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In a scientific workflow system, a checkpoint selection strategy is used to select checkpoints along scientific 
workflow execution for verifying temporal constraints so that we can identify any temporal violations and 
handle them in time in order to ensure overall temporal correctness of the execution which is often essential for 
the usefulness of execution results. The problem of existing representative strategies is that they do not 
differentiate temporal constraints as once a checkpoint is selected, they verify all temporal constraints. However, 
such checkpoint does not need to be taken for those constraints whose consistency can be deduced from others. 
The corresponding verification of such constraints is consequently unnecessary and can severely impact overall 
temporal verification efficiency while the efficiency determines whether temporal violations can be identified 
quickly for handling in time. To address the problem, in this paper, we develop a new temporal dependency 
based checkpoint selection strategy which can select checkpoints according to different temporal constraints. 
With our strategy, the corresponding unnecessary verification can be avoided. The comparison and 
experimental simulation further demonstrate that our new strategy can improve the efficiency of overall 
temporal verification significantly over the existing representative strategies.   
 
Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification 
General Terms: Algorithms, Design, Reliability, Theory, Verification 
Additional Key Words and Phrases: Scientific workflows, temporal constraints, temporal verification, 
checkpoint selection 
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1. INTRODUCTION  

From the perspective of software engineering, a scientific workflow system is a type of 
scientific software in the area of Software Engineering for Computational Science and 
Engineering which is achieving increasing attention from software engineering researchers 
[Ludäscher et al. 2006, Seces 2008]. It is responsible for modelling and executing large-
scale sophisticated scientific workflows existing in a variety of complex computation and 
data intensive applications such as astrophysics, climate modelling and earthquake 
simulation [Abramson et al. 2005, Daisuke et al. 2007, Gil et al. 2007, Mandal et al. 2007, 
Taylor et al. 2007]. A scientific workflow normally contains a large number of computation 
and data intensive activities [Deelman and Chervenak 2008, Maechling et al. 2005, Oinn 
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et al. 2006, Prodan and Fahringer 2008]. One of the software engineering research issues in 
developing a scientific workflow system is temporal verification which is to identify any 
temporal violations in scientific workflow specifications and executions [Chen and Yang 
2008a, Yu and Buyya 2005]. 
 
1.1 Temporal Constraints 

In reality, a scientific workflow is normally time constrained [Brandic et al. 2008, Pandey 
and Buyya 2008] because temporal correctness, i.e. whether the scientific workflow can be 
completed on time, is essential to ensure the usefulness of its execution results. For example, 
an astrophysics scientific workflow for detecting the existence of gravitational wave in a 
signal channel is a time-critical real-time streaming data application [Daisuke et al. 2007]. 
Even a small delay in its completion can result in the omission of detection due to its 
real-time and streaming nature. Then, several more years may be needed for another 
wave to appear, but the worse consequence is that this would not be known since we are 
not aware of the omission due to the time delay. As a result, all completed and continuing 
costly computation including expensive use of supercomputing facilities for thousands of 
hours becomes useless and hence a big economical loss1. Taking the supercomputer 
hosted and funded by Swinburne University of Technology in Australia [SwinSuper 2009] 
as an example, the charge for a use of 24 hours is about US$20000. For the use of 
thousands of hours, we can imagine how much the economical loss could be. As such, 
temporal constraints should be set in scientific workflow specifications to enable the control 
and monitoring of temporal correctness during execution. The types of temporal constraints 
mainly include: upper bound, lower bound and fixed-time [Chen and Yang 2008b, Eder et 
al. 1999]. An upper bound constraint between two activities is a relative time value so 
that the duration between them must be less than or equal to it. A lower bound constraint 
between two activities is a relative time value so that the duration between them must be 
greater than or equal to it. A fixed-time constraint at an activity is an absolute time value 
such as 6:00pm by which the activity must be completed. 

Comparing the three types of temporal constraints, we can find that conceptually a 
lower bound constraint is symmetrical to an upper bound constraint while a fixed-time 
constraint is a special case of upper bound constraint. The reasons are as follows. For a 
lower bound constraint, we often check whether the duration between its start and end 
activities is greater than or equal to (≥) its value while for an upper bound constraint, we 
often check whether the duration between its start and end activities is less than or equal 
to (≤) its value. Therefore, they are symmetrical to each other. As for a fixed-time 
constraint, the first activity of a scientific workflow is actually its start activity. Hence, a 
fixed-time constraint can be viewed as a special upper bound constraint whose start 
activity is the first activity and whose end activity is the one at which the fixed-time 
constraint is. Nevertheless, an upper bound constraint is conceptually more general than a 
fixed-time constraint as its start activity can be an intermediate activity rather than the 
first activity. Besides, different upper bound constraints can have different start activities 
while all fixed-time constraints have the same start activity which is the first activity.  

As such, in this paper, we focus on upper bound constraints only. The corresponding 
discussion and results can be symmetrically applied to lower bound constraints and 
adaptively simplified for fixed-time constraints. 

 
 
 

                                                           
1 In fact, there is also a loss of scientific discovery of the gravitational wave. However, as it is not relevant to the 
scope of this paper, we do not discuss it further. 
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1.2 Temporal Verification and Checkpoint Selection 

After upper bound constraints are set, temporal verification must be conducted so that we 
can identify any temporal violations and handle them in time in order to ensure overall 
temporal correctness. Temporal verification efficiency reflects whether a temporal violation 
can be identified quickly. Back to the astrophysics scientific workflow stated in Section 1.1, 
a very small time delay can result in that the whole costly computation involving expensive 
use of supercomputing facilities for thousands of hours becomes useless and consequently a 
big economical loss. Hence, temporal violations need to be detected as soon as possible so 
that corresponding handling can be triggered in time to remove them in order to guarantee 
the overall temporal correctness of scientific workflow execution. Therefore, temporal 
verification efficiency plays a critical role in ensuring the overall temporal correctness of 
scientific workflow execution which is essential for the usefulness of execution results and 
for saving the corresponding huge cost as shown in the above mentioned astrophysics 
example.  

Along scientific workflow execution, conducting temporal verification at all activities is 
not efficient as we may not have to do so at some activities such as those that can be 
completed within allowed time intervals. So we need to figure out where to conduct the 
verification. The activities at which we conduct the verification are called checkpoints 
[Marjanovic and Orlowska 1999, Zhuge et al. 2001]. A strategy used to select checkpoints 
for conducting the verification is called a checkpoint selection strategy, denoted as CSS 
[Marjanovic and Orlowska 1999, Zhuge et al. 2001]. Some representative checkpoint 
selection strategies have been proposed by [Chen et al. 2004, Chen and Yang 2005a, Chen 
and Yang 2008a, Chen and Yang 2007, Eder et al. 1999, Marjanovic and Orlowska 1999, 
Zhuge et al. 2001], which are detailed in Section 3. However, their common problem is that 
they treat all upper bound constraints as a whole because once an activity point is selected 
as a checkpoint, it is for verifying all upper bound constraints. But for some constraints, 
their consistency can be deduced from others. Such constraints do not need to take any 
checkpoints. The verification of them is consequently unnecessary, which can severely 
impact overall temporal verification efficiency since there are normally a large number of 
upper bound constraints in a scientific workflow. To address the problem for significantly 
improving temporal verification efficiency, in this paper we develop a new temporal 
dependency based checkpoint selection strategy which can select checkpoints 
corresponding to different upper bound constraints. We first investigate temporal 
dependency between different upper bound constraints. In general, temporal dependency 
means that upper bound constraints are dependent on each other in terms of their setting and 
verification. By temporal dependency, we can identify those upper bound constraints whose 
consistency can be deduced from others. Then, based on temporal dependency, we present 
our new strategy. With our new strategy, those upper bound constraints whose consistency 
can be deduced from others will no longer take any checkpoints. Consequently, the 
verification of them can be avoided which is otherwise incurred by the existing 
representative strategies. The comparison and experimental simulation further demonstrate 
that our strategy can improve overall temporal verification efficiency significantly over the 
existing representative ones. 

