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Abstract— Current technology allows designers to implement
complete embedded computing systems on a single FPGA. Using
an FPGA as the implementation platform introduces greater
flexibility into the design process and allows a new approach to
embedded system design. Since there is no cost to reprogramming
an FPGA, system performance can be measured on-chip in the
runtime environment and the system’s architecture can be altered
based on an evaluation of the data to meet design requirements.

In this paper, we discuss a new hardware/software codesign
methodology tailored to reconfigurable platforms and a design
infrastructure created to incorporate on-chip design tools. This
methodology utilizes the FPGA’s reconfigurability during the
design process to profile and verify system performance, thereby
reducing system design time. Our current design infrastructure
includes: a system specification tool, two on-chip profiling tools
and an on-chip system verification tool.

I. INTRODUCTION

Embedded computing systems typically comprise both
processors and dedicated logic modules to meet design speci-
fications that include performance, area, power, and cost con-
straints. This has led researchers to investigate numerous issues
that arise from Hardware/Software codesign. Although older
systems combined fixed processors and integrated circuits,
current technology allows designers to combine both proces-
sors and dedicated logic to implement complete embedded
computing systems as Systems-on-Chip (SoCs) using either
ASIC or FPGA platforms.

Now that FPGAs are large enough to implement entire
systems, as opposed to just glue logic, they offer a unique
opportunity for embedded systems designers. For instance,
designers have traditionally relied on simulation and estima-
tion to evaluate the performance and functionality of their
systems. However, given the potential size and complexity
of embedded computing systems, simulation can be a very
time consuming process that takes orders of magnitude longer
than on-chip execution. When using a reconfigurable imple-
mentation platform, there is no cost to reprogramming the
hardware, thus system evaluation can be moved on-chip. This
provides greater flexibility to the designer and allows a new
approach to the design process. For example, Hemmert et
al. [1] introduced a debugger for hardware designs capable
of running on an FPGA for the benefit of accelerated speed
of execution during the debugging process. Recent work
allows designers to incorporate a Statistics Module into a
soft processor to obtain a variety of run time statistics that

can be dynamically reconfigured [2]. Furthermore, designing
an embedded system for a reconfigurable platform enables
designers to easily respecify the system’s architecture if the
on-chip evaluation determines that the current architecture fails
to meet design specifications.

In this paper, we present a design methodology and a design
infrastructure that leverage the advantages of reconfigurability.
We demonstrate how moving the evaluation of the system on-
chip can reduce system design time by decreasing the amount
of time spent simulating the system’s runtime behaviour while
still providing accurate information. To this end, we have
created two on-chip profiling tools, SnoopP [3] and WOoD-
STOCK [4], and an on-chip verification environment [5] as
part of an on-chip design infrastructure. We have also created
a system specification tool for systems modelled as Systems
Integrating Modules with Predefined Physical Links [4] that
can facilitate the redesign of the system-level architecture.

The remainder of this paper is structured as follows.
Section II summarizes the previous work done on hard-
ware/software codesign using reconfigurable platforms and
cosimulation and outlines the current tools available for de-
signing embedded systems on FPGAs. Section III presents
our design methodology for designing embedded systems on
FPGAs and the benefits of using on-chip design tools. An
overview of the SIMPPL system architectural model and our
SIMPPL System Generator, along with implementation plat-
form is given in Section IV. A summary of SnoopP, a Snooping
Profiler for processors, and a comparison of its performance
to gprof, a GNU software profiling tool is given in Section V.
Section VI demonstrates how Watching Over Data STreaming
On Computing element linKs (WOoDSTOCK) can be used to
detect processing load imbalances in systems modelled using
SIMPPL. We have also created an on-chip testbed, described in
Section VII, that allows designers to easily generate numerous
sets of test vectors to verify their SIMPPL modelled systems.
Finally, the conclusions and future work for this project are
summarized in Section VIII.

II. BACKGROUND

Hardware/software codesign implementations arise from
applications where there are fixed constraints that cannot
be met in software but do not warrant a fully hardware
solution. The basic design flow starts with a description of



the application that is partitioned into hardware and software
components. The processes running on each component are
scheduled to provide the necessary communication between
modules. The behaviour of the two environments and their
interface can be approximated using cosimulation techniques.
If this model of the system does not meet the necessary
specifications, the designer may need to return to the first
phase of the process and re-partition the design. However,
if the design constraints appear to be met, the design can
be cosynthesized to the target platform and then coverified to
ensure the required functionality. Hardware/software codesign
research aspires to address the challenges resulting from each
of these complex problems. This paper discusses how the
general methodology can be tailored specifically to a recon-
figurable platform and describes some of the infrastructure for
a reconfigurable methodology. The on-chip tools discussed in
this paper obtain instrumentation data that can be fed into
the traditional Hardware/Software codesign tools to improve
design choices and reduce design time.

This section describes some previous work that uses re-
configurable technology to implement the hardware in hard-
ware/software codesigns. It also discusses how these designs
are modelled to provide the designer with the necessary
feedback for making appropriate design decisions. It concludes
with an outline of some of the commercial tools available for
implementing hardware/software codesigns on FPGAs.

A. Embedded Systems Research using FPGAs

Most of the previous work on hardware/software codesign
using FPGAs uses the FPGAs to speed up the portions of an
application that fail to meet the required specifications. Specif-
ically, FPGAs have been used as part of the implementation
platform whereas we are proposing that they can also be used
during the design process. Previous systems have used one
or more FPGAs that are configured once per application [6],
or dynamically reconfigured on Dynamically Programmable
Gate Arrays (DPGAs) at runtime [7], to implement different
functions. These systems benefit from the lower redesign
costs of reconfigurable technology, but they do not utilize
the technology to obtain feedback as to the actual system
performance during the design process.

The recent advent of soft processor cores for FPGAs sim-
plifies the customization of processor cores as application-
specific embedded processors by reducing the design time
and removing the need for processor specific emulators [8].
In this case, the designers use reconfigurable technology for
prototyping. Some hardware/software codesign research uses
reconfigurable processors as the platform for implementa-
tion [9], [10]. These architectures combine a Reconfigurable
Functional Unit (RFU) with the microprocessor, but do not use
the reconfigurability to provide runtime performance informa-
tion to benefit the partitioning process. Although the precise
details of how applications are profiled for all of these projects
are not provided, they simulate system performance to obtain
this data. Preliminary work on a simulator of a reconfigurable
architecture that does use runtime profiling information to
guide partitioning was presented at DAC 2003 [11]. Based

on the profiling data it dynamically remaps one of a restricted
category of inner loops to a reconfigurable fabric using on-chip
place and route tools.

Tools developed for embedded systems with reconfigurable
hardware include a partitioner for dynamically reconfigurable
systems that minimizes the energy-delay cost due to compu-
tation and configuration by Rakhmatov et al. [12]. Noguera
et al. [13] also present a dynamic scheduling methodology
for runtime reconfigurable architectures in hardware/software
codesign. To obtain a schedule that minimizes runtime re-
configuration overhead, the scheduler relies on a partitioner
to create a good mapping of the algorithm to hardware and
software. The partitioner’s choices are based on delay and area
estimates and data from software profiling tools.

A common problem in hardware/software codesign is that
the quality of the design is dependent on the partitioner’s
allocation of resources. However, many partitioners must make
their choices based on estimates or models. Since partitioning
occurs at the very beginning of the design process, there is no
precise feedback available to the partitioner. The next section
discusses some profiling and codesign simulation tools and
how they help select partitions for a design.

B. Simulating versus Profiling Hardware/Software Codesigns

Conventional cosimulation environments emulate systems
that combine a microcontroller with dedicated hardware to
implement an embedded system [14], [15]. However, their
simulation techniques result in only an approximation of the
actual system performance. Mentor Graphics offers Seam-
less [16], a hardware/software co-verification simulation tool
that enables a designer to interface Instruction Set Simulators
(ISS) with memory and dedicated logic to detect scheduling
problems. However, simulating both hardware and software is
costly: simulations run at 1000 to 5000 instructions/second.

