
Automated Framework for Formal Operator Task Analysis

Ayesha Yasmeen
Department of Computer Science

University of Illinois, Urbana, Illinois, USA
yasmeen@illinois.edu

Elsa L. Gunter
Department of Computer Science

University of Illinois, Urbana, Illinois, USA
egunter@illinois.edu

ABSTRACT
Aberrant behavior of human operators in safety critical sys-
tems can lead to severe or even fatal consequences. Human
operators are unique in their decision making capability,
judgment and nondeterminism. There is a need for a gen-
eralized framework that can allow capturing, modeling and
analyzing the interactions between computer systems and
human operators where the operators are allowed to deviate
from their prescribed behaviors for executing a task. This
will provide a formal understanding of the robustness of a
computer system against possible aberrant behaviors by its
human operators. We provide a framework for (i) modeling
the human operators and the computer systems; (ii) formu-
lating tolerable human operator action variations(protection
envelope); (iii) determining whether the computer system
can maintain its guarantees if the human operators operate
within their protection envelopes; and finally, (iv) determin-
ing robustness of the computer system under weakening of
the protection envelopes. We present Tutela, a tool that as-
sists in accomplishing the first and second step, automates
the third step and modestly assists in accomplishing the
fourth step.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Model checking, Reliability ; F.4.1
[Mathematical Logic and Formal Languages]: Math-
ematical Logic—Model theory, Temporal logic

General Terms
Model generation, Property satisfaction

Keywords
Task analysis, Human operator, Verification framework, Sys-
tem robustness, Protected task execution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00.

1. INTRODUCTION
Computers and automated systems are omnipresent in the

twenty-first century. From our workplaces to our homes,
computers have become integral parts of our daily lives.
However, “to err is human”. Humans quite often deviate
from the recommended methods of operating computer sys-
tems often in manners unexpected by the designers. From
the infamous “Three Mile Island accident” [17] to patients
dying from wrong doses of radiation [21], human handling
and judgment has led to immense and in some cases fatal
consequences. Hence there is a need for formal mechanisms
for analyzing human computer interactions in safety critical
systems.

Example Scenario: Let us consider a simple scenario:
Everyday customers walk up to self-checkout systems at su-
permarkets to buy groceries. These self-checkout systems
are equipped with interactive touch-screen displays, bar code
scanners, bagging areas equipped with weighing scales and
payment accepting devices. These equipments are controlled
by a computerized system in the back end. A customer be-
gins by pressing the word “Start”. Then the system officially
allows the customer to start scanning the items. After scan-
ning, each item is placed in a bag in the bagging area where
the weight of the item is matched with the expected weight.
Any significant weight mismatch results in an alarm. We
will ignore grocery items that do not have any bar codes
on them. After all items have been scanned, the customer
then presses the payment button, pays for the items and
subsequently leaves the store with the items just purchased.
Just as much as the customers can successfully follow these
steps to buy items from the store, they can (un)willingly cre-
ate system loss for the store owners. What if a customer
scans one item but places another more expensive item of
the same weight in the bag? What if the customer forgets
to scan an item in the cart altogether? Having a formal
characterization of problematic and non-problematic atyp-
ical customer behaviors will help understand, analyze and
possibly improve the self-checkout system.

Formal verification provides insights into whether a com-
puter system conforms to its desired properties. These in-
sights are provided modulo assumptions about the environ-
ment in which the system operates. In this work, we focus
on a very prominent component of the environment: the
humans who operate them. Their capability of autonomous
judgment, decision making and improvising actions make
them a unique component of the environment. However,
whether human operators should be considered as part of
the environment or should be considered as another part of



the system itself is an interesting issue. Consider the sce-
nario at an airport with an air traffic control tower, where
planes are landing and taking off regularly. Their arrivals
and departures need to be perfectly coordinated by the pi-
lots of the planes and the operators at the air traffic control
tower to avoid accidents. The operators in the control tower
can be regarded as part of the system generating safe flight
path information. The pilots need to adhere to the directions
being issued from the control tower. A pilot that always fol-
lows guidelines can be considered as part of the system. If
the pilot makes a misjudgment or fails to follow guidelines
he will cease to be a part of the system and become a part
of the environment. Hence, in one single scenario, we ob-
serve two different roles for human operators. To be able to
model human operator behaviors succinctly, a formal tech-
nique will need to be able to capture both natures of human
behavior: the typical behavior that is part of the system and
the atypical behavior that is part of the environment.

The unique features of human behaviors spawned research
on Operator Task Analysis (OTA), which relies on ideas
from Human Factors (HF) and Human Computer Interac-
tions (HCI) to analyze what is expected from operators in
order to anticipate errors and thereby increase robustness
of the system. We aim to augment this line of investiga-
tion with work on analyzing how the manner in which an
operator performs a task affects the safe and effective op-
eration of a system. We will not consider the cognitive as-
pects of human decision making, instead we will focus on all
possible human operator actions and their effects. Current
formal frameworks sometimes omits any assumptions about
the human operators, sometimes they are considered as all
powerful antagonists who can do absolutely anything, and
at some other times they are assumed to behave perfectly
and always operate within the guidelines provided to them.
We intend to provide a middle ground, where the human
operators are neither neglected, nor are they allowed to be
unrealistically powerful antagonists. We intend to specify
and analyze the combined system of computers and humans
where the human operators can deviate within “tolerable”
bounds from their recommended workflows.

1.1 Related Work
“Operator Task Analysis” [19] and its hierarchical version

Hierarchical Task Analysis (HTA)[7] aims to determine how
a task is actually accomplished by human operators, what
special factors are involved in or required of the operators to
accomplish the goal the task is supposed to achieve. Their
goal is to analyze the possible operator action variations
from a specified set of tasks depending upon environmental
effects. Action Error Analysis (AEA) [30] attempts to find
the possible future deviations in operator behavior. Work
Safety Analysis (WSA) [34] analyzes each step in a specific
task and analyzes how variations in performing that step can
cause different types of hazards. All these techniques pro-
vide an informal method of identifying and analyzing human
action variations. Tasks have been modeled using trees [20],
real time logic [14] and predicate logic [15]. Operator Func-
tion Model (OFM) [23] provides a finite state machine based
analytical tool to give a task analytic structure of operator
behavior. Bolton et al extend OFM to EOFM [3] with task
sequencing and conditional constraints to better model hu-
man task behavior. Fault Tree Analysis uses logic diagrams
to analyze the failure process of a system. All these exist-

ing task analysis works mostly rely on graphical models and
tools to depict atypical human task execution behavior of
a system. What is lacking is a formal modeling technique
for characterizing the atypical behaviors. Atypical behaviors
can be both safe and unsafe depending upon the robustness
of the computer system. Precise formal understanding and
analysis of safe typical task execution, safe atypical task ex-
ecution and unsafe atypical task execution is the goal of this
work.