In [Chen and Yang 2008b], we have discussed the general idea of temporal dependency 
based checkpoint selection. However, that is for fixed-time constraints only. As stated in 
Section 1.1, different upper bound constraints can have different start activities in contrast 
that all fixed-time constraints have the same start activity. This leads to that a later upper 
bound constraint may not completely cover a previous upper bound constraint while a 
fixed-time constraint does cover all previous fixed-time constraints completely. 
Accordingly, the relationship between upper bound constraints contains several scenarios 
as presented in Section 4.1 while the relationship between fixed-time constraints contains 
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only one scenario, i.e. all fixed-time constraints are nested one after another. As a result, 
the temporal dependency between upper bound constraints is much more general and 
complicated than that between fixed-time constraints. The two types of temporal 
dependency become identical only when all upper bound constraints have the same start 
activity. As such, this paper is a significant extension and generalisation of [Chen and 
Yang 2008b] to cover more general and complicated temporal dependency between upper 
bound constraints and its influence on checkpoint selection.  

 
1.3 Paper Organisation 

The remainder of the paper is organised as follows. In Section 2, we summarise some time 
attributes of scientific workflows. In Section 3, we detail the related work and problem 
analysis. Then, in Section 4, we discuss temporal dependency between upper bound 
constraints. After that, in Section 5, we apply temporal dependency to checkpoint selection 
and propose our new checkpoint selection strategy. In Section 6, we perform a 
comprehensive comparison and experimental simulation to demonstrate that our strategy 
can improve overall temporal verification efficiency significantly than the existing 
representative ones. Finally in Section 7, we conclude our contributions and point out future 
work.  
 
2. OVERVIEW OF TIMED SCIENTIFIC WORKFLOW REPRESENTATION 

According to [Li et al. 2003; Marjanovic and Orlowska 1999], based on the directed 
network graph (DNG) concept, a scientific workflow can be represented as a DNG-based 
scientific workflow graph, where nodes correspond to activities and edges correspond to 
dependencies between activities. In [Li et al. 2003; Marjanovic and Orlowska 1999], the 
iterative structure is nested in an activity that has an exit condition defined for iterative 
purposes. Accordingly, the corresponding DNG-based scientific workflow graph is 
structurally acyclic2. Here we assume that a scientific workflow is well structured, i.e. 
there are no any structure errors such as deadlocks, livelocks, dead activities and so on. 
The structure verification is outside the scope of this paper and can be referred to some 
other references such as [Aalst 2003; Sadiq and Orlowska 2000].  
 
2.1 Activity Time Attributes and Temporal Constraints 

To represent activity time attributes in a scientific workflow, we borrow some concepts 
from [Chinn and Madey 2000; Eder et al. 1999; Marjanovic and Orlowska 1999] such as 
maximum, mean or minimum duration as a basis. We denote the ith activity of a scientific 
workflow as ai. For each ai, we denote its maximum duration, mean duration, minimum 
duration, run-time start time, run-time end time and run-time completion duration as 
D(ai), M(ai), d(ai), S(ai), E(ai) and R(ai) respectively. If there is a path from ai to aj (i<j), 
we denote the maximum duration, mean duration and minimum duration between them 
as D(ai, aj), M(ai, aj) and d(ai, aj) respectively. M(ai) indicates that statistically ai can be 
completed around its mean duration. Other time attributes are self-explanatory. 
According to [Chinn and Madey 2000; Son and Kim 2001], D(ai), M(ai) and d(ai) can be 
obtained based on the past execution history. The past execution history covers the delay 
time incurred at ai such as the setup delay, queuing delay, synchronisation delay, network 
latency and so on. The detailed discussion of D(ai), M(ai) and d(ai) is outside the scope of 
this paper and can be referred to [Chen and Yang 2005b; Eder et al. 1999; Marjanovic 
and Orlowska 1999]. For a specific execution of ai, the delay time is included in R(ai). 
Normally, we have d(ai)≤M(ai)≤D(ai) and d(ai)≤R(ai)≤D(ai). If there is a path from ai to aj 
                                                           
2 Refer to [Li et al. 2003; Marjanovic and Orlowska 1999] for more details. 
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(i<j) and an upper bound constraint between them, we denote the upper bound constraint 
as U(ai, aj) and its value as u(ai, aj). For a series of upper bound constraints, we denote 
them as U1, U2, U3 and so forth, their values as u(U1), u(U2), u(U3) and so forth. 

For convenience of the discussion, we only consider one execution path in the acyclic 
DNG-based scientific workflow graph without losing generality. As to a selective or 
parallel structure, each branch is an execution path. Therefore, we can equally apply the 
results achieved in this paper to each branch directly. In overall terms, for a scientific 
workflow containing many parallel, selective and/or mixed structures, firstly, we treat 
each structure as an activity. Then, the whole scientific workflow will be an overall 
execution path and we can apply the results achieved in this paper to it. Secondly, for 
every structure, for each of its branches, we continue to apply the results achieved in this 
paper. Thirdly, we carry out this recursive process until we complete all branches of all 
structures. Correspondingly, between ai and aj, D(ai, aj) is equal to the sum of all activity 
maximum durations, M(ai, aj) is equal to the sum of all activity mean durations, and d(ai, 

aj) is equal to the sum of all activity minimum durations. 
 
2.2 Temporal Consistency States 

Besides the time attributes represented in Section 2.1, [Chen and Yang 2005b] identifies 
and defines four temporal consistency states which are based on [Eder et al. 1999]. They are 
SC (Strong Consistency), WC (Weak Consistency), WI (Weak Inconsistency) and SI 
(Strong Inconsistency). Since the checkpoint concept is related to run-time execution stage 
and the temporal dependency addressed in Section 4 is related to build-time stage, we only 
summarise the definitions for these two stages here. The definitions for run-time 
instantiation stage and the detailed discussion can be found in [Chen and Yang 2005b].  

Definition 1. At build-time stage, U(ai, aj) is said to be of: 
1) SC if with D(ai, aj) ≤ u(ai, aj); 
2) WC if M(ai, aj) ≤ u(ai, aj) < D(ai, aj);  
3) WI if d(ai, aj) ≤ u(ai, aj) < M(ai, aj);  
4) SI if u(ai, aj) < d(ai, aj). 

Definition 2. At run-time execution stage, at checkpoint ap between ai and aj, U(ai, aj) 

is said to be of: 
1) SC if R(ai, ap) + D(ap+1, aj) ≤ u(ai, aj);  
2) WC if R(ai, ap) + M(ap+1, aj) ≤ u(ai, aj) < R(ai, ap) + D(ap+1, aj);  
3) WI if R(ai, ap) + d(ap+1, aj) ≤ u(ai, aj) < R(ai, ap) + M(ap+1, aj);  
4) SI if u(ai, aj) < R(ai, ap) + d(ap+1, aj). 

Definition 2 actually mixes the duration prediction after the checkpoint, i.e. D(ap+1, 

aj), M(ap+1, aj) and d(ap+1, aj), with actual completion duration obtained until the 
checkpoint, i.e. R(ai, ap). For clarity, we further depict SC, WC, WI and SI in Figure 1. 