Most modern microprocessor’s include a limited number of
hardware performance counters that can be used to profile the
runtime execution to count “Events” that measure different
aspects of performance. A Performance Application Program-
ming Interface (PAPI) [17] provides users with a high-level
interface for the usage of these counters. By annotating the
application with calls to PAPI functions, the user can count
numerous different kinds of Events [18]. The accuracy of
PAPI’s results is dependent on a large enough code space
such that the overhead of the PAPI sampling code does not
dominate the counter values [19]. Intel provides a commercial
performance analyzer, similar to PAPI, called VTune. It pro-
vides a graphical interface that allows users to instrument their
software post-compilation to utilize the hardware counters on
their processors to profile performance [20].

C. Commercial System Design Tools for FPGAs

Xilinx and Altera both support the design of systems com-
bining a processor with dedicated hardware. Altera provides
designers with the System On a Programmable Chip (SOPC)
Builder [21], which hooks into the Quartus II tools [22]. The
user specifies a complete system from IP and user designed
components and then the SOPC Builder generates the system.
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Having created a design, the user can both debug and
simulate its performance. ModelSim [23] simulates a Nios
system design, including the peripherals by simulating the
entire system, including the processor, at the RTL or gate-
level. It provides cycle-accurate information, but is extremely
slow making the simulation of larger applications prohibitive.
Altera provides multiple options to facilitate on-board software
debugging. A simple monitor program called GERMS allows
basic debugging operations, and for more complex options,
there is GNU’s [24] gdb, but it can only run on a processor
instantiated on an FPGA. Finally, Altera has partnered with
First Silicon Solutions [25] to provide a core that connects to
the Nios processor and acts as a system analyzer.

Xilinx provides users with a similar tool set, the Embedded
Development Kit (EDK) [26]. It is available as a separate
environment for designing embedded systems on FPGAs.
Similar to the Altera SOPC Builder, it generates the necessary
hardware and software interfaces to facilitate the design of
an embedded system. As with Nios, the complete design,
including the processor, can be simulated at the HDL/gate
level to obtain a complete simulation.

To simplify the debugging of designs run on a MicroBlaze
processor, Xilinx provides an Instruction Set Simulator that
may be run in a cycle-accurate mode on a host computer.
Currently, this cycle-accurate simulator supports a limited
selection of peripherals, but allows for faster simulation of the
processor than is possible with gate level simulation. Users can
also insert a Xilinx command stub (xmdstub) into their design,
which attaches a monitor program to the design so that the
user is able to debug the executable on the board. They access
their executable via the XMD command window or the gdb
interface on the host. As the XMD window is a TCL shell,
users can add their own commands to interface with a design
implemented on an FPGA. Finally, Xilinx supports an IP
core, the Microprocessor Debug Module (MDM) that enables
the user to perform JTAG-based debugging on a configurable
number of MicroBlaze processors.

Both companies provide numerous tools for debugging
application software as well as some profiling tools, such as
gprof, that are able to run locally on their soft processor.
However, neither supplies tools capable of providing cycle-
accurate performance information for an application running
in real time on a soft processor core instantiated on an FPGA
without requiring instrumentation of the source code. The
importance of obtaining precise performance measurements
for quality design implementation on FPGAs necessitates the
usage of runtime monitoring tools for designs too large for
proper simulation. All of the existing commercial FPGA tools
of which the authors are aware are intrusive, which is a factor
in embedded system design.

D. GNU’s gprof

To use GNU’s gprof, the designer must compile and link the
application with the profiling options enabled. Unlike PAPI,
the compiler automatically generates and inserts the extra
code necessary for generating the profile information used by
gprof. This code counts the function calls and generates an
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Fig. 1. The Proposed Reconfigurable Hardware/Software Design Flow.

interrupt that samples the Program Counter (PC). While this
method allows a precise tabulation of the number of times
each function is called, the timing information it obtains from
the execution is not as accurate.

At specific intervals, normally every 10ms (100Hz), gprof
samples the PC [27]and increments the execution time of the
corresponding function by the sample time. This means that
unless the total runtime of the application is significantly larger
than the sampling period, the measured execution time for
each function may be misrepresentative of the actual execution
time. Therefore, for smaller executables, applications are run
numerous times so that the profiling information accumulates
for a substantial runtime.

Obviously, there is a trade off between using a statistical
runtime profiler and simulation to profile software execution
on a processor. Statistical profilers obtain values that are
imprecise and there is overhead to running the profiling
software. However, the runtime profiling overhead is negligible
compared with the time required to provide cycle accurate
information by simulation. In other words, while gprof may
add additional seconds or minutes to a software applica-
tion’s execution, cycle-accurate simulation requires seconds
to minutes to simulate each cycle of a hardware system,
depending on its complexity.

III. EMBEDDED SYSTEMS ON FPGAS

When creating embedded systems, designers need to con-
sider system requirements including performance, power, area,
and cost. If a designer chooses to implement an embedded sys-
tem as an FPGA SoC, it constrains some of these parameters.
For example, when a designer selects a specific device, it has a
set purchase price and a fixed set of resources, independent of
those used by the system. We propose that by adapting the
general hardware/software codesign methodology discussed
in Section II to use the extra resources on-chip during the
design process, designers can verify functionality and measure
performance on-chip, thereby decreasing the simulation time
for the system and reducing design time.

A. Design Methodology

Figure 1 illustrates our proposed design methodology and
highlights the phases of the design process for which we
have provided new design infrastructure. The process begins
by describing the entire application in software, maximizing
the modularity to simplify the partitioning of the application
into hardware modules if it fails to meet the performance
criteria. Designers can choose to verify the fully software
implementation on-chip or on a personal computer, since
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general purpose processors operate at significantly higher
clock speeds than soft processors on FPGAs. However, when
profiling the software’s performance, it is important that it
be done on the soft processor to obtain an accurate profile.
We have created a Snooping Profiler (SnoopP) that profiles
performance on-chip and can be used to detect the throughput
and latency of a code region/module as well as which code
regions incur the greatest amount of execution time. SnoopP
is discussed in detail in Section V.

If the profiled performance of the system fails to meet the
specified requirements, the designer partitions the application
into software and hardware modules to improve performance.
SnoopP’s profile information can be used to determine which
software functions should be moved to hardware to speedup
the application’s execution. The designer then maps these
modules to the necessary processor(s) and hardware modules
to create a new system platform. We propose that the designer
use the SIMPPL model [4], described in Section IV, for the
system architecture so that system-level interconnections can
be autogenerated using our System Generator [4], as detailed
in Section IV-C. Otherwise, the designer must custom-build
the system’s architecture using the vendor specific system
tools. After creating the new system-level architecture, the
designer then implements the new hardware modules and
updates the software for the new mapping.

Now that the design comprises both software and hardware
modules, verification can become more time consuming if a
designer relies primarily on simulation to test newly designed
or updated modules. However, if the designer uses the SIMPPL
model for the system’s architecture, then an easily program-
mable on-chip testbed, outlined in Section VII, can be used to
test modules orders of magnitude faster than simulation.

After the system has been functionally verified, it is re-
profiled to determine if it meets performance requirements.
SnoopP can detect if the current platform of software and
hardware modules is not processing data quickly enough for
the application’s requirements. Performance degradation also
arises from communication bottlenecks that force modules to
stall while waiting for data to process. To complement our
tool SnoopP, WOoDSTOCK is designed to monitor the fixed
communication links between modules in the SIMPPL model
to detect communication bottlenecks. Monitoring system com-
munication on-chip allows designers to run the system for
extended periods to detect communication bottlenecks that
occur over time without having to use simulation to determine
which module(s) are responsible for the bottleneck.

Once the profiling data has been obtained, the designer
needs to determine whether the current implementation of
the system meets the specified requirements. If not, then
the designer iterates through the repartitioning and redesign
process, using the performance and communication profiling
information to guide their decisions until the requirements are
met and the design is completed. A possibility for future re-
search is to provide this profiling information to an automated
tool set that repartitions and remaps the application based on
this data. However, for the purpose of this paper, we focus
on highlighting the benefits of using on-chip profiling and
verification tools as summarized in the following section.

