
ar
X

iv
:0

90
6.

04
09

v1
 [

cs
.D

S]
 2

 J
un

 2
00

9

A New Upper Bound on 2D Online Bin Packing

Xin Han1, Francis Y.L. Chin2, Hing-Fung Ting2, Guochuan Zhang3, Yong Zhang2

1 Graduate School of Information and Technology, University of Tokyo

hanxin.mail@gmail.com
2 Department of Computer Science, The University of Hong Kong, Hong Kong

{ chin, hfting, yzhang}@cs.hku.hk
3 Department of Mathematics, Zhejiang University, China

zgc@zju.edu.cn

October 29, 2018

Abstract

The 2D Online Bin Packing is a fundamental problem in Computer Science and the determination
of its asymptotic competitive ratio has attracted great research attention. In a long series of papers,
the lower bound of this ratio has been improved from 1.808, 1.856 to 1.907 and its upper bound
reduced from 3.25, 3.0625, 2.8596, 2.7834 to 2.66013. In this paper, we rewrite the upper bound
record to 2.5545. Our idea for the improvement is as follows.

In SODA 2002 [24], Seiden and van Stee proposed an elegant algorithm called H ⊗B, comprised
of the Harmonic algorithm H and the Improved Harmonic algorithm B, for the two-dimensional
online bin packing problem and proved that the algorithm has an asymptotic competitive ratio of at
most 2.66013. Since the best known online algorithm for one-dimensional bin packing is the Super
Harmonic algorithm [25], a natural question to ask is: could a better upper bound be achieved by
using the Super Harmonic algorithm instead of the Improved Harmonic algorithm? However, as
mentioned in [24], the previous analysis framework does not work. In this paper, we give a positive
answer for the above question. A new upper bound of 2.5545 is obtained for 2-dimensional online
bin packing. The main idea is to develop new weighting functions for the Super Harmonic algorithm
and propose new techniques to bound the total weight in a rectangular bin.

1 Introduction

In two-dimensional bin packing, each item (wi, hi) is a rectangle of width wi ≤ 1 and height hi ≤ 1.
Given a list of such rectangular items, one is asked to pack all of them into a minimum number of square
bins of side length one so that their sides are parallel to the sides of the bin. Rotation is not allowed.
The problem is clearly strongly NP-hard since it is a generalization of the one-dimensional bin packing
problem [7]. In this paper we will consider the online version of two-dimensional bin packing, in which
the items are released one by one and we must irrevocably pack the current item into a bin without any
information on the next items. Before presenting the previous results and our work, we first review the
standard measure for online bin packing algorithms.

Asymptotic competitive ratio To evaluate an online algorithm for bin packing problems, we use
the asymptotic competitive ratio defined as follows. Consider an online algorithm A. For any list L
of items, let A(L) be the cost (number of bins used) incurred by algorithm A and let OPT (L) be the
corresponding optimal value. Then the asymptotic competitive ratio for algorithm A is

R∞
A = lim

k→∞
supmax

L
{A(L)/OPT (L)|OPT (L) = k}.

1

http://arxiv.org/abs/0906.0409v1

Previous work Bin packing has been well-studied. For the one-dimensional case, Johnson et al. [19]
showed that the First Fit algorithm (FF) has an asymptotic competitive ratio of 1.7. Yao [28] improved
algorithm FF with a better upper bound of 5/3. Lee and Lee [21] introduced the class of Harmonic
algorithms, for which an asymptotic competitive ratio of 1.63597 was achieved. Ramanan et al. [23]
further improved the upper bound to 1.61217. The best known upper bound so far is from the Super
Harmonic algorithm by Seiden [25] whose asymptotic competitive ratio is at most 1.58889. As for the
negative results, Yao [28] showed that no online algorithm has asymptotic competitive ratio less than
1.5. Brown [1] and Liang [20] independently provided a better lower bound of 1.53635. The best known
lower bound to date is 1.54014 [26].

As for two-dimensional online bin packing, a lower bound of 1.6 was given by Galambos [14]. The
result was gradually improved to 1.808 [15], 1.857 [27] and 1.907 [4]. Coppersmith and Raghan [9]
gave the first online algorithm with asymptotic competitive ratio 3.25. Csirik et al. [8] improved the
upper bound to 3.0625. Csirik and van Vliet [10] presented an algorithm for all d dimensions, where
in particular for two dimensions, they obtained a ratio of at most 2.8596. Based on the techniques on
the Improved Harmonic, Han et.al [17] improved the upper bound to 2.7834. The best known online
algorithm to date is the one called A ⊗ B presented by Seiden and van Stee [24], where A and B
stand for two one-dimensional online bin packing algorithms. Basically A and B are applied to one
dimension of the items with rounding sizes. In this seminal paper Seiden and van Stee proved that the
asymptotic competitive ratio of H ⊗ B is at most 2.66013, where H is the Harmonic algorithm [21]
and B is an instance of the improved Harmonic algorithm. It has been open since then to improve the
upper bound. A natural idea is to use an instance of the Super Harmonic algorithm [25] instead of the
improved Harmonic algorithm. However, as mentioned in paper [24], in that case, the previous analysis
framework cannot be extended to Super Harmonic.

We also briefly overview the offline results on two-dimensional bin packing. Chung et al [6] showed
an approximation algorithm with an asymptotic performance ratio of 2.125. Caprara [5] improved the
upper bound to 1.69103. Very recently Bansal et al. [2] derived a randomized algorithm with asymptotic
performance ratio of at most 1.525. As for the negative results, Bansal et al. [3] showed that the two-
dimensional bin packing problem does not admit an asymptotic polynomial time approximation scheme.

For the special case where items are squares, there is also a large number of results [9, 24, 22, 11,
12, 13, 18]. Especially for bounded space online algorithms, Epstein et al. [12] gave an optimal online
algorithm.

Our contributions There are two main contributions in this paper,

• we revisit 1D online bin packing algorithm: Super Harmonic, give new weighting functions for it,
which are much simpler than the ones introduced in [25], and the new weighting functions have
interests in its own.

• we generalize the previous analysis framework for 2D online bin packing algorithms used in [24],
and show that the new analysis framework are very useful in analyzing 2D or multi-dimensional
online bin packing problems.