The usual trend in formal analysis in determining whether
a system maintains a guarantee is by performing model
checking [4]. Model checking a system M is determining
whether M satisfies a requirement ψ denoted by M |= ψ.
Although this works well for “closed” systems (systems with
no interaction with the rest of the world), for “open” (sys-
tems that interact with their environment) systems it is not
sufficient. This has given rise to the notion of “robust
satisfaction” of a property [18]: a system M should sat-
isfy a property ψ when composed with any environment E,
M ||E |= ψ. This trend is the closest to our work here. Any
human operator system should be verified against all possi-
ble reasonable human behaviors. Our goal is to provide a
framework to assist in formulating reasonable or protected
human task execution behavior and determining that they
are indeed protected behavior.

Given a definition of reasonableness of behavior we will
build a model for all models conforming to that definition.
Controller synthesis works are related in that regard. Con-
troller synthesis [24] works model the interactions between
a system and its environment as a discrete game. Controller
synthesis aims at generating a winning strategy for the con-
troller such that the system always wins irrespective of the
behavior of the environment.

Assumption-guarantee works first introduced by Jones in
[16] focus on a module or a program thread assuming a prop-
erty about other modules while providing a guarantee those
modules. If we consider human operators as modules then
our concepts are similar to theirs. However, human behav-
ior is complex enough to require several layers of categories
of assumptions as we show in the next subsection. We as-
sert that system designers need to be aware of all these
categories of human behavior. Similarly the assumption-
guarantee capturing capability of Interface Automata [6] is
also related. Interface synthesis research [11, 27] is another
related area. In modular program analysis, individual mod-
ules can be analyzed separately and then only interfaces are
used when the overall system composed of all relevant mod-
ules are handled. Interfaces summarize acceptable call se-
quences for a module. An interface is safe if it only allows
sequences that do not violate the internal invariants of its
module. Permissive interfaces are those that allow all pos-
sible safe sequences. Full interfaces are both safe and per-
missive. Safe interfaces correspond to the protected human
behaviors as presented in the next subsection. Full inter-
faces are achieved when the all safe behaviors are protected
behaviors. Given a regular language description of an inter-
face and its invariants, interface synthesis techniques provide
models that accept words belonging to that language. Given
the behavior guarantees expected from the human opera-
tors, we will use refinement to derive a model representing
all well behaved human action sequences. Software envi-
ronment generation from environment assumptions is also
a related to our work [31]. The concepts of these works



are very related to our work. These works focus on modu-
lar software or hardware systems. For one system module,
the environment is comprised of other modules from that
system. However, the primary novelty of our work is the
context chosen by us: human operators that will interact
with a system composed of hardware and software, concepts
of categorizations of their interaction behaviors, guarantees
systems can provide based on different categories of assump-
tions about human operators.

Another related area is that of human workflow specifica-
tion with techniques like Yet Another Workflow Language
(YAWL) [33] and UML [8]. Typically workflow verifica-
tion entails determining whether a recommended workflow
is deadlock free, live, livelock free and conforms to the de-
sired goals. Formalisms used for modeling workflow include
CSP [35, 22], Petri nets [32] etc. We used CSP to model and
analyze operator workflow in our hospital AIDC project [10].
In [26] Shin et al use graphs and deterministic finite state
automata to model and analyze human operator behavior.
What we observe from all these is that workflow verification
is mostly about verification of the recommended behavior
of human operators. In our case the recommended behav-
ior is one of the reasonable behaviors. The main thrust of
our work is a support for a methodology for reasoning about
and with protection envelopes; the recommended workflow
is contained within the protection envelope. Clarke et al
show in [5] how a human-intensive process can be specified
using a process specification language Little-JIL, then trans-
lated into finite state automata and analyzed for satisfaction
of desired properties. Their process descriptions can handle
exceptional situations and hence is very close to our work.

1.2 Protection Envelope

Figure 1: Protection Envelope

We now present a categorization of human behaviors. We
categorize the set of all possible human behaviors among
subsets shown in the Venn diagram in Figure 1. This decom-
position is defined with respect to the behaviors of a com-
plimentary set of players, in this case the computer system,
the operating platform etc. For any such analysis, we need
a domain-dependent concept for progress and loss. Then,
the Safe behaviors are those in which the actions of the op-
erator never lead to any loss. Behaviors that are not safe
are hazardous. Effective behaviors are ones in which some
progress is made. Among the effective behaviors are some
desired behaviors which we refer to as recommended behav-
iors in which the operator exactly follows the steps in his
task description. There may be ways to make progress that

are not recommended, perhaps because the recommended
procedures are just meant to describe one of many ways to
get the job done or because other ways of doing the job may
be hazardous. Another important set of behaviors are the
warned behaviors, often specified in the warnings section of
a user manual. These are the recognized set of hazardous
behaviors. The protected behaviors are ones in which the
operator may vary from recommended or effective behaviors
without causing any hazardous consequence. The “protec-
tion envelope” is provided by an engineered set of proper-
ties of the system that form a specified subset of safe be-
haviors of the human operators. They are essentially the
set of safe behaviors that have been identified to be safe.
The “protection envelope” enforces less stringent guidelines
for the human operators at the cost of a reduction in its
characteristics. While the recommended behaviors are both
effective and safe, the protected behaviors are guaranteed
to be safe only, they may not be effective in some situa-
tions. In any scenario, the designers would like to identify
all possible hazardous human behaviors thereby extending
the warned behaviors to become the overall hazardous be-
havior set. On the other hand, designers of a system would
also aim at increasing the robustness of a system against
atypical human behavior by enlarging the protection enve-
lope. An idealized situation would be where the protection
envelope represents all possible safe behaviors. The notion
of a protection envelope can be generalized to be extended
to each and every player in a scenario. Each player has
to meet some requirements on their behaviors: the human
operator should behave within restrictions expected by the
system developer(protection envelope); the computer sys-
tem should execute to meet some requirements set by the
system designer(protection envelope); the human operator
may use the system along some specific step-by-step instruc-
tions (recommended task specification); the computer sys-
tem will execute according to some generic specification of
the system (recommended behavior).

1.2.1 Example Scenario Revisited:
Let us first define the notions of loss, effectiveness and

safety in the context of the self-checkout system. The rec-
ommended human task specification is given in Figure 2. In
this context (from the store owner’s point of view) a cus-
tomer being able to take an item out of the store without
paying for it yields loss for the store. Any behavior that
does not lead to such loss is safe. For example, in the very
beginning, before pressing the start button a customer can
attempt to bag an item. The self-checkout system is ca-
pable of detecting this and can generate an alarm. Hence
this is a safe but not recommended behavior. But if the
customer leaves the store without paying for some items
because they were never scanned, then the system cannot
detect this. This can result in loss on part of the store and
can only be avoided by the customer operating in the pro-
tected manner. A behavior is effective if a customer is able
to purchase the items he placed in the cart.