According to [Chen and Yang 2005b], along scientific workflow execution, for SC, 
we do not need to do anything as the corresponding upper bound constraints can be kept. 
For WC, by utilising the possible time redundancy of succeeding activity execution, i.e. 
the time saved by the execution of each succeeding activity from its pre-set maximum 
duration, the corresponding upper bound constraints may still be kept. Specific methods 
for utilising the possible time redundancy can be found in [Chen and Yang 2005b]. For 
WI and SI, basically for most cases, the corresponding upper bound constraints cannot be 
kept. Consequently, the corresponding exception handling needs to be triggered to adjust 
them to SC or WC. Specific exception handling methods can be borrowed and adapted 
from [Hagen and Alonso 2000, Russell et al. 2006]. 

Since WI and SI are adjusted to SC or WC by their respective exception handling, 
along grid workflow execution, checkpoint selection actually focuses on selecting 
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checkpoints for verifying previous SC and WC upper bound constraints to check their 
current consistency. 

 

 
 

Fig. 1. Definitions of SC, WC, WI and SI at build-time and run-time execution stages 

3. RELATED WORK AND PROBLEM ANALYSIS 

Different representative checkpoint selection strategies have been proposed in the 
literature. To the best of our knowledge, we list them below. 

• CSS1: [Eder et al. 1999] takes every activity as a checkpoint. We denote this 
strategy as CSS1.  

• CSS2: [Zhuge et al. 2001] sets checkpoints at the start time and end time of each 
activity. We denote this strategy as CSS2.  

• CSS3: [Marjanovic and Orlowska 1999] takes the start activity as a checkpoint and 
adds a checkpoint after each decision activity is executed. We denote this strategy 
as CSS3.  

• CSS4: [Marjanovic and Orlowska 1999] also mentions another checkpoint 
selection strategy: user-defined static checkpoints. That is that users define some 
static activity points as checkpoints at build-time stage. We denote this strategy as 
CSS4.  

• CSS5: [Chen et al. 2004] selects activity ai as a checkpoint if R(ai) > D(ai). We 
denote this strategy as CSS5.  

• CSS6: [Chen and Yang 2008a] selects activity ai as a checkpoint if R(ai) > M(ai).  
We denote this strategy as CSS6.  

• CSS7: [Chen and Yang 2005a] introduces a minimum proportional time 
redundancy for each activity and then selects an activity as a checkpoint when its 
completion duration is greater than the sum of its mean duration and its minimum 
proportional time redundancy. We denote this strategy as CSS7. 

• CSS8: [Chen and Yang 2007] introduces a minimum time redundancy for each 
activity and then selects an activity as a checkpoint when its completion duration 
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is greater than the sum of its mean duration and its minimum time redundancy. We 
denote this strategy as CSS8. 

All of CSS1 ~ CSS7 do not differentiate upper bound constraints. Once an activity point 
is selected as a checkpoint, they will verify all upper bound constraints. However, for some 
upper bound constraints, their consistency can be deduced from others. Such constraints do 
not need to take any checkpoints and do not need to be verified. CSS8 can guarantee that at 
each selected checkpoint there is at least one upper bound constraint violated. Since it treats 
all upper bound constraints as a whole, it can claim that all checkpoints selected by it are 
“necessary” and “sufficient”. However, those upper bound constraints whose consistency 
can be deduced from others do not need to take any checkpoints. That is to say, when we 
differentiate upper bound constraints, CSS8 has a similar problem of CSS1 ~ CSS7. 

We now consider the example of an astrophysics scientific workflow for detecting 
gravitational wave [Daisuke et al. 2007] for analysing the problem of CSS1 ~ CSS8. Such 
workflow can contain hundreds of thousands of activities and sub-activities such as 
computation resource discovery, data reduction and data transfer [Daisuke et al. 2007]. 
Depending on the detecting outcome, the workflow may execute for a few months or 
several years. For such a long time, astrophysics scientists often need to know intermediate 
execution results within various time periods during the execution so that they can decide 
on the subsequent actions. Accordingly, upper bound constraints are assigned for those 
periods so that corresponding intermediate results can be achieved on time. We consider 
three of them denoted as Ul, Um and Un. Although three only, they are sufficient for 
analysing the problem of CSS1 ~ CSS8. We denote the workflow segment covering Ul, Um 
and Un as the kth segment and depict it in Figure 2. Some time values are also attached in 
Figure 2. The selection of those values is random and does not affect our analysis because 
the dependency between Ul, Um and Un reflects certain relative relationship between them, 
hence not subject to the absolute time values. Figure 2 contains a selective structure which 
has two branches, i.e. Branch 1 and Branch 2. We focus on SC of Ul, Um and Un. The 
corresponding discussion for WC is similar. 

In Figure 2, we consider an execution instance where the execution goes Branch 1 and 
R(ai)=8, R(ai+1)=15, R(ai+2)=19, R(ai+3)=16, R(ai+4)=14, R(ai+5)=9, R(ai+6)=4, R(ai+7)=5, 
R(ai+8)=15. Suppose ai+8 is selected as a checkpoint by one of CSS1 ~ CSS8. Then, at ai+8, 
all of Ul, Um and Un will be verified according to Definition 2. We will find that Ul is not of 
SC, but Um and Un are of SC. However, we argue that Un does not need to be verified 
because its consistency can be deduced from Um. That is to say, Un does not need to take 
ai+8 as a checkpoint. We explain as follows. R(ai+4, ai+8) + D(ai+10, ai+15) = R(ai+4) + R(ai+5) 

+ R(ai+6) + R(ai+7) + R(ai+8) + D(ai+10) + D(ai+11) + D(ai+12) + D(ai+13) + D(ai+14) + 
D(ai+15)=14+9+4+5+15+6+8+15+20+18+12=126. We also have u(Um)=150. Hence, we 
have inequation (1) below. 

R(ai+4, ai+8) + D(ai+10, ai+15) < u(Um)                          (1) 
ai+9 is not executed because it is on the other branch. Therefore, according to Definition 2, 
inequation (1) means that Um is of SC. Meanwhile, we have D(ai, ai+3) = D(ai) + D(ai+1) + 
D(ai+2) + D(ai+3) =10+16+21+17=64, and R(ai, ai+3)=R(ai) + R(ai+1) + R(ai+2) + R(ai+3)= 
8+15+19+ 16=58. Hence, we have R(ai, ai+3) ≤ D(ai, ai+3). Besides, we also have D(ai+16, 

ai+17) = D(ai+16)+D(ai+17)=15+11=26. Accordingly, we have D(ai, ai+3) + u(Um) + D(ai+16, 

ai+17) = 64+150+26=240 < u(Un)=250. Therefore, we have inequation (2) below. 
D(ai, ai+3) + u(Um) + D(ai+16, ai+17) < u(Un)                                    (2) 

With inequation (2), we have R(ai, ai+8) + D(ai+10, ai+17) = R(ai, ai+3) + R(ai+4, ai+8) + 

D(ai+10, ai+15) + D(ai+16, ai+17) < D(ai, ai+3) + u(Um) + D(ai+16, ai+17) < u(Un). Hence, we 
have inequation (3) below.  

R(ai, ai+8) + D(ai+10, ai+17) < u(Un)                                     (3) 
According to Definition 2, inequation (3) means that Un is of SC.  
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The above example has demonstrated that we do not need to verify Un. We have 
actually deduced the consistency of Un from Um. Therefore, ai+8 is a real checkpoint for Ul 
and Um but not for Un. That is to say, we should differentiate upper bound constraints and 
select checkpoints corresponding to different upper bound constraints.  