By combining the new weighting functions with the new analysis framework, we design a new 2D online
bin packing algorithm with a competitive ratio 2.5545, which improves the previous bound of 2.66013
in SODA 2002 [24]. As mentioned in [24], the old analysis framework does not work well with the
old weighting functions in [25], i.e., the old approach does not guarantee an upper bound better than
2.66013. This is testified in the following way: consider our algorithm, if we use old weighting functions
with the old framework to analyze it, the competitive ratio is at least 3.04, and if we use the old weighting
functions with the new framework, the competitive ratio is at least 2.79.

Organization of Paper Section 2 will review the Harmonic and Super Harmonic algorithms as prelim-
inaries. Section 3 defines the weighting functions for Super Harmonic. Section 4 describes and analyzes
the two-dimensional online bin packing algorithm H ⊗ SH+. Section 5 concludes.

2

2 Preliminaries

We first review two online algorithms for one-dimensional bin packing, Harmonic and Super Harmonic,
which are employed in designing online algorithms for two-dimensional bin packing.

2.1 The Harmonic algorithm

The Harmonic algorithm is a fundamental bin packing algorithm with a simple and nice structure, that
was introduced by Lee and Lee [21] in 1985. The algorithm works as follows. Given a positive integer k,
each item is immediately classified into one of k types according to its size upon its arrival. In particular,
if an item has a size in interval (1

i+1 ,
1
i] for some integer i, where 1 ≤ i < k, then it is a type-i item;

otherwise, it is of type-k. The type-i item is then packed, using the simple Next Fit (NF) algorithm,
into the open (not fully-packed) bin designated to contain type-i items exclusively; new bins are opened
when necessary. At any time, there is at most one open bin for each type and any closed (fully-packed)
bin for type-i is packed exactly with i items of type-i for 1 ≤ i < k.

For an item of size x, we define a weighting function WH(x) for the Harmonic algorithm as follows:

WH(x) =

{ 1
i , if 1

i+1 < x ≤ 1
i with 1 ≤ i < k,

k
k−1x if 0 < x ≤ 1

k .

The following lemma is directly from [21].

Lemma 1 For any list L, we have

H(L) ≤
∑

p∈L

WH(p) +O(1),

where H(L) is the number of bins used by the Harmonic algorithm for list L.

2.2 The Super Harmonic algorithm

The Super Harmonic algorithm [25] is a generalization of the Improved Harmonic algorithm and the
Harmonic algorithm. Super Harmonic first classifies each item into one of k + 1 types, where k is a
positive integer, and then assigns to the item a color of either blue or red. It allows items of up to two
different types to share the same bin. In any one bin, all items of the same type have same color and
items of different type have different colors. For items of type-i (i ≤ k), the algorithm maintains two
parameters βi and γi to bound respectively the number of blue items and the number of red items in a
bin. More details are given below.

Classification into types Let t1 = 1 > t2 > ... > tk > tk+1 = ǫ > tk+2 = 0 be real numbers. An
interval Ii is defined to be (ti+1, ti], for i = 1, ..., k + 1. An item with size x is of type-i if x ∈ Ii.

Coloring red or blue Each type-i item is also assigned a color, either red or blue, for i ≤ k. The
algorithm uses two sets of counters, e1, ..., ek and s1, ..., sk, all of which are initially zero. The total
number of type-i items is denoted by si, while the number of type-i red items is denoted by ei. For
1 ≤ i ≤ k, during the packing process, the fraction of type-i items that are red is maintained, i.e.,
ei = ⌊αisi⌋, where α1, ..., αk ∈ [0,1] are constants.

Maximal number of blue items Let βi = ⌊
1
ti
⌋ for 1 ≤ i ≤ k, which is the maximal number of blue

items of type-i which can be accepted in a single bin.

3

Space left for red items Let δi = 1 − tiβi, which is the lower bound of the space left when a bin
consists of βi blue items of type-i. If possible, we want to use the space left for small red items. Note
that in the algorithm, in order to simplify the analysis, instead of using δi, less space is used, namely
D = {∆0,∆1, ...,∆K}, as the spaces into which red items can be packed, where 0 = ∆0 < ∆1 < · · · <
∆K < 1/2 and K ≤ k. Let ∆φ(i) be the space to be used to accommodate red items in a bin which
holds βi blue items of type-i, where function φ is defined as {1,...,k} 7→ {0,...,K} such that φ satisfies
∆φ(i) ≤ δi. If φ(i) = 0 then no red items are accepted.

For convenient use in our analysis in the next section, we introduce a function called ϕ(i), which
gives the index of the smallest space in D into which a red item of type-i can be placed:

ϕ(i) = min{j|ti ≤ ∆j, 1 ≤ j ≤ K}.

Maximal number of red items Now we define γi. Let γi = 0 if ti > ∆K ; otherwise γi =
max{1, ⌊∆1/ti⌋}, i.e., if ∆1 < ti ≤ ∆K , we set γi = 1, otherwise γi = ⌊∆1/ti⌋.

Naming bins It is also convenient to name the bins by groups:

{(i)|φi = 0, 1 ≤ i ≤ k}

{(i, ?)|φi 6= 0, 1 ≤ i ≤ k}

{(?, j)|αj 6= 0, 1 ≤ j ≤ k}

{(i, j)|φi 6= 0, αj 6= 0, γjtj ≤ ∆φ(i), 1 ≤ i, j ≤ k}.

Group (i) consists of bins that hold only blue items of type-i. Group (i, j) consists of bins that contain
blue items of type-i and red items of type-j. Blue group (i, ?) and red group (?, j) are indeterminate
bins currently containing only blue items of type-i or red items of type-j respectively. During packing,
red items or blue items will be packed into indeterminate bins if necessary, i.e., indeterminate bins will
be changed into (i, j).

The Super Harmonic algorithm is outlined below:
Super Harmonic

1. For each item p : i← type of p,

(a) if i = k + 1 then use NF algorithm,

(b) else si ← si + 1; if ei < ⌊αisi⌋ then ei ← ei + 1; { color p red }

i. If there is a bin in group (?, i) with fewer than γi type-i items, then place p in it.
Else if, for any j, there is a bin in group (j, i) with fewer than γi type-i items then place
p in it.

ii. Else if there is some bin in group (j, ?) such that ∆φ(j) ≥ γiti, then pack p in it and
change the bin into (j, i).

iii. Otherwise, open a bin (?, i), pack p in it.

