
Scalable Analysis of Conceptual Data Models

Matthew J. McGill
Michigan State University

East Lansing, MI, USA
mmcgill@cse.msu.edu

Laura K. Dillon
Michigan State University

East Lansing, MI, USA
ldillon@cse.msu.edu

R.E.K. Stirewalt
LogicBlox, Inc.

Atlanta, GA, USA
kurt.stirewalt@logicblox.com

ABSTRACT
Conceptual data models describe information systems without the
burden of implementation details, and are increasingly used to gen-
erate code. They could also be analyzed for consistency and to
generate test data except that the expressive constraints supported
by popular modeling notations make such analysis intractable. In
an earlier empirical study of conceptual models created at Log-
icBlox Inc., Smaragdakis, Csallner, and Subramanian found that
a restricted subset of ORM, called ORM−, includes the vast ma-
jority of constraints used in practice and, moreover, allows scalable
analysis. After that study, however, LogicBlox Inc obtained a new
ORM modeling tool, which supports discovery and specification of
more complex constraints than the previous tool. We report find-
ings of a follow-up study of models constructed using the more
powerful tool. Our study finds that LogicBlox developers increas-
ingly rely on a small number of features not in the ORM− subset.
We extend ORM− with support for two of them: objectification
and a restricted class of external uniqueness constraints. The exten-
sions significantly improve our ability to analyze the ORM models
created by developers using the new tool. We also show that a re-
cent change to ORM has rendered the original ORM− algorithms
unsound, in general; but that an efficient test suffices to show that
these algorithms are in fact sound for the ORM− constraints ap-
pearing in any of the models currently in use at LogicBlox.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools; H.2.1 [Database Management]: Logical Design—Data mod-
els

General Terms
Verification, algorithms

Keywords
Conceptual modeling, ORM, test data generation, databases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00.

1. INTRODUCTION
Developers of information systems create conceptual models to

describe a problem domain in a manner free from implementation
details. In early stages of a project, these models serve as a ve-
hicle by which developers and users communicate. In later stages,
they are increasingly being used to generate portions of the applica-
tion code. Because a code generator may silently propagate mod-
eling errors down into an implementation, developers need tools
to support verification and validation of conceptual models. Static
analysis tools can automatically identify modeling problems, such
as inconsistent constraints, that are very difficult to locate manu-
ally in large models. Tools that generate sample data conforming
to a model’s constraints facilitate validation: both developers and
customers can inspect the sample data for invalid configurations,
which may indicate missing constraints. Unfortunately, it is unde-
cidable whether a conceptual model with unrestricted constraints is
consistent, and intractable even for some fairly restrictive constraint
classes [1, 2, 20]; generation of sample data that satisfy constraints
face similar challenges. Methods for analyzing conceptual models
must therefore carefully balance scalability with the expressiveness
of the supported constraint set.

The Object Role Modeling (ORM) language is a fact-based con-
ceptual modeling language with a graphical syntax, and a seman-
tics based on first-order logic [12]. Like an Entity-Relationship
(ER) diagram [6] or a UML class diagram [9], an ORM model de-
scribes a data domain in terms of objects and their relationships.
ORM includes primitive constraints types, such as ring constraints,
that must be expressed using OCL in a UML model; yet ORM’s
graphical syntax is more amenable to analysis than arbitrary OCL
expressions. While OCL encompasses first-order logic and is thus
undecidable in general, nearly all of ORM’s graphical primitives
can be expressed in a decidable fragment of first-order logic [15].

Smaragdakis, Csallner, and Subramanian identified ORM−, a
subset of ORM version 1 (ORM1) that supports efficient consis-
tency checking and test data generation. They also reported results
of a study of ORM1 models constructed at LogicBlox, which found
that ORM− included the vast majority of constraints in use at that
time. Shortly after that study, however, LogicBlox obtained a new
modeling tool, called Norma [7], which supports finding and speci-
fying additional constraints not supported by the previous modeling
tool. Based on ORM version 2 (ORM2) [11], Norma also incorpo-
rates subtle changes in the semantics of some of the constraints
from ORM1.

This paper extends the results of [20] in four ways. First, we
present findings of a study of the ORM2 models that were con-
structed at LogicBlox since the earlier study. The latter study shows
that developers now routinely use features not in ORM−. Second,
we extend the algorithms from [20] to support efficient analysis

of ORM− models that are extended with the two features not in
ORM−: objectification and a restricted class of external unique-
ness constraints. Objectification is by far the most frequent of
the constraints not in ORM− used by LogicBlox developers. Ex-
ternal uniqueness constraints occur much less frequently, but are
needed in specifying compound reference schemes, which explain
how multiple values combine to identify entities. Third, we show
that a change in the semantics of value constraints from ORM1
to ORM2 makes the ORM− algorithm for generating test data un-
sound under ORM2 semantics. Fourth, to address this problem, we
give an efficient test that implies an ORM− model has the same in-
stances under ORM1 semantics and ORM2 semantics. The ORM−

algorithm generates correct instances for models that satisfy this
test. The results of our study suggest that the majority of models
created in practice fall into this category.

The remainder of the paper is structured as follows. First, we de-
scribe the relevant features of ORM (Section 2). Next, we present
the results of our study of ORM2 models developed at LogicBlox
since the study reported in [20] (Section 3). We then summarize
the algorithms from [20] (Section 4), and describe how to extend
these algorithms to support a restricted class of external unique-
ness constraints (Section 5) and objectification (Section 6). Next,
we discuss ORM2 changes to the semantics of value constraints,
showing that deciding if an ORM− model under ORM2 semantics
has any full instances is NP-Hard and presenting a test to check if
an ORM− model has the same instances under ORM1 semantics
as under ORM2 semantics (Section 7). Finally, we review related
work (Section 8) and discuss plans for future work (Section 9). In
the sequel, we distinguish between ORM1 and ORM2 only in con-
texts where the distinction matters.

2. OVERVIEW OF ORM FEATURES
In the interest of space, we limit this overview to features of

ORM belonging to ORM− or relating to our extensions. We now
briefly introduce the basic elements of all ORM models (Sec. 2.1),
the constraints supported by ORM− (Sec. 2.2), and two additional
constraints, which modelers have found useful and which are the
focus of the extensions in this paper (Sec. 2.3).

2.1 Basic ORM Elements
An ORM [12] model represents a business domain in terms of

object types, which classify business objects; fact types, which clas-
sify facts that relate these objects; and constraints over the objects
and facts that belong to the respective types. Figure 1 shows a frag-
ment from an ORM model of a project management system, which
we use as a running example. Rounded rectangles depict object
types, e.g., Employee and StartDate. A sequence of one or more
adjacent squares, called roles, depicts a fact type. A solid line con-
nects each role in a fact type to the type whose objects may play
that role in any set of facts of that type. The meaning of a fact type
is indicated by its reading text, which is written next to its role se-
quence, e.g., Employee reports to Manager. We use M , R, F , and
O in the sequel to range over ORM− models, roles, fact types, and
object types, respectively, and X to range over generic types, i.e.,
fact types and object types. These and other symbols, defined in
the sequel, may appear with or without subscripts.