Considering the above example again, we can find that there is a key factor for us to 
deduce the consistency of Un from Um. That is inequation (2) which is exactly the essence 
of temporal dependency between Um and Un. We detail it in the next section. 
 

 
Fig. 2. An example of three upper bound constraints: Ul, Um and Un 

4. TEMPORAL DEPENDENCY 

In this section, we discuss temporal dependency between upper bound constraints. In 
general, temporal dependency means that different upper bound constraints are dependent 
on each other in terms of their setting and verification. 

According to Section 2, since checkpoint selection is actually for SC and WC upper 
bound constraint verification, temporal dependency consists of SC temporal dependency 
and WC temporal dependency. The former is for SC upper bound constraints while the 
latter is for WC ones.  

We first discuss SC and WC temporal dependency in Section 4.1. Then in Section 4.2, 
we investigate how to deduce the consistency of upper bound constraints based on temporal 
dependency. 
 
4.1 SC and WC Temporal Dependency 

We focus on SC temporal dependency. The discussion of WC temporal dependency is 
similar. We first discuss two upper bound constraints and then extend to multiple ones. 
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Considering two upper bound constraints U1 and U2 where U1 is between
1i

a and
1j

a , 

and U2 is between
2i

a and
2j

a , based on Allen’s temporal interval logic [Allen 1983, Chinn 
and Madey 2000], we can conclude that there are two groups of basic relationships 
between U1 and U2. One is with non-nested relationship while the other is with nested 
relationship. We depict them in Figures 3 and 4 respectively. We are discussing temporal 
dependency generally between two upper bound constraints. Hence, we do not need to 
differentiate the ordering between U1 and U2. 

In Figure 3, for Scenarios 1, 2, 4, 5 and 6, U1 and U2 are relatively independent as 
they do not have any activities in common. For Scenarios 3, 7 and 8, although U1 and U2 
have some common activities, they still have many different activities which are 
independent of each other. Therefore, in Figure 3, U1 and U2 can be verified 
independently, i.e. no temporal dependency issue. 

 

 
 

Fig. 3. Non-nested upper bound constraints U1 and U2 

In Figure 4, for Scenario 9, if u(U2) ≤ u(U1), then, if U2 is of SC, U1 must be of SC. If 
U2 is not of SC, we need to adjust U2. The adjustment inevitably influences U1 because 
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U1 is included in U2. Then, even if U1 is of SC before the adjustment, we still need to re-
verify it because its consistency may change after the adjustment. That is to say, the 
previous temporal verification of U1 becomes useless. Therefore, in Scenario 9, we must 
ensure u(U1)<u(U2). Similarly, in Scenarios 10 and 11, we must also ensure u(U1)<u(U2).  

 

 
 

Fig. 4. Nested upper bound constraints U1 and U2 

Now, we consider a more complicated situation for Scenario 9. Suppose we omit the 
temporal dependency between U1 and U2, and consequently set up them independently, we 
may encounter the following problem. We consider a special case where inequation (4) 
below holds.  

u(U2) < ),( 112 −ii aaD + u(U1) + ),(
21 1 jj aaD

+
                        (4) 

With inequation (4), if U2 is of SC, we have ),( 112 −ii aaD + ),(
11 ji aaD + ),(

21 1 jj aaD
+

≤ 

u(U2) < ),( 112 −ii aaD + u(U1) + ),(
21 1 jj aaD

+
. Then, we have inequation (5) below. 

),(
11 ji aaD < u(U1)                                          (5) 

According to Definition 1, inequation (5) means that U1 is of SC. Similar to the above 
situation where u(U2) ≤ u(U1), if U2 is not of SC, even if U1 is of SC, when we adjust U2, 
we inevitably influence the setting of U1 and need to re-verify U1. Therefore, the previous 
temporal verification of U1 becomes useless. Hence, in Scenario 9, u(U1) < u(U2) is not 
enough and we still need to ensure that inequation (4) does not hold. That is to say, we 
need to make sure of inequation (6) below. 

),( 112 −ii aaD + u(U1) + ),(
21 1 jj aaD

+
≤ u(U2)                          (6) 

Similarly, in Scenario 10, we must ensure u(U1) + ),(
21 1 jj aaD

+
≤ u(U2), and in Scenario 

11, we must ensure ),( 112 −ii aaD + u(U1) ≤ u(U2). 
In summary, temporal dependency between two upper bound constraints in Scenarios 

9, 10 and 11 of Figure 4 must be taken into consideration in order to keep the previous 
temporal verification useful. Correspondingly, we have Definition 3 below. 

Definition 3 (SC Temporal Dependency). Let U1 and U2 be two upper bound 
constraints (see Figure 4) where U1 is between

1i
a and

1j
a and U2 is between

2i
a and

2j
a  

(i2≤i1<j1≤j2), namely U1 is nested in U2. Then, with ),( 112 −ii aaD + u(U1) + ),(
21 1 jj aaD

+
≤ 

u(U2), SC temporal dependency between U1 and U2 is defined as consistent. 
For WC temporal dependency, similarly we have Definition 4 below. 
Definition 4 (WC Temporal Dependency). Let U1 and U2 be two upper bound 

constraints (see Figure 4) where U1 is between
1i

a and
1j

a and U2 is between 
2i

a  and 
2j

a  

(i2≤i1<j1≤j2), namely U1 is nested in U2. Then, with ),( 112 −ii aaM + u(U1) + ),(
21 1 jj aaM

+
≤ 

u(U2) < ),( 112 −ii aaD + u(U1) + ),(
21 1 jj aaD

+
, WC temporal dependency between U1 and 

U2 is defined as consistent. 
We now investigate SC and WC temporal dependency between a series of upper 

bound constraints. In fact, based on the above discussion for two upper bound constraints, 
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we can see that if there are no nesting relationships like in Figure 3, there will be no 
temporal dependency issue. In reality, a scientific workflow normally has an end-to-end 
upper bound constraint which is a direct user requirement to cover from the start to the 
end of the workflow. Correspondingly, all other upper bound constraints are nested in it. 
That is to say, Figure 3 does not really reflect the practice of scientific workflow, but a 
deduced case from Allen’s temporal interval logic for completeness. As such, we only 
need to consider the situation where a series of upper bound constraints are nested one 
after another. Considering N upper bound constraints U1, U2, ... , UN, based on the nesting 
relationships between two upper bound constraints in Scenarios 9, 10 and 11 of Figure 4, 
we can derive four general groups of basic nesting relationships as depicted in Figure 5.  

For the general case where N upper bound constraints are interleaved with each other, 
we can divide it into smaller groups according to their nesting relationships and then 
compose them from those scenarios in Figures 3, 4 and 5. The corresponding temporal 
dependency is composed as well. Hence, it is not a basic relationship and does not need 
to be discussed here. 

In Figure 5, Scenario 12 is actually the extension of Scenario 9 of Figure 4. Scenario 
13 is the extension of Scenario 10 of Figure 4. Scenario 14 is the extension of Scenario 
11 of Figure 4. Scenario 15 is a combination of Scenarios 12, 13 and 14. Therefore, 
Figure 4 can be viewed as a special case of Figure 5. In addition, in reality, Figure 5 is 
also the most common case because we certainly need to consider other upper bound 
constraints when we set new ones. Setting upper bound constraints independently without 
any nesting relationships would easily cause potential conflict between them and 
confusion on the overall completion time of a scientific workflow execution. At least, all 
upper bound constraints are nested in the overall end-to-end one. As such, we focus on 
Figure 5 only to discuss temporal dependency. 