(c) else {color p blue}:

i. if φi = 0 then if there is a bin in group i with fewer than βi items then pack p in it, else
open a new group i bin, then pack p in it.

ii. Else:

A. if, for any j, there is a bin in group (i, j) or (i, ?) with fewer than βi type-i items,
then pack p in it.

B. Else if there is a bin in group (?, j) such that ∆φ(i) ≥ γjtj then pack p in it, and
change the group of this bin into (i, j).

C. Otherwise, open a new bin (i, ?) and pack p in it.

4

3 New Weighting Functions for Super Harmonic

In this section, we develop new weighting functions for Super Harmonic that are simpler than the
weighting system in [25]. The weighting functions will be useful in analyzing the proposed online
algorithm as we shall see in the next section.

3.1 Intuitions for defining weights

Weighting functions are widely used in analyzing online bin packing problems. Roughly speaking, for
an item, the value by one of weight functions is the fraction of a bin occupied by the item in the online
algorithm. There is a constraint in defining weights for items for an online algorithm. Let K +1 be the
number of weighting functions. Let W i(p) be the weight of an item p, where 1 ≤ i ≤ K + 1. For any
input L, the constraint is

A(L) ≤ max
1≤i≤K+1

{

∑

p∈L

W i(p)
}

+O(1), (1)

where A(L) is the number of bins used by algorithm A.
Consider Super Harmonic algorithm. For 1 ≤ i ≤ k, let li be the number of type-i pieces. For

1 ≤ i, s ≤ k, let B(i), B(i,s), B(i,?), B(?,i) be the number of bins in groups (i), (i, s), (i, ?) and (?, i). Then
we have

∑

i

{

B(i) +
∑

s

B(i,s) +B(i,?)

}

=
∑

i

(1− αi)li
βi

+O(1) (2)

and
∑

i

{

B(?,i) +
∑

s

B(s,i)

}

=
∑

i

αili
γi

+O(1). (3)

So, for each item with size x ∈ Ii, where i ≤ k, if we define its weight as below:

1− αi

βi
+

αi

γi
,

then it is not difficult to see that the constraint (1) holds. However the above weighting function is not
good enough, i.e., it always leads a competitive ratio at least 1.69103.

The main reason is that for each bin in group (i, s) we account it twice, where 1 ≤ i, s ≤ k. Next
we give some intuitions for improving the above weighting function.

By (2) and (3), observe that

∑

i

∑

s

B(i,s) ≤
∑

i

(1− αi)li
βi

+O(1) (4)

and
∑

i

∑

s

B(s,i) ≤
∑

i

αili
γi

+O(1). (5)

So, we have

∑

i

∑

s

B(i,s) =

∑

i

∑

sB(i,s) +
∑

i

∑

sB(s,i)

2
≤

∑

i

(1− αi)li
2βi

+
∑

i

αili
2γi

+O(1)

= li
∑

i

(1− αi

2βi
+

αi

2γi

)

+O(1).

5

Hence, for an item with size x ∈ Ii, after packing, if there is a bin in group (i, s) and also a bin in group
(s, i), then we can define its weight as below:

1− αi

2βi
+

αi

2γi
.

This is the main intuition to lead our weighting functions, which are given in the next subsection.

3.2 New weighting functions

Remember that in Super Harmonic, there is a set D = {∆0,∆1, ...,∆K} representing the “free spaces”
reserved for red items. Recall the two functions φ(i) and ϕ(i) are related to free spaces and have the
meanings as below: φ(i) = j implies that free space ∆j is reserved for red items in a bin consisting of βi
blue items of type-i, and ϕ(i) = j indicates that a red item of type-i could be packed in free space ∆≥j .

We are now ready to define new weighting functions. Items with size larger than ǫ will be first
considered. Let E be the number of indeterminate red group bins (?, i) when the whole packing is done.

If E = 0, i.e., every red item is placed in a bin with one or more blue items, then we define the
weighting function as:

W 1(x) =
1− αi

βi
if x ∈ Ii. (6)

Otherwise, E > 0 implying that for some i, an indeterminate red group bin (?, i) exists after packing.
Let e be the smallest red item in indeterminate red group bins. Assume r is the type of item e and
j = ϕ(r). If 2 ≤ j ≤ K then we define the corresponding weighting functions as follows:

WK+2−j(x) =



























1−αi

βi
+ αi

2γi
if x ∈ Ii φ(i) < j, and ϕ(i) < j

1−αi

βi
+ αi

γi
if x ∈ Ii φ(i) < j, and ϕ(i) ≥ j

1−αi

2βi
+ αi

γi
if x ∈ Ii φ(i) ≥ j, and ϕ(i) ≥ j

1−αi

2βi
+ αi

2γi
if x ∈ Ii φ(i) ≥ j, and ϕ(i) < j

If j = 1, we define

WK+1(x) =























1−αi

βi
if x ∈ Ii φ(i) = 0, and ϕ(i) = 0

1−αi

βi
+ αi

γi
if x ∈ Ii φ(i) = 0, and ϕ(i) > 0

0 if x ∈ Ii φ(i) > 0, and ϕ(i) = 0
αi

γi
if x ∈ Ii φ(i) > 0 and ϕ(i) > 0

Note that in the above definitions, if γi = 0 then we replace αi

γi
with zero. For an item with size x ∈ Ik+1,

we always define W j(x) = x
1−ǫ for all j.

Theorem 1 For any list L, we have

A(L) ≤ max
1≤i≤K+1

{

∑

p∈L

W i(p)
}

+O(1),

where A(L) is the number of bins used by Super Harmonic for list L.

Proof. Fix a list L. Let D be the sum of the sizes of the items of type-(k+1). By NEXT FIT, we know
that the number of bins used for type-(k + 1) is at most D/(1− ǫ) + 1.

6

Again, we use E to denote the number of indeterminate red group bins when all the packing is done.
If E > 0, let e be the smallest red item in indeterminate red group bins. Assume r is the type of item
e and j = ϕ(r). For 1 ≤ i ≤ k, let li be the number of type-i pieces. Let B(i), B(i,s), B(i,?), B(?,i) be the
number of bins in groups (i), (i, s), (i, ?) and (?, i).

