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ABSTRACT
The current practice of component based engineering raises
concerns in industry when the specification of proprietary
components suffers from inaccuracy and incompleteness. The
engineers face difficulties in producing quality systems since
they lack knowledge on the interoperability of components.
In order to address this issue, we present a novel framework
for iterative refinement of specification for component based
systems. The novelty is the use of a preliminary behav-
ioral model as a source for triggering refinement iterations.
Moreover, it exploits rigorous formal techniques to achieve
high-level system validation as an integral part of the refine-
ment procedure. The framework has been evaluated on an
automotive system in which the embedded software control
units were developed by third-party vendors. The final re-
sults produced an improved formal system specification that
identified several behaviors that were previously unknown.

Keywords
Component Based Systems, Specification Refinement, Inter-
operability, Reverse Engineering, System Validation

1. INTRODUCTION
Component based engineering enables a systematic and

cost-effective reuse of prefabricated parts – a characteristic
of mature engineering disciplines. Most embedded system
domains, especially the automotive industry, are relying on
component based approach to meet time-to-market and eco-
nomical constraints. Among the several challenges that are
faced in its adoption, an important one arises from the na-
ture of component specifications available in practice. Ide-
ally, they should reflect their precise behaviors. However,
practice shows that specifications are never complete and
accurate [7]. Also, they are often available in textual for-
mat, whose informal semantics lead to misinterpretations in
different engineering environments. Often, engineers have to
use intuition and/or have to carry out extensive simulations
to identify additional information about the components.
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1.1 Motivation from the Automotive Industry
Electronic Control Unit (ECU), a fundamental electronic

building block of a modern automobile, used to be a rel-
atively simple, hardware oriented system. Today, it is a
multi-purpose computer system where functionality is often
delivered in software than in hardware. The complexity of
functions ranges from ergonomics, like power seat and power
windows, to active-safety features, like drive/brake-by-wire,
blind-spot detection, stability and emission control systems,
that are included as a standard functional package in the
new generation of automobiles. At the same time, the ad-
vent of variety of functions and needs for future automobiles
pose challenges to automotive OEMs for integrating com-
ponents which are designed and developed by third-party
vendors. Most of the ECUs are currently used as a black-
box solution, resulting in ECUs of different complexities and
capabilities integrated in a single vehicle.

The lack of precise specifications in the automotive indus-
try poses challenges to achieving interoperability and con-
formity of different components in an integrated system. At
the hardware level, standard communication protocols1 e.g.,
CAN, TTCAN, LIN, FlexRay, have been well-adopted by
the automotive industry. On the contrary, there has been a
long term effort for adopting a common architecture at the
software level. OSEK/VDX was the first initiative launched
by the French-German consortium of automotive industries
towards building an open standard. Several other initia-
tives, like AEE and EAST-EEA at European level, Forst-
Automotive and HIS in Germany have been a continuing
effort for building common software platforms. Now a novel
and well-versed standard in automotive community, called
AUTOSAR, is said to be the lingua franca for the develop-
ment of ECUs between automotive OEMs and suppliers as
well as their use within different vehicle types.

Despite these efforts, it is still very hard to synchronize the
application development among different suppliers having
different maturity levels. The common platform for devel-
oping vehicle functions, such as AUTOSAR, provides means
for cooperation among various OEMs and suppliers on in-
terface standards. But at the same time, the flexible soft-
ware architecture and challenges of new vehicle functions
provides room for competition in implementation among
suppliers, thus giving rise to varying qualities and interoper-
ability choices. The lack of synchronization also stems from
the fact that the specification of functions that is available in
textual format does not provide details of the specific design

1For various technologies related to automotive electronics
mentioned in this section, refer to [13] for details.
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decisions and implementations. For example, the timing be-
havior of modules in AUTOSAR is not specified at a level
detailed enough to ensure that a specific module from one
vendor could expect an output from another module (sup-
plied by another vendor) in a time frame matching for both
modules. Similarly, a large group of functionalities, inter-
faces and configurations specified as basic modules is not
mandatory. The suppliers are free to implement any com-
bination2 of functionalities and configurations. The conse-
quence is that many suppliers offer different sets of similarly
interacting functions that further results in mismatching be-
haviors and challenges for integration [7].