An object type denotes either a set of values, in which case it
is called a value type and drawn with a dashed border, or a set of
entities, in which case it is called an entity type and drawn with a
solid border. Intuitively, a value is a simple self-identifying object,
e.g., the number 16; whereas an entity is an opaque object that
is identified by reference to one or more values, e.g., the employee
(entity of type Employee) identified by employee number 16. When



































Figure 1: An example of an ORM model.

necessary to distinguish between entity types and value types, we
use E and V , respectively, to range over the former and the latter.

Every entity type must be given a reference scheme, which ex-
plains how its entities are identified. A simple reference scheme
uses an injective binary fact type from the entity type to another
object type, called the identifying type, for this purpose. To reduce
clutter in diagrams, a simple reference scheme is often abbreviated
by annotating the entity type’s shape with a parenthesized reference
mode. The reference mode stands for both the identifying type and
the injective fact type, with the name of the identifying type de-
termined from the reference mode by notational convention. For
example, the Employee entity type in Figure 1 has the reference
mode “(.nr)”. The reference mode, in this case, stands for a value
type named Employee_nr, which serves as the identifying type, and
an injective binary fact type from Employee to Employee_nr. This
fact type signifies that each Employee is uniquely identified by a
value of type Employee_nr. Section 2.3 describes compound refer-
ence schemes, which use facts from multiple fact types to identify
an entity.

An instance of an ORM model maps each object type and fact
type in the model to a population, where a population of an object
type is a set of objects (values or entities) and a population of a
fact type is a set of tuples of objects. A tuple belonging to the
population of a fact type is referred to as a fact. We use I to range
over model instances, which we assume are type correct according
to the typing constraints of ORM [12]. If I is an instance of a
model containing object type O and fact type F , then I(O) and
I(F) denote, respectively, the populations of O and F in I . We
also adopt a convenient shorthand when referring to members of a
population, using the type name as a prefix. For example, we use
“an O-object” to mean “an object in the population of O.”

Adornments on object types, fact types, and roles express con-
straints on the legal instances of a model, where an instance of a
model is legal if it satisfies all of the model’s constraints. When
generating test data, we often want a fully populated instance—
i.e., an instance that assigns a non-empty population to each object
type and fact type. In keeping with [2, 13], we therefore refer to an
ORM model as consistent when it has at least one fully populated
legal instance1. In the sequel, we use C to range over constraints.
Additionally, we say C spans roles R1, . . . , Rk, if C applies to the
objects that play these (and only these) roles. More generally, we
say C covers a role (set of roles) if this role belongs to (is a subset
of) the roles spanned by C.

2.2 ORM−

Restrictions on the constraints included in the ORM− subset of
ORM were chosen to ensure that a fully populated instance can

1In [20], the term “satisfiability” is used instead

be generated automatically and efficiently from every consistent
ORM− model (under ORM1 semantics) [20]. The constraints sup-
ported by ORM− include limited forms of the following six kinds
of ORM constraints.

Simple mandatory constraints. A simple mandatory constraint
spans a single role. It is drawn as a dot on the line that connects the
role to the type of its role players. When present, it requires each
object in the role players’ type to play that role in at least one fact.
For instance, the mandatory constraint on the second role of Em-
ployee reports to Manager requires that each manager has at least
one employee reporting to her.

Implied mandatory constraints. The need for implied manda-
tory constraints arises because we seldom want to include inde-
pendent objects, or objects that do not participate in any roles, in
the populations of object types. By default, therefore, each object
type O has an implied mandatory constraint, which spans all roles
that can be played by O-objects. This constraint requires that each
O-object plays a role in at least one fact of some fact type. For
example, Figure 1 requires that each project name applies to some
project. To override this default, a modeler explicitly designates an
object type as possibly containing independent objects by attaching
an exclamation point to the end of the object name. An object type
that is so designated is called an independent type. None of the ob-
ject types in Figure 1 are independent types.

Frequency constraints. A frequency constraint is drawn as an
annotation of the form ‘i..j’ and connected by a dotted line to the
roles that it spans. This constraint requires the number of facts con-
taining any given combination of objects from these roles to lie in
the specified range. For example, the frequency constraint ‘2..10’
on the second role of Employee reports to Manager states that each
manager who has any employee reporting to her has between 2 and
10 such employees. Although, in general, frequency constraints
may span roles in multiple fact types and multiple frequency con-
straints may cover some of the same roles of a fact type, ORM−

precludes both of these situations. Thus, in an ORM− model, each
frequency constraint spans one or more roles from the same fact
type and the sets of roles spanned by different frequency constraints
do not overlap.

Internal uniqueness constraints. An internal uniqueness con-
straint spans one or more roles of a fact type, and is drawn as a line
above the spanned roles. This constraint states that each combina-
tion of role players for the spanned roles occurs in at most one fact
of the fact type. For example, the internal uniqueness constraint on
the first role of Employee reports to Manager in Figure 1 requires
that each employee reports to at most one manager. We say an in-
ternal uniqueness constraint is spanning if it spans all the roles of
a fact type. For instance, the constraint on the roles of Employee
works on Project is spanning. A uniqueness constraint abbreviates
a frequency constraint of the form “1..1”.

Subtype constraints. A subtype constraint is drawn as a solid
arrow from one object type (the subtype) to another (the super-
type). For example, Figure 1 indicates that every manager is also
an employee. An object type may have multiple supertypes, but
they must all share a common ancestor type.

Value constraints. A value constraint applies to a single object
type and is drawn using set notation alongside the type’s shape. In

ORM1, this constraint restricts the type’s population to be a subset
of this set. For example, the value constraint on ProjLoc in Figure 1
asserts that the population of project location values is a subset of
{‘FR′, ‘USA′}. The ORM− algorithms assume ORM1 semantics
for value constraints. ORM2 introduces subtle changes to their se-
mantics.

2.3 Some Useful Features Not in ORM−

Modelers at LogicBlox now routinely use two other kinds of
constraints more frequently than at the time of the study reported
in [20]. ORM− does not support either of these constraints.

External uniqueness constraints. An external uniqueness con-
straint generalizes an internal uniqueness constraint to span roles
in multiple fact types F1, . . . , Fk, where k ≥ 2. It is drawn as a
circle with either one or two horizontal lines inscribed in its cen-
ter and connected by dashed lines to the roles that it spans. Our
extensions build on a restricted form of external uniqueness con-
straints, in which one role in each Fi is not covered, and the types
of the role players of the uncovered roles of Fi and Fj are type
compatible, for 1 ≤ i < j ≤ k. The constraint restricts the set of
compound facts obtained by joining the fact type populations on the
uncovered roles. Specifically, it requires that any given combina-
tion of objects from the spanned roles appears in at most one such
compound fact. For example, Figure 1 contains an external unique-
ness constraint spanning the second role of Project has ProjLoc and
the second role of Project has ProjName. The roles not covered by
the constraint are type compatible, as both are played by objects of
type Project. Each compound fact produced by joining the popu-
lations of these fact types contains a project, and the location and
name of that project. Thus, the constraint effectively says that no
distinct projects have the same project location and project name.
When drawn with two horizontal bars, rather than one, an external
uniqueness constraint defines a compound reference scheme for an
entity type. Other constraints that must also be present in this case
are discussed in Section 5.