B. Benefits of Designing Embedded Systems using FPGAs

The premise of our design methodology is that simulating
the cycle-accurate performance of a reconfigurable circuit is
extremely computationally intensive and should only be used
to determine preliminary functionality and not performance.
Since an FPGA design platform is reconfigurable, using on-
chip profiling and verification tools during the design process
allows designers to obtain accurate information quickly. They
obtain direct feedback on the design’s actual behaviour by us-
ing the reconfigurable environment to test the system, instead
of simulation, which can reduce overall design time.

However, profiling on-chip not only obtains results quickly,
but enables designers to profile their system using runtime data
to detect data dependent behaviour. The profiler’s accuracy is
determined by the operating frequency of the profiler relative
to that of the rest of the system. If the operating frequency is
the same as that of the system, the profiler will provide clock-
cycle accurate results. The designer can also run the profiler
at a slower operating frequency and obtain a statistical profile,
similar to gprof, if that is sufficient for the application.

All of the on-chip tools are independent hardware modules
that are scalable and adaptable to the system-specific archi-
tectures of different applications. Both of the profiling tools
use snooping to detect the events they are measuring. They
monitor signals inherent to the system so that the system’s
operation is unaffected by the profiling. Neither SnoopP nor
WOoDSTOCK insert extra software code into the application,
which ensures that software performance is unchanged by the
addition of a profiler. Furthermore, the profiling tools do not
add extra hardware circuitry into the application’s processing
path, ensuring that the functional operation of the system is
not altered by the profiler. While the profiling tools are non-
intrusive to the system’s processing, the additional circuitry
may have side effects on the system’s performance by reducing
the maximum clock frequency of the design depending on the
percentage of the chip resources required to implement the
system. In situations where the application uses the majority
of the chip resources, a larger chip from the same family can
be used during the design process to reduce the effects of the
on-chip design tools on the maximum clock frequency.

The most important benefits to designing hardware/software
codesigns on an FPGA are that there is no need to finalize
the partitioning of the design at the beginning of the design
process or to create a complex cosimulation environment
to model communication between hardware and software.
The system can be run on the reconfigurable fabric where
the precise interaction between hardware and software can
be tested and it is easy to iterate between partitioning and
profiling the design. Furthermore, the accuracy of on-chip
profiling information makes it easy to provide better feedback
for the partitioning process.

IV. SOC MODEL

Before describing the on-chip design tools we have created
for our methodology, we discuss the SIMPPL system model
and the experimental platform that is currently supported by
our design infrastructure. Defining a system-level architecture

4



CE

CE CE

CE CE

CE

c
cc

c off-chip
on-chip

Fig. 2. A generic SoC described using the SIMPPL model.

and system communication protocols is essential to allowing
us to autogenerate application-specific on-chip system profilers
and testbenches. If there is no fixed system model, then
designers would have to custom-build these design tools for
every system being designed, increasing the design time and
reducing the benefits of designing on-chip.

A. SIMPPL Model

Our proposed SIMPPL model represents SoCs as Sys-
tems Interfacing Modules with Predefined Physical Links
(SIMPPL) [4], implementing an SoC as a combination of
different Computing Elements (CEs) that are connected via
communication links. Figure 2 illustrates a possible embedded
system processing architecture described using the SIMPPL
model, where the solid lines indicate internal links and the dot-
ted lines indicate I/O communication links. I/O communication
links may require different protocols to interface with off-chip
hardware peripherals, but the internal links are standardized
physical links with defined communication protocols to make
the actual interconnection of CEs a trivial problem and to
create a framework for embedded systems design. For our
current work, we assume the internal links are Asynchro-
nous FIFOs with a user defined depth. Asynchronous FIFOs
simplify multi-clock domain systems, allowing designers to
isolate different clock domains in different CEs and buffer the
data transfers between CEs. Point-to-point links offer higher
bandwidth than shared buses. Recent work also shows that
commercial FPGA routing fabrics can implement network
topologies where CEs have a high degree of connectivity with-
out performance degradation due to routing congestion [28].

The SIMPPL model is comparable to Kahn [29] and Data
process networks [30], except the links have finite capacity
and there are no restrictions on the nature or functionality of
a CE. A previously proposed model for the future of SoC
design using many interacting heterogeneous processors [31]
can also have this structure, however, the SIMPPL model
is more general, allowing CEs to depict either processors
(software CEs) or dedicated logic modules (hardware CEs).

Each CE has the generic structure shown in Figure 3, where
each CE has N input links and M output links. Internal links
connect a CE to other CEs, where input links connect to parent
CEs and output links connect to child CEs. The information
passed between CEs is abstracted from the links themselves
and instead, the data transfers are adapted to the specific
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Fig. 3. The system generator’s generic computing element.

requirements of each CE. This format of communicating
data between modules is akin to software design, where
the stack provides the physical interface between software
functions, similar to the proposed internal links. However,
the information passed on the stack, such as the number of
parameters, is determined by the individual function calls. In
the SIMPPL model, the size and nature of the data in the
packet communicated between the IP modules performs this
task. Each module has internal protocols capable of properly
creating and interpreting the information in a packet.

B. Experimental Platform

The methodology and benefits described above are ap-
plicable to designing on both Altera and Xilinx FPGAs with
either NIOS or MicroBlaze soft processors. To test our tools
and demonstrate how they could be used as part of an on-
chip design methodology, we used the Xilinx Multimedia
Board with a Virtex II 2000. All the systems and on-chip
software are synthesized and compiled with Xilinx’s EDK
tools. Xilinx’s MicroBlaze soft processor can be configured for
application-specific requirements to improve the performance
of the system. However, since the objective of this work is to
study the tools for a methodology, the default parameters for
the MicroBlaze core are adequate. These include a software
implementation of the multiply/divide instructions and no data
or instruction caches.

The MicroBlaze also includes eight master and eight slave
ports for asynchronous FIFOs. Xilinx has included read and
write access instructions to these ports, which they call Fast
Simplex Links (FSLs), so that data transfers can be imple-
mented directly in software. To access FIFO ports directly
from a NIOS processor, designers can create application-
specific instructions that will also allow them to access the
FIFOs from software. All of the on-chip tools currently use
the MicroBlaze Debug Module (MDM) to upload information
from the chip to the host computer, where the xmd monitor
program provides the user interface. To run these tools on
Altera chips requires the present I/O interface to be adapted
to Avalon bus protocols.

C. System Generator

The System Generator tool generates systems of CEs com-
prising software and hardware CEs based on a description of
the system provided by the designer. This facilitates generating
example systems for testing our tools. The software CE tem-
plate consists of a soft processor with its own local instruction
and data memory, as shown in Figure 3, and source code that
provides read and write functions to the input and output links
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and a sample main program. The main reason for using local
memory is that sharing memory creates possible data hazards.
Even if two processors share a block of memory but have two
distinct address spaces, there will be bus contentions causing
interference in the execution results. Here, it is assumed that
each of these modules should have the same performance
independent of the number of other CEs in the system and that
there is no need to share data between two CEs unless it is
sent via a link. Each CE’s autogenerated source program file is
stored on its local memory and provides functions for receiving
and transmitting over the links and constants representing the
processing time required to generate output data for the CE.
The hardware CE template is a VHDL file that includes state
machines for accessing the input and output links as well as a
demonstration of how output generation can be synchronized
to the availability of inputs.

The generality of the System Generator provides designers
with a system template that models sequential consumption
and generation of data by all the system CEs. While modelling
pipelining and other forms of parallelism is possible with hard-
ware CEs, the objective is to create the physical interface and
logic communication protocols so that designers can focus on
CE functionality as opposed to inter-CE communication. Even
though the CE templates may not exactly model a particular
internal functionality, the system level communication model
provides suitable benchmarks for WOoDSTOCK. Designers
can also easily replace the template source code files and
template VHDL functionality with their own designs.