1.3 The Framework
We propose a methodology to analyze computer systems

and their environment components, which is comprised of
four major steps: (i) identify major system components and
human operators and capture knowledge about these ele-
ments including their observable actions, (ii) model the be-



Figure 2: Customer task specification for using the
Self-Scan Checkout System

havior expected from the operators, and the properties the
system should maintain, (iii) verify whether the system can
maintain the properties for all reasonable operator behavior
i.e. any human operator behavior that conforms to their
expectations, (iv) study the robustness of the system either
by allowing the human operators to deviate from expected
behavior or by changing their expectations. With the con-

Figure 3: Computer System along with human op-
erators

cept of different human behavior sequences given earlier, we
now delineate some generic, yet prominent issues that will
need to be resolved in any scenario using our framework:

1. Verifying recommended task specification

• Safety issue: Is the recommended human behav-
ior safe for the computer system? More formally,
do we have Computer System + Recommended
Human Behavior |= Safety? We should be able
to perform sanity checks or even proofs that the
recommended human actions are safe.

• Effectiveness issue: Does the recommended task
specification ever achieve what it claims to achieve?
More formally, do we have Computer System +
Recommended Human Behavior |= Liveness/ Ef-
fectiveness ?

2. What happens if the human somehow deviates from
the recommended human operator behavior?

• Protection envelope: How do we express safe
variations from the recommended human behav-
ior concisely?

• Verifying protection envelope: Is the protec-
tion envelope really protected? That is, are the
protected behaviors safe? More formally, do we
have Computer System + Protected Human be-
haviors |= Safety?

• Recommended task specification protected?
Are the recommended human behaviors protected
behaviors? More formally, do we have Computer
System + Recommended Human Behavior |= Pro-
tection Envelope property ?

• Experimenting with the protection enve-
lope: Is there a way to methodically, easily, and
efficiently experiment with and possibly enlarge
the action sequence boundary specified by the
protection envelope? This will allow us to ex-
pand towards the extreme boundaries of protec-
tion against anomalous human behavior.

1.3.1 Example Scenario Revisited:
Let us now fit the self checkout system described in Sec-

tion 1 in our framework.

• Entity identification: The prominent agents are the
customer and the self-checkout system. The observable
actions of the customer are: scan an item, bag an item,
pay for items etc. The behavior of the self-checkout
system consists of actions like allow scanning an item,
allow bagging an item etc. In order to ensure smooth
execution of the system, the self-checkout system needs
to store some additional information like the bar code
of the items getting scanned, actual weight of items,
expected weight of items, prices of items etc.

• Guarantee identification and modeling: The expected
behavior (protection envelope) for the customer in-
cludes: the customer will not take out of the store
items that have not been scanned. The expected be-
havior of the self-checkout system is that it will allow
the customer to press the start button in the begin-
ning; allow scanning of an item, bagging of an item;
accept payment in the end etc. These properties will
be modeled using temporal logic. The combined sys-
tem of the self checkout system and the customer will
be modeled using Concurrent Game Structures (Sec-
tion 2).

We need to determine whether the self-checkout system will
be able to maintain safety when facing any protected human
behavior maintaining human guarantees. We discuss the
third and fourth step in Section 2.

2. METHODOLOGY
Let us study the framework presented in Subsection 1.3.

The first step suggests that the formal methodology should
be able to capture different identities and their action vocab-
ularies. In the second step, we see that the formal method-
ology needs to be capable of expressing the expected guar-
antees of behavior for each entity identified in the first step.
The third step poses these problems: how do we verify that
the system can maintain its guarantees in the face of all pos-
sible reasonable behavior from its human operators? What
is the model for the humans and the system? How do we
model and analyze all possible human behaviors? The fourth
step requires the methodology chosen in the third step to be
robust enough so that we can easily modify the definition
of “reasonableness” or the protection envelope property and
perform the same analysis without changing anything else.
In summary we need a formalism that will (i) allow distin-
guishing among different entities (first step of framework),
(ii) allow specifying the vocabulary of those entities (first
step of framework), (iii) allow specifying properties on top
of the formalism for each entity (first step of framework),
(iv) allow modeling entity behavior (third step of frame-
work), (v) allow modeling the interactions among the enti-
ties (third step of framework) (vi) allow reasoning about all



possible reasonable behavior (third step of framework), (vii)
allow efficient and simple way of re-performing the entire
analysis with variations of the protection envelope (fourth
step of framework). One formalism that meets our criteria
is Concurrent Game Structures (CGS) [1].

Concurrent Game Structures: A CGS is an 8-tuple,
〈P,Q, q0,Σ,Π, π, e, δ〉 where the components are as follows:
P is a finite set of players. Q is a finite set of states and
q0 ∈ Q is the initial state. We have abstract actions Σ
instead of the numbers that are used as place holders for
actions in [1]. Σ is a finite nonempty set of actions for the
players where the silent action τ ∈ Σ. Π is a finite set of
propositional atoms that help identify the states. π : Q →
2Π is a function that gives the set of propositional atoms
that hold of a given state. The function e : P × Q → 2Σ

gives which actions are enabled for each player in each state.
We denote the action choices available to a player p in a
state q by ep(q). We enforce that the silent action τ is
enabled for each player in each state: ∀q ∈ Q.∀p ∈ P. τ ∈
ep(q). We will use Σp to denote the vocabulary of player p
where Σp =

⋃
q∈Q

ep(q). We will denote the action choice for

a player p in a action choice vector v̄ as v̄|p. The function
δ : Q × (ep1(q) × ep2(q) × . . . ep|P |(q)) → Q that defines
state transitions. That is, given a state q, and a vector of
actions v̄ ∈ ΣP where v̄|p ∈ ep(q) for each p, the value δ(q, v̄)
is the next state q′. We require that ∀q ∈ Q. δ(q, τ × . . . ×
τ) = q. The reason behind enabling the τ action for each
player in each state and τ̄ self-loops in each state is based on
the perception that human operators cannot be assumed to
always be synchronized with the computer systems. They
may idle away for some time before performing an action.
Given a finite or infinite sequence of states λ, we will denote
the i-th state in the sequence as λi. We will use λi2

i1
to denote

the sequence of states starting from position i1 to position
i2. A q-computation r of a CGS C is an infinite sequence
of states where r0 = q and for each i ≥ 0, there is a vector
ai ∈ ep1(ri) × ep2(ri) × . . . × ep|P |(ri) of actions such that

ri+1 = δ(ri, ai). Let us now fit CGS in our framework:

2.1 Identification and Information Collection
Step

CGS will allow us to easily model all the identifiable enti-
ties, such as the computer system and the human operators
as players operating concurrently. The actions available to
a player across the states will capture their vocabulary. Re-
ferring to the self-scan checkout system scenario, we can
have Self-scan system and Customer as the players. Each
action of the self-scan system and the customer can be trans-
lated into abstract actions. For example the actions of the
customer like scanning an item, bagging an item, paying for
items etc can cause the following actions to be in the vocab-
ulary of the customer: scanitem, bagitem, payforitems.