To discuss temporal dependency in Scenarios 12, 13, 14 and 15 of Figure 5, we derive 
Theorem 1 next. Based on Theorem 1, the temporal dependency in Scenarios 12, 13, 14 
and 15 can be translated into that in Scenarios 9, 10 and 11 of Figure 4 respectively.   
 

 
Fig. 5. A series of nested upper bound constraints 
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Theorem 1.  Let U1, U2, ... , UN be N upper bound constraints (see Figure 5) where U1 
is between 

1i
a  and

1j
a , and U2 is between

2i
a and

2j
a and so forth (iN≤...≤i2≤i1 < j1≤j2≤...≤jN), 

namely U1 is nested in U2, U2 is nested in U3 and so forth. Then,  
1) if SC temporal dependency between any two adjacent upper bound constraints 

Uk and Uk+1 is consistent (1≤k≤N-1), SC temporal dependency between any two 
non-adjacent upper bound constraints must also be consistent; 

2) if WC temporal dependency between any two adjacent upper bound constraints 
Uk and Uk+1 is consistent (1≤k≤N-1), WC temporal dependency between any 
two non-adjacent upper bound constraints must also be consistent. 

Proof:  1) We take Scenario 12 as the example to conduct the proof as Scenarios 13, 
14 and 15 can actually be viewed as special cases of Scenario 12. For simplicity, we 
consider U1, U2 and U3. Suppose SC temporal dependency between U1 and U2 is 
consistent and SC temporal dependency between U2 and U3 is consistent. Now we 
prove that SC temporal dependency between U1 and U3 is also consistent. That is to 
say, the consistency of SC temporal dependency is transitive. According to Definition 
6, we have inequations (7) and (8) below. 

               ),( 112 −ii aaD + u(U1) + ),(
21 1 jj aaD

+
 ≤ u(U2)                                 (7) 

               ),( 123 −ii aaD + u(U2) + ),(
32 1 jj aaD

+
 ≤ u(U3)                                 (8) 

Based on (7) and (8), we have: ),( 113 −ii aaD + u(U1) + ),(
31 1 jj aaD

+
= ),( 123 −ii aaD  + 

),( 112 −ii aaD + u(U1) + ),(
21 1 jj aaD

+
+ ),(

32 1 jj aaD
+

 ≤ ),( 123 −ii aaD  + u(U2) + 

),(
32 1 jj aaD

+
 ≤ u(U3). Hence, we have inequation (9) below. 

),( 113 −ii aaD + u(U1) + ),(
31 1 jj aaD

+
≤ u(U3)                               (9) 

According to Definition 3, inequation (9) means that SC temporal dependency 
between U1 and U3 is consistent.  
2) The proof is similar to 1), hence omitted. 
Thus, in overall terms, the theorem holds. ▌ 
 

4.2 Consistency of Upper Bound Constraints 

According to Section 4.1, at build-time stage we verify temporal dependency between any 
two adjacent nested upper bound constraints and accordingly make sure of its consistency. 
Then at run-time execution stage, we can derive Theorem 2 and Corollary 1 below. With 
them, we can deduce the consistency of later upper bound constraints from previous ones. 

Scenario 12 of Figure 5 is more representative than other scenarios in Figures 4 and 5 as 
other scenarios can be viewed as special cases of it. Hence, we mainly focus on it. 
Correspondingly, Theorem 2 can be applied to all scenarios of Figures 4 and 5. For 
Scenario 13 of Figure 5 in particular where all upper bound constraints have the same start 
activity, Corollary 1 is deduced further by which we can directly deduce the consistency.  
     Theorem 2. Consider two upper bound constraints Uk and Us (k<s≤N) (see Scenario 
12 of Figure 5) where SC and WC temporal dependencies between Uk and Us are 
consistent; Uk is between 

ki
a  and

kj
a and Us is between

si
a and

sj
a (is<ik<jk<js), i.e. Uk is 

nested in Us. Then, at ap between
ki

a  and
kj

a ,  

1) if ),( 1−ks ii aaR ≤ ),( 1−ks ii aaD  and Uk is of SC, Us must also be of SC.  

2) if ),( 1−ks ii aaR ≤ ),( 1−ks ii aaM and Uk is of WC, Us must also be of WC or even SC.  

Proof: 1) If Uk is of SC, then with the consistency of temporal dependency between 
Uk and Us, we have inequations (10) and (11) below. 
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              ),( pi aaR
k

+ ),( 1 kjp aaD
+

 ≤ u(Uk)                                                 (10) 

                ),( 1−ks ii aaD + u(Uk) + ),( 1 sk jj aaD
+

≤ u(Us)                                      (11) 

If ),( 1−ks ii aaR ≤ ),( 1−ks ii aaD , based on inequations (10) and (11), we have u(Us)≥ 

),( 1−ks ii aaD + u(Uk) + ),( 1 sk jj aaD
+

≥ ),( 1−ks ii aaR + u(Uk) + ),( 1 sk jj aaD
+

≥ ),( 1−ks ii aaR  + 

),( pi aaR
k

 + ),( 1 kjp aaD
+

 + ),( 1 sk jj aaD
+

 = ),( pi aaR
s

+ ),( 1 sjp aaD
+

. Finally, we have 

inequation (12) below. 
 ),( pi aaR

s
+ ),( 1 sjp aaD

+
≤ u(Us)                                            (12)  

According to Definition 2, inequation (12) means that Us is of SC.  
2) The proof is similar to 1), hence omitted. 
Thus, in overall terms, the theorem holds. ▌ 

Corollary 1. Let U1, U2, ... , UN be N upper bound constraints (see Scenario 13 of 
Figure 5) where U1 is between 

1i
a  and

1j
a and U2 is between

1i
a and

2j
a and so forth 

(i1<j1<j2< ... <jN), i.e. U1, U2, ... , UN have the same start point 
1i

a and U1 is nested in U2, 

U2 is nested in U3 and so forth. Then, at ap between
1i

a  and
kj

a ,  

1) if Uk is of SC, any upper bound constraint Us after Uk must also be of SC 
(k<s≤N). 

2) if Uk is of WC, any upper bound constraint Us after Uk must also be of WC or 
even SC (k<s≤N). 

Proof: Since Us and Uk have the same start point
1i

a , we have ),( 1−ks ii aaR  = 

),( 1−ks ii aaD = ),( 1−ks ii aaM = 0. Hence, we always have ),( 1−ks ii aaR  ≤ ),( 1−ks ii aaD  

and ),( 1−ks ii aaR ≤ ),( 1−ks ii aaM  . According to Theorem 2, the corollary holds. ▌ 

 
5. CHECKPOINT SELECTION BASED ON TEMPORAL DEPENDENCY 

Among CSS1~CSS8, [Chen and Yang 2007] has experimentally demonstrated that CSS8 
can improve the checkpoint selection and eventual temporal verification efficiency 
significantly than other strategies. That is, CSS8 is the best one among existing 
representative strategies. CSS8 can guarantee that at each checkpoint there is at least one 
upper bound constraint violated. However, as analysed in Section 3.2, it does not 
differentiate upper bound constraints and will verify all of them at each checkpoint. In 
fact, a checkpoint is needed for some upper bound constraints, but not needed for those 
whose consistency can be deduced without further verification. As analysed in Section 4, 
with SC and WC temporal dependencies, we can derive such upper bound constraints. 
That is to say, with SC and WC temporal dependencies, we can overcome the problem of 
CSS8. As such, we propose to facilitate SC and WC time redundancies to develop a new 
checkpoint selection strategy. We denote the new strategy as CSSTDB (TDB: Temporal 
Dependency Based). In general, the working process of CSSTDB is as follows. We first 
apply CSS8 to determine whether an activity point is selected as a checkpoint for all upper 
bound constraints as a whole. Then, we apply SC and WC temporal dependencies to 
determine which upper bound constraints should take the checkpoint as a real one. 