To prove this theorem, we consider three cases.
Case 1: If E = 0, i.e.,

∑

i B(?,i) = 0, every red item is packed in a bin with one or more blue items.
Therefore we just need to count bins containing blue items:

A(L) ≤
D

1− ǫ
+
∑

i

{

B(i) +
∑

s

B(i,s) +B(i,?)

}

+O(1)

≤
∑

x∈Ik+1

W 1(x) +
∑

i

(1 − αi)li
βi

+O(1) by (2)

=
∑

x∈Ik+1,x∈L

W 1(x) +
∑

x/∈Ik+1,x∈L

W 1(x) +O(1).

Case 2: E > 0, e is the smallest red item in indeterminate red group bins and its type is r and
ϕ(r) = j ≥ 2. Since every red item of type-i is placed in a final group bin (s, i), where ϕ(i) < j, we have

∑

ϕ(i)<j

B(?,i) = 0. (7)

On the other hand, we have
∑

φ(i)≥j

B(i,?) = 0; (8)

otherwise, e would have been placed into a bin (i, ?), where φ(i) ≥ j. According to the Super Harmonic
algorithm, for any type bin B(i), we have

φ(i) = 0. (9)

Define
X =

∑

φ(i)≥j
ϕ(s)<j

B(i,s),

which is the total number of all the bins in groups (i, s) such that φ(i) ≥ j and ϕ(s) < j. Then we have

A(L) ≤
D

1− ǫ
+
∑

i

(

B(i) +B(i,?) +B(?,i)

)

+
∑

i

∑

s

B(i,s) +O(1)

=
D

1− ǫ
+
∑

i

(

B(i) +B(i,?) +B(?,i)

)

+X +
∑

φ(i)<j

∑

s

B(i,s) +
∑

ϕ(i)≥j

∑

s

B(s,i) +O(1)

=
D

1− ǫ
+
∑

φ(i)<j

(

B(i) +B(i,?) +
∑

s

B(i,s)

)

+
∑

ϕ(i)≥j

(

B(?,i) +
∑

s

B(s,i)

)

+X +O(1). (10)

The last inequality follows directly from (7), (8) and (9).
Then by the definition of variable X, we have

X ≤
∑

j≤φ(i)≤K

∑

s

B(i,s) and X ≤
∑

1≤ϕ(i)≤j−1

∑

s

B(s,i).

7

Therefore,

X ≤
{

∑

j≤φ(i)≤K

∑

s

B(i,s) +
∑

1≤ϕ(i)≤j−1

∑

s

B(s,i)

}

/2. (11)

So, by (10) and (11), we have

A(L) ≤
D

1− ǫ
+
∑

φ(i)<j

(

B(i) +B(i,?) +
∑

s

B(i,s)

)

+
∑

ϕ(i)≥j

(

B(?,i) +
∑

s

B(s,i)

)

+
∑

φ(i)≥j

∑

s

B(i,s)

2
+
∑

ϕ(i)<j

∑

s

B(s,i)

2
+O(1)

≤
D

1− ǫ
+
∑

φ(i)<j

(1− αi)li
βi

+
∑

ϕ(i)≥j

αili
γi

+
∑

φ(i)≥j

(1− αi)li
2βi

+
∑

ϕ(i)<j

αili
2γi

+O(1)

≤
D

1− ǫ
+
∑

φ(i)<j
ϕ(i)<j

((1− αi)li
βi

+
αili
2γi

)

+
∑

φ(i)<j
ϕ(i)≥j

((1− αi)li
βi

+
αili
γi

)

+
∑

φ(i)≥j
ϕ(i)≥j

((1− αi)li
2βi

+
αili
γi

)

+
∑

φ(i)≥j
ϕ(i)<j

((1− αi)li
2βi

+
αili
2γi

)

+O(1)

=
∑

x∈Ik+1,x∈L

WK+2−j(x) +
∑

x/∈Ik+1,x∈L

WK+2−j(x) +O(1)

The second inequality follows directly from (2) and (3).
Case 3. E > 0 and j = 1. The arguments are analogous with Case 2. According to the Super

Harmonic algorithm, for any type of bin (i, s), we have ϕ(s) ≥ 1, where 1 ≤ i, s ≤ k and k is a
parameter defined in Super Harmonic. So, there is no such bin (i, s) with ϕ(s) < 1. Then we have

A(L) ≤
D

1− ǫ
+
∑

φ(i)<1

(

B(i) +B(i,?) +
∑

s

B(i,s)

)

+
∑

ϕ(i)≥1

(

B(?,i) +
∑

s

B(s,i)

)

+O(1)

≤
D

1− ǫ
+
∑

φ(i)=0

(1− αi)li
βi

+
∑

ϕ(i)≥1

αili
γi

+O(1)

≤
D

1− ǫ
+
∑

φ(i)=0
ϕ(i)=0

(1− αi)li
βi

+
∑

φ(i)=0
ϕ(i)>0

((1− αi)li
βi

+
αili
γi

)

+
∑

φ(i)>0
ϕ(i)>0

αili
γi

+O(1)

=
∑

x∈Ik+1,x∈L

WK+1(x) +
∑

x/∈Ik+1,x∈L

WK+1(x) +O(1)

Therefore, we have A(L) ≤ max1≤i≤K+1

{
∑

p∈LW i(p)
}

+O(1). ✷

4 Algorithm H ⊗ SH+ and Its Analysis

In the section, we first review a class of online algorithms for two dimensional online bin packing, called
H ⊗ B [24]. Next we introduce a new instance of algorithm H ⊗ SH+, where H is Harmonic and
SH+ (Strange Harmonic+) is an instance of Super Harmonic. Then we propose some new techniques
on how to bound the total weight in a single bin, which is crucial to obtaining a better asymptotic

8

competitive ratio for the H ⊗ B algorithm. Finally, we apply new weighting functions for SH+ to
analyze the two-dimensional online bin packing algorithm H ⊗ SH+ and show its competitive ratio
at most 2.5545, which implies that the new weighting functions work very well with the generalized
approach of bounding the total weight in a single bin. Note that as mentioned in [24] if we apply the
weighting functions of SH+ derived from [25] directly to analyze algorithm H ⊗ SH+ then the upper
bound cannot be improved.

