a collision on that slot, but since
the number of agents in the collision is then odd, at least one must be sending
x. As we noted in our previous work [2], there is another, less obvious, situation
when an agent can know that another agent is sending a bit = in a slot, viz.,
when the agent is itself transmitting bit y in that slot and observes that the
round result for the transmission is the compliment of y. Since the number of
other agents in the conflict must be even, there must be both another agent
sending 0 and another agent sending 1 in the slot. We have verified by model
checking in the case of 3-5 agents that with the assignment

i.rcvdr :=\/|_, ((i.slot-request # s Arr[s] = 1 Arr[n+s] =) V
(i.slot-request = s Arr[s] = 1 A rr[n + s| # i.message))

Specification 2 is satisfied in the strong version.
For the delivery condition, we have verified that the assignment

dlvrd := (slot-request # 0A (Co =0V Cp = 1))V
(slot-request # 0 Amessage = 1 A
\/S#’ S’t:L_n(rr[s] =rrft]=1Arr[n+s]=rr[n+t]=1))Vv
(slot-request # 0 Amessage =0 A
\/S#’ S’ltzlun(rr[s] =rr[t] =1 Arr[n+s] =rr[n+t] =0))

works for Specification 3 in the strong version for the cases n=3-5. The intuitions
for this formula are as follows. In the case Cy = 0V Cy = 1, as discussed above,
it is common knowledge that all slots are conflict-free, so all transmissions are
guaranteed to be delivered. As just noted, an agent who is not sending on a slot
receives the value transmitted on that slot. However, an agent sending on a slot,
and not noticing a clash on the transmission, considers it possible that there are
other agents transmitting the very same value on that slot, and these will not
know that there is another agent transmitting on the slot. However, if there are
at least two distinct reserved slots where that value is transmitted, then each
receives the value from some slot other than the one on which it transmits. This
is expressed in the remainder of the formula.

Weak Version: In the weak interpretation, we require only that a receiver
learn that someone, possibly themselves is sending a message. The problem of
undetected collsions in the transmission phase does not arise here, and the im-
plementation is more straightforward. We have verified in the 3-5 agent settings
that the following assignments work:

rcvdx := (slot-request # 0 Amessage = z) V \/ (rr[s] =1 Arr[n+s] =x)
s=1

n
dlvrd := slot-request # 0 A \/ (rr[s] = 1 Arr[n + s] = message)
s=1

Intuitively, in this case, an agent’s own message counts as a delivery, and mes-
sages observed on reserved slots can be taken at face value.

Finally, the anonymity property, Specification 4, has been verified to hold in
all the implementations obtained from the assignments discussed above, when
n=3—2>5.

12 Related Work

Abstractions of the kind we have studied, relating a protocol involving a trusted
third party to a protocol that omits the trusted third party, are often used in
theoretical studies to specify the objectives of a multi-party protocol. One ex-
ample where this is done in a formal methods setting is work by Backes et al [1],
who study the abstraction of pi- calculus programs based on multi-party compu-
tations. Where we consider a model checking approach to verification, with an
expressive epistemic specification language, they use a type-checking approach.
Their notion of abstraction is richer than the bisimulation-based approach we
have taken, in that they also deal with probabilistic and computational concerns.
However, as we have noted, we are interested in the preservation of a set of epis-
temic properties (nested knowledge formulas) that is richer in some dimensions
than is usually considered in this literature. Our abstraction result could be
easily strengthened to incorporate probability, as was done for a secure channel
abstraction by van der Meyden and Wilke [23]. However computational com-
plexity issues mesh less well with epistemic logic, and developing a satisfactory
solution to this remains an open problem.

Epistemic model checking is less developed than model checking for tempo-
ral logic, and many possible optimization techniques remain to be explored for
this field. Other approaches using abstraction in the context of epistemic model
checking include [6,5]. These works are orthogonal to ours in that where we are
concerned with an abstraction of a particular primitive (the Dining Cryptogra-
phers protocol), that works for all formulas, they are concerned with symmetry
reductions or deal with a more general class of programs than we have consid-
ered, but need to restrict the class of formulas preserved by the abstraction.