Objectification. An objectification relates a fact type, called the
objectified type, to an object type, called the objectifying type. It
is drawn by inscribing the objectified fact type inside a rounded
rectangle and writing the objectifying object type’s name above the
rectangle in quotes. Objectification allows a modeler to classify
facts about other facts, by having objects of the objectifying type
stand for facts of the objectified type as role players in other fact
types. An objectified type is roughly analogous to an association
class in the UML [10]. For example, the fact type Employee works
on Project in Figure 1 is objectified as Assignment, an objectifying
type. Each Assignment object stands for the fact that a particular
employee works on a particular project. A fact in Assignment has
StartDate records the date on which that employee started working
on that project. The mandatory and uniqueness constraints on the
first role of Assignment has StartDate stipulate that, for each em-
ployee and project that the employee works on, exactly one start
date is recorded.

To permit efficient analysis of a larger class of ORM models, we
extend the ORM− algorithms to support objectification and a lim-
ited class of external uniqueness constraints, which includes speci-
fications of compound reference schemes. Prior to introducing the
ORM− algorithms and explaining how we extend them, however,
we report findings of a case study to assess the anticipated impact
of these extensions.

3. IMPACT OF OUR EXTENSIONS
Smaragdakis, Csallner, and Subramanian chose the specific fea-

tures to include in ORM− based on an empirical study of models
developed at LogicBlox, a company that uses ORM to construct
enterprise decision-analytics software. Since that study, LogicBlox
developers have been creating ORM2 [11] models using Norma [7],
a mature ORM modeling tool that supports the modeler in finding
and specifying more complex constraints during conceptual mod-
eling. Consequently, newer models developed at LogicBlox feature
ORM2 constraints that are not supported in ORM−. To update the
findings of [20] and to decide which specific features need to be
supported, we conducted a followup study.

We reviewed 28 models, spanning 4 separate projects: a retail
forecasting application, a promotion planning application, an in-
surance policy administration application, and a model-based code
generator. These 28 models represent all of the models created
with Norma at LogicBlox since the study described in [20]. There
is no overlap between the models reviewed in our study and those
reviewed in the previous study.

We detail the data collected during this study in a companion re-
port.2 Collectively, the 28 models contain 1700 object types, 3430
fact types, and 6089 explicit constraints. The vast majority (5919,
or 97%) of these constraints are in ORM−; however, each model
contains some ORM features that are not in ORM−. The most com-
mon of these features is objectification: 310 (18%) of the object
types in the surveyed models objectify fact types. When counting
an objectification, we count the constraints that the objectification
implies [10]3 When these implied constraints are counted, the sur-
veyed models contain 790 total constraints outside of ORM−.

The extensions we describe in the sequel account for 630 (80%)
of the constraints outside of ORM−, including all constraints ab-
breviated by objectification and 10 out of 15 external uniqueness
constraints. Two of the 28 models we studied fall entirely within
ORM− plus our extensions. We also examined the value con-
straints in the models in order to determine the impact of the change
in the semantics of value constraints under ORM2. We found 17
total value constraints on entity types, and all have equivalent se-
mantics under ORM1 and ORM2 interpretations.

4. ORM− ALGORITHMS
Smaragdakis, Csallner, and Subramanian introduce two algo-

rithms that operate on ORM− models: one for deciding the consis-
tency of an ORM− model M and, when M is consistent, another
for generating a fully populated legal instance of M [20]. In ex-
tending these algorithms, we do not actually modify the algorithms
themselves, but introduce wrappers around the original algorithms.
In this section, we describe the main idea behind the ORM− con-
sistency algorithm, which our extension to include objectification
builds upon. We also describe the inputs and outputs of the ORM−

population algorithm. We treat this latter algorithm as a black box
because correctness of our extensions depend only on its correct-
ness, not on the details of its implementation.

ORM− consistency algorithm. The consistency problem for
ORM− is reducible to the problem of solving a special class of in-
teger inequalities. The algorithm in [20] encodes the constraints in
an ORM− model M as a system of integer inequalities QM over
variables that stand for the sizes of various populations in a fully
populated legal instance of M . The rules for introducing popula-
tion variables for such a model are as follows.

2 http://www.cse.msu.edu/~ldillon/studyDetails.pdf
3See Section 6 for details.

1. For each object type O, generate a variable o representing
the cardinality of O’s population.

2. For each fact type F , generate a variable f representing the
cardinality of F ’s population.

3. For each role R belonging to a fact type F , generate a vari-
able r representing the number of distinct objects that play
R in F ’s population.

4. For each non-spanning frequency constraint C on a fact type
F , generate a variable c representing the cardinality of the
projection of F ’s population on the roles spanned by C.4

We use the symbols in these rules when referring to specific kinds
of population variables, and use x and y when referring to generic
population variables. A solution α to QM is a function from pop-
ulation variables to natural numbers such that each inequality in
QM is true after replacing each population variable x with its value
α(x).

Smaragdakis, Csallner, and Subramanian [20] provide rules for
constructingQM for an ORM− modelM , and prove thatQM has a
solution if and only ifM is consistent. Our extensions depend only
on the correctness of these rules, not on their specific definitions.
For this reason, we do not reproduce the full rules here; instead,
we show a representative set of inequalities. The inequalities in
Table 1 are generated from the shaded portion of Figure 1. Here,
variables oe, om, and f represent the cardinalities of the sets of
Employee-objects, Manager-objects, and Employee reports to Man-
ager-facts, respectively; re and rm denote the cardinality of the
projection of the fact type’s population onto the fact type’s first and
second roles, respectively; and cuc and cfc denote the cardinality of
the projection of the fact type’s population onto the roles spanned
by the internal uniqueness constraint and the frequency constraint,
respectively.5 Besides these inequalities, the ORM− consistency
algorithm generates an inequality of the form 1 ≤ x, for every
population variable x, to require that all the populations are non-
empty.

In summary, given an ORM− model M as input, the ORM−

consistency algorithm generates QM . It then applies a decision
procedure and either returns a solution α to QM or indicates that
QM is unsatisfiable. The proof that this algorithm is polynomial in
the model’s size rests on two results from [20]. First, the size of
QM is polynomial in the size of M . Second, the time to solve QM

is polynomial in the size of QM . This latter result holds because
of the form of the inequalities in QM . Specifically, each inequality
fits one of the following two forms:

i · x ≤ j · y1 · y2 · . . . · yn
i · x ≤ j + y1 + y2 + . . .+ yn

where i, j, n are non-negative integers and x, yi are integer-valued
(population) variables. Table 2 depicts an example output of the
ORM− consistency algorithm given the shaded portion of Figure 1
as input.