1.2 Our Approach and Contribution
In order to address the motivated issue, we present an

approach for systematic refinement of the specification of a
system that is composed of various black-box components.
At the same time, the approach helps in identifying potential
compositional and nonconformance problems in the system
through the application of rigorous formal methods. The
approach has been evaluated on automotive embedded sys-
tems, but it can also be applied to other domains where
component based systems are prevalent.

Our approach exploits the application of inference tech-
niques [5] to iteratively refine the specification of an inte-
grated system of black-box components by learning state
machine models through observing system executions. In
general, inference techniques require counterexamples to suc-
cessively improve the conjectured models [23, 5]. Therefore,
the traditional approaches using inference techniques em-
ploy different testing strategies to generate extensive tests
in search of counterexamples (cf. [22]). In contrast to the tra-
ditional approach, our approach does not take into account
any testing strategy to trigger refinements; instead it relies
on a preliminary behavioral model that can be an effective
source for finding counterexamples. Such a behavioral model
can be often derived from the available system artifacts viz.,
textual specification, interface descriptions, domain knowl-
edge, etc. Note that this model is only as good as the quality
of the artifacts, and therefore, often inaccurate and incom-
plete. But at the same time, it provides valuable insights
into how the components should interact in the integrated
system, which may be hard to deduce solely from inference
techniques. Exploiting this benefit, we can compute discrep-
ancies between the inferred model and the behavioral model
through a systematic state space exploration. Such discrep-
ancies (or counterexamples), as we will show, can be used
to iteratively obtain a refined specification.

A global view of our approach is shown in Figure 1. It
consists of two procedures, namely, inference procedure and
conformance checking procedure, that are unified under one
framework. The inference procedure infers the formal mod-
els of the black-box components individually by employing
an existing inference algorithm [18]. It tests each compo-
nent interactively and deduces its formal model, based upon
the observations from testing. The inferred models are then
combined as an asynchronous product that potentially rep-
resents the system’s global behavior. The product is ana-
lyzed for any compositional problems, e.g., live-locks, that
may be present in the system. If the problem is identi-
fied on the system, the procedure terminates by reporting

2There are about 50 basic software modules and 3344 config-
uration parameters in AUTOSAR specification Release 4.0.

Figure 1: Our Approach to Specification Refinement

the problem in the integrated system. If there is no com-
positional problem, the product is fed to the conformance
checking procedure. A preliminary behavioral model, built
independently, is provided as another input to the proce-
dure. The procedure performs reachability analysis of the
product of the inferred models and the behavioral model.
This analysis computes discrepancies between the two mod-
els, if any. If a discrepancy identifies a counterexample for
the product, the product is refined by iterating the inference
procedure using the counterexample. Since the behavioral
model is incomplete, and may also be inaccurate, it is pos-
sible that a discrepancy also identifies nonconformance be-
tween the behavioral model and the system. In this case,
the procedure terminates by reporting the nonconformance.
When no discrepancy is detected, the procedure terminates
by outputting the product of the inferred models as a refined
specification.

The novelty of our approach is in using a preliminary be-
havioral model that provides means for: (1) inference tech-
niques to compute discrepancies between the inferred models
and the system, such that the discrepancies can lead to the
refinement of the inferred models; and (2) high-level system
validation as an integral part of the specification refinement
procedure. Additionally, it is important to note that the ap-
proach does not apply inference techniques directly to the
full system, but to its individual components. The inferred
models for the components are composed into a single prod-
uct that potentially represents the global system. In this
way, it systematically explores the component interactions
within the system and thereby provides additional insights
into the behaviors of the integrated system.

Outline of the paper. Section 2 discusses existing ap-
proaches for specification refinement. Section 3 provides the
formal settings of our approach. Section 4 describes our
specification refinement framework and its illustration on
an example. Section 5 gives a full account on its evaluation.
Section 6 concludes the paper with some perspectives.