Other model checkers for the logic of knowledge are under development but
MCK remains unique in supporting the perfect recall semantics for knowledge
using symbolic techniques. DEMO [24] implicitly deals with perfect recall, but
is based on a somewhat different logic (epistemic update logic), and uses explicit
state model checking techniques, so it is not clear if it could be used for the type
of analysis and scale of programs we have considered in this paper. MCMAS
[17], MCTK [21] and VERICS [7] are based on the observational semantics for
knowledge (which is also supported in MCK).

It is possible in some cases to represent the perfect recall semantics using
the observational semantics (essentially by encoding all history variables into

the state) and this approach is used in [18] to analyse the same 2- phase pro-
tocol as we considered in this paper. However, this modelling is ad-hoc and the
transformation from perfect recall to observational semantics is handled man-
ually, making it susceptible to missing timing channels if not done correctly.
(Moreover, we did briefly experiment with such a modeling for the large pro-
grams studied in this paper, but found that the perfect recall model checking
algorithms outperform the observational semantics model checking algorithm on
these programs.) The work of [18] does not view the protocol as a knowledge-
based program, as we have done, nor do they consider abstraction.

Knowledge-based programs have been applied successfully in a number of
applications such as distributed systems, Al, and game theory. They have been
used in papers such as [8,12,14,3,19] in order to help in the design of new
protocols or to clarify the understanding of existing protocols. Examples of the
development of standard programs from knowledge-based programs can be found
in [20,8,16]. The approach described in these papers is different from the one
we discussed here in that it is done by pencil and paper analysis and proof.
Examples of the use of epistemic model checkers to identify implementations
of knowledge-based programs remain limited. One is the work of Baukus and
van der Meyden [3] who use MCK to analyze several protocols for the cache
coherence problem using knowledge-based framework.

The 2-phase protocol has been implemented in the Herbivore system [11],
which elaborates it with protocols allowing agents to enter and exit the system,
as well as grouping agents in anonymity cliques for purposes of effciency. Variants
of the protocol have also been considered by Pfitzman and Waidner [25]. These
would make interesting case studies for future applications of our approach.

13 Conclusion

We have established the soundness of an abstraction for of protocols based on
the Dining Cryptographers, and applied this result to optimize epistemic model
checking of protocols that use Dining Cryptographers as a primitive. Our exper-
imental results clearly demonstrate that the abstraction yields efficiency gains
for epistemic model checking in interesting examples. In particular, we have used
these gains to extend an analysis of a knowledge-based program for the 2-phase
protocol, and derived some interesting conclusions about the subtle information
flows in the protocol. Several research directions suggest themselves as a result
of this work. One is to complete the analysis of the knowledge-based program
for all numbers of agents. We conjecture that our present implementation can
be shown to work for all numbers of agents, and it would be interesting to
have a proof of this claim: this would have to be done manually rather than by
model checking, unless an induction result can be found for the model checking
approach. Another direction is to consider richer extensions of the 2-phase pro-
tocol, addressing issues such as messages longer than a single bit, agent entry
and exit protocols, as well as adversarial concerns such as collusion, cheating
and disruption of the protocol. We hope to address these in future work.

Acknowledgments: Thanks to Xiaowei Huang and Kai Englehardt for com-

ments on an earlier version of the paper.

References

10.

11.

12.

13.

. Michael Backes, Matteo Maffei, and Esfandiar Mohammadi. Computationally

sound abstraction and verification of secure multi-party computations. In Proc.
Conf. on Foundations of Software Technology and Theoretical Computer Science,
page to appear, 2010.

O. Al Bataineh and R. van der Meyden. Epistemic model checking for knowledge-
based program implementation: an application to anonymous broadcast. In Se-
cureComm’10, 6th International ICST Conference on Security and Privacy in
Communication Networks, 2010.

Kai Baukus and Ron van der Meyden. A knowledge based analysis of cache co-
herence. In 6th Int. Conf. on Formal Engineering Methods, volume 3308 of LNCS,
pages 99-114. Springer, 2004.