4i.e. the number of tuples in the projection. No variable is cre-
ated for a spanning uniqueness constraint (the only form of span-
ning frequency constraint permitted in ORM), because such a vari-
able would be redundant with the variable f created by rule 2 for
F ’s population.

5Because the internal uniqueness constraint and the frequency
constraint in this example are both unary, the variables cuc and cfc
are “redundant” with variables re and rm. Both types of variables
are needed, however, if a constraint applies to multiple roles. We
show the inequalities that are generated by the ORM− algorithm,
which is designed for the general case.

Table 1: Inequalities: Shaded portion of Fig. 1
Inequality Generated from

re ≤ oe Employee role
re ≤ f
rm ≤ om Manager role
rm ≤ f
om ≤ rm Mandatory constraint
f ≤ cfc · cuc Emp. reports to Mgr.

om ≤ oe Subtype relation
f ≤ 10 · cfc Freq. constraint

2 · cfc ≤ f
cfc ≤ rm
rm ≤ cfc
f ≤ cuc Uniqueness constraint

cuc ≤ f
cuc ≤ re
re ≤ cuc

Table 2: Solution to inequalities: Shaded portion of Fig. 1
x α(x) x α(x) x α(x)
oe 3 re 2 cuc 2
om 1 rm 1 cfc 1
f 2

ORM− population algorithm. The ORM− population algo-
rithm takes as input an ORM− model M and a solution α to QM ;
and produces as output a legal instance I of M for which the car-
dinalities of the object and fact type populations equal the values
that α assigns to their corresponding variables [20]. It generates I
in time linear in the number of objects and facts in I , which may be
exponential in the size of the model M . This runtime behavior is
optimal in the sense that any algorithm for generating an instance
of M must at least enumerate each object and fact in the instance.
While the solution α given as input to the population algorithm is
typically that produced by the ORM− consistency algorithm, any
solution to QM can be used. Table 3 depicts an example output of
the ORM− population algorithm given the solution in Table 2 as
input, where oi denotes an object, 1 ≤ i ≤ 3. Thus, the instance
described by this table is a fully populated legal instance for the
shaded portion of Figure 1.

Table 3: Full legal instance: Shaded portion of Fig. 1
X I(X)

Employee { o1, o2, o3 }
Manager { o1 }

Employee reports to Manager { (o2, o1), (o3, o1) }

5. EXTENSION: EXTERNAL-UNIQUENESS
PATTERN

Our empirical analysis suggests that, in practice, most uses of
an external uniqueness constraint conform to a pattern that can be
expressed in ORM−. Figure 2 depicts this pattern. For conve-
nience, names for the roles covered by the constraint are shown
using adornments of the form “[Ri].” More precisely:




















Figure 2: The ExtUC− pattern

DEFINITION 1. An external uniqueness constraintC, spanning
roles R1, . . . , Rk, where k ≥ 2, belongs to ExtUC− if the follow-
ing two additional conditions hold:

1. For each i ∈ {1 . . . k}, the constraint C is the only unique-
ness constraint that covers Ri and no frequency constraint
covers Ri.

2. There exist an entity type E and k fact types F1, . . . , Fk,
all binary, such that, for each i ∈ {1, . . . , k}, Ri is one of
the roles in Fi and the other role is: played by entities of
type E, mandatory, covered by a unary internal uniqueness
constraint, and not covered by any additional constraints.

This pattern is of special interest because modelers often use it to
define a compound reference scheme: The conditions in the defi-
nition ensure that E-entities are uniquely identified by collections
of facts, one from each of the fact type populations.6 In the sequel,
we use Γ when referring to a set of constraints from ExtUC−, M ′

when referring to an ORM model that is an ORM− model extended
with constraints supported by our extensions, and I ′ when referring
to an instance of M ′.

We use a transformation, called absorption, to rewrite an exter-
nal uniqueness constraint in ExtUC−, together with the fact types
that it applies to, into an absorption fact type and a set of ORM−

constraints.7

DEFINITION 2. Let constraint C ∈ ExtUC− be as in Defini-
tion 1. Absorption replaces C and the set {F1, . . . Fk } of fact
types containing the roles R1, . . . , Rk spanned by C with the fol-
lowing:

• An absorption fact type F consisting of R1, . . . , Rk and a
new role, R, played by entities of the type E specified in
Definition 1.

• An internal uniqueness constraint that spans R1, . . . , Rk.

• An internal uniqueness constraint and a mandatory constraint
that each spans R.8

6More formally, for a given collection of objects o1, o2, . . . , ok
of typesO1, O2, . . . Ok respectively, there exists at most one entity
e for which (e, o1), (e, o2), . . . , (e, ok) are in the populations of
fact types F1, F2, . . . , Fk respectively.

7This transformation is similar to the relational mapping proce-
dure of [12][p. 499], which groups the fact types in Figure 2 to a
single table, thereby absorbing the roles.

8ORM methodology warns against specifying uniqueness con-
straints that span fewer than k − 1 roles of a k-ary fact type on
grounds that they conceal elementary fact types; but the meaning is
completely well defined and the transformation produces a model
in ORM−.

In addition, any simple mandatory constraints that applied to any
of the absorbed roles, i.e., to any of theRi, are applied accordingly
to roles in the absorption fact type.



 



Figure 3: Absorption fact type for the external uniqueness con-
straint in Figure 1

Figure 3 shows the result of applying absorption to the relevant
portion of the example model in Figure 1. The new absorption fact
type, Project has ProjName and ProjLoc, and three associated con-
straints replace the two binary fact types Project has ProjName and
Project has ProjLoc, the simple mandatory and internal uniqueness
constraints that covered roles of these fact types, and the external
uniqueness constraint from Figure 1.

THEOREM 1. If M ′ is an ORM− model extended with a set Γ
of constraints in ExtUC−, and M is the ORM− model obtained by
applying absorption to M ′, then M is consistent if and only if M ′

is consistent.

PROOF. Consider the “only-if” direction: Suppose that M is
consistent, and let I be a legal instance of M . Construct an in-
stance I ′ of M ′ as follows: First, let I ′(O) = I(O) for each ob-
ject type O. Next, let I ′(F) = I(F) for each fact type F that
is not affected by absorption. Finally, for each absorption fact
type F in M created by absorbing roles R1, . . . , Rk in M ′: let
I ′(Fi) = πR,Ri(I(F)), where F1, . . . , Fk are the fact types inM ′

containing R1, . . . Rk, respectively; R is the new role introduced
(first bullet of Def. 1) in creating F ; and πR,Ri denotes projection
on roles R and Ri. It remains to show that I ′ is a legal instance
of M ′. We elide the full details of the proof for brevity. The key
idea is that, for each absorption fact type F in M , the instance I ′

can be shown to satisfy the external uniqueness constraint spanning
the rolesR1, . . . , Rk in the fact types F1, . . . , Fk that are absorbed
into F , as well as the mandatory and uniqueness constraints on the
roles in F1, . . . , Fk not covered by the external uniqueness con-
straint by virtue of the assumption that I satisfies the constraints in
M that cover roles of F .