2. RELATED WORK
The problem of informal and partial specification for the

purpose of understanding system behaviors and its valida-
tion has been addressed extensively, both in academia and
industry. There is a wealth of literature on this topic but we
focus on a particular approach called specification mining [1]
that attempts to obtain formal specification directly from
the system artifacts (e.g., source code, interfaces, execution
traces etc.). When the system is a black-box, it largely re-
lies on the execution traces as the available artifact. In this
context, specification mining is akin to the grammatical in-
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ference [5] approach that aims at inferring a grammar or an
automaton model for an unknown language, given +ve and -
ve traces of the language. The common issue, though, is that
the accurate models can only be inferred with a sufficiently
broad set of traces. Theoretically, the number of traces re-
quired to infer an accurate model is unknown in the context
of a black-box system [23]. In practice, the techniques using
this approach require many refinement iterations in which
further traces are obtained to help eliminating inaccuracies
in the inferred models. Most approaches in specification
mining suffer from this major weakness and do not provide
explicit mechanisms for triggering refinement iterations. To
overcome this weakness, researchers have used different test-
ing strategies that are designed to produce tests that, when
applied, distinguish the inferred models from the black-box
system. Eventually, the tests can be included in the set of
existing traces for inferring the model. Shu and Lee [19]
and Walkinshaw et al. [22] performed random walks to gen-
erate tests from the inferred model and applied tests to the
system. In their more recent work, Walkinshaw et al. [21]
used coverage based criteria for generating tests from the in-
ferred models to distinguish it from the unknown specifica-
tion of the Linux TCP/IP stack. In another work, Dallmeier
et al. [4] proposed to generate tests by mutating an exist-
ing test-suite in order to find additional behaviors from the
ones inferred initially. Then each mutant is applied to the
system in isolation and new behavioral models are inferred
from the execution of the modified test-suite. Finally, the
initial model and the new models are merged. In all such
testing strategies, a main problem is that they rely on heuris-
tics that may not be effective in certain cases. Additionally,
generating and running a sufficiently large test suite is often
infeasible in practice, especially when tests are expensive to
execute (like in the automotive domain).

In contrast to relying on given execution traces, a dif-
ferent inference approach, called active inference [5], learns
the model by observing the system executions dynamically.
In this approach, tests of arbitrary lengths are generated
from the input alphabet of the system. Then, these tests
are applied on the system and the corresponding execution
traces are collected. In view of those traces, more tests are
generated such that more behaviors could be covered that
have not been observed by the initial tests. In this way, the
hidden state space is explored systematically until tests no
more observe new behaviors. The inference approach has
found successful application in testing and verification (see
for e.g., [14, 2, 20, 16]). The main reason for the success
is having the advantage of testing the system dynamically
based upon the observations that provide a good clue of the
execution paths for further exploration in search of new be-
haviors. However, this approach eventually faces the same
dilemma concerning how many tests can guarantee the ex-
ploration of the complete state space [2]. Peled et al. [14]
solved this problem by assuming a prior knowledge on the
upper bound on the state space size. They showed that
by generating tests of increasing lengths up to the known
size, the complete state space can be explored with an ex-
ponential cost in the limit. This solution, however, is not
realistic in a real world scenario where it is hard to assume
the upper bound on the number of hidden states. In the
same spirit, Groz et al. [9] proposed a k-step lookahead al-
gorithm to probe additional states. The advantage is the
flexibility in probing states with k-length tests, where k can

be selected according to the given resources. However, one
must enumerate each state of the inferred model to perform
lookahead. So unless the state space is small, it becomes
often intractable to enumerate the full state space.

Despite the various pros and cons, most of the mentioned
work apply specification refinement approaches either at a
component-level, or at a system-level, where the system is
taken as one unit. To the best of our knowledge, there is
no related work that considers specification refinement of a
system of black-box components wherein each component is
inferred individually and then combined to obtain a specifi-
cation of the system that captures the interactions between
the components. For compositional verification, Păsăreanu
et al. [16] have used active inference to synthesize assump-
tions about each component’s environment. The inferred
assumptions are refined by model checking the premises of
different assume-guarantee rules. Nevertheless, their work
is restricted to the interface level of the system and they do
not consider components as black-boxes.

3. FORMAL SETTINGS
The formal settings of the approach are described in this

section. Most of the definitions are standard and recalled
from the relevant literature, e.g., [11, 15].