4.1 Algorithms H ×B and H ⊗ B

Now we review two-dimensional online bin packing algorithms H × B and H ⊗ B [24], where H is
Harmonic and B is Super Harmonic.

Given an item p = (w, h), H ×B operates as follows:

1. Packing items into slices: If w ≥ ǫ then pack p into a slice of height 1 and width ti by H
(Harmonic algorithm), where ti+1 < w ≤ ti; else pack it into a slice of height 1 and width ǫ(1− δ)i

by H (Harmonic algorithm), where ǫ(1− δ)i+1 < w ≤ ǫ(1− δ)i and δ > 0 is arbitrarily small.

2. Packing slices into bins: When a new slice is required in the above step, we allocate it from a
bin using algorithm B.

H ⊗ B is a randomized algorithm, which operates as follows: before processing begins, we flip a
fair coin. If the result is heads, then we run H × B; otherwise we run B ×H, i.e., the roles of height
and width are interchanged. Note that it is possible to de-randomize H ⊗ B without increasing its
performance ratio. For details, we refer to [24].

Theorem 2 If an online 1D bin packing algorithm B has weighting functions W i
B(x) such that B(L) ≤

maxi{
∑

x∈LW i
B(x)}+O(1). Then the cost by algorithm H ⊗B for input L is at most

1

2(1− δ)

(

max
i

{

∑

p∈L

W i
H×B(p)

}

+max
i

{

∑

p∈L

W i
B×H(p)

}

)

+O(1),

and the asymptotic competitive ratio of algorithm H ⊗B is at most

1

2(1− δ)
max
∀X

(

max
i

{

∑

(x,y)∈X

WH(x)W i
B(y)

}

+max
i

{

∑

(x,y)∈X

WH(y)W i
B(x),

}

)

where δ is a parameter defined in H ⊗B algorithm and X is a set of items which fit in a single bin.

4.2 An instance of Super Harmonic SH+

As mentioned in [25], it is a hard problem to find appropriate parameters in designing an instance of
Super Harmonic, especially setting ti. The parameters in SH+ are found through a trial-and-error way

9

and are defined as follows:

i ti αi βi δi φ(i) ϕ(i) γi
1 1 0 1 0 0 0 0
2 0.706 0 1 0.294 1 0 0
3 0.657 0 1 0.343 2 0 0
4 0.647 0 1 0.353 3 0 0
5 0.625 0 1 0.375 4 0 0
6 0.6 0 1 0.4 5 0 0
7 0.58 0 1 0.42 6 0 0
8 0.5 0 2 0 0 0 0
9 0.42 0.162 2 0.16 0 6 1
10 0.4 0.192 2 0.2 0 5 1
11 0.375 0.2346 2 0.25 0 4 1
12 0.353 0.3004 2 0.294 1 3 1
13 0.343 0.3077 2 0.314 1 2 1
14 1/3 0 3 0 0 0 0
15 0.294 0.0816 3 0.118 0 1 1
16 1/4 0.186 4 0 0 1 1
17 1/5 0.092 5 0 0 1 1
18 1/6 0.1456 6 0 0 1 1
19 0.147 0.2162 6 0.118 0 1 2
20 1/7 0.1525 7 0 0 1 2

21− 49 1/(i − 13) ff(i) i− 13 0 0 1 ⌊∆1/ti⌋
50 1/37 0 37 0 0 0 0
51 1/38 0 ∗ ∗ ∗ ∗ ∗

j = φ(i) ∆j Red accepted

1 0.294 15..50
2 0.343 13, 15..50
3 0.353 12, 13, 15..50
4 0.375 11..13, 15..50
5 0.4 10..13, 15..50
6 0.42 9..13, 15..50

where ff(i) = 1.35(50 − i)/37(i − 12).
Then we have seven weighting functions for SH+, i.e., W i

B as defined in the last section, where
1 ≤ i ≤ 7.

4.3 Previous framework for calculating upper bounds

In this subsection, we first introduce the previous framework for computing the upper bound of the
competitive ratio of H ⊗ SH+, then mention that the previous framework does not work well with the
instance in the last subsection, i.e., the previous framework does not lead a better upper bound.

Let p = (x, y) be an item. We define the following functions.

W i
H×B(p) = WH(x)W i

B(y), W i
B×H(p) = WH(y)W i

B(x),

and

W i,j(x, y) =
WH(x)W i

B(y) +W j
B(x)WH(y)

2
.

Then we can obtain an upper bound on the competitive ratio R of algorithm H ⊗ SH+ as follows
by Theorems 1 and 2, where X is a set of items which fit in a single bin.

10

R ≤
1

2(1− δ)
max
∀X

(

max
1≤i≤7

{

∑

p∈X

W i
H×B(p)

}

+ max
1≤i≤7

{

∑

p∈X

W i
B×H(p)

}

)

≤
1

(1− δ)
max

1≤i,j≤7,∀X

{

∑

p∈X

(W i
H×B(p) +W j

B×H(p))/2

}

=
1

(1− δ)
max

1≤i,j≤7,∀X

{

∑

p∈X

W i,j(x, y)

}

(12)

The value of R can be estimated by the following approach.

Definition 1 Let f be a function mapping from (0, 1] to R
+. P(f) is the mathematical program:

maximize
∑

x∈X f(x) subject to
∑

x∈X ≤ 1, over all finite sets of real numbers X. We also use P(f) to
denote the value of this mathematical program.

Lemma 2 [24] Let f and g be functions mapping from (0, 1] to R
+. Let F = P(f) and G = P(g).

Then the maximum of
∑

p∈X f(h(p))g(w(p)) over all finite multisets of items X which fit in a single

bin is at most FG, where p is a rectangle and h(p) and w(p) are its height and width, respectively.

In [24], f and g are defined as below:

f i,j(y) =
WH(y) +W i

B(y)

2
,

and

gi,j(x) = sup
0<y≤1

W i,j(x, y)

f i,j(y)
.

By the above definitions, we have
W i,j(x, y) ≤ f i,j(y)gi,j(x),

for all 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
Remarks: As mentioned in [24], the old weighting functions [25] do not work well with the calcu-

lating framework used in [25, 24], i.e., the previous framework with the old weighting function does not
guarantee an upper bound better than 2.66013.