Since I/O communication links cannot be automatically
generated, off-chip peripherals that produce/consume system
data are modelled as part of the CE to which they are
connected. If there are no internal input links (N=0) to a CE,
then it generates output data by modelling input received from
an off-chip hardware peripheral that must be processed before
generating an output. Similarly, if a CE has no output links
(M=0), all data is consumed to model output generated for an
off-chip hardware peripheral.

The System Generator currently creates all the necessary
source files to describe a unique project for the Xilinx Platform
Studios (XPS) software, however, it could easily be adapted
to generate the appropriate system files for Altera’s SOPC
Builder. These files are generated based on an input description
file of the system provided by the user. The input file describes
the number of CEs, internal links, clock domains, and external
memory banks in the system. For each CE, the user details
its clock domain and how it generates outputs as a function
of its inputs. For software CEs, there is a final option of
selecting if an external memory is included. The project file
is designed to generate a download file that includes all of the
executable source files for the processors. After the bitstream
is downloaded onto the FPGA, all the processors start and
begin running their program.

V. SNOOPP

This section describes the architecture and experimental
evaluation of our on-chip software profiler called SnoopP.
To demonstrate the accuracy of profiling an application with
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SnoopP, the results are compared with those obtained using
gprof. Concurrent work has also been done at the University of
Ljubljana to develop a profiler for soft processors that is sim-
ilar to SnoopP, called COMET [32]. COMET is demonstrated
using the NIOS processor and the main goal is to use COMET
as part of a hardware/software design flow to help estimate
performance and guide hardware/software partitioning.

A. General Architecture

SnoopP is designed as an independent hardware module that
the user includes in their system design. The internal structure,
shown in Figure 4, subdivides into two components – the
clock-cycle counters and the system bus interface. The former
profiles the system with the user-specified number of counters
while the latter provides off-chip access to their values. To
profile source code execution, SnoopP connects to a bus that
displays the executing Program Counter (PC EX) bus and a
valid instr signal that is high when the value on the PC EX
bus is valid. Each code segment counter increments every time
the value of the PC EX bus is both valid and in range.

When designers clock SnoopP using the system-level clock,
as shown in Figure 4, this results in an accurate clock-
cycle count of the time spent in a code segment. To obtain
a cycle-accurate profile of data region accesses, instead of
source code execution, SnoopP’s counter address bus needs
to be connected to the system address bus and a “valid data
address” signal. It should also be noted that SnoopP can be
used to obtain a statistical profile of data accesses or program
execution, similar to gprof. Using an independent clock to
drive the module, instead of the system-level clock, allows the
user to choose an appropriate clock frequency that provides
them with an adequate granularity for their profiling data.

Counter N-1 is magnified to illustrate the internal workings
of a clock-cycle counter. To determine if the address, for
example the PC EX, is in range, comparators check to see
if the present PC EX value is between the specified low and
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high addresses. If the PC is valid and is presently accessing an
address within these bounds, then the counter value is incre-
mented. The counters are memory mapped to the system-level
bus, which enables a user to read and reset the counters from
a host computer via the off-chip interface module connected
to the system-level bus. Thus, SnoopP allows the designer to
measure the exact number of clock cycles the program spends
executing specified code segments or accessing data memory
at runtime.

B. Design Decisions

SnoopP allows the user to choose up to a maximum of
16 profiling counters to limit the circuit size. Each counter
requires two comparators to determine if the 32-bit address
is in a valid range. The user can obtain the addresses for the
upper and lower bound parameters of the address ranges by
assembling the code or reading the symbol table. To provide
complete flexibility in specifying the address ranges, SnoopP
allows designers to select address ranges as small as a specific
address to an entire 32-bit address space. This means that
when SnoopP profiles source code, a code segment could be
anywhere from a single instruction to an entire program.

Currently, designers must select the number of counters,
their individual address ranges, and their location in the mem-
ory map pre-synthesis to limit the effects of parameterization
on SnoopP’s critical path delay. Since it is desirable to be able
to reload the address boundaries between application runs,
the designer can easily change SnoopP to support runtime
programmable address ranges if clock speed is not a concern.
However, a better option would be to enable the designer to
update the bitstream to change the hardwired address ranges
without re-synthesizing the design. Currently, there are some
tools that could be used by designers to do this, but there
is no clear, user-friendly tool flow that provides easy access
for making these changes. However, such a tool is feasible to
implement for future work.

When using SnoopP, it is important to remember that only
address accesses in contiguous regions of memory are counted.
For example, to accurately profile how long a function A
with subfunction calls X, Y, and Z takes to execute, the user
must assign a counter to the function as well as to each
of the subfunctions called during its execution (i.e. A, X,
Y, and Z). Furthermore, if another function B calls any of
these subfunctions, for instance Y, it may not be possible to
distinguish which portion of the subfunction Y’s execution
time is due to function A versus function B.

Since most software programs require many cycles for
completion, 46-bit counters are used to store the clock cycle
counts, which is equivalent to letting the profiler run at 100
MHz for eight days. When profiling source code, the decision
to count clock cycles, as opposed to the number of executed
instructions, is based on the desire to be precise as to the
actual time spent executing each code segment. Given that
most code segments will include a branch and/or a memory
fetch, there will likely be pipeline stalls that could significantly
increase the time spent executing a segment. This stall time is
not accounted for if only the number of executed instructions
are counted.

While this architecture provides the user with significant
flexibility for profiling software, the hardware required to
implement SnoopP with the maximum 16 counters translates
into a maximum circuit size that utilizes 849 flipflops and 1349
LUTs for logic. The 16 46-bit counters require 736 flipflops,
accounting for 87% of the flipflops utilized by SnoopP. Alter-
natively, SnoopP’s counters could also be implemented using
an on-chip Block RAM (BRAM), however, this would reduce
the flexibility of the code segment definitions. The user would
have to constrain their definition such that no more than two
code segments overlap for a given address. This limitation
arises because the BRAMs allow up to two concurrent memory
accesses. The remaining 13% of the flipflops in SnoopP latch
internal control signals to prevent the system’s critical path
from being in SnoopP when the system is synthesized.

For simple soft processor systems, SnoopP does not limit
the maximum clock speed and, ideally, the profiling circuit
will never be on the system’s critical path as its maximum
operating frequency is 127MHz. However, if the design is ap-
proaching the capacity of the FPGA, it may be unavoidable. If
necessary, SnoopP can be pipelined to reduce the delay path in
faster systems. This includes latching the current address and
system ABus buses and the valid addr and system ABus select
signals. These additions have not been incorporated into the
present version of SnoopP as they are unnecessary and increase
the size of the circuit.

To implement the 32 32-bit comparators used to determine
if an address is within each counter’s address range requires
1024 LUTs. This encompasses 76% of the LUTs employed
in the SnoopP, and does not include the logic required to
interface SnoopP to the OPB. The OPB interface must use
two comparators to resolve that the user has accessed the
SnoopP memory space. More logic is required to select the
counter operation and to implement a 16-to-1 multiplexer that
drives the appropriate value onto the OPB. Thus, the resources
necessary to implement SnoopP using 16 counters is actually
larger than what is required to implement a MicroBlaze
processor, and an area for future study is possible methods of
minimizing the size of SnoopP, such as reducing the resolution
of the comparators for the address ranges.

C. Experimental Evaluation

This section illustrates how SnoopP profiles source code
using Dhrystone [33] as a sample benchmark. It details the
methodology used and the issues encountered when profiling
the application.

1) Methodology: There are two possible methods of using
SnoopP to profile software performance. The first is to use
gprof to obtain an initial profile of executable performance.
This information can be used to try and assign the counters
to what gprof determines are the important regions of the
executable. The other method is to perform all the profiling
using SnoopP. To do this, the user divides the software exe-
cutable into groups of functions forming continuous address
blocks and obtains an initial profile. The regions that require
the largest percentage of execution time can be subdivided
further to determine which specific functions take the most
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TABLE I

GPROF STATISTICS ON FUNCTIONS COMPRISING THE DHRYSTONE

BENCHMARK AFTER ONE HUNDRED AND ONE MILLION PASSES.