We now first summarise CSS8 in Section 5.1. Then in Section 5.2, we present CSSTDB. 
 

5.1 Summary of CSS8 

CSS8 introduces the concept of minimum time redundancy as a key judging parameter to 
determine whether an activity point is selected as a checkpoint. The minimum time 
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redundancy consists of minimum SC time redundancy and minimum WC time redundancy. 
In general, the idea of CSS8 is as follows. Along workflow execution, at activity ap, it 
computes the minimum SC and WC time redundancies. Then, it will determine whether the 
current time deviation is greater than the minimum SC or WC time redundancy. If so, there 
will be at least one SC or WC upper bound constraint violated. Then, CSS8 selects ap as a 
checkpoint, but for verifying all upper bound constraints.  
 
5.1.1 Minimum Time Redundancies 

At ap, each SC upper bound constraint has a SC time redundancy defined in Definition 5. 
Each WC upper bound constraint has a WC time redundancy defined in Definition 6. 
Then, the minimum SC time redundancy at ap is defined as the minimum one of all SC 
time redundancies while the minimum WC time redundancy at ap is defined as the 
minimum one of all WC time redundancies. Definitions 7 and 8 below are for them 
respectively. 

Definition 5. At activity point ap between ai and aj (i<j), let U(ai, aj) be of SC. Then, 
SC time redundancy of U(ai, aj) at ap is defined as u(ai, aj) – [R(ai, ap) + D(ap+1, aj)] and 
denoted as TRSC(U(ai, aj), ap): TRSC(U(ai, aj), ap) = u(ai, aj) – [R(ai, ap) + D(ap+1, aj)]. 

Definition 6. At activity point ap between ak and al (k<l), let U(ak, al) be of WC. Then, 
WC time redundancy of U(ak, al) at ap is defined as u(ak, al) – [R(ak, ap) + M(ap+1, al)] 
and denoted as TRWC(U(ak, al), ap): TRWC(U(ak, al), ap) = u(ak, al) – [R(ak, ap) + M(ap+1, 

al)]. 
Definition 7 (Minimum SC Time Redundancy). Let U1, U2, ... , UN be N SC upper 

bound constraints and all of them cover ap. Then, at ap, the minimum SC time 
redundancy is defined as the minimum one of all SC time redundancies of U1, U2, ... , UN, 
and is denoted as MTRSC(ap) (MTRSC: SC Minimum Time Redundancy): 

MTRSC(ap) = Min{ TRSC(Us, ap)| s =1,2, ..., N }. 
Definition 8 (Minimum WC Time Redundancy). Let U1, U2, ... , UN be N WC upper 

bound constraints and all of them cover ap. Then, at ap, the minimum WC time 
redundancy is defined as the minimum one of all WC time redundancies of U1, U2, ... , 
UN, and is denoted as MTRWC(ap) (MTRWC: WC Minimum Time Redundancy): 

MTRWC(ap) = Min{ TRWC(Us, ap)| s =1,2, ..., N }. 
According to Definitions 7 and 8, at ap-1 or just before the execution of ap, the minimum 

SC and WC time redundancies are MTRSC(ap-1) and MTRWC(ap-1) respectively. 
 

5.1.2 Computation of Minimum Time Redundancies 

[Chen and Yang 2007] developed a method named DOMTR (Dynamic Obtaining of 
Minimum Time Redundancy) for CSS8 to dynamically compute MTRSC(ap) and MTRWC(ap) 
for each ap. In general, DOMTR works as follows. Along scientific workflow execution, at 
ap, DOMTR uses the time deviation caused by the execution of ap to adjust previous 
minimum SC and WC time redundancies in order to achieve current ones. Specifically,  
MTRSC(ap) = MTRSC(ap-1) - [R(ap) - D(ap)] and MTRWC(ap)=MTRWC(ap-1)-[R(ap)-M(ap)]. 
There are two exceptions for the computation as described next.  

One is that ap is the start activity of some SC and/or WC upper bound constraints. At 
such ap, there are a SC minimum time difference and a WC minimum time difference 
assigned at build-time stage. An SC time difference of U(ap, aj) at ap is u(ap, aj) - D(ap, aj). 
The SC minimum time difference is the minimum one of all SC time differences. A WC 
time difference of U(ap, al) at ap is D(ap, al) - M(ap, al). The WC minimum time difference 
is the minimum one of all WC time differences. For this situation, MTRSC(ap) = 
Min{MTRSC(ap-1), SC minimum time difference} - [R(ap) - D(ap)] and MTRWC(ap) = 
Min{MTRWC(ap-1), WC minimum time difference} - [R(ap)-M(ap)].  
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The other is when ap is the end activity of the upper bound constraint of MTRSC(ap-1) or 
MTRWC(ap-1). In this case, MTRSC(ap-1) or MTRWC(ap-1) will become invalid after the 
execution of ap because their upper bound constraint will be finished. Hence, we cannot use 
them to compute MTRSC(ap) and MTRWC(ap). In this case, DOMTR assigns the minimum 
one of all remaining SC time redundancies to MTRSC(ap), and the minimum one of all 
remaining WC time redundancies to MTRWC(ap).  

The SC minimum time difference, WC minimum time difference, minimum one of all 
remaining SC time redundancies, and minimum one of all remaining WC time 
redundancies are all initialised at build-time stage, i.e. before workflow execution. 
 
5.1.3 Checkpoint Selection of CSS8 

[Chen and Yang 2007] concluded and demonstrated the relationships between minimum 
SC & WC time redundancies and SC, WC, WI & SI of upper bound constraints. Based on 
those relationships, it proposed CSS8. We depict the relationships in Figure 6. In Figure 6, 
“previous” means before the execution of ap. Then, at ap, the following three conclusions 
can be drawn. 

1) If R(ap) > D(ap)+MTRSC(ap-1), we have to verify all previous SC and WC upper 
bound constraints. There is at least one previous SC upper bound constraint 
which is violated and now is not of SC. It is exactly the one whose SC time 
redundancy at ap-1 is MTRSC(ap-1). 

2) If M(ap) + MTRWC(ap-1) < R(ap) ≤ D(ap) + MTRSC(ap-1), we need not verify all 
previous SC upper bound constraints, only all previous WC ones. And there is at 
least one previous WC upper bound constraint which is violated and now is not 
of SC and WC. It is exactly the one whose WC time redundancy at ap-1 is 
MTRWC(ap-1).  

3) If R(ap) ≤ M(ap) + MTRWC(ap-1), we need not verify all previous SC upper bound 
constraints. As to previous WC ones, based on [Chen and Yang 2005b] we do not 
need to verify them either. In [Chen and Yang 2005b], a method has been 
developed to adjust the WC upper bound constraints so that they can still be kept 
as SC. [Chen and Yang 2007] has proved that after execution of ap, the status of 
the previous WC upper bound constraints is changed closer to SC (can even be 
changed to SC). Therefore, if a previous WC upper bound constraint is still of WC 
after execution of ap, we can still use the previous adjustment on it. Hence, we do 
not need to do anything further to it. That is to say, we do not need to verify it. 