4.4 A new framework for calculating upper bound

In this subsection, we first generalize the previous analysis framework by introducing a new lemma and
developing new functions for f and g in order to bound the total weight in a single bin. Then we apply
our new weighting functions for Super Harmonic to algorithm H⊗SH+ and obtain a new upper bound
for two-dimensional online bin packing.

Lemma 3 max∀X

{

∑

p∈X W i,j(x, y)

}

= max∀X

{

∑

p∈X W j,i(x, y)

}

, where 1 ≤ i, j ≤ 7

Proof. By definition, observe that for any 1 ≤ i, j ≤ 7,

W i,j(x, y) = W j,i(y, x). (13)

Let X = {p1, p2, . . . , pm} be a set of rectangles which fit into a single bin, where pi = (xi, yi) is the i-th
rectangle in X. If we exchange roles of x and y of pi to get new rectangles p′i = (yi, xi) for all i, then it

11

is not difficult to see that the new set X ′ = {p′1, p
′
2, . . . , p

′
m} is also a feasible pattern, i.e., all items can

fit in a single bin. On the other hand, by equation (13), we have

∑

p∈X

W i,j(p) =
∑

p′∈X′

W j,i(p′),

where 1 ≤ i, j ≤ 7. There is a one-to-one mapping between X and X ′ in all the feasible patterns.
Therefore, we have this lemma. ✷

New functions f and g: We define new functions f and g such that (i) Lemma 2 can be applied to
bound the weight in a single bin, and (ii) the resultant bound is not too loose. The new functions f
and g are defined as follows:

f i,j(y) = λi,jWH(y) + (1− λi,j)W
i
B(y),

where 0 ≤ λi,j ≤ 1 and

gi,j(x) = sup
0<y≤1

W i,j(x, y)

f i,j(y)
.

Note that in [24], λi,j are 1/2 for all i, j. It is not difficult to see that the following inequality still holds
although we have generalized the definition of the f function,

W i,j(x, y) ≤ f i,j(y)gi,j(x)

for all 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

New approach of calculating P(f): In order to use Lemma 2 to obtain the upper bound on the
competitive ratio R of algorithm H ⊗B, we need to calculate P(f i,j) and P(gi,j). Let f be one of f i,j

or gi,j for 1 ≤ i, j ≤ 7. In [25], Seiden wrote a programming to enumerate all the feasible patterns to get
the bounds for P(f). Here, we give a simple approach by calling LP solver directly to estimate P(f),
which can be modeled as the following mixed integer program (MIP):

max. f =
50
∑

i=1

xiwi + (1−
50
∑

i=1

xi(ti+1 + ǫ))×
1

1− t51
(1)

s.t.

50
∑

i=1

xi(ti+1 + ǫ) ≤ 1,

xi ≥ 0, integer.

where xi is the number of type-i items in a feasible pattern, wi is the weight for an item of type-i, which
is decided by function f , i.e., wi = f(p) if p ∈ (ti+1, ti]. Since ǫ > 0 can be arbitrarily small, we cannot
find an exact value for ǫ. Therefore, we set ǫ = 0 and re-model the above MIP as follows.

max. f =
∑50

i=1 xiwi + (1−
∑50

i=1 xiti+1)×
1

1−t51
(2)

s.t.
∑50

i=1 xiti+1 ≤ 1,
xi ≤ 1, for 1 ≤ i ≤ 7, xi ≤ 2, for 8 ≤ i ≤ 13,
xi ≤ 3, for 14 ≤ i ≤ 15, xi ≤ i− 12, for 16 ≤ i ≤ 17,
x18 + x19 ≤ 6, xi ≤ i− 13, for 20 ≤ i ≤ 50,
2x7 + x15 ≤ 3.9, 3x7 + 2x13 + x17 ≤ 5.9,
4x13 + 3x15 + x24 ≤ 11.9, 5x7 + 3.53x11 + 1.47x18 ≤ 9,
12x7 + 8x13 + 3x20 + x36 ≤ 23, 9x7 + 6x13 + 2x21 + x30 ≤ 17,
xi ≥ 0, integer.

12

Note that the new constraints do not eliminate any feasible solutions of MIP (1). For example, consider
the constraint 5x7 + 3.53x11 + 1.47x18 ≤ 9. Since an item of type-7 has size larger than 0.5, an
item of type-11 has size larger than 0.353 and an item of type-18 has size larger than 0.147, we have
0.5x7 + 0.353x11 + 0.147x18 < 1. So, we have 5x7 + 3.53x11 + 1.47x18 < 10. It is not difficult to see
that the following inequality 5x7 + 3.53x11 + 1.47x18 ≤ 9 is equivalent to 5x7 + 3.53x11 + 1.47x18 < 10
when x7, x11 and x18 are non-negative integers. For other constraints in MIP (2), the arguments are
analogous.

To solve MIP (2), we use a tool for solving linear and integer programs called GLPK [16]. We write
a program to calculate W i,j(x, y), gi,j(x) and f i,j(y) for each (i, j), and then call API of GLPK to
calculate P(f i,j) and P(gi,j). The values of P(f i,j) and P(gi,j) are shown in the tables in Appendix.

Note that when we use Lemma 2 for the upper bound on the weight max∀X{
∑

p∈X W i,j(x, y)}, for

all pairs (i, j), the calculations are independent. For different pairs (i, j), λi,j may be different. So,
in order to get an upper bound near the true value of max∀X{

∑

p∈X W i,j(x, y)}, we have to select an
appropriate λi,j. This can be done by a trial-and-error approach.

Theorem 3 For all δ > 0, the asymptotic competitive ratio of H ⊗B is at most 2.5545.

Proof. According to the tables in Appendix, by Lemma 3 and Lemma 2, we have

max
∀X

{

∑

p∈X

W 1,2(p)

}

= max
∀X

{

∑

p∈X

W 2,1(p)

}

≤ P(f1,2)P(g1,2) ≤ 2.5539.

max
∀X

{

∑

p∈X

W 1,6(p)

}

= max
∀X

{

∑

p∈X

W 6,1(p)

}

≤ P(f6,1)P(g6,1) ≤ 2.5545.

max
∀X

{

∑

p∈X

W 2,5(p)

}

= max
∀X

{

∑

p∈X

W 5,2(p)

}

≤ P(f5,2)P(g5,2) ≤ 2.5340.

max
∀X

{

∑

p∈X

W 2,6(p)

}

= max
∀X

{

∑

p∈X

W 6,2(p)

}

≤ P(f6,2)P(g6,2) ≤ 2.5364.