Function 100 Passes One Million Passes
Name Total Total Percent

Calls Calls Time

internal mcount — — 31.5

main 1 1 11.2

Proc 8 100 1000000 10.4

Func 1 300 3000000 9.6

Proc 7 300 3000000 6.1

Func 2 100 1000000 6.1

Proc 1 100 1000000 5.9

Proc 6 100 1000000 4.5

Proc 2 100 1000000 3.7

Func 3 100 1000000 3.5

mcount — — 3.2

Proc 3 100 1000000 1.9

Proc 4 100 1000000 1.6

Proc 5 100 1000000 0.8

execution time. Depending on the size of these regions, the
number of functions and the division of execution time, the
user may have to iterate through this process until a suitable
performance profile has been obtained.

For the purpose of this study, we used gprof to provide a
baseline comparison of the varied accuracy between statistical
and clock cycle accurate profilers. The application is initially
profiled with gprof on a Sun Ultra 80 Model 4450 running
version 5.8 of the Solaris OS. The design is then run on a
MicroBlaze processor instantiated on the FPGA and profiled
with SnoopP for more precise performance information. The
application is compiled using gcc -O2 for both the Sun
and MicroBlaze platforms, which optimizes the application’s
source code without inlining functions. Finally, we use Xil-
inx’s version of gprof tailored to run on the MicroBlaze, mb-
gprof and profile the application on running on three different
configurations of the Microblaze. We can then compare the
results to determine if using mb-gprof on the MicroBlaze
obtains profiling data that correlates better to the SnoopP
profile than using gprof on the Sun station.

2) Dhrystone: Dhrystone is a synthetic benchmark for test-
ing a system’s integer performance that Xilinx uses to measure
MicroBlaze processor performance. Table I summarizes the
results obtained using gprof on the Sun workstation. Column
1 contains the function names for which gprof returns results.
Columns 2 and 3 list the number of times each function is
called when Dhrystone makes one hundred passes and one
million passes through the main loop respectively. Finally,
Column 4 reports the percentage of execution time that gprof
attributes to each function when the main loop makes a million
passes. gprof is unable to obtain the same type of statistical
timing information when Dhrystone makes only one hundred
passes of the main loop as it completes execution in less than
10ms on the workstation. The functions internal mcount and
mcount are part of the profiler and count the number of times

a function is called during execution. While gprof does not
report the number of times these functions are called, their

TABLE II

DHRYSTONE SNOOPP COUNTER ASSIGNMENTS.

Counter Function Number of Percentage of

Number Name Instructions Static Code Size

0 main 376 43.5%

1 Proc 1 70 8.1%

2 Proc 2 16 1.9%

3 Proc 3 18 2.1%

4 Proc 4 24 2.8%

5 Proc 5 7 0.8%

6 Proc 6 42 4.9%

7 Proc 7 5 0.6%

8 Proc 8 60 6.9%

9 Func 1 11 1.3%

A Func 2 49 5.7%

B Func 3 9 1.0%

C divsi3 38 4.4%

D malloc 11 1.3%

E mulsi3 22 2.5%

F strcmp 32 3.7%

TABLE III

CYCLE-ACCURATE RESULTS USING SNOOPP TO PROFILE DHRYSTONE ON

MICROBLAZE SYSTEMS THAT INCLUDE AND EXCLUDE THE HARDWARE

MULTIPLIER AND DIVIDER.

Function Percentage Percentage Percentage Percentage
Name of Execution of Execution of Execution of Execution

Time Time Time Time
(100 Passes) (A Million (100 Passes) (100 Passes)

Passes) HW multiply HW multiply
& divide

mulsi3 23.49 23.56 — —

divsi3 14.88 14.93 20.68 —

main 14.75 14.51 19.22 23.90

strcmp 10.80 10.83 15.00 18.99

Proc 1 9.62 9.65 13.37 16.92

Proc 8 7.49 7.52 5.39 6.83

Func 2 4.88 4.89 6.78 8.58

Proc 6 3.39 3.40 4.72 5.97

Proc 3 2.17 2.17 3.01 3.81

Func 1 1.98 1.98 2.75 3.48

Proc 4 1.75 1.76 2.44 3.08

Proc 7 1.64 1.65 2.28 2.89

Proc 2 1.54 1.54 2.13 2.70

Func 3 0.82 0.83 1.15 1.45

Proc 5 0.76 0.77 1.06 1.34

malloc 0.02 0.00 0.03 0.04

combined overhead accounts for 34.7% of the execution time
calculated by gprof.

Since this application only has a few functions, it is possible
to assign the counters in SnoopP to almost every function,
profiling 91.5% of the static code size. Only the initialization
and clean up portions of the executable are ignored as they add
little overhead and cannot be moved to hardware. Table II out-
lines how the application is partitioned into profiling segments.
It includes the number of instructions per code segment and
the percentage of the static code size utilized by each function
to give better context to the profiling results.

Table III contains the results obtained from profiling the
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Dhrystone benchmark on the FPGA using SnoopP. The per-
centages assume that the total execution time can be approx-
imated by summing the time spent executing the functions
within the user written portion of the executable. The results
in Columns 2 and 3 are run on a MicroBlaze processor
that implement integer multiplies and divides using software
functions and run the main loop for one hundred and one
million passes respectively. Columns 4 and 5 assume that the
main loop runs one hundred passes, but varies the MicroBlaze
platform to include a hardware multiplier and then to include
a hardware multiplier and divider.

By comparing the percentage execution time results in
Tables I and III, we see that there is a significant differ-
ence between results obtained by SnoopP versus gprof. Not
only are the execution time percentages different, but gprof
ranks Proc 8, Func 1, and Proc 7 as the top three of the
application’s functions consuming processing time. In contrast,
SnoopP shows that the application functions Proc 1, Proc 8,
and Func 2 actually consume the most processing time on a
MicroBlaze. Furthermore, the software implementations of the
integer multiply and integer divide functions along with main
require just over 53% of the processing time. Therefore, if the
partitioning choices are based on the profiling results obtained
from gprof, the designer would not select the appropriate
functions to implement in hardware.

Comparing Columns 2 and 3 illustrates the consistency
of profiling information obtained using SnoopP. While gprof
is only able to obtain a timing profile by executing the
Dhrystone main loop a million times versus one hundred times,
SnoopP obtained results that vary by no more than 0.24%
for both cases. The resulting variance is easily explained
by the diminishing significance of initialization code within
main with respect to the longer execution time of the main
processing loop. Therefore, SnoopP is able to obtain more
accurate and consistent results than gprof in only 0.01% of
the execution time.

Column 4 illustrates how the removal of the software
multiply instruction increases the percentage execution time of
all of the functions except for Proc 8. This exception occurs
because the number of instructions in the Proc 8 function
dropped from 60 to 33 due to optimizations that were possible
with the removal of the software multiply. The inclusion
of a hardware multiplier reduced the execution time of the
application from 1.33 million clock cycles to 960 thousand
clock cycles, approximately 28%. The extra resources required
to implement the multiplier were 39 LUTs, 50 FlipFlops, and
three 18x18 dedicated multipliers.

Given the significant improvement in performance obtained
using these minimal hardware resources to implement the
hardware multiplier, we decided to investigate the benefits
of including the hardware divider in combination with the
multiplier. The additional resources required to implement the
hardware divider are 117 LUTs and 109 FlipFlops, but it
further reduces the execution time by another 15%. Depending
on the requirements of the application, the designer may feel
that this is an acceptable tradeoff.

Next mb-gprof was used to profile Dhrystone using the same
three configurations of the MicroBlaze profiled by SnoopP.