D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, pages 65-75, 1988.

Mika Cohen, Mads Dam, Alessio Lomuscio, and Hongyang Qu. A symmetry re-
duction technique for model checking temporal-epistemic logic. In Craig Boutilier,
editor, IJCAI pages 721-726, 2009.

. Mika Cohen, Mads Dam, Alessio Lomuscio, and Francesco Russo. Abstraction

in model checking multi-agent systems. In 8th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary,
May 10-15, 2009, Volume 2, pages 945-952, 2009.

Piotr Dembinski, Agata Janowska, Pawel Janowski, Wojciech Penczek, Agata
Pélrola, Maciej Szreter, Bozena Wozna, and Andrzej Zbrzezny. Verics: A tool
for verifying timed automata and estelle specifications. In Proc. Conf. Tools and
Algorithms for the Construction and Analysis of Systems, TACAS, pages 278283,
2003.

C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine en-
vironment : crash failures. In Proceedings of the 1986 Conference on Theoretical
aspects of reasoning about knowledge, pages 149-169, San Francisco, CA, USA,
1986. Morgan Kaufmann Publishers Inc.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, Mass., 1995.

P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge.
In Proc. 16th Int. Conf. on computer aided verification (CAV’04), volume 3114 of
LNCS, pages 479-483. Springer-Verlag, 2004.

S. Goel, M. Robson, M. Polte, and E. Sirer. Herbivore: A scalable and efficient pro-
tocol for anonymous communication. Technical report, Cornell University, Ithaca,
NY, February 2003.

V. Hadzilacos. A knowledge-theoretic analysis of atomic commitment protocols. In
PODS ’87: Proceedings of the sizth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems, pages 129-134, New York, NY, USA, 1987.
ACM.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549-587, 1990.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: knowledge-based
derivations and correctness proofs for a family of protocols. Journal of the ACM,
39(3):449-478, 1992.

E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.

Reino Kurki-Suonio. Towards programming with knowledge expressions. In POPL
’86: Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 140-149, New York, NY, USA, 1986. ACM.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A model checker for the veri-
fication of multi-agent systems. In Proc. Int. Conf. on Computer Aided Verifica-
tion (CAV), volume 5643 of Lecture Notes in Computer Science, pages 682-688.
Springer, 2009.

Xiangyu Luo, Kaile Su, Ming Gu, Lijun Wu, and Jinji Yang. Symbolic model check-
ing the knowledge in herbivore protocol. In Proc. Workshop on Model Checking
and Artificial Intelligence, AAAI-2010, 2010.

Gil Neiger and Sam Toueg. Simulating synchronized clocks and common knowledge
in distributed systems. J. ACM, 40(2):334-367, 1993.

Papageorgiou, Foto Afrati, and Christos Papadimitriou. The synthesis of commu-
nication protocols. In PODC ’86: Proceedings of the fifth annual ACM symposium
on Principles of distributed computing, pages 263271, New York, NY, USA, 1986.
ACM.

Kaile Su, Guanfeng Lv, and Yan Zhang. Model checking time and knowledge
(MCTK). http://www.cs.sysu.edu.cn/~skl/emck.html.

R. van der Meyden and K. Su. Symbolic model checking the knowledge of the dining
cryptographers. In Proc. 17th IEEE Computer Security Foundation Workshop,
pages 280-291. IEEE Computer Society, 2004.

Ron van der Meyden and Thomas Wilke. Preservation of epistemic properties
in security protocol implementations. In Proc. Conf. on Theoretical Aspects of
Rationality and Knowledge, pages 212-221, 2007.

J. van Eijck. Dynamic epistemic modelling. Technical report, Centrum voor
Wiskunde en Informatica, Amsterdam, 2004. CWI Report SEN-E0424.

M. Waidner and B. Pfitzmann. The Dining Cryptographers in the disco: uncondi-
tional sender and recipient untraceability with computationally secure serviceabil-
ity. In Proceeding of Eurocrypt 89. p. 690 LNCS 434, 1989.