3.1 Finite State Machine
A Finite State Machine (FSM) A = (S, s0, I, O, D, δ, λ),

where S is a finite set of states with the initial state s0,
I and O are finite sets of inputs and outputs respectively,
D ⊆ S×I is a specification domain, δ : D → S is a transition
function, and λ : D → O is an output function.

An FSM A is said to be complete if D = S × I. We
will omit the specification domain D in the case of complete
machines. If D is a proper subset of S × I, then A is called
partial. Given a sequence α = x1, . . . , xk of the set I∗ of all
possible finite input sequences, α is said to be a defined input
sequence at state s ∈ S if there exists states s1, . . . , sk, sk+1,
where s1 = s, such that (si, xi) ∈ D and δ(si, xi) = si+1 for
all i = 1, . . . , k. In words, α is a defined input sequence at
state s if the behavior of A for the sequence α is defined. We
use Ω(s) to denote the set of all defined input sequences for
state s. We note that, for a complete machine, Ω(s) = I∗

for any state s ∈ S, while a partial FSM can have states
where the set of defined sequences is empty.

We extend the transition and output functions from input
symbols to defined input sequences, including the empty se-
quence ε, as usual. For simplicity, we use the same nota-
tions δ and λ for the extended functions. Let δ(s, ε) = s
and λ(s, ε) = ε for any s ∈ S. Suppose that β is a defined
input sequence at state s and δ(s, β) = s′. Then, for any
x ∈ I such that (s′, x) ∈ D, we define δ(s, βx) = δ(s′, x) and
λ(s, βx) = λ(s, β)λ(s′, x).

Given states s, t ∈ S, s and t are equivalent, if Ω(s) = Ω(t)
and λ(s, α) = λ(t, α) for all α ∈ Ω(t). States s and t are dis-
tinguishable if there exists an input sequence α ∈ Ω(s)∩Ω(t)
such that λ(s, α) �= λ(t, α). An FSM is said to be reduced if,
for every pair of states s, t ∈ S, s and t are distinguishable.
As opposed to complete FSMs, partial FSMs may have sev-
eral distinguishable reduced forms (see, e.g., [8], for details).
Figures 2 and 3 are examples of complete reduced FSMs.

The notions of equivalence and distinguishability could
also be extended from states to machines. Let A = (S, s0, . . .)
and B = (T, t0, . . .) be two FSMs, such that S ∩ T = ∅.

3Copyright © Fraunhofer IESE 2011



Figure 2: FSM M Figure 3: FSM N

Then we say that A and B are equivalent, if s0 and t0 are
equivalent; A and B are distinguishable if s0 and t0 are dis-
tinguishable.

3.2 System Configuration
The architecture of the system composed of FSMs (or sim-

ply, FSM system) is described as follows. An FSM system
is composed of n components, i.e., {C1, . . . , Cn}, where for
each i �= j, 1 ≤ i, j ≤ n, Ci = (Si, s0i, Ii, Oi, δi, λi) and
Cj = (Sj , s0j , Ij , Oj , δj , λj) are complete FSMs, such that
Ii ∩ Ij = ∅ and Oi ∩ Oj = ∅. The components Ci and Cj

communicate if Ii ∩ Oj �= ∅ or Oi ∩ Ij �= ∅. Let I be the
union of all inputs, i.e., I =

⋃n
i=1 Ii, and O be the union of

all outputs, i.e., O =
⋃n

i=1 Oi. The set Iext = I\O contains
the external inputs of the system that can be given from
the environment and Oext = O\I contains the external out-
puts of the system that can be given to the environment.
We consider a system with at least one external input and
one external output. For each component Ci it holds that
if a ∈ Ii then either a ∈ Iext or a ∈ Oj , and if a ∈ Oi

then a ∈ Oext or a ∈ Ij of some Cj . Figure 4 shows the
architecture of the FSM system.