We profiled Dhrystone running for both 100 and one million
passes and also set the mb-gprof parameters to mimic those
used in gprof on the Sun station. However, the clock frequency
of the Sun station’s processor is 450MHz, whereas, the Mi-
croBlaze processor is running at 27 MHz. Therefore, the Sun
station’s processor executes 16.7 times the number of clock
cycles as the MicroBlaze during the same period.

Table IV summarizes the results of profiling Dhrystone
using mb-gprof. Column 1 lists the function names for which
mb-gprof returns profiling results and the remaining columns
report the profiling data for the different experimental set
ups. Dashes are used in these columns to indicate when mb-
gprof returned no data on the percentage of execution time.
The results in Columns 2 and 3 are run on a MicroBlaze
processor that implement integer multiplies and divides using
software functions and run the main loop for one hundred and
one million passes respectively. When Dhrystone executes 100
passes mb-gprof is only able to sample the PC eleven times at
runtime, thus the remaining configurations have Dhrystone run
for one million passes Columns 4 and 5 varies the MicroBlaze
platform to include a hardware multiplier and then to include
a hardware multiplier and divider respectively.

Since mb-gprof is run on the MicroBlaze, it is able to
profile the software implementations of the multiply and divide
functions. Columns 2 and 3 illustrate that mb-gprof detected
the software multiply as the second largest consumer of
execution time, as opposed to the top consumer as indicated by
SnoopP in Table III. Columns 4 and 5 show Func 1 and Proc 7
as two of the top three consumers of execution time similar
to gprof (see Table I). These results demonstrate that even
though the PC is sampled 16.7 times more by mb-gprof than
by gprof on the Sun station, statistical profiling still creates a
highly inaccurate profile compared to SnoopP.

In summary, SnoopP produces a fast, consistent, clock cycle
accurate profile of of a systems’s execution performance as
demonstrated with the Dhrystone example. While, gprof is
able to obtain a basic overview of software performance, it
needs numerous more loops of the main algorithm to obtain
its percentage of execution time per function. Moreover, this
data is obtained on a distinctive instruction set architecture
(ISA) from the MicroBlaze using a statistical profiler. Its
results do not match the exact results measured by SnoopP.
However, an initial profile from gprof can facilitate the
assignment of the SnoopP counters to the appropriate code
segments as it indicates which code segments likely require
the most execution time. mb-gprof may be able to provide
slightly better profiling data than running gprof on the Sun
station since it uses the MicroBlaze ISA. However, the time
required to profile an application using SnoopP is less than
time required for mb-gprof because of the additional software
profiling functions added to the executable at compilation time
for obtaining profiling data. Therefore, there is greater value
in using SnoopP to obtain clock-cycle accurate results rather
than the statistical results acquired using mb-gprof.

VI. WOODSTOCK

When creating embedded systems, designers need not only
consider the independent performance of each module in the
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TABLE IV

MB-GPROF STATISTICS ON FUNCTIONS COMPRISING THE DHRYSTONE

BENCHMARK AFTER ONE HUNDRED AND ONE MILLION PASSES.

Function Percentage Percentage Percentage Percentage
Name of Execution of Execution of Execution of Execution

Time Time Time Time
(100 Passes) (A Million (A Million (A Million

Passes) Passes) Passes)
HW Multiply HW Multiply

& Divide

start1 25.00 0.00 — 0.00

mulsi3 16.67 10.20 — —

Func 2 8.33 5.38 0.00 6.50

Proc 1 8.33 7.17 9.09 13.63

Proc 3 8.33 4.55 5.79 4.55

Proc 5 8.33 3.73 0.00 5.19

Proc 8 8.33 8.97 9.09 7.47

main 8.33 8.55 0.00 10.72

strcmp 8.33 5.52 9.09 7.79

Func 1 0.00 10.07 18.18 13.31

Proc 7 0.00 10.21 12.40 12.34

Func 3 0.00 3.59 9.09 5.19

Proc 2 0.00 4.55 9.09 5.19

Proc 4 0.00 4.55 9.09 2.92

Proc 6 0.00 5.66 0.01 5.20

divsi3 — 7.31 9.09 —

design, but they must also ensure that there is load balancing
among the CEs. If not, system stalls may be the reason a
design fails to meet performance requirements. This section
describes how Watching Over Data STreaming On Computing
element linKs (WOoDSTOCK) can be used to monitor system
behaviour.

A. Multi-CE Profiling Architecture

The SIMPPL model described in Section IV-A resembles
a multiprocessor system, where software designers are able
to obtain some run-time statistics about an application’s be-
haviour on their system. Of particular interest is the ability to
determine the stall time of individual processors in the system.
Typically, a scheduler monitors when a processor is waiting
for another processing task, but as the scheduler is unaware
of the nature of the actual tasks, it only provides system-level
information.

WOoDSTOCK is able to provide analogous information
to designers due to the standardized interface used in the
SIMPPL model. WOoDSTOCK highlights problems arising
from inter-CE communication and indicates to the user when
a particular CE creates a system bottleneck. Like the scheduler,
WOoDSTOCK is similarly unaware of the actual computation
performed on a CE. Therefore, the precise cause of a system
bottleneck is determined using a combination of the system
performance results along with user’s knowledge of the design
and independent CE profiling. In the case where a software
CE is causing the bottleneck, SnoopP may be used to detect
the source of the bottleneck.

Figure 5 illustrates the connections between WOoDSTOCK
and a multi-CE system. Each diamond represents a monitor
that is associated with a specific CE. A monitor is a piece of
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Fig. 5. The WOoDSTOCK architecture.
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fullFIFO_0

FIFO_0 empty

Fig. 6. Examples of the different types of bottlenecks detectable by
WOoDSTOCK: (a) interior bottleneck, (b) input bottleneck, and (c) output
bottleneck.

hardware that records the behaviour of the traffic on all the
internal input and output links connected to its CE through
internal counters. These counters are used to measure the total
possible stalling/starving time for a CE during the profiling
period, which is set based on the program execution of a
specially selected base processor, labeled as CE0 in Figure 5,
or an independent execution time counter. The user sets the
active monitoring period of the system based on the region of
a base processor’s source code or an independent execution
time counter. Addresses of the instructions bounding the code
region or the minimum and maximum counter values are pro-
vided to WOoDSTOCK as start and stop points. The running
signal, shown in Figure 5, is enabled and disabled when the
start and stop values, respectively, are seen as valid values
on the counter bus. This signal is used to enable or disable
the system’s monitors. Each of the CEs and their monitors in
Figure 5 are labelled for the purpose of differentiating the base
processor (CE0) from the remaining CEs (1,2,3).

B. Bottleneck Detection

WOoDSTOCK assumes that the only signals a monitor
can connect to are the full and empty status signals of
the asynchronous FIFOs implementing the internal input and
output links of its respective CE. These signals are used to
generate enable signals for the counters used to profile the
system. The counters are used to measure the number of clock
cycles where a CE is potentially starving or stalling the system.
A more naive approach would be to assign individual counters
to the full and empty signals of each link in the system.
However, this provides less useful information to the designer
as the relationship between these status signals is required to
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TABLE V

EXAMPLE OUTPUT EQUATIONS FOR THE SYSTEMS IN FIGURE 6.

Bottleneck Example Output Equation

Interior Bottleneck FIFO 1 full and (not FIFO 0 full)

Input Bottleneck FIFO 0 empty

Output Bottleneck FIFO 0 full

determine if a CE is a system bottleneck as shown in the
following paragraph.