The “if” direction of the proof follows by similar reasoning. In
this case, given a legal instance I ′ of M ′, we define an instance I
of M by taking: I(O) = I ′(O) for each object type O; I(F) =
I ′(F) for each fact type F that is not affected by absorption; and
I(F) = {(e, o1, . . . , ok) | ∀i : 1 ≤ i ≤ k · (e, oi) ∈ I ′(Fi)}
for each absorption fact type F , where F1, . . . , Fk are as defined
above. For brevity, we elide details of the proof that I is a legal
instance of M .

The next theorem follows easily from the observation that the
"only-if" direction of the previous proof sketches a linear-time pro-
cedure for mapping a legal instance of a model produced by ab-
sorption to a legal instance of the original model.

THEOREM 2. If M ′ is an ORM− model extended with a set Γ
of constraints in ExtUC−, and M is the ORM− model obtained by

applying absorption to M ′, then any legal instance I of M can be
used to construct a legal instance I ′ of M ′, in time that is linear in
the size of I .

In summary, Theorem 1 suggests an efficient algorithm for check-
ing consistency of an ORM model M ′ produced by extending an
ORM− model with constraints in ExtUC−: Reduce it to an equiv-
alent ORM− model M and run the ORM− consistency algorithm
with M as input. Additionally, if M ′ is consistent, Theorem 2 sug-
gests a method to populate it: Run the ORM− population algorithm
withM and a solution toQM as inputs to produce a fully populated
legal instance I of M . Then, transform this instance back into a
fully populated legal instance I ′ of M ′. The time to transform M ′

is linear in the size of the model, while the time to map the gener-
ated population back to a population of M ′ is linear in the size of
the generated population.

6. EXTENSION: OBJECTIFICATION
As discussed previously, objectification allows objects of an ob-

ject type, i.e, the objectifying type, to stand for facts in a fact type,
i.e., the objectified type, in order that the objectified facts can be
viewed as playing roles in facts of yet other types. ORM2 defines
the semantics of objectification in terms of more elementary con-
structs: Briefly, an objectification of fact type F as object type O
abbreviates a set of implicit link fact types and constraints on those
fact types, which collectively imply the existence of a bijection be-
tween the populations assigned to F andO by any legal instance of
the model [10]. This bijection is not stored directly in the instance
but can be recovered from the populations that the instance assigns
to the link fact types. Conversely, given this bijection, we can re-
cover the populations of the link fact types. Because the link fact
types and link constraints are implied, and not shown by the mod-
eling tool, they cannot be further constrained, modified, or used.
Thus, modelers conventionally think of an objectification more ab-
stractly, in terms of the implied bijection, rather than in terms of
populations of link types. For simplicity, we adhere to this conven-
tional view and treat an objectification as implying the existence of
a bijective relation between populations of the objectified type and
the objectifying type. Because no model element explicitly stands
for this relation, when a model is adorned with an objectification,
an instance of the model must specify the bijection.

DEFINITION 3. We represent an objectification as a pair (F,O),
where F is the objectified (fact) type and O is the objectifying (ob-
ject) type.

We use Ω to range over a set of objectifications. To adorn an ORM
model M ′ with a set of objectifications Ω, we require that all types
in the objectifications in Ω belong to M ′ and no type in M ′ partic-
ipates in more than one objectification in Ω. In this case, we write
M ′ ∪ Ω for the extended ORM model.

For simplicity, we impose one additional restriction on objectifi-
cation: No fact type containing a role that is covered by an external
uniqueness constraint is objectified.9 This restriction permits us to
use the techniques of the previous section to transform any ORM
model formed by extending an ORM− model with both constraints
in ExtUC− and objectifications into an equivalent model formed
by extending another ORM− model with objectifications only. In
the sequel, therefore, we assume that objectifications are added to
an ORM− model.

We now extend the definitions for instances, legality, and consis-
tency to encompass these extended models.

9The absorption procedure of the previous section can be mod-
ified to remove this restriction.

DEFINITION 4. Let I ′ be a mapping with domain M ′, where
M ′ = M ∪ Ω, M is an ORM− model, and Ω is a set of objectifi-
cations.

• I ′ is an instance of M ′ if I ′ maps each object type O ∈
M to a population, I ′(O), of objects; each fact type F ∈
M to a population, I ′(F), of facts; and each objectifica-
tion (F,O) ∈ Ω, to an objectification relation, I ′(F,O) ⊆
I ′(F)× I ′(O).

• I ′ is legal if the mapping M � I ′, which restricts the do-
main of I ′ to the types contained in M , is a legal instance of
M and if, for each (F,O) ∈ Ω, the objectification relation
I ′(F,O) is a bijection from I ′(F) to I ′(O).

• I ′ is fully populated if M � I ′ is fully populated.

• M ′ is consistent if there exists a fully popuated legal instance
of M ′.

An objectification (F,O) in a model M ′ implies that a legal in-
stance of M ′ maps F and O to populations of equal sizes. To
extend the ORM− algorithms with support for objectifications, we
encode this constraint as a pair of inequalities.

DEFINITION 5. Let M ′ = M ∪ Ω, where M is an ORM−

model and Ω is a set of objectifications as in Definition 3. Then
QM,Ω is the set of inequalities containing, for each (F,O) ∈ Ω,
the inequalities f ≤ o and o ≤ f , where f and o are the population
variables used, when constructing QM , to stand for the cardinali-
ties of the populations of F and O, respectively.

We extend the ORM− consistency algorithm to check a model
produced by adorning an ORM− model with objectifications by
adding this new set of inequalities to those generated from the
ORM− model before calling the decision procedure:

ALGORITHM 1.
Input: An ORM− model M .

A set Ω of objectifications as in Definition 3.
Output: A solution to QM ∪QM,Ω or,

if none exists, an empty map.

1. Generate QM according to the rules in [20].

2. Generate QM,Ω according to Definition 5.

3. Run the algorithm in [20] withQM ∪QM,Ω as the input and
return the output.

No modifications are necessary to either the rules for computing
QM or the decision procedure itself.

The next lemma justifies concluding that, if Algorithm 1 returns
an empty map, the model M ′ = M ∪ Ω is inconsistent.

LEMMA 1. LetM ′ = M∪Ω, whereM is an ORM− model and
Ω is a set of objectifications as in Definition 3. If M ′ is consistent,
then QM ∪QM,Ω has a solution.

PROOF. Assume M ′ is consistent and let I ′ be a fully popu-
lated legal instance of M ′. Define α so that it maps each popula-
tion variable x in QM to the cardinality of I ′(x). Because I ′ is
a legal instance of M ′, then by Definition 4 M � I ′ is a legal in-
stance of M . To conclude that α is a solution to QM , we therefore
appeal to [20]. To show that α is a solution to QM,Ω, consider
any arbitrary (F,O) ∈ Ω and let f and o be the population vari-
ables inQM representing the populations of F andO, respectively.