The system executes in a run-to-completion fashion and it
receives inputs only when it is in a stable mode. The system
is in stable mode when the states of all its components are
stable. A state is stable when none of its outward transitions
is enabled; otherwise it is said to be unstable. Initially, the
system is in stable mode and can be stimulated by provid-
ing an external input from Iext. A component receives the
input and produces either an external output to the envi-
ronment or an internal input to another component. The
other component receives the internal input and produces
either an external output to the environment or an internal
input to another component. Finally, the system produces
an external output to the environment and stays in the sta-
ble mode until it receives another external input. Note that
the components have disjoint sets of inputs, therefore only
one component can be stimulated by any input in/to the
system. Owing to space limitations, we omit a discussion
on how such a configuration would suffice in the considered
domain. An example of the FSM system composed of com-
ponents M and N is given in Figure 5. The external inputs
(outputs) are labeled in uppercase letters and the internal
inputs (outputs) conversely.

3.3 Product of FSMs
Given n FSM components C1, . . . , Cn, their product, de-

noted by P, is an FSM (S, s0, I, O, D, δ, λ), where I =
⋃n

i=1 Ii

and O =
⋃n

i=1 Oi are finite sets of all inputs and outputs
respectively. The set of states is defined as S ⊆ S1 ×
· · · × Sn × (I ∪ {ε}). Since the system executes in a run-
to-completion fashion, a state in S receives only one input
at a time. The symbol ε in the state represents no input,
i.e., the system is in stable mode and the state is a stable

Figure 4: Architecture
of the FSM system

Figure 5: Example of
an FSM System

state of the system waiting for an external input. The state
s0 = (s01, . . . , s0n, ε) ∈ S is the initial state and D ⊆ S × I
is the specification domain. The functions δ and λ are ob-
tained by applying the following rules. For 1 ≤ i ≤ n, let
Ci = (Si, s0i, Ii, Oi, δi, λi), then for si ∈ Si and a ∈ I

1. If (s1, . . . , sn, ε) ∈ S and a ∈ Iext ∩ Ii then
λ((s1, . . . , sn, ε), a) = λi(si, a) and

• If λi(si, a) ∈ Oext then δ((s1, . . . , sn, ε), a) =
(s1, . . . , δi(si, a), . . . , sn, ε)

• If λi(si, a) /∈ Oext then δ((s1, . . . , sn, ε), a) =
(s1, . . . , δi(si, a), . . . , sn, λi(si, a))

2. If (s1, . . . , sn, a) ∈ S and a ∈ Ii\Iext then
λ((s1, . . . , sn, a), a) = λi(si, a) and

• If λi(si, a) ∈ Oext then δ((s1, . . . , sn, a), a) =
(s1, . . . , δi(si, a), . . . sn, ε)

• If λi(si, a) /∈ Oext then δ((s1, . . . , sn, a), a) =
(s1, . . . , δi(si, a), . . . , sn, λi(si, a))

By construction, all the stable states of the product have a
transition for each external input, i.e., for all (s1, . . . , sn, ε) ∈
S and a ∈ Iext, ((s1, . . . , sn, ε), a) ∈ D.

The product has a compositional loop (or simply, loop)
if there exists a sequence of internal inputs α ∈ (I\Iext)

∗,
such that δ(s, α) = s, where s ∈ S is an unstable state. In
words, the product has a loop if there is a cycle of internal
inputs and outputs over unstable states with no stable state
in between. Let α′ ∈ I∗ such that δ(s0, α

′) = s, then α′α is
a witness to the loop in the product. The product is called
loop-free if it contains no loops.

3.4 Distinguishing Machine
Let B and P be two FSMs. To check if B and P are

distinguishable, a designated FSM, called a distinguishing
machine has been used by Petrenko and Yevtushenko [15],
whose states are pairs of states of B and P, its initial state
is the pair of initial states of the two machines and the re-
maining states are determined by performing reachability
analysis. A designated output fail is used to signal when
the two machines do not agree on a common input.