Figure 6 illustrates examples of the three types of system
bottlenecks that WOoDSTOCK can be used to detect. Fig-
ure 6(a) shows an interior bottleneck, where CE 1 has both
internal input and output links and is stalling the system. To
understand how WOoDSTOCK determines there is a bottle-
neck, consider when FIFO 1 becomes full. CE 1 may not be
consuming the data produced by CE 2 fast enough. However,
CE 1 may also be stalled because it cannot write to FIFO 0 if
it too is full, in which case a child CE is the bottleneck and
not CE 1. To differentiate between these situations, a CE is
defined to be an interior bottleneck when all the input links
that provide data to generate a specific output are full and the
link at the output is not full as depicted in Figure 6(a). The
specification of the output link as “not full”, as opposed to
empty, delineates an important aspect of the system monitoring
tool. WOoDSTOCK is unaware of the nature of the data
being transferred between CEs, so if CE 1 produces a data
packet that CE 0 requires in its entirety to continue processing,
then the link should normally be empty when the system is
balanced. However, if CE 1 produces a data packet that is
consumed as multiple individual data packets by CE 0, then
there will normally be data in this FIFO even when the system
is balanced. Therefore, the output link must be only “not full”
instead of “empty” to produce a bottleneck.

A CE that has internal output links and no internal input
links may cause an input bottleneck. This occurs when either
the off-chip hardware peripheral supplying input to the CE is
too slow or the processing time of the CE is too slow. In either
case, the system is starved for data. To detect this situation,
WOoDSTOCK monitors the empty status signal of the output
link. Figure 6(b) shows CE 1 as the potential cause of an
input bottleneck. The status of the I/O communication link
is unknown and FIFO 0 is empty. However, CE 1 may not
be a bottleneck if CE 0 consumes data at the same rate as
CE 1 produces it. This situation would also cause FIFO 0 to
be empty for the majority of the system’s run-time. Since the
results from these measurements are not conclusive on their
own, the designer needs to see how this information fits in with
the results obtained from monitoring the rest of the system.

Output bottlenecks arise in CEs that have internal input
links and no internal output links. They occur due to the slow
processing rate of either the CE or an off-chip peripheral.
Both cases result in the input links to the CE becoming
full as illustrated in Figure 6(c). While the state of the
I/O communication links is unknown, FIFO 0 becomes full
stalling the system. In situations where a CE stalls or starves
because of an off-chip peripheral’s slow data rate, this is
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Fig. 7. The interface of WOoDSTOCK with a multi-CE system.

still measured as being caused by the CE implementation.
Therefore, the user must be sufficiently familiar with the CE’s
processing to determine the precise cause of the bottleneck.

To generate a system-specific monitoring system, the user
writes a description of the system that states the required
combination of data on internal input links used to produce
an output for a given output link. WOoDSTOCK uses this
information to create an output equation for each CE output
described in terms of link empty and full status signals.
Table V shows the appropriate output equations for CE 1 in
each of the systems in Figure 6. These equations generate
counter specific enable signals that are combined with the
running signal to enable all the appropriate counters during
each sampling clock cycle.

The frequency of WOoDSTOCK’s sampling clock can be
set to any rate, depending on the desired profiling accuracy.
If sampling is done using the fastest system clock, then the
measured results are precise. However, a slower clock may be
used to do the sampling and obtain a statistical measurement
of system performance. This information can still help detect
system bottlenecks, but the system may need to be profiled
for longer run-times to observe the problem.

C. Implementation and Design Decisions

WOoDSTOCK generates the necessary system dependent
VHDL files to implement the monitoring system, along with
the files required by XPS to interface WOoDSTOCK into
a MicroBlaze system as shown in Figure 7. The internal
structure of WOoDSTOCK is subdivided into two components
— the system monitors and the OPB interface. The former
profiles the system links based on the user-provided system
profile (recall Figure 5) while the latter provides off-chip
access to their counter values. Similar to SnoopP, WOoD-
STOCK is memory mapped to the OPB as a slave device
and uses 46-bit counters. It also uses the MDM module as
an off-chip interface to the xmd control window running on a
host computer allowing users to remotely read and reset the
counters.

While WOoDSTOCK does not differentiate between mon-
itoring hardware and software and CEs, the MDM module
requires that there be at least one MicroBlaze processor in the
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Fig. 8. An application architecture with branching using the SIMPPL model.

system. However, embedded systems are typically comprised
of a combination of hardware and software, which means
there should be at least one processor in the system to fulfill
the MDM’s requirements. WOoDSTOCK also connects to
the FIFO status signals that indicate when there is data in
the FSL to read and when the FSL is full. For the purpose
of this paper, these signals will be referred to as fsl empty
and fsl full respectively. By monitoring their runtime values,
WOoDSTOCK enables the appropriate counters based on the
user-defined output equations.

D. Case Study

This section demonstrates how the information WOoD-
STOCK provides can help to refine a design using a case
study. It details the issues encountered while profiling a system
and concludes with a discussion of the advantages of on-chip
system profiling.

1) Methodology: The branching system architecture illus-
trated in Figure 8 is used as a case to demonstrate the
functionality of WOoDSTOCK. We use the System Generator
described in Section IV-C to generate benchmarks. The CEs in
these benchmarks are implemented using the default version
of the MicroBlaze soft processor. Each MicroBlaze has eight
built-in FSL (FIFO) receive and transmit ports and the send
and receive functions are generated based on macros provided
by Xilinx to read and write from these ports. The time
required for a CE to process input data to produce output
data is modelled using the delay parameter in the main loop
of the generated source code template. The source code for
each MicroBlaze is then compiled and stored in its local on-
chip memories and accessed via Local Memory Buses. Each
system configuration is profiled for varying lengths of time to
determine the initial effects of system start up on the results.
The main processing loop of the base processor uses a for loop
to set the number of data packets it consumes. Therefore, we
can vary the profiling period is by changing the upperbound
of the for loop.

The branching system architecture is used to highlight
the increasing difficulties of analyzing systems that are less
intuitive than pipelines. WOoDSTOCK uses the global system
clock as its sampling clock and the different configurations of
the system are created by varying the delays used to model CE
processing times. These processing delays are used to create
system imbalances that WOoDSTOCK should report as well
as balanced systems to determine how this affects the results
obtained by WOoDSTOCK.

2) Branching System Example: Figure 8(b)’s branching
system requires 8 counters that are enabled based on the

functions described in column 2 of Table VI when the monitors
are running. Counters 0 and 1 monitor fsl 1 and fsl 2 to
determine if CE 0 is stalling the system. Similarly, counters
2 and 6 measure when CE 1 and CE 4, respectively, stall the
system. Counters 3 and 4 count the number of clock cycles
for which fsl 2 and fsl 3 are empty as does counter 5 for fsl 0.
This information can help to determine if either CE 2 or CE
3 are producing output data too slowly, and thus starving their
respective children CEs. The possible interpretations for the
counter values are summarized in column 3.

In this system, each data packet to and from each link is
processed independently. For example, in CE 2 an output is
generated for fsl 2 after a processing delay and an output is
generated for fsl 3 after a separate processing delay. Therefore,
for CE 2, the time between generating outputs for fsl 2 is
the sum of these two delays. Similarly, in CE 0, data is read
from fsl 1 followed by a processing delay before data is read
from fsl 2 followed by an independent processing delay. In
this case, for CE 0, the time between reading inputs from
fsl 1 is the sum of these two delays. The first configuration of
this system has all of the processing delays for each link set
to the same value. This creates an imbalanced system as CE
0 and CE 2 have an effective per link processing delay that
is twice that of the other CEs. Again, the base processor’s
for loop is set to consume 20, 100, and 200 data packets,
which is sufficient to demonstrate the system imbalances for
the following configurations.

Table VI summarizes the results for Configuration A in the
subcolumns labelled Con A where all values are in terms
of the percentage of the monitor’s run-time for which the
counter was enabled. The total profiling period is reported
to the nearest million clock cycles in Counter 7’s row. The
importance of running the system for a significant period of
time is highlighted by the results for counter 0, which vary
from 21.4% to 91.8%. The larger value from the long run-
time clearly indicates that CE 0 is stalling the system by not
consuming data quickly enough.