For all the other (i, j), by Lemma 2, we have

max
∀X

{

∑

p∈X

W i,j(p)

}

≤ P(f i,j)P(gi,j) ≤ P(f1,1)P(g1,1) ≤ 2.5545.

✷

Remarks: If we use the weighting functions from [25] and the previous analysis framework, we
find that the competitive ratio is at least 3.04. (run our programming 2DHSH.c like “./2DHSH+.exe
old > yourfile”) Even if we use the new weighting function, by the previous analysis framework, the
competitive ratio is still at least 3.04, by running our programming 2DHSH.c like “./2DHSH+.exe new1
> yourfile”. We also find that if we use the old weighting function from [25] with the new analysis
framework, the competitive ratio is at least 2.79. (run our programming 2DHSH.c like “./2DHSH+.exe
old2 > yourfile”) The reason is that: Lemma 2 does not work very well with the old weight function,
i.e., the resulting value F ·G is away from the maximum weight of items in a single bin.

13

5 Concluding Remarks

When we use the tool for solving the mixed integer programs, there are two files which are necessary:
one is the model file for the linear or integer program itself (refer to Appendix), and the other is the
data file where the data is stored. We write a program to generate the data and then call the tool
GLPK. (Actually we call API (Application Program Interface) of GLPK. To download the source file,
go to: http://sites.google.com/site/xinhan2009/Home/files/2DHSH.c).

Our framework can be applied to 3D online bin packing to result in an algorithm H × H ⊗ SH+
with its competitive ratio 2.5545 × 1.69103(≈ 4.3198).
Acknowledgments The authors wish to thank the referees for their useful comments on the earlier
draft of the paper. Their suggestions have helped improve the presentation of the paper.

References

[1] D.J. Brown, A lower bound for on-line one-dimensional bin packing algorithms. Technical report
R864, Coordinated Sci. Lab., Urbana, Illinois (1979)

[2] N. Bansal, A. Caprara and M. Sviridenko, Improved approximation algorithm for multidimensional
bin packing problems, FOCS 2006: 697-708.

[3] N. Bansal, J.R. Correa, C. Kenyon and M. Sviridenko, Bin Packing in Multiple Dimensions: In-
approximability Results and Approximation Schemes, Mathematics of Operations Research, 31(1):
31-49, 2006.

[4] D. Blitz, A. van Vliet and G.J Woeginger, Lower bounds on the asymptotic worst-case ratio of
online bin packing alorithms, Unpublished manuscript, 1996.

[5] A. Caprara, Packing 2-dimensional bins in harmony, FOCS 2002: 490-499.

[6] F.R.K. Chung, M.R. Garey, D.S. Johnson, On packing two-dimensional bins, SIAM J. Algebraic
Discrete Methods, 3(1):66-76, 1982.

[7] E.G. Coffman, M.R. Garey and D.S. Johnson, Approximation algorithms for bin packing: a survey.
In Approximation Algorithms for NP-hard Problems, D. Hochbaum, Ed. PWS, Boston, MA, 1997,
chapter 2.

[8] J. Csirik, J. Frenk and M. Labbe, Two-dimensional rectangle packing: on-line methods and results,
Discrete Applied Mathematics 45(3): 197-204, 1993.

[9] D. Coppersmith, P. Paghavan, Multidimensional on-line bin packing: Algorithms and worst case
analysis, Oper. Res. Lett. 8:17-20, 1989.

[10] J. Csirik, A. van Vliet, An on-line algorithm for multidimensional bin packing, Operationa Research
Letters 13: 149-158, 1993.

[11] L. Epstein, R. van Stee, Optimal online bounded space multidimensional packing, SODA 2004,
214-223.

[12] L. Epstein, R. van Stee, Optimal Online Algorithms for Multidimensional Packing Problems, SIAM
Jouranl on Computing, 35(2), 431-448, 2005.

[13] L. Epstein, R. van Stee, Online square and cube packing, Acta Informatica 41(9), 595-606, 2005.

14

http://sites.google.com/site/xinhan2009/Home/files/2DHSH.c

[14] G. Galambos, A 1.6 Lower-Bound for the Two-Dimensional On-Line Rectange Bin-Packing, Acta
Cybernetica 10(1-2): 21-24, 1991.

[15] G. Galambos and A. van Vliet, Lower bounds for 1,2 and 3-dimensional online bin packing algo-
rithms, Computing 52:281-297, 1994.

[16] http://www.gnu.org/software/glpk/.

[17] X. Han, S. Fujita and H. Guo, A Two-Dimensional Harmonic Algorithm with Performance Ratio
2.7834, IPSJ SIG Notes, No.93 pp 43-50, 2001.

[18] X. Han, D. Ye, Y. Zhou, Improved Online Hypercube Packing, WAOA 2006: 226-239.

[19] D.S. Johnson, A.J. Demers, J.D. Ullman, M.R. Garey, R.L. Graham, Worst-Case performance
bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing 3(4), 299-325
(1974).

[20] F.M. Liang, A lower bound for online bin packing. Information processing letters 10,76-79 (1980).

[21] C.C. Lee and D.T. Lee, A simple on-line packing algorithm, J. ACM, 32:562-572, 1985.

[22] F.K. Miyazawa, Y. Wakabayashi, Cube packing, Theoretical Computer Sciences, 1-3(297), 355-366,
2003.

[23] P.V.Ramanan, D.J. Brown, C.C. Lee, D.T. Lee, On-line bin packing in linear time, Journal of
Algorithms, 10, 305-326 (1989).

[24] S.S. Seiden and R. van Stee, New bounds for multidimensional packing, In SODA 2002, pp. 486-495.
Full version in Algorithmica 36 (2003), 261-293.

[25] S.S. Seiden, On the online bin packing problem, J. ACM 49, 640-671, 2002.

[26] A. van Vliet, An improved lower bound for on-line bin packing algorithms: Information Processing
Letters 43, 277-284 (1992).