Formally, given FSM B = (S, s0, I, O, DB, δB, λB) and FSM
P = (T, t0, I

′, O′, DP , δP , λP) such that Ω(s0) ⊆ Ω(t0), the
FSM DM = (Q, q0, I, O∪{fail}, D, Δ, Λ) is the distinguish-
ing machine of B and P, where Q ⊆ {S×T}, q0 = (s0, t0) ∈
Q, fail �∈ O ∪ O′, D = {((s, t), x)|(s, t) ∈ Q, (s, x) ∈ DB}
and the functions Δ and Λ are obtained as follows:

• Δ((s, t), x) = (δB(s, x), δP(t, x)), if (s, x) ∈ DB
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Figure 6: Learning FSM N

• Λ((s, t), x) =

⎧⎪⎪⎨
⎪⎪⎩

λB(s, x) if (s, x) ∈ DB and
λB(s, x) = λP(t, x)

fail if (s, x) ∈ DB and
λB(s, x) �= λP(t, x)

The state set Q is the smallest set obtained by the ap-
plication of the above rules. If B has n states and P has
m states, the size of Q is bounded by nm. If B and P are
distinguishable, then any α ∈ I∗ that, applied at the ini-
tial state of DM , covers a transition with the output fail,
distinguishes B and P. Such a sequence is called a fail-trace.

3.5 Model Inference
We use the active inference algorithm [18] in our specifi-

cation refinement approach that learns an FSM from a black
box component via testing. To save space, we describe the
algorithm with an illustration succinctly, while referring to
the original paper [18] for the theoretical foundations and
details on the algorithm complexity.

Assume that the input alphabet of the component is known.
The algorithm calculates a test-suite from the alphabet and
applies tests to the component. It observes and records the
component behaviors in response to those tests. Based upon
the observations, it calculates a new test-suite and applies
the tests to the component. It iterates in this fashion and
records observations at each iteration until some conditions
on the overall observations are satisfied. Finally, it calcu-
lates a complete reduced FSM that is consistent with the
collected observations. Here, a demonstration of the algo-
rithm is given with the help of a simple example.

Let the machine shown in Figure 3 be a black box com-
ponent defined over input alphabet {x, y}. The algorithm
starts by applying all the inputs in the set on the initial
state of the component. The component responds with b and
b, on the inputs x and y, respectively. These observations
are recorded in some data structure. Here, we use the tree
structure and borrow the definitions for nodes and edges, as
defined for states and transitions, respectively (Section 3.1),
for simplicity. Figure 6(a) shows the tree after recording the
observations from the initial tests. This tree is further ex-
tended by calculating tests from each leaf node of the tree.
In this example, the tests xx, xy, yx and yy are applied
to the component and the tree is extended with new obser-
vations as shown in Figure 6(b). After each extension, the
algorithm checks whether the extended node is equivalent
to some predecessor node in the tree. Here, nodes 2 and 3
are equivalent to node 1 in Figure 6(b). At this point, the
tree is not extended any further, assuming that all future
behaviors from nodes 2 and 3 would be same as of node 1.
The algorithm merges the equivalent nodes in the tree, i.e.,
1, 2 and 3, which shapes the FSM as shown in Figure 6(c).

As is clear, the FSM in Figure 6(c) is not a correct con-
jecture for the original machine shown in Figure 3. Sup-
pose a counterexample xxx is provided that distinguishes
the two machines when applied to their initial states. The
algorithm then processes the counterexample to produce a
refined model such that it cannot be distinguished anymore
with the same counterexample. In order to process the coun-
terexample, the algorithm takes the last observation tree
(i.e., Figure 6(b)) and extends it with the counterexample
and the corresponding behavior, as shown in Figure 6(d).
Node 2 is now no longer equivalent to node 1 since the se-
quence xx produces different behaviors on the two nodes.
The algorithm extends the tree from node 2 in order to check
for the equivalence. The extension is shown in Figure 6(e)
that depicts the fan out from nodes 4 and 5. It can be seen
that node 5 is equivalent to node 2, node 8 to node 4 and
node 9 to node 1. Finally, the algorithm merges the equiva-
lent nodes in the tree, i.e., 1, 3, 9; 2, 5 and 4, 8, which shapes
the FSM as shown in Figure 6(f).

3.6 Behavioral Model
A salient feature of our approach lies in the use of a pre-

liminary behavioral model, that is incomplete, and may even
be inaccurate. Verification often relies on the existence of a
model of a system that captures the behavior of the system
to be verified. Such a model is derived by abstracting away
the details of the system from its implementation that are
not relevant for the property to be verified (for example, cf.
[6]). However, in our context of black-box components, the
available artefacts are specification and design documents,
interface descriptions etc. To suit this, we derive a pre-
liminary behavioral model by formalizing the information
available in these artefacts. For example, a technique like
Sequence Based Specification (SBS) [3] can be used here.
It proposes a set of techniques for stepwise construction of
traceably-correct black-box specification that is based on
a sequence enumeration procedure and basic requirements
analysis skills. The end result can be easily converted into
a formal representation. In our case, the formal representa-
tion is a (partial) FSM model of the available specification
of a given automotive system.