2.2 Protection Envelope and Safety Property
Specification Step

The protection envelope is a collection of protected or
reasonable behaviors. It is much easier for the system de-
signer to provide the protection envelope using a property
describing the protection criteria. Every behavior conform-
ing to the criteria will be a protected behavior. Now we
need to determine what logic the property should be ex-
pressed in. The protection envelope properties are, in fact,

a form of safety property. The protection envelope prop-
erty for each human operator needs to state that in every
state along a protected action sequence, the human oper-
ator will guarantee nonviolation of a criterion. The crite-
rion my very well be of the form that the human opera-
tor will not perform certain task until some other enabling
task has been performed. So protection envelope properties
are temporal in nature, and can be expressed using Linear
Temporal Logic [25]. In fact protection envelope proper-
ties are a form of safety properties [28]. Safety properties
state that something bad does not happen and if there exists
a counter-example to a safety property it must be a finite
one. In our work we will consider special form of safety
properties called “invariants” [28] which are of the form 2ϕ,
where ϕ = p (atomic proposition) | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧
ϕ2 | © ϕ | ϕ1 U ϕ2 | ♦ϕ | 2ϕ. Invariants need to hold
in the initial state and along each trace emanating from
the initial trace. The protection envelope properties will
also be of the form 2ϕ. The protection envelope for the
customer checking out items in a supermarket using LTL:
2((¬baggedItem(i)U scannedItem(i))∧
(¬itemOutofStore(i)U itemPaidFor(i)))). Here baggedIte

-m(i), scannedItem(i), itemOutofStore(i) and itemPaid-

For(i) are atomic propositions.

2.3 Assessing Robustness of the Computer Sys-
tem w.r.t the Protected Behavior

In a CGS, in each state, each player chooses an action
to execute and their combined actions allow the model to
transition from one state to another. Thus the execution
trace or computations of CGSs can encode the interactions
of different entities. We first show how we can model the
behavior of entities using CGSs.

2.3.1 Human Behavior Model
The e function provides the enabled action choices for each

player in each state in a CGS. Here we view a human behav-
ior as the set of actions that the human may perform in a
state. Hence, we observe that the human operator behaviors
can be viewed as refinements of the e function. The scenario
in Figure 1 is completed when the human operator is placed
in conjunction with the computer system. The combined
interaction between each human behavior and the computer
system can be modeled using CGSs, where the behavior of
the human operator will dictate the set of possible actions
for the operator in each state: the e function. Now that
we have a method of modeling human behavior, we need to
determine how best we can analyze all possible protected
human behaviors.

2.3.2 Maximal Model
We first need to be able to model all possible protected be-

haviors. Then we need to assess their safety preservation ca-
pability. However, formulating and analyzing the protected
behaviors one by one may become cumbersome. Given only
the protection envelope property, we will have to generate
each protected behavior and then analyze it. Hence we ask:
can we get around the task of verifying a model for each
and every possible environment and find a representative
model such that satisfaction of that model in conjunction
with that representative protected behavior guarantees sat-
isfaction of that property for any behavior? Grumberg et al
suggest searching for an ordering among environments such



that given an ordering relation v, a model M , a property
φ, if we can find a maximal model of the environment E
such that if E ‖M |= φ then for each environment E′ v E,
we have that E′ ‖ M |= φ [9]. The motivation behind this
approach is that now given a preordering relation, a maxi-
mal model for that relation, determining satisfaction of an
environment is determined by simply determining preorder
preservation. Our approach very closely follows the idea
presented by Grumberg et al. We first define an ordering
relation among operator behaviors. Then we show how we
can find a maximal protected behavior such that all other
protected behaviors are related to it by the ordering rela-
tion. Then we show that this maximal behavior can actually
represent all protected behaviors: if the maximal behavior
allows the system to operate safely then all protected be-
haviors will also allow the system to operate safely.

2.3.3 Ordering Relation
We observe that in a CGS, the behavior of each player

is completely defined by the action choices available to it
in different states. When we want to analyze the human
behaviors, we are interested in the actions they take while
operating a system. Hence, any ordering relation that can
model human behavior will involve some restrictions on the
actions available to the human operator in different scenar-
ios. A maximal model of a human will have the maximal
set of actions available to it. Any human behavior which is
a sub-behavior of that human behavior will have fewer ac-
tion options. And if the maximal human behavior with all
its potential for causing trouble in the maximal number of
ways available to it via the available actions, can still sat-
isfy the desired property, then any sub-maximal behavior
will certainly satisfy the property as it will have fewer op-
tions to cause trouble to the system. The characterization
of human operator behavior using e function suggest that
the more constrained and restricted the behavior, the fewer
action options an operator has in each state. This leads to a
notion of one behavior being contained in another behavior.
Behavior containment can be modeled with one CGS having
a more restricted set of action options for a set of players
than another CGS. We define a CGS being a subaction CGS
of another CGS as follows:

Definition Let C be a CGS where C = 〈P,Q, q0,Σ,Π, π, e, δ〉
and P ⊆ P be a set of players. C′ = 〈P,Q, q0,Σ,Π, π, e′, δ〉
is a P-subaction CGS of C denoted by C′ vP C if we have
that ∀q ∈ Q.∀p ∈ P. if p ∈ P then e′p(q) ⊆ ep(q) else e′p(q) =
ep(q).

Notice that vP is a transitive relation. The notion of behav-
ior ordering through behavior containment raises the ques-
tion of whether there exists a maximal protected behav-
ior satisfying a specific restriction such that all of its sub-
behaviors will also satisfy the restriction. In other words,
given a protection envelope property, can we have a maximal
CGS such that if it satisfies a safety specification then each
sub-action CGS of it will also satisfy the specification?

We are now in a quest for a maximal representative be-
havior respecting a property. The concept of subaction CGS
suggests that if we consider the CGS where the human oper-
ator can behave without any constraint and restrict it using
the property under consideration, then we will be able to
arrive at a behavior which has the least restricted behav-
ior while preserving the property. We will refer to the CGS

comprising all possible human operator behavior and corre-
sponding system responses as Call.