We need to show that α satisfies both f ≤ o and o ≤ f . Be-
cause I ′ is a legal instance of M ′, it follows from Definition 4 that
I ′(F,O) is a bijection between I ′(F) and I ′(O), and therefore that
|I ′(F)| = |I ′(O)|. Because α(f) = |I ′(F)| and α(o) = |I ′(O)|
by definition, α satisfies the inequalities.

In keeping with [20], we establish the converse of the conclusion
in Lemma 1, i.e., that M ′ is consistent if QM ∪ QM,Ω has a solu-
tion, by showing how to generate a fully populated legal instance
of M ′ from a solution to QM ∪ QM,Ω. The ORM− algorithm is
used to find a fully populated legal instance of M from a solution
to QM ∪ QM,Ω and then this instance is extended to become an
instance of M ′:

ALGORITHM 2.
Input: An ORM− model M .

A set Ω of objectifications as in Definition 3.
A solution α to QM ∪QM,Ω.

Output: A fully populated legal instance of M ∪ Ω.

1. Run the ORM− algorithm from [20] with inputs M and α to
produce a fully populated legal instance I of M . Initialize
I ′ := I .

2. For each (F,O) ∈ Ω:
Let f be the population variable in QM for F ,

n be the cardinality of I(F),
{ f1, . . . , fn } be an enumeration of I ′(F), and
{ o1, . . . , on } be an enumeration of I ′(O).

Assign I ′(F,O) := { fi 7→ oi }i∈{1,...n}.

3. Return I ′.

The next lemma establishes that this algorithm is correct.

LEMMA 2. Algorithm 2 outputs a fully populated legal instance
of M ∪ Ω.

PROOF. We need to show that I ′ is a fully populated legal in-
stance of M ′. From [20, pp. 87–88], we know that: (1) I is a fully
populated legal instance of M , and (2) α(x) = |I(X)|, for each
type X ∈M , where x is the population variable in QM for X .

Because M � I ′ = I , (1) implies that M � I ′ is a fully pop-
ulated legal instance of M . Additionally, for each (F,O) ∈ Ω,
because α is a solution to QM,Ω, Definition 5 implies that α(f) =
α(o), where f is the population variable in QM for F and o is the
population variable in QM for O. But (2) and the definitions of I
and I ′ imply α(f) = |I(F)| = |I ′(F)| and α(o) = |I(O)| =
|I ′(O)|. Thus, we conclude that |I ′(O)| = |I ′(F)| and, therefore,
that I ′(F) and I ′(O) can be enumerated as required for step 2. It
follows that I ′(F,O) is a bijection from I ′(F) to I ′(O).

Finally, we reason that the extended algorithms solve the con-
sistency and population problems for an ORM model that extends
an ORM− model with objectifications, and that these algorithms
scale:

THEOREM 3. Let M ′ = M ∪Ω, where M is an ORM− model
and Ω is a set of objectifications. Then:

1. Consistency of M ′ can be decided in time polynomial in the
size of M ′; and

2. If M ′ is consistent, a fully populated legal instance I ′ of M ′

can be generated in time linear in the size of I ′.

PROOF. The lemmas in this section demonstrate thatM ′ is con-
sistent if and only if the assignment returned by Algorithm 1 is non-
empty. Thus, Algorithm 1 solves the consistency problem. Ad-
ditionally, this result and Lemma 2 demonstrate that Algorithm 2
solves the population problem. The complexity results follow from
those in [20] (since the inequalities in QM,Ω are of the required
form) and analysis of the time to perform the additional steps in
our algorithms (i.e., Step 2 of both algorithms). We elide the de-
tails as the argument is straightforward.

7. ORM2 VALUE CONSTRAINTS
ORM2 introduces subtle changes to value constraint semantics,

which unfortunately increase the difficulty of consistency checking
and test data generation. A value constraint may apply to either
a value type or an entity type. In the case of a value type, the
ORM1 semantics and ORM2 semantics are identical: the constraint
restricts the values in a population of the type. In the case of an
entity type, however, the semantics differ.

Figure 4 illustrates the change in semantics. It shows a model
containing value constraints on two entity types, Project and Per-
son (Fig. 4(a)). The reference mode (ID) on each entity type ab-
breviates a binary fact type and three constraints, which define a
simple referencing scheme for that entity type. The implicit fact
types relate each Project to a unique ID and each Person to a unique
ID; moreover, the ID serves to identify the entity in both fact types.
A value constraint may apply to an entity type only if that type has
a simple reference scheme in which the identifying type is a value
type. The semantics of the value constraint is then defined in terms
of the reference scheme.

In ORM1, a value constraint on an entity type directly restricts
the values of the identifying type. If multiple entity types with value
constraints have the same identifying type, an instance has to sat-
isfy each of the value constraints to be legal. Thus, the constraints
effectively restrict the values of the identifying type to lie in the
intersection of their ranges. For example, under ORM1 semantics,
the two value constraints restrict identifiers to be in the range from
5 to 10 (Fig. 4(b)).

ORM2 redefines the semantics of value constraints on entity types
in terms of role value constraints (RVCs). A RVC, drawn as a value
constraint that is connected by a dotted line to a role, restricts the
objects that may play that role. Critically, it does not directly re-
strict the population of the role players’ type.10 Figure 4(c) illus-
trates: Because ID is non-independent, each ID-value must identify
a project or a person (or both). Thus, an ID value must satisfy
{1..10} or {5..15}. The effect of the value constraints is thus to
restrict values of the identifying type to lie in the union of the con-
straints’ ranges.

This example shows that a model with value constraints may
have instances that are legal under ORM2 semantics, but not un-
der ORM1 semantics. Thus, the ORM− consistency algorithm,
which is sound and complete for ORM1 semantics, may yield false
negatives for ORM2 semantics: A full legal instance of an ORM−

model M may exist under the ORM2 semantics, even if QM has
no solutions.

THEOREM 4. Under the ORM2 interpretation, the problem of
deciding consistency of an ORM− model with value constraints on
both entity and value types is NP-hard.

We prove this theorem by reduction to the following set covering
problem [16]:

10unless the role is mandatory, in which case the RVC effectively
applies to every entity of the associated type.

DEFINITION 6. Given a finite universe U , a finite set S = {S1,
. . . , Sn} of subsets whose union equals U , and a positive integer
k < n, the set cover problem determines if there exists a set C
containing exactly k sets from S whose union also equals U .

A collection of sets whose union equals the universe is called a set
cover. Thus, the problem can be rephrased as asking whether the
given set cover S contains a set cover C of a size k, for a given
k < |S|.

For example, let U = {a1, a2, a3, a4, a5, a6}, and let S =
{S1, S2, S3, S4, S5}, where

S1 = {a1, a2, a6} S2 = {a2, a4, a5}
S3 = {a3, a4, a6} S4 = {a3, a4}
S5 = {a1, a3, a5}

Then there is no set cover of size 2. However, C = {S1, S4, S5} is
a set cover of size 3.