[27] A. van Vliet, Lower and upper bounds for online bin packing and scheduling heuristics, Ph.D.
thesis, Erasmus University, Rotterdam, 1995.

[28] A.C.-C. Yao, New Algorithms for Bin Packing. Journal of the ACM 27, 207-227, (1980).

15

http://www.gnu.org/software/glpk/

A Values of f i,j and gi,j

(i, j) = (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

λi,j 0.500000 0.500000 0.540000 0.550000 0.565000 0.565000 0.600000

P(f i,j) 1.598272 1.598272 1.605095 1.606845 1.609490 1.609490 1.615665

P(gi,j) 1.598272 1.597872 1.574422 1.581742 1.585430 1.587508 1.575580

P(f i,j)P(gi,j) 2.554474 2.553834 2.527096 2.541614 2.551734 2.555079 2.545610

(i, j) = (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)

λi,j 0.500000 0.500000 0.530000 0.550000 0.565000 0.565000 0.600000

P(f i,j) 1.597328 1.597328 1.597148 1.597028 1.596938 1.596938 1.596729

P(gi,j) 1.609235 1.598326 1.586301 1.595016 1.602278 1.604268 1.589545

P(f i,j)P(gi,j) 2.570476 2.553051 2.533557 2.547285 2.558739 2.561917 2.538073

(i, j) = (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7)

λi,j 0.500000 0.500000 0.530000 0.550000 0.565000 0.565000 0.600000

P(f i,j) 1.573676 1.573676 1.572837 1.572777 1.572732 1.572732 1.572627

P(gi,j) 1.609235 1.598326 1.586301 1.595016 1.602278 1.604268 1.589545

P(f i,j)P(gi,j) 2.532414 2.515247 2.494992 2.508604 2.519954 2.523084 2.499762

(i, j) = (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7)

λi,j 0.500000 0.500000 0.535000 0.550000 0.565000 0.565000 0.600000

P(f i,j) 1.581245 1.581245 1.577140 1.575380 1.573621 1.573621 1.569515

P(gi,j) 1.609235 1.598326 1.586855 1.595016 1.602278 1.604268 1.589545

P(f i,j)P(gi,j) 2.544594 2.527344 2.502692 2.512755 2.521378 2.524510 2.494814

(i, j) = (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7)

λi,j 0.500000 0.500000 0.535000 0.550000 0.565000 0.565000 0.600000

P(f i,j) 1.585370 1.585370 1.580113 1.577860 1.575607 1.575607 1.570350

P(gi,j) 1.609542 1.598326 1.587240 1.595374 1.602747 1.604737 1.589740

P(f i,j)P(gi,j) 2.551720 2.533939 2.508019 2.517277 2.525300 2.528436 2.496449

(i, j) = (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6) (6, 7)

λi,j 0.500000 0.500000 0.530000 0.550000 0.565000 0.565000 0.600000

P(f i,j) 1.586853 1.586853 1.582237 1.579160 1.576853 1.576853 1.571468

P(gi,j) 1.609785 1.598326 1.586682 1.595657 1.603117 1.605107 1.589894

P(f i,j)P(gi,j) 2.554493 2.536309 2.510507 2.519798 2.527881 2.531019 2.498468

(i, j) = (7, 1) (7, 2) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7)

λi,j 0.500000 0.515000 0.535000 0.555000 0.565000 0.570000 0.600000

P(f i,j) 1.568686 1.560602 1.549821 1.539044 1.533655 1.530958 1.517143

P(gi,j) 1.621572 1.609605 1.602462 1.612258 1.622822 1.638219 1.624359

P(f i,j)P(gi,j) 2.543738 2.511952 2.483529 2.481335 2.488849 2.508043 2.464386

B Model File for GLPK and Usage of Our Program 2DHSH+.c

param I:=50;

16

param c{i in 1..I}>=0;

param w{i in 1..I};

var x{i in 1..I}, integer, >=0;

maximize f: sum{i in 1..I} w[i]*x[i] + (1-sum{i in 1..I} c[i]*x[i]) * 38/37;

s.t. x0: sum{i in 1..I} c[i]*x[i] <= 1;

x1: sum{i in 1..7} x[i] <= 1;

x7: sum{i in 8..13} x[i] <= 2;

x14: x[14] <= 3;

x15: x[15] <= 3;

x16: x[16] <= 4;

x17: x[17] <= 5;

x18: x[18] + x[19] <= 6;

y715: 2*x[7] + x[15] <= 3.9;

y71317: 3*x[7] + 2*x[13] + x[17] <= 5.9;

y131524: 4*x[13] + 3*x[15] + x[24] <= 11.9;

y71118: 5*x[7] + 3.53*x[11] + 1.47 *x[18] <= 9;

y7132036: 12*x[7]+8*x[13] + 3*x[20] + x[36] <=23;

y7132130: 9*x[7] + 6*x[13] + 2*x[21] + x[30] <=17;

others{i in 20..50}: x[i] <= i -13;

end;

Whene the parameters in Super Harmonic such as αi, βi, γi and φ(i) and ϕ(i) are given, we can

calculate the weighting functions of Super Harmonic W j
B(·). Then the weighting functions W i,j(x, y)

for algorithm H ⊗ SH+ can be calculated as well as f i,j(y) and gi,j(x). For each (i, j), we call API of
GLPK to solve P(f i,j) and P(gi,j).

To use our program under linux system:

• Install GLPK,

• Compile: “gcc -o 2DHSH+.exe 2DHSH+.c -lglpk”

• Run: “./2DHSH+.exe new2 > yourfile”

If there is an error message like “Could not load *.so” when you compile the source, then try to
set ”LD LIRARY PATH” as follows: “LD LIRARY PATH= $LD LIRARY PATH:/usr/local/lib”, then
“export LD LIRARY PATH”.

17

	Introduction
	Preliminaries
	The Harmonic algorithm
	The Super Harmonic algorithm

	New Weighting Functions for Super Harmonic
	Intuitions for defining weights
	New weighting functions

	Algorithm H SH+ and Its Analysis
	Algorithms H B and H B
	 An instance of Super Harmonic SH+
	Previous framework for calculating upper bounds
	A new framework for calculating upper bound

	Concluding Remarks
	Values of fi,j and gi,j
	Model File for GLPK and Usage of Our Program 2DHSH+.c