Based on the above three conclusions, CSS8 can determine whether ap is selected as a 
checkpoint. The approach is: At activity ap, if R(ap) > D(ap)+MTRSC(ap-1), we take it as a 

checkpoint for verifying SC, WC, WI & SI of all previous SC upper bound constraints, and 

for verifying WC, WI & SI of all previous WC upper bound constraints. If 

M(ap)+MTRWC(ap-1) < R(ap) ≤ D(ap)+MTRSC(ap-1), we take ap as a checkpoint for verifying 

SC, WC, WI & SI of all previous WC only upper bound constraints. If R(ap) ≤ M(ap) + 
MTRWC(ap-1), we do not take ap as a checkpoint. 

The whole working process of CSS8 is that it employs DOMTR to compute the 
minimum SC and WC time redundancies at an activity, and then applies the above 
approach to determine whether the activity is selected as a checkpoint. With CSS8, at each 
checkpoint there is at least one upper bound constraint violated. 
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Fig. 6. Relationships between minimum SC and WC time redundancies and SC, WC, WI & SI 

 
5.2 Checkpoint Selection Process of CSSTDB 

As stated earlier, CSSTDB applies CSS8 to determine whether the current activity point is 
selected as a checkpoint for all upper bound constraints as a whole. To be different from 
final real checkpoints, we call such a checkpoint as a tentative checkpoint. Then, CSSTDB 
applies temporal dependency to figure out which upper bound constraints should take the 
tentative checkpoint as a real one. Based on Section 5.1 about CSS8 and Section 4 about 
temporal dependency, we can derive the checkpoint selection process of CSSTDB. The core 
part of it is depicted in Algorithm 1. 
 

Input Maximum, minimum and mean durations of all activities; ArraySC: an 
array of all SC upper bound constraints; ArrayWC: an array of all WC 
upper bound constraints. 

Output True or False as an appropriate checkpoint 
Step 1 Compute MTRSC(ap) and MTRWC(ap) by DOMTR when scientific workflow 

execution arrives at ap. 
1.1. If ap is not the start activity of any SC and WC upper bound constraints and ap is 

not the end activity of the upper bound constraint of MTRSC(ap-1) or MTRWC(ap-1), 
then 
{ MTRSC(ap) = MTRSC(ap-1) - [R(ap) - D(ap)]; 
   MTRWC(ap)=MTRWC(ap-1) - [R(ap) - M(ap)]; } 

1.2. If ap is the start activity of some SC and/or WC upper bound constraints, then 
{ MTRSC(ap)=Min{MTRSC(ap-1), SC minimum time difference}-[R(ap)-D(ap)]; 
   MTRWC(ap)=Min{MTRWC(ap-1), WC minimum time difference}-[R(ap)-M(ap)]; } 

1.3. If ap is  the  end  activity of the upper bound constraint of MTRSC(ap-1) or 
MTRWC(ap-1), then 
   { MTRSC(ap) = minimum one of all remaining SC time redundancy; 
     MTRWC(ap) = minimum one of all remaining WC time redundancy; } 

Step 2 Determine whether ap is selected as a tentative checkpoint for all upper 
bound constraints as a whole.  
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2.1. If R(ap) > D(ap)+MTRSC(ap-1), then select ap as a tentative checkpoint for all 
previous SC and WC upper bound constraints.   

2.2. If M(ap) + MTRWC(ap-1) < R(ap) ≤ D(ap) + MTRSC(ap-1), then select ap as a 
tentative checkpoint for all previous WC upper bound constraints. 

2.3. If R(ap) ≤ M(ap) + MTRWC(ap-1), then do not select ap as a tentative checkpoint.  
Step 3 If ap is already selected as a tentative checkpoint, figure out which upper 

bound constraints should not take it as a real checkpoint while the 
remaining ones should.  

3.1. At ap, verify upper bound constraints until an SC or WC one, say Uk is between 

ki
a  and

kj
a . Then, by Theorem 2, any upper bound constraint Us (between 

si
a  and 

sj
a ) nesting Uk with ),( 1−ks ii aaR ≤ ),( 1−ks ii aaD  or ),( 1−ks ii aaR ≤ ),( 1−ks ii aaM ,  

does not take ap as a real checkpoint. In addition, by Corollary 1, any upper bound 
constraint Ur having the same start activity of Uk does not take ap as a real 
checkpoint. 

 

Algorithm 1. Checkpoint selection process of CSSTDB 
 

6. COMPARISON AND SIMULATION 

6.1 Overall Comparison 

As analysed in Section 3, existing representative checkpoint selection strategies do not 
differentiate upper bound constraints. Each checkpoint is for verifying all upper bound 
constraints. This will cause some unnecessary temporal verification because we do not need 
to verify those upper bound constraints whose consistency can be deduced without further 
verification. According to Section 5, CSSTDB uses temporal dependency to derive the 
consistency of later upper bound constraints from previous ones. By this, CSSTDB can 
identify those upper bound constraints whose consistency can be deduced without further 
verification. These upper bound constraints do not need to take the current tentative 
checkpoint as a real one. Consequently, their verification can be avoided which is currently 
incurred by the existing representative strategies. Therefore, with CSSTDB, we can achieve 
better temporal verification efficiency.  

In terms of the extra computation incurred by temporal dependency checking, it is 
only one or two additions at each activity covered by upper bound constraints. This, 
according to Definition 2, is actually equivalent to the computation for one-time temporal 
verification of one upper bound constraint. Since we normally need to conduct temporal 
verification many times at various activities for many upper bound constraints [Chen and 
Yang 2007; Marjanovic and Orlowska 1999; Zhuge et al. 2001], such one or two 
additions would be negligible. 
 
6.2 Simulation 

In this section, we perform an experimental simulation in our scientific workflow 
management system called SwinDeW-G (Swinburne Decentralised Workflow for Grid) 
[SwinDeW-G 2008, Yan et al. 2006]. The aim is to simulate temporal verification based 
on CSS8 and CSSTDB at run-time execution stage in order to demonstrate that CSSTDB can 
improve temporal verification efficiency significantly than CSS8. [Chen and Yang 2007] 
has experimentally demonstrated that CSS8 can improve temporal verification efficiency 
significantly than other existing representative strategies. Therefore, if our aim is achieved, 
we are able to conclude that CSSTDB can improve temporal verification efficiency 
significantly over all existing representative strategies.  
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In Section 6.2.1, we describe the simulation environment first. We then detail the 
simulation process in Section 6.2.2. In Section 6.2.3, we analyse the simulation results to 
demonstrate the significant improvement of CSSTDB on temporal verification efficiency over 
CSS8. 
 
6.2.1 Simulation Environment 

The key component in our simulation environment is SwinDeW-G which is running on a 
grid infrastructure named SwinGrid (Swinburne Grid) [SwinDeW-G 2008]. An overall 
picture of SwinGrid is depicted in the bottom plane of Figure 7 which contains many grid 
nodes distributed in different places. Each grid node contains many computers including 
high performance PCs and/or supercomputers composed of many computing units. The 
primary hosting nodes include the Swinburne CS3 (Centre for Complex Software Systems 
and Services) Node, Swinburne ESR (Enterprise Systems Research laboratory) Node, 
Swinburne Astrophysics Supercomputer Node, and Beihang CROWN Node in China. They 
are running Linux, GT4 (Globus Toolkit) or CROWN grid toolkits 2.5 [CROWN 2008, 
SwinDeW-G 2008] where CROWN (China R&D Environment Over Wide-area Network) 
is an extension of GT4 with more middleware, hence compatible with GT4. Besides, the 
CROWN Node is also connected to some other nodes such as those in Hong Kong 
University of Science and Technology, and University of Leeds in UK. The Swinburne 
Astrophysics Supercomputer Node is cooperating with PfC (Australian Platforms for 
Collaboration) and VPAC (Victorian Partnership for Advanced Computing). 