2.3.4 Call

We focus on the resilience of a computer system while fac-
ing atypical human behavior. Call is a CGS which contains
the interactions among system components and human oper-
ators where at each state, the human operators can execute
any action that is physically possible by them. In every state
in a Call, each physically possible human action is enabled
in each state. Hence the enabled actions and the transitions
must contain the responses of the computer system for each
possible human action. Usually at each state of a system
there is a small subset of human actions that is expected by
the computer system. The rest of the human actions are ei-
ther physically impossible or will lead to an error state. We
will present our tool in Section 2.5 which is capable of gen-
erating the Call from a small subset of interactions among
computer systems and human operators. We require that
for each state the description includes (i) transitions involv-
ing safe enabled human actions and corresponding computer
system reactions, (ii) physically impossible human actions.
Let us consider the self-scan checkout system again. In Fig-
ure 4 we present a sparse Call model provided for the initial
state. In the figure, the label of each state appears next to
it. Let a1 be a computer system action and a2 be a human
action. The pair of actions (a1, a2) is mentioned next to the
transitions they cause. In the initial state, the customers
cannot pay for an item as the self-scan system displays usu-
ally do not provide any pay button at this point. This is
indicated by a transition to a dummy state: DisabledAc-

tion. This dummy state is only used to help denote the
impossibility of the action, it is not part of the state space.
The customer may idle away the time or they may press the
start button. However, the customers may also attempt to
scan an item, bag an item or leave the store without scan-
ning and paying for any item. All of these actions will result
in an erroneous situation. For the sake of simplicity we use
only one error state for all types of erroneous conditions.
In order to reduce the burden of providing the entire Call,
our tool does not require specification of any transition that
leads to error states. The transitions emanating from the
initial state in Call is presented in Figure 5. We combine the
action vectors leading to the error state in Figure 5 due to
space restrictions.

Figure 4: Initial state in incomplete Call

A Call is usually not the maximal protected behavior we
need to find. Since our ordering relation is based on player
action set ordering, we will need to trim player actions in
Call to obtain the maximal protected behavior. Intuitively,



Figure 5: Initial state in a complete Call

the actions of the player whose behavior is getting analyzed
should be modified. Since protection envelope properties
are safety properties, we should trim those actions of the
player which makes him do something bad. The easiest
way of determining “badness” is if the action choice helps
the CGS land in a state where a protection property is
violated. Given a CGS C, a behavior restriction ϕ for a
player p, we first determine the set of bad states B: the
states that are unsafe or potentially unsafe. B(C, p, ϕ) =
{q | η(C, p, q, ϕ)}. Here η(C, p, q, ϕ) = (q 6|=C ϕ) ∨ (∃v̄. v̄|p =
τ ∧ η(C, p, δC(q, v̄), ϕ)). The bad states are those states
where the specification is either immediately violated or
where the operator has performed such an action that he
needs to rely on the other players helping him out to pre-
serve the specification. Let us consider Figure 6. Here the
customer has pressed the start button. Let us assume he
has a non-empty cart. Then according to the recommended
task specification he should scan an item from the cart. If
he puts an item in the bags instead, then it violates the
protection property as specified in Section 2.2. This item
has been placed in the bags before having been scanned. If
the customer leaves the store with the items in his cart then
items are leaving the store without being paid for. Thus
both q1 and q3 are bad states.

2.3.5 Thinning
Asarin et al thin actions available to a player to find a win-

ning strategy in a game automata [2]. In a similar fashion,
we “thin” the actions available to player p in an unrestricted
behavior Call to obtain a maximal protected behavior.

Figure 6: Thinning Call

Definition Given a CGS Call = 〈P,A,Q, q0,Σ,Π, π, e, δ〉, a
player p ∈ P , a protection envelope formula ϕ = 2ϕp, the
thinning of Call according to 2ϕp denoted by Θϕ

Call
provides

a CGS C = 〈P,A,Q, q0 ,Σ,Π, π, e′, δ′〉, where e′ is defined as

follows: ∀q ∈ Q.∀v̄ ∈
∏

p′∈P
ep′(q). if δ(q, v̄) = q′ then ( if q′ ∈

B(C, p, ϕ) then e′p(q) = ep(q) \ {v̄p}) else e′p(q) = ep(q) and
∀q ∈ Q.∀p′ ∈ P \ {p}. e′p′(q) = ep′(q). Thus the transitions

from state q where the action vector v̄′ has v̄′|p = v̄|p gets
removed in δ′.

Basically the definition states that from each state in the
given CGS, if a transition leads to a bad state, then remove
the action for the player p involved in that transition to
obtain the refined CGS.

2.3.6 Example Scenario Revisited
Let us consider the supermarket checkout scenario. We

focus on the state q after an item has been scanned in Fig-
ure 6. Here, the customer will have many action options in
Call. He can put the scanned item in a bag, scan another
item, attempt to pay for the scanned item or even worse,
leave the store along with the item before paying for it. The
protection envelope states that the customer will not take
an item out of the store before paying for it. So a protected
behavior should not have the LeaveStore action enabled for
the customer in state q. The mechanical infrastructure of
the supermarket is incapable of preventing this action. Only
the customer himself has the capability of guaranteeing that
such loss for the store will not occur. Since the protection
envelope of the customer is under consideration at this point
and only the customer himself can guarantee safe operation,
only his set of enabled actions should be reduced. This also
illustrates our reasoning behind choosing CGSs over Finite
State Automata. In CGSs we can very easily examine the set
of actions available to players in each state and manipulate
the set as necessary.

2.3.7 Thinned Model is the Maximal Model
We can now relate the thinning of a CGS according to a

specification ϕ with obtaining a maximal model from that
CGS according to ϕ. A thinned CGS is useful to us only if
it can act as a representative for all possible protected hu-
man behavior. We need to thin only those states that are
reachable from the initial state. We will achieve this by thin-
ning the operator actions in only those states that appear in
the q0-computations in a CGS. Let us define a reachability
predicate ΥC(q1, q2) as (q1 = q2)∨( ∃q′ ∈ Q.∃v̄ ∈

∏
p∈P

ep(q2).

δ(q2, v̄) = q′∧ΥC(q1, q
′)). Note that ΥC is a transitive func-

tion.

Definition The fragment of a CGS C = 〈P,Q, q0,Σ,Π, π, e,
δ〉 that is reachable from the initial state q ∈ Q is another
CGS denoted by R(C, q) = 〈P,Q, q0,Σ,Π, π, e′, δ〉 where
∀q′ ∈ Q.∀p ∈ P . if ΥC(q′, q) then e′p(q′) = ep(q′) other-
wise e′p(q′) = {τ}.

Now that we have defined the initial state reachable frag-
ment of a CGS, let us define property invariance. A property
ψ is an invariant for a CGS C with state space Q denoted
by Inv(C,ψ), if we have ∀q ∈ Q.ΥC(q, qinit)→ q |=C ψ. The
following lemma states that the protection envelope prop-
erty holds at every state reachable from the initial state in
the thinned CGS. Thus every q0-computation satisfies the
protection property in a thinned CGS.

Lemma 2.1. Let C = 〈P,Q, q0,Σ,Π, π, e, δ〉 be a CGS.
Let p ∈ P be a player, ϕ be the protection envelope for p.



Let Θϕ
C be the CGS obtained by thinning C according to ϕ.

Then we have Inv(R(Θϕ
C , q0), ψ).

This lemma can be proved from the definition of thinning,
reachability and property invariance and the fact that the
protection envelope properties are always of the form 2φ
where φ is an LTL formula. We now present a lemma which
correlates the initial state reachable and protection prop-
erty invariant fragment of any protected behavior with the
thinned behavior.