We encode an instance of the set covering problem as an ORM−

model containing value constraints under the ORM2 semantics as
follows:

DEFINITION 7. Given an instance of the set cover problem with
universeU , a set cover S = {S1, . . . , Sn }, and k < n, the ORM−

encoding of this problem consists of:

1. A value type, C, with the value constraint {1 . . n }.

2. A value type, X, with the value constraint {1 }.

3. A fact type, X has C, whose first role is mandatory and sub-
ject to the frequency constraint, k,11 and whose second role
is both mandatory and unique.

4. For each atom ai ∈ U , 1 ≤ i ≤ |U |, an entity type Ai with
simple reference scheme C and a value constraint enumerat-
ing the indices j such that ai ∈ Sj .

The key idea behind this construction is that the C-values in a full
legal instance identify the indices of a set cover of size k. For ex-
ample, Figure 5 shows the encoding (left) of the set cover problem
given earlier in the section with k = 3, together with a full le-
gal instance (right) of that model, in which the populations of the
last five fact types define simple referencing schemes for the entity
types, as required by the reference modes. The C-values of this in-
stance identify the sets from S in the set cover of size 3 presented
earlier in this section.

PROOF OF THEOREM 4. Given an instance of the set covering
problem, as described in Definition 6, and the encoding of this
problem as an ORM− model, as described in Definition 7, we show
that a full legal instance of the ORM− model under ORM2 seman-
tics determines a set cover of cardinality k and, conversely, that a
set cover of cardinality k determines a full legal instance of this
model.

Consider a set cover C. We use C to construct an instance I of
the ORM− model as follows:

1. Let I(C) = {i |Si ∈ C}; I(X) = {1}; and
I(X has C) = {(1, i) |Si ∈ C}.

2. For each i and j such that ai ∈ Sj and Sj ∈ C, create a
distinct object oij and let I(Ai) = {oij | ai ∈ Sj ∧Sj ∈ C}
and I(Ai has C) = {(oij , j) | ai ∈ Sj ∧ Sj ∈ C}.

11k abbreviates k . . k











(a) A simple ORM−
model with value con-
straints













(b) Semantics of (a) under ORM1










 

(c) Semantics of (a) under ORM2

Figure 4: Illustration of ORM1 vs. ORM2 semantics of value constraints











































X I(X)
X {1}
C {1, 4, 5}

A1 {o11, o15}
A2 {o21}
A3 {o34, o35}
A4 {o44}
A5 {o55}
A6 {o61}

X has C {(1, 1),
(1, 4),
(1, 5)}

A1 has C {(o11, 1),
(o15, 5)}

A2 has C {(o21, 1)}
A3 has C {(o34, 4),

(o35, 5)}
A4 has C {(o44, 4)}
A5 has C {(o55, 5)}
A6 has C {(o61, 1)}

Figure 5: Example set cover problem reduced to an ORM−
consistency problem (left) and a full legal instance (right)

Step 1 produces non-empty populations that satisfy the mandatory
and uniqueness constraints on both roles of X has C and, as the
cardinality of C is k, that also satisfy the frequency constraint on
the first role. Additionally, step 2 produces a non-empty population
for each Ai and a reference scheme for each that meets Ai’s value
constraint.

For the converse, consider a full legal instance I for the ORM−

model. Then the set C = {Si | i ∈ I(C)} is a set cover of cardinal-
ity k: The value constraint on C ensures that C ⊆ S; the frequency
constraint, together with the value constraint on X, ensures that C
has cardinality k; and, because each I(Ai) contains at least one en-
tity and this entity is identified by some i ∈ I(C), the union of the
sets Si, i ∈ I(C), contains U .

Because (1) the set covering problem is NP-complete, (2) the
ORM− model that encodes an instance of this problem is consis-
tent under ORM2 semantics if and only if there is a set cover of the
required size, and (3) the size of the encoding is polynomial in the
size of the original problem, we conclude that determining consis-
tency of ORM− models under ORM2 semantics is NP-hard.

Although the semantics of value constraints in ORM1 and ORM2
differ, many ORM− models have exactly the same legal instances
under both interpretations. In fact, a good use case for distinguish-
ing between the two semantics is hard to imagine. A case such
as Figure 4, in which the two semantics result in different mod-
els, most likely signals a poor modeling decision. For instance,
best practice would call for two distinct value types, e.g., perID for
identifying persons and prjID for identifying projects, in place ID in
Figure 4(a) .12

The next theorem establishes conditions on the use of value con-
straints that guarantee an ORM− model has the same meaning un-
der ORM1 as under ORM2.

THEOREM 5. LetM be an ORM− model andE1 . . . En be the
entity types in M that are covered by value constraints, if any. In
addition, for 1 ≤ i ≤ n, let Fi be the injective binary fact type that
defines the referencing scheme for Ei, let Vi be the identifying type
for Ei, and let Ri be the role in Fi played by Vi. If each Vi plays
no other roles in M and if either Vi is non-independent or Ri is
mandatory (or both), then M has the same legal instances under
ORM1 and ORM2 semantics.

PROOF. The conditions imposed by the theorem guarantee that,
under either semantics, the reference scheme for eachEi is a bijec-
tion—that is, in any legal instance, each Ei-entity is identified by a
unique Vi-value and, conversely, every Vi-value identifies a unique
Ei-entity. This observation implies that, for a legal instance of M ,
the population of Vi is contained in a given set of values if and only
if the projection of Fi’s population on Ri is contained in the same
set of values. As the ORM1 interpretation of the value constraint
onEi requires the former and the ORM2 interpretation of this same
constraint requires the latter, we conclude that the legal instances
are the same under both interpretations.

Thus, if an ORM− model either has no value constraints on any
of its entity types or those that it does have satisfy the conditions
of this theorem, the ORM− algorithms can be used regardless of
which version of the semantics are intended. Every model in our
case study (Sec. 3) meets these conditions, and so contain the same
legal instances under both ORM1 and ORM2 semantics.

8. RELATED WORK
Much of the existing work on analyzing consistency of data mod-

els looks at models described using ER diagrams [6] or UML class

12The authors thank an anonymous referee for this observation.

models [9]. Artale et al. [1] develop a complexity hierarchy for in-
creasingly expressive Extended ER diagrams [8]. An EER subset
called EERref , for which consistency can be decided in polyno-
mial time, resembles ORM− in its feature set: EERref supports
multiplicity and cardinality constraints on relationships, which are
similar to mandatory and frequency constraints in ORM−, and ISA
relationships between entities, which are similar to subtype rela-
tionships in ORM−. EERref also supports disjointness constraints
on entities; these are similar to ORM exclusion constraints on sub-
type relationships, which are not in ORM−. This result suggests
that it may be possible to extend ORM− with limited support for
exclusion constraints, without sacrificing polynomial-time perfor-
mance. Hartmann [13] shows that the consistency of a set of car-
dinality constraints and functional dependencies can be decided in
polynomial time when the constrained EER diagram is in Boyce-
Codd Normal Form (BCNF). ORM models are always in BCNF
by construction. Because internal uniqueness constraints represent
functional dependency, Hartmann’s result suggests that it might be
possible to extend ORM− to overlapping internal uniqueness con-
straints, as conjectured in [20]. Zamperoni and Löhr-Richter [21]
describe a method of checking consistency of an EER diagram by
generating a system of linear inequalities that express constraints
on the cardinalities of the sets in the diagram. However, the sys-
tems of inequalities that they generate cannot be solved efficiently
in general. Berardi et al. [2] prove that deciding the consistency of
UML class diagrams is EXPTIME-complete, even when diagrams
are restricted to include just binary associations, multiplicities of
the form 0..* and 1..*, disjointness constraints and covering con-
straints on generalization relationships.