Currently, SwinDeW-G is deployed at all primary hosting nodes. SwinDeW-G is a 
peer-to-peer based scientific workflow software system running on the SwinGrid 
infrastructure. A scientific workflow is executed by different peers that can be distributed at 
different grid nodes. Different peers communicate with each other directly in a peer-to-peer 
fashion. As shown in the bottom plane of Figure 7, each grid node can have a number of 
peers. In the top plane of Figure 7, we show a sample of how a scientific workflow can be 
executed in the simulation environment. 

 

 

Fig. 7. Overview of the Simulation Environment 
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6.2.2 Simulation Process 

We have simulated temporal verification on the astrophysics scientific workflow stated in 
Section 3 with CSSTDB and CSS8. Upper bound constraints in it are as shown in Scenario 12 
of Figure 5. We chose Scenario 12 for simulation because it is more representative than 
other scenarios as stated in Section 4.2. The simulation process consists of two sub-
processes detailed below. According to the definitions of temporal consistency in Section 2, 
the primary temporal verification computation is focused on the sum of maximum or mean 
durations between two activities. Therefore, we take each maximum or mean duration 
addition operation as a verification computation unit. Correspondingly, we perform the two 
simulation sub-processes in terms of the number of such units. 

The first sub-process is as follows. Along scientific workflow execution, it executes 
CSS8 to choose checkpoints. Then, at each checkpoint, it verifies all upper bound 
constraints. After it finishes all checkpoints and all upper bound constraints, we will have 
the number of all verification computation units. We denote it as V(CSS8).  

The second sub-process is in parallel with the first one. It executes our new strategy 
CSSTDB to choose appropriate checkpoints. Then, at each checkpoint, it verifies those upper 
bound constraints which take the checkpoint as a real one. After it finishes all checkpoints 
and corresponding upper bound constraints, we will have another number of all verification 
units. We denote it as V(CSSTDB).  

By comparing V(CSSTDB) with V(CSS8), we are able to identify the significant 
improvement on temporal verification efficiency by CSSTDB over CSS8. 
 
6.2.3 Simulation Results and Analysis 

Based on the simulation process described in Section 6.2.2, we can derive V(CSSTDB) and 
V(CSS8). They, together with corresponding trajectories, are depicted in Figure 8. They 
change by the number of upper bound constraints. 

 

 
Fig. 8. Verification Computation Units by CSSTDB and CSS8 

 
In Figure 8, we can see the overall trend being that with the number of upper bound 

constraints increasing, both V(CSSTDB) and V(CSS8) increase. Locally, we can see the jitter 
on both curves of V(CSSTDB) and V(CSS8). This is because scientific workflow execution is 
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very dynamic. Sometimes, the execution environment may be under a smooth condition 
with all required resources always available for executing scientific workflow activities. 
The characteristic of the execution environment is that there are almost no system failures 
and most workflow activities can be completed on time. Under such a circumstance, even 
more upper bound constraints may have fewer temporal violations and hence less 
verification computation than the case where there are fewer upper bound constraints, but 
the execution environment is under a less smooth condition whose characteristic is that 
there are a number of system failures and many workflow activities can not be completed 
on time. Then the jitter occurs. Nevertheless, this is only to some extent as the execution 
environment should be stable in overall terms although it may fluctuate locally. Otherwise, 
it needs to be improved in the first place before it can be used. Hence, the overall trend is 
still that the more upper bound constraints, the more violations and hence more 
verification computation, i.e. more V(CSSTDB) and V(CSS8), will be caused. Furthermore, 
we can see that V(CSS8) goes up dramatically while V(CSSTDB) rises relatively slower. In 
particular, when the number of upper bound constraints is getting larger, V(CSS8) is getting 
much greater than V(CSSTDB). That is, the more upper bound constraints, the more 
significant improvement on verification efficiency by CSSTDB over CSS8. Since a scientific 
workflow normally contains hundreds of thousands of activities and lasts a long time, a 
large number of upper bound constraints are often needed so that the corresponding 
workflow execution can be monitored at various activities in order to ensure overall 
temporal correctness [Chen and Yang 2008a, Maechling et al. 2005]. That is to say, the real 
world situation is on the far right-hand side along the X axis. Therefore, we can conclude 
that with CSSTDB, we can improve temporal verification efficiency significantly over CSS8. 

In addition, [Chen and Yang 2007] has experimentally demonstrated that CSS8 can 
improve checkpoint selection and eventually temporal verification efficiency significantly 
over other existing representative strategies CSS1 ~ CSS7. Therefore, in overall terms, we 
can conclude that with our new checkpoint selection strategy CSSTDB, we can improve 
temporal verification efficiency significantly over all existing representative strategies CSS1 
~ CSS8. 
 
7. CONCLUSIONS AND FUTURE WORK 

In a scientific workflow system, a checkpoint selection strategy is used to select 
checkpoints along scientific workflow execution for verifying temporal constraints so 
that we can identify any temporal violations and handle them in time in order to ensure 
overall temporal correctness of the execution which is essential for the usefulness of 
workflow execution results. However, this is a complex issue. The problem of existing 
representative checkpoint selection strategies is that they do not differentiate temporal 
constraints since a checkpoint is always selected for verifying all temporal constraints 
including those whose consistency can be deduced from others. Such constraints actually 
do not need to take any checkpoints. Consequently, the verification of them is unnecessary, 
which can severely impact overall temporal verification efficiency since there are normally 
a large number of temporal constraints in a scientific workflow. The temporal verification 
efficiency reflects whether a temporal violation can be identified quickly while temporal 
violations should be detected as soon as possible so that corresponding handling can be 
triggered in time to remove them in order to guarantee the overall temporal correctness of 
scientific workflow execution. As such, temporal verification efficiency plays a critical role 
in ensuring the overall temporal correctness of scientific workflow execution. 

To address the above problem, in this paper, by taking upper bound constraint as the 
example, we have developed a new checkpoint selection strategy named CSSTDB 
(Temporal Dependency Based Checkpoint Selection Strategy). As analysed in this paper, 
CSSTDB can be symmetrically applied to lower bound constraints and adaptively 



 21 

simplified for fixed-time constraints, hence applicable to all types of temporal constraints. 
CSSTDB can make checkpoint selection corresponding to different temporal constraints. 
Specifically, temporal dependency between temporal constraints has been identified and 
investigated comprehensively. With temporal dependency, the consistency of some later 
temporal constraints can be deduced from previous ones. Then, based on temporal 
dependency, CSSTDB was presented. With CSSTDB, those later temporal constraints whose 
consistency can be deduced from previous ones will no longer take any checkpoints. 
Accordingly, their verification can be avoided which is otherwise incurred by existing 
representative strategies. The final comprehensive comparison and experimental 
simulation have shown that compared to existing representative strategies, CSSTDB can 
significantly improve overall temporal verification efficiency. 

With these contributions, we can further investigate how to handle temporal 
violations identified at a checkpoint such as how to compensate the time deficit 
dynamically along scientific workflow execution. 
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