Lemma 2.2. Let C = 〈P,Q, q0,Σ,Π, π, e, δ〉 be a CGS.
Let p ∈ P be a player, ϕ be the protection envelope for p. Let
Θϕ

C be the CGS obtained by thinning C according to ϕ. Then
each CGS C′ such that C′ is a p-subaction CGS of C and ϕ
holds at every state reachable from q0 in C′, the portion of C′

reachable from the initial state is a p-subaction CGS of Θϕ
C .

Mathematically speaking: ∀C = 〈P,Q, q0,Σ,Π, π, e, δ〉. ∀p ∈
P. ∀ϕ. ∀q ∈ Q. ∃Θϕ

C = 〈P,Q, q0,Σ,Π, π, eΘ, δ〉. ∀C′. (R(C′,
q0) v{p} C ∧ Inv(R(C′, q0), ϕ)⇒R(C′, q0) v{p} Θϕ

C).

Proof. We will prove Lemma 2.2 by contradiction. Let
us assume that there exists a CGS C′ = 〈P,Q, q0,Σ,Π, π, e′,
δ〉 such that for a player p ∈ P , a property ϕ, R(C′, q0) is
p-subaction CGS of C and ϕ is true in every state reachable
from q0 in C′ but the initial state reachable portion of C′ is
not a p-subaction CGS of Θϕ

C .
Since R(C′, q0) v{p} C and R(C′, q0) 6v{p} Θϕ

C , we have

∃q ∈ Q. ∃a ∈ Σp.ΥC′(q, q0) ∧ a ∈ e′p(q) ∧ a 6∈ eΘ
p (q).

Since R(C′, q0) v{p} C, we must have a ∈ ep(q). Now as

Θϕ
C v{p} C, we must have that a 6∈ eΘ

p (q) due to ∃v̄ ∈∏
p′∈P

ep′(q).δ(q, v̄) = q′ ∧ q′ ∈ B(C, p, ϕ) ∧ a = v̄|p. On

one hand, if q′ ∈ B(C, p, ϕ) because q′ 6|=C ϕ then we
have ΥR(C′,q0)(q, q0)∧ΥR(C′,q0)(q

′, q). This provides a state
q′ such that ΥR(C′,q0)(q

′, q0) but q′ 6|=C ϕ which contra-
dicts our assumption of Inv(C′, ϕ). On the other hand,
let q′ ∈ B(Call, p, ϕ) because ∃v̄.v̄|p = a ∧ δ(q, v̄) = q′ ∧
∃q1, q2, . . . , qk ∈ Q.q1 = q′.∃v̄1, v̄2, . . . , v̄k.∀1 ≤ i ≤ k.v̄i|p =
τ ∧ δ(q1, v̄1) = q2, . . . , δ(qk−1, ¯vk−1) = qk ∧ qk 6|=C ϕ. Using
ΥR(C′,q0)(q, q0), ΥR(C′,q0)(q

′, q) and the v̄is as witnesses, we
obtain ΥR(C′,q0)( qk, q0) ∧ qk 6|=C ϕ. This again contradicts
our assumption that Inv(C′, ϕ).

Now we show that any sub-behavior of the maximal behav-
ior obtained by thinning will satisfy a safety property if the
maximal behavior satisfies it. This states that satisfaction
of a safety property is closed under behavior ordering. This
theorem enables us to state that we only need to determine
whether the maximal model satisfies a safety property. All
other protected behaviors will be sub-behaviors of the max-
imal model obtained by thinning and will satisfy the same
safety property.

Theorem 2.3. Let C = 〈P,Q, q0,Σ,Π, π, e, δ〉 be a CGS,
p ∈ P be a player, ϕ be the protection envelope property for
p. Let Θϕ

C be the thinned maximal protected CGS. Then each
CGS C′ that is a p-subaction CGS of Θϕ

C will satisfy a safety
property ψ = 2ψ′ if Θϕ

C satisfies it. Mathematically: ∀C′ =
〈P,Q, q0,Σ,Π, π, e, δ〉. (C′ v{p} Θϕ

C)→ (∀ψ = 2ψ′. q0 |=Θ
ϕ
C

ψ → q0 |=C′ ψ).

Proof. (Sketch) Let us consider a safety property ψ′ =
2ψ. Let the thinned CGS Θϕ

C obtained by thinning C ac-
cording to ϕ satisfies ψ′ i.e. q0 |=Θ

ϕ
C
ψ′. This implies that

each q0-computation will satisfy 2ψ in Θϕ
C . Let us consider

a CGS C′ such that C′ v{p} Θϕ
C . Since p has possibly fewer

actions enabled at each state in C′ possibly fewer transitions
are possible in each state in C′. Hence each q0-computation
in C′ is also a q0-computation in Θϕ

C . Hence they will satisfy
2ψ as well.

We now show how to resolve the issues raised in Section 1.3.
Let us consider a human operator p whose recommended
task specification has been translated into a CGS Crec. Let
us assume a Call with initial state q0 for the combination of
the human operator and a computer system is given. Let
the protection envelope property for p is PE and the safety
property for the system is Safety.

• Are protected behaviors safe? To determine whe-
ther the computer system can operate safely while fac-
ing any protected behavior expressed by p while exe-
cuting a task we need to determine whether q0 |=ΘPE

Call

Safety where Safety is of the form 2ψ (ψ as defined
in Subsection 2.2).

• Is recommended behavior protected and safe?
Then the recommended task specification is protected
and safe if we have Crec |= PE and Crec |= Safety.
However given our framework all we need to determine
is whether Crec v{p} ΘPE

Call
. If Crec is a p-subaction

CGS of ΘPE
Call

then by Theorem 2.3 we have that Crec |=
PE as PE is a safety property and if the thinned maxi-
mal protected CGS ΘPE

Call
is safe then so is the recom-

mended behavior CGS.

2.4 Experimentation with Protection Envelope
We have shown that given a Call, a player and the player’s

protection envelope we can verify whether all protected be-
havior of the player will allow the system to maintain its
safety guarantees. The protection envelope generation meth-
odology we have presented this far has the advantage that
once a Call is built, using it different protection envelopes
can be formulated and analyzed. Every time a new protec-
tion property is considered, the“thinned”maximal protected
behavior CGS can be generated and verified against safety
properties.

2.5 Tutela
We are building a prototype that implements the proposed

framework that we call “Tutela”. Its functionality in light of
the framework presented in Subsection 1.3 is as follows:

2.5.1 Identifying and Modeling Important Players
Tutela provides a GUI to identify the major players in

a scenario and build a Call that models their interactions.
It allows creation of a repository of the domain knowledge
about the various components of a scenario. These include
identifying the players of interest, their vocabulary, the guar-
antees expected of their behaviors, the variables they need
to modify to capture the effect of their behavior on the en-
vironment. Tutela allows these collections to be dynami-
cally modified at any stage. Tutela assists in building Call=
〈P,Q, q0,Σ,Π, π, e, δ〉. Tutela offers a GUI to allow creation
and modification of Σ and Π. It also allows creation of the
set of variables that are handled by players in Call. The
state space of Call can be built in an incremental fashion.