4. ITERATIVE REFINEMENT

4.1 Framework
The framework for iterative refinement of specification for

an integrated system of black-box components is depicted in
Figure 7. The framework consists of two procedures, namely
inference procedure and conformance checking procedure.
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Figure 7: Framework of Iterative Refinement of Specification

4.1.1 Inference Procedure
The inference procedure infers models of the components

individually using the inference algorithm illustrated in Sec-
tion 3.5, and then computes the product of the inferred mod-
els as described in Section 3.3, in Step (a).

If the product has a compositional loop, the witness to the
loop has to be confirmed on the real system, in Step (b). A
compositional loop can be confirmed on the real system by
executing the witness on the system and matching its output
behavior with that of the product. Imperatively, since the
components in the systems are black-boxes, it is not known
how many times a cycle should be observed to declare a
loop. In our framework, we declare the loop in the system,
if the cycle is observed twice. Thus, the loop (witnessed by
α′α) is confirmed, if the product and the system produce
the same output behavior, when simulating α′αα starting
at their initial states.

If the loop is confirmed, the procedure terminates by re-
porting the loop in the system. Otherwise, the loop is spu-
rious, which is due to the inaccuracy of the inferred models.
In this case, the witness to the loop acts as a counterexam-
ple to refine models by the inference algorithm, in Step (c).
The inference procedure then iterates with the refined mod-
els and terminates when a loop-free product is obtained.

4.1.2 Conformance Checking Procedure
The conformance checking procedure starts when the loop-

free product is obtained by the inference procedure. A pre-
liminary behavioral model, that is built independently, is
provided as another input to the procedure. The procedure
computes the distinguishing machine of the product and the
behavioral model as described in Section 3.4, in Step (d).

Any fail-trace computed by the distinguishing machine
implies either a counterexample for the product or a non-
conformance between the behavioral model and the system.
In order to confirm this, the fail-trace has to be simulated
on the system, in Step (e). A fail-trace α is confirmed if the
product and the system produce the same output behavior,
when simulating α starting at their initial states.

If a fail-trace is not confirmed, then it is spurious, which
is due to the inaccuracy of the inferred models. In this case,
the fail-trace acts as a counterexample, using which the mod-

Figure 8: Model M (1) Figure 9: Model N (1)

els are refined by the inference algorithm in Step (c). The
inference procedure thus iterates to provide a new product
of the refined models.

On the contrary, if a fail-trace is confirmed, it implies
that the fail-trace does not distinguish the product and the
system, but the behavioral model and the system. In this
case, the fail-trace points to a nonconformance between the
behavioral model and the system. The procedure then ter-
minates by reporting the nonconformance.

When there are no fail-traces in the distinguishing ma-
chine, the procedure terminates by outputting the product
of the inferred models as a refined specification.

4.2 Illustration
The approach is illustrated on the system given in Fig-

ure 5, that is composed of components M (Figure 2) and N
(Figure 3). The illustration shows how specification refine-
ment and system validation are simultaneously achieved in
an iterative fashion using a preliminary behavioral model B
(Figure 12).

At first, the inference procedure infers the models of com-
ponents M and N individually as shown in Figure 8 and 93.
Then it computes the product P(1) of the inferred models
as shown in Figure 10. P(1) has a loop that is witnessed
by the sequence Axbxb. In order to confirm the loop on the
system, the sequence is extended as Axbxbxb and simulated
on the system. The output behavior of the system on this
sequence is xbxbxD, whereas the output behavior of P(1) is
xbxbxbx. Therefore, the loop is not confirmed and Axbxbxb
is a counterexample for the inferred models.

In order to find the model that is to be refined, the coun-
terexample is projected to the input alphabet of each com-
ponent. This is achieved by eliminating all symbols that
do not belong to the input alphabet