To try and remove this bottleneck, CE 0’s processing delays
for input data read from fsl 1 and fsl 2 are reduced to 50%
of the delays for the rest of the system. This means that
the combined effective per link processing delays for fsl 1
and fsl 2 are now the same as the rest of the system, with
the exception of CE 2’s processing delays, which are left
unchanged. The results for this configuration are found in
Table VI in the subcolumns labelled Con B. From these results,
it appears that CE 0 is still stalling the system, however closer
inspection disproves this theory. While fsl 1 is still becoming
blocked as the run-time increases, the period for which fsl 2
is empty has increased dramatically (see Counter 3). This may
indicate that CE 2 cannot keep up with its child nodes. If this is
the case, CE 0 is now starved for data on fsl 2 and still not able
to keep up with its parent node CE 1. This also is reflected in
the overall run-time that remains basically unchanged between
Configuration A and Configuration B as the profiling period
increases. If CE 0 were the only bottleneck in the system,
the system’s performance should have increased noticeably.
Therefore, CE 2 must also be a system bottleneck, failing to
provide data at the necessary production rate.
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TABLE VI

TABLE FOR BRANCHING SYSTEM COUNTER RESULTS DESCRIBING THE COUNTER ENABLES, WHAT THE COUNTERS REPRESENT, AND REPORTING THE

MEASURED RESULTS AS PERCENTAGES OF THE TOTAL MONITOR RUN TIME GIVEN IN COUNTER 7 TO THE NEAREST MILLION CLOCK CYCLES.

Cntr Enable Possible 20 Data Packets 100 Data Packets 200 Data Packets
Condition Meaning Con A Con B Con C Con A Con B Con C Con A Con B Con C

0 fsl 1 full CE 0 slow 21.4 10.1 0 83.7 82.2 0 91.8 91.1 0

1 fsl 2 full CE 0 slow 0 0 0 0 0 0 0 0 0

2 fsl 0 full and CE 1 slow 0 0 0 0.0 0.0 0 0.0 0.0 0

(not fsl 1 full)

3 fsl 2 empty CE 2 slow? 2.4 94.9 2.3 0.50 99.0 0.5 0.2 100.0 0.2

4 fsl 3 empty CE 2 slow? 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5 fsl 0 empty CE 3 slow? 83.3 94.9 100.0 17.3 18.8 100.0 8.7 9.4 100.0

6 fsl 3 full CE 4 slow 0 0 0 0 0 0 0 0 0

7 running monitors on 672 632 352 3232 3192 1632 6432 6392 3232

Source
uproc

System under Test
(SUT)

CE . . .CE
Source
& Sink
uproc

CE
Sink

uproc

SUT

Fig. 9. The on-chip testbed for debugging CEs.

By reducing CE 2’s processing delay for generating outputs
for fsl 2 and fsl 3 to 50% of the original processing delay, the
system should be balanced. This is designated as Configuration
C and the results are found in the subcolumns labelled Con
C in Table VI. In this case, none of the links become full so
the system never stalls. This produces the expected increase
in the overall system performance by decreasing the overall
run-time by approximately 50% from the Configuration A.

3) Summary: WOoDSTOCK is able to detect bottlenecks in
system performance and the removal of these bottlenecks dra-
matically improves the overall performance as demonstrated
in the above examples. WOoDSTOCK required 928 LUTs
and 478 flipflops to monitor the branching example. If these
results are normalized in terms of the number of counters in
each system, the branching example uses 116 LUTs and 59.8
flipflops per counter. These results highlight that the increased
size of WOoDSTOCK is mainly due to the extra counters and
that overhead logic needed to provide a user interface can be
considered minimal.

The system must be run for a significant period of time to
obtain accurate results using WOoDSTOCK. This may be on
the order of minutes to hours depending on system complexity,
and is necessary to account for the initial effects of starting up
the system. If these results are to be found via simulation, the
required time could be excessive. Although WOoDSTOCK
obtains only a macroscopic view of system performance,
combined with an understanding of the individual CEs, it
provides greater insight into system behaviour that can guide
the redesign of a system. Finally, while a designer should be
sure that there are no CEs stalling the system, interpreting the
meaning of the measured results for more complex systems
requires that the Counter values not be viewed in isolation as
demonstrated by this example.

VII. ON-CHIP TESTBED

Our final contribution to an on-chip design infrastructure is
an on-chip testbed for systems designed using the SIMPPL
model. The standardized physical interface and communica-

tion protocols of a CE allow the designer to use a flexi-
ble testbed architecture as shown in Figure 9. CEs can be
verified individually, as independent processing stages, or
in combination with adjacent CEs. Furthermore, since the
design is implemented on an FPGA, it is possible to run
the testbed on-chip to verify the behaviour of CEs‘ with a
large number of data packets to obtain quick and accurate
results. Previous work demonstrated that debugging [34], [1]
and profiling [4] designs using on-chip resources results in a
significant reduction of the time required to obtain information
for the designer. Since design verification commonly requires
greater than 50% of the overall design time, sometimes as
much as 70% [35], it may be possible to reduce the percentage
of time spent verifying the design, and thus reduce the overall
design time.

The testbed comprises the processors and the software
required to generate (Source) and interpret (Sink) data packet
streams for the CEs. The MPEG-1 video decoder is designed
for a Xilinx Virtex2V2000, so the MicroBlazeTM soft proces-
sor is used in this testbed. High-level functions are built
to generate each data packet from the instruction and data
pointer specified by the user. The user can then quickly alter
the number and types of data packets sent by the Source to
the System Under Test (SUT) by changing the instructions
in the source code and then compiling and downloading
the processor executable to the Source Processor. Creating
the data stream using software allows a significantly quicker
turnaround time for testing the SUT with different data packet
streams than is possible with the source data stream coded as a
separate hardware module. The Sink Processor runs a program
that detects and interprets packets received from the SUT and
then allows the user to log them. The Sink processor program
can also be combined with the Source processor program to
allow designers to log the intermediate state of the design as
shown in Figure 9.

The on-chip testbed facilitated the detection of a signif-
icant PE error that required the redesign of the MPEG-1
video decoder pipeline. Using the MPEG-1 pipeline from the
VLD/RLD CE to the MC/PR CE as the SUT, the design
team found that a portion of the design specification for the
MC/PR PE had not been implemented. The team created a new
CE called the Missing Macroblock Replacer (MMR) CE and
inserted it into the decoder pipeline just before the MC/PR CE
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to correct the error. The modularity and structure of SIMPPL
made this change to the pipeline very easy.

Although the on-chip testbed runs orders of magnitude
faster than in simulation, it does not likely exhibit the exact
runtime behaviour of the final system. A runtime data stream
could be irregular with data words sometimes arriving every
clock cycle and sometimes delayed for numerous clock cycles,
thus the Source and Sink may process data slower or faster
than the system at runtime. However, the Consumer and
Producer controllers, which interface the CE with its preceding
and subsequent CEs, are able to abstract runtime data behav-
iour from the PE as they separate the communication protocols
from the actual data processing. Both are able to properly stall
the PE if there is no source data in the Rx Communication
Link or no space in the Tx Communication Link so that the
PE exhibits correct runtime behaviour independent of the data
rate.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a hardware/software code-
sign methodology tailored to FPGAs. Since the FPGA fabric
is easily reprogrammed, it allows a design methodology that
incorporates on-chip design tools. The benefits accrued from
such an approach are similar to those experienced by software
designers who typically design on a processor-based platform
as opposed to a processor simulator. Designers can obtain
accurate results quickly using tools that are tailored to their
specific design. Moreover, running a design on an FPGA is
orders of magnitude faster than simulating it, allowing a larger
number of test vectors to be used to verify functionality.

To support this design methodology, we have begun de-
veloping an on-chip design infrastructure. Thus far, we have
created an on-chip testbed, two on-chip profiling tools, and
a system-level specification tool to facilitate system-level
integration. While the on-chip profiling tools are modular and
scalable to system requirements, the on-chip testbed currently
uses soft processors to provide the test vectors and store the
resulting outputs. We have demonstrated that on-chip profiling
tools quickly obtain accurate results that can be used by the
designer to make better design decisions to reduce design time.
The next phase of this work will be to automate this process
by creating tools that incorporate the on-chip profiling results
to generate a new partitioning, mapping, and scheduling for
the application on a newly generated system architecture.
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