Figure 7: Flow chart for Tutela

Each state needs at least the propositions that will iden-
tify it and the enabled vocabulary for each player. Tutela
ensures that τ is in the vocabulary of each player in each
state. At each state, disallowing a human action indicates
domain knowledge on the part of the designer about physi-
cal impossibility of that action. A major component of each
state is the transitions emanating from that state. We al-
low new states to be added as needed while creating the set
of outgoing transitions from a state. This allows incremen-
tal build-up of a CGS. For each state, all possible allowed
action combinations need to be handled. Also the variable
assignments can be specified at each state. After all required
transitions for all states have been specified, the CGS is en-
coded into an intermediate language which can be translated
into the input language for a model checker. The syntax
of this CGS specification language is provided at https:

//netfiles.uiuc.edu/yasmeen/www/CGSsyntax.html.
Alternate Method of Creating Call The above inter-

active method of creating Call can become cumbersome. As
mentioned in Section 2.3.4, we can automatically generate
Call from a restricted version of Call. Our tool accepts sparse
Calls written using the Promela language. Promela is the
input language for the model checker SPIN [13]. There are
some necessary information that must be present in the in-
complete Call: (i) the set of state propositions, (ii) vocabu-
lary of the system and the human operator, (iii) the state
space with enabled propositions, (iv) physically impossible
human actions, (v) enabled system actions and human ac-
tions should be mentioned. Any system action that is not
explicitly enabled will be considered to be disabled in the
state. Once the enabled action sets for the human and the
computer system have been established, the transition sys-
tem of Call is populated with all specified transitions involv-
ing them. Any transition that is not explicitly mentioned
in is assumed to lead to an error state. We studied with a

simplified self-checkout system scenario where the customer
and the checkout system had six actions each. There were
six states. Thus there were 6 × 6 × 6 = 216 possible tran-
sitions in total. However, in most of the states most of the
checkout system actions were physically impossible. Like in
the initial state, the checkout system does not accept pay-
ments and can not process scanning of an item. Out of
the 216 possible transitions 166 were disabled in this sce-
nario. In the initial state, one customer action and four
checkout system actions were physically impossible. Thus
out of the 36 possible transitions, only 10 were physically
possible. Out of the ten possible transitions six led to the
error state. Like, attempting to bag an item before press-
ing the start button. Thus with sparse Call specification
method, one only needs to specify only the remaining four
meaningful transitions from the initial state instead of all
ten possible transitions. An example sparse Call and the
complete Call is provided at https://netfiles.uiuc.edu/

yasmeen/www/CGScreation.html. The Promela encoding of
Call is translated into our intermediary language for use in
the next steps.

2.5.2 Modeling Protected Behavior

Figure 8: Screenshot from Tutela

Currently one needs to formulate the protection envelope
property to Tutela by themselves. In future we intend to
augment Tutela with a tool like Propel [29] to have a guided
property creation interface. Once Call has been created, we
can thin Call with the protection envelope formula to arrive
at a model that captures only the protected human behav-
iors and the computer system’s response to them. We can
view Call as a finite state automaton where the state space
remains the same and the transition function gets modeled
by labeled transitions in the automaton. We can perform
LTL model checking on this automata to check for protec-
tion envelope property satisfaction. Tutela uses the LTL



model checker SPIN to help in thinning the Call based on
the protection envelopes of the players. Call is thinned by
Tutela by implementing an approximation of the definition
in Section 2.3.5 by taking the following steps:

• Translate the Call into an automaton and encode the
automaton in Promela. The translation occurs as fol-
lows: The states are modeled as labeled regions of
code. The players are modeled as modules. All state
propositions, boolean and integer variables are trans-
lated into Promela variables of appropriate type. There
is a central “transition controller”module that controls
transitions of the automaton. Each player receives the
current state from the controller module, makes a non-
deterministic choice of action and updates some vari-
ables if needed. Depending upon the current state,
variable values and action choices made by each player,
the controller causes the automaton to transition from
one state to another. Hence each state is a combi-
nation of labeled regions from the modules of all the
players and the controller. The state propositions are
always modified by the controller, whereas the player
modules are allowed to modify any variable.

• Obtain the Buchii automata for the protection enve-
lope for the player currently under consideration

• Generate scripts to execute SPIN to determine whether
the CGS satisfies the protection envelope. Execute
those scripts.

• Analyze the output from SPIN to find whether there is
a violation of the protection envelope property. If there
is a violation, automatically determine the last tran-
sition from the counter example generated by SPIN.
That transition indicates the action that need to be
deleted from a player’s available actions. For example,
in the self-checkout model we studied, the customer
can put an item in the bag in the initial state before
even pressing the start button as shown in Figure 5.
The proposition indicating that the start button has
been pressed is false in the error state and the propo-
sition indicating that an item has been bagged is true
in the error state. Thus the error state is a bad or un-
safe state. Hence Tutela removes the BagItem action
from the list of actions enabled for the customer in the
initial state in the protection envelope CGS.

• The last two steps are repeated as many times as neede-
d until no counter example trace starting from the ini-
tial state can be found.

2.5.3 Recommended Task Specification Model
A CGS will be used to internally model the recommended

method where the recommended steps dictate the enabled
human operator actions in each state. At this point we of-
fer two methods of providing the CGS corresponding to the
recommended method. The first one uses the CGS creation
GUI to create the CGS corresponding to the recommended
behavior, Crec. The other one transforms a sequence of hu-
man actions into a CGS. This method requires that the Call

be already created. Then each human action in the rec-
ommended task execution behavior allows to determine the
enabled action function and the transitions starting from the

Figure 9: CGS for recommended way of executing
task

initial state. For example, given a recommended task guid-
ance : PressStart, ScanItem and the initial state of of Call

as presented in Figure 5, the the initial state of the CGS for
the recommended behavior will be as presented in Figure 9.

2.5.4 Performing Our Framework Steps
After creating protected behavior CGS CPE, one can ver-

ify that it satisfies the safety property via model checking.
Then, given a Crec and a CPE Tutela can help determine
whether CrecvP CPE to see if CPE is safe too. Once Call

has been created, one can experiment with it by using dif-
ferent protection envelope properties to assess the degree of
robustness of the computer system against atypical human
operator behavior. In future, we intend for Tutela to (i)
automatically assist in assessing the robustness of the com-
puter system against common human errors suggested by
Hollnagel [12], like repetition, out of order execution, omis-
sion; (ii) automatically further assist in building Call. For
example: using user specified boolean propositional restric-
tions to automatically generate the actions available to play-
ers in each state. Given a CGS C = 〈P,Q, q0,Σ,Π, π, e, δ〉
and a propositional formula ϕ over propositions in Π for
an action a of player p, we translate it into an automaton
C′ = 〈P,Q, q0,Σ,Π, π, e′, δ′〉 as follows: for each state q ∈ Q,
if q |= ϕ then a ∈ e′p(q) otherwise a 6∈ e′p(q). δ′ is defined as:
∀q ∈ Q. ∀v̄ ∈ ep1(q)×ep2(q)× . . . ep|P |(q). δ

′(q, v̄) = δ(q, v̄).