Existing work on generating sample populations from data mod-
els has looked at models described using EER diagrams or SQL.
Neufeld et al. [19] generate finite models of EER diagrams that
are subject to consistency constraints expressed as logical formu-
las. Their method is sound but not complete, and employs various
heuristics, as well as interaction with the user. Chays et al. [5] and
Houkjær et al. [14] present methods of generating test data for re-
lational schemas expressed in SQL DDL. Both methods generate
data that respect primary and foreign key constraints, uniqueness
constraints, and not-null constraints in the schema. In addition,
both methods may be customized by the user to generate data with
statistical properties that reflect real-world data, a direction that we
intend to explore for our work with ORM.

The algorithm for generating test data from an ORM− model is
useful for black-box testing, in which the details of the program
under test are not known. Alternatively, query aware methods for
generating test databases take a white-box approach, generating
test data for a program by analyzing the queries that a program
executes. Query-aware methods use a variety of techniques, in-
cluding constraint solving [17, 22], symbolic execution [4], and
operationalization of query expressions [3].

9. SUMMARY AND FUTURE WORK
As ORM modeling tools mature, modelers are increasingly uti-

lizing ORM features that are not covered by the ORM− subset
identified in [20]. We have shown how to extend ORM− to sup-
port objectification, the most commonly used ORM feature outside
ORM−. Our extensions also support restricted forms of external
uniqueness constraints, which are used by developers for defin-
ing compound reference schemes. Finally, we have shown that
although a change in the semantics of value constraints in ORM2
renders the ORM− algorithms unsound, an efficient check guaran-
tees they are sound for the vast majority of ORM− models created
in practice. Our extensions preserve and improve the ability to effi-

ciently generate legal populations of large ORM models. In future
work, we plan to identify conditions that also allow use of equality
constraints and a broader class of frequency constraints.

All but two models in our study include small numbers of ex-
clusion constraints, which are known to be NP-Hard, as well as
subset and ring constraints, which are believed to be at least NP-
Hard. To address these remaining constraints, we will attempt to
integrate our previous approach based on constraint solving [18]
with the ORM− algorithm. We can apply the constraint solving
technique to find populations of minimal, disjoint sub-models that
collectively contain all non-ORM− constraints. Our study suggests
that these sub-models tend to be small, in which case, we can find
such populations quickly. We hope to modify the algorithm in this
paper to generate a population of the remainder, starting from the
sub-populations.

A final direction for future research was alluded to earlier. To
generate data sets that reflect real-world data, we plan to investi-
gate approaches that attempt to fit a statistical profile supplied by a
user when generating instances. This capability will also be useful
for producing multiple data sets with different characteristics for
testing a database application.

10. REFERENCES
[1] A. Artale et al. Reasoning over extended ER models. In

Proc. 26th International Conference on Conceptual
Modeling, pages 277–292. Springer-Verlag, 2007.

[2] D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on
UML class diagrams. Artificial Intelligence,
168(1-2):70–118, 2005.

[3] C. Binnig, D. Kossmann, and E. Lo. Reverse query
processing. Proc. International Conference on Data
Engineering, pages 506–515, 2007.

[4] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. QAGen:
Generating query-aware test databases. In Proc. ACM
SIGMOD International Conference on Management of Data,
pages 341–352, 2007.

[5] D. Chays et al. An AGENDA for testing relational database
applications. Software Testing, Verification and Reliability,
14(1):17–44, 2004.

[6] P. P.-S. Chen. The entity-relationship model—toward a
unified view of data. ACM Transactions on Database
Systems, 1(1):9–36, 1976.

[7] M. Curland and T. Halpin. Model driven development with
NORMA. In Proc. 40th Hawaii International Conference on
System Sciences, page 286a, 2007.

[8] G. Engels et al. Conceptual modeling of database
applications using an extended ER model. Data &
Knowledge Engineering, 9(2):157–204, 1992.

[9] M. Fowler and K. Scott. UML distilled: A brief guide to the
standard object modeling language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[10] T. Halpin. Objectification. In Proc. 10th International
Workshop on Exploring Modeling Methods in Systems
Analysis and Design, volume 5, pages 106–123, 2005.

[11] T. Halpin. ORM 2. In On the Move to Meaningful Internet
Systems: OTM Workshop, volume 3762 of LNCS, pages
676–687. Springer, 2005.

[12] T. Halpin and T. Morgan. Information Modeling and
Relational Databases. Morgan Kaufmann, 2nd edition, 2008.

[13] S. Hartmann. On interactions of cardinality constraints, key,
and functional dependencies. In Foundations of Information

and Knowledge Systems, volume 1762, pages 136–155.
Springer Berlin, 2000.

[14] K. Houkjær, K. Torp, and R. Wind. Simple and realistic data
generation. In Proc. 32nd International Conference on Very
Large Data Bases, pages 1243–1246, 2006.

[15] M. Jarrar. Towards automated reasoning on ORM schemes.
In Proc. 26th International Conference on Conceptual
Modeling, pages 181–197. Springer-Verlag, 2007.

[16] R. M. Karp. Reducibility among combinatorial problems. In
R. E. Miller and J. W. Thatcher, editors, Complexity of
Computer Computations, pages 85–103. Plenum, 1972.

[17] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid.
Query-aware test generation using a relational constraint
solver. In Proc. 23rd IEEE/ACM International Conference
on Automated Software Engineering, pages 238–247, 2008.

[18] M. J. McGill, R. E. K. Stirewalt, and L. K. Dillon.
Automated test input generation for software that consumes
ORM models. In On the Move to Meaningful Internet
Systems: OTM Workshop, volume 5872, pages 704–713.
2009.

[19] A. Neufeld, G. Moerkotte, and P. C. Lockemann. Generating
consistent test data: restricting the search space by a
generator formula. The VLDB Journal, 2(2):173–214, 1993.

[20] Y. Smaragdakis, C. Csallner, and R. Subramanian. Scalable
satisfiability checking and test data generation from
modeling diagrams. Automated Software Engineering,
16:73–99, 2009.

[21] A. Zamperoni and P. Löhr-Richter. Enhancing the quality of
conceptual database specifications through validation. In
Proc. Entity-Relationship Approach, volume 823, pages
85–98. Springer Berlin, 1994.

[22] J. Zhang, C. Xu, and S. C. Cheung. Automatic generation of
database instances for white-box testing. In Proc. 25th

International Computer Software and Applications
Conference Invigorating Software Development, pages
161–165, 2001.