3. CONCLUSIONS
We provide a framework for formalizing human operator

tasks and determining how resilient the computer system is
against human operator action variations. We propose that
human operators are unique in their dual nature of being
part of a system by behaving expectedly, and being part of
the environment by behaving aberrantly. Our framework
allows reasoning about the expected behaviors along with
controlled study of the manageable aberrant behaviors: pro-
tection envelops. We are building a tool for automating the
framework. In future we intend to develop a methodology
for automatically analyzing the robustness of the protection
envelopes with respect to common atypical executions of the
recommended procedures.

4. ACKNOWLEDGMENTS
This work was supported in part by NASA Contract num-

ber NNA10DE79C and National Science Foundation(NSF)
Award number 0917218. The content is solely the responsi-
bility of the authors and does not necessarily represent the
official views of the NASA and NSF.



5. REFERENCES
[1] Rajeev Alur, Thomas A. Henzinger, and Orna

Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002.

[2] E. Asarin, O. Maler, A. Pnueli, and J Sifakis.
Controller synthesis for timed automata. In IFAC
Symp. System Structure and Control, pages 469–474.
Elsevier, 1998.

[3] Matthew L. Bolton and Ellen J. Bass. Enhanced
operator function model: A generic human task
behavior modeling language. In Systems, Man and
Cybernetics, pages 2904–2911. IEEE, 2009.

[4] Edmund M. Clarke, E. Allen Emerson, and A. Prasad
Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[5] Lori A. Clarke, George S. Avrunin, and Leon J.
Osterweil. Using software engineering technology to
improve the quality of medical processes. In
International Conference on Software Engineering
(ICSE 2008), pages 889–898, 2008.

[6] Luca de Alfaro and Thomas A. Henzinger. Interface
automata. In ESEC / SIGSOFT FSE, pages 109–120,
2001.

[7] Dan Diaper. Task Analysis for Human-Computer
Interaction. Prentice Hall, New Jersey, USA, 1990.

[8] Marlon Dumas and Arthur H. M. ter Hofstede. UML
Activity Diagrams as a Workflow Specification
Language. In UML, pages 76–90, 2001.

[9] Orna Grumberg and David E. Long. Model checking
and modular verification. ACM Trans. Program. Lang.
Syst., 16(3):843–871, 1994.

[10] Elsa L. Gunter, Ayesha Yasmeen, Carl A. Gunter, and
Anh Nguyen. Specifying and analyzing workflows for
automated identification and data capture. In HICSS,
2009.

[11] Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. Permissive interfaces. In Michel
Wermelinger and Harald Gall, editors,
ESEC/SIGSOFT FSE, pages 31–40. ACM, 2005.

[12] Erik Hollnagel. The phenotype of erroneous actions.
International Journal of Man-Machine Studies,
39(1):1–32, 1993.

[13] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley, 2004.

[14] Farnam Jahanian and Aloysius K. Mok. Safety
analysis of timing properties in real-time systems.
IEEE Trans. Software Eng., 12(9):890–904, 1986.

[15] C.W. Johnson and A.J. Telford. Extending the
application of formal methods to analyse human error
and system failure during accident investigations.
Software Engineering Journal, 11(6):335–365, 1996.

[16] Cliff B. Jones. Tentative steps toward a development
method for interfering programs. ACM Trans.
Program. Lang. Syst., 5(4):596–619, 1983.

[17] John G. Kemeny. Report of The President’s
Commission on the Accident at Three Mile Island:
The Need for Change: The Legacy of TMI.
Washington, D.C.: The Commission, 1979.

[18] Orna Kupferman and Moshe Y. Vardi. Robust

satisfaction. In CONCUR, volume 1664 of LNCS,
pages 383–398. Springer, 1999.

[19] Frank P. Lees. Loss Prevention in the Process
Industies. Butterworths, 1980.

[20] Nancy G. Leveson. Software safety: Why, what, and
how. ACM Comput. Surv., 18(2):125–163, 1986.

[21] Nancy G. Leveson and Clark Savage Turner.
Investigation of the therac-25 accidents. IEEE
Computer, 26(7):18–41, 1993.

[22] Peter A. Lindsay and Simon Connelly. Modelling
erroneous operator behaviours for an air-traffic control
task. In Australian User Interface Conference, pages
43–54, 2002.

[23] C.M. Mitchell. Gt-msocc: A domain for research on
human computer interaction and decision aiding in
supervisory control systems. IEEE Transactions on
Systems, Man and Cybernetics, 17(4):553–572, July
1987.

[24] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. In POPL, pages 179–190, New York,
NY, USA, 1989. ACM.

[25] Amir Pnueli. The temporal logic of programs. In
FOCS, pages 46–57. IEEE, 1977.

[26] Dongmin Shin, Richard A. Wysk, and Ling Rothrock.
Formal model of human material-handling tasks for
control of manufacturing systems. IEEE Transactions
on Systems, Man, and Cybernetics, Part A,
36(4):685–696, 2006.

[27] Rishabh Singh, Dimitra Giannakopoulou, and
Corina S. Pasareanu. Learning component interfaces
with may and must abstractions. In CAV, volume
6174 of LNCS, pages 527–542. Springer, 2010.

[28] A. Prasad Sistla. Safety, liveness and fairness in
temporal logic. In Formal Aspect of Computing, pages
495–511, 1999.

[29] Rachel L. Smith, George S. Avrunin, Lori A. Clarke,
and Leon J. Osterweil. Propel: an approach
supporting property elucidation. In ICSE, pages
11–21. ACM, 2002.

[30] Juoko Suokas. On the reliability and validity of safety
analysis. Technical Report publications 25, Technical
Research Center of Finland, Finland, September 1985.

[31] Oksana Tkachuk, Matthew B. Dwyer, and Corina S.
Pasareanu. Automated environment generation for
software model checking. In ASE, pages 116–129.
IEEE Computer Society, 2003.

[32] W. M. P. van der Aalst. Verification of workflow nets.
In ICATPN, volume 1248 of LNCS, pages 407–426.
Springer, 1997.

[33] Wil M. P. van der Aalst and Arthur H. M. ter
Hofstede. Yawl: Yet Another Workflow Language. Inf.
Syst., 30(4):245–275, 2005.

[34] David J. van Horn. Risk assessment techniques for
experimentalists. In Chemical Process Hazard Review,
pages 23–29, Washington, D.C., 1985. American
Chemical Society.

[35] Xiangpeng Zhao, Zongyan Qiu, Chao Cai, and Hongli
Yang. A formal model for human workflow. In
International Conference on Web Services (ICWS),
pages 195–202, 2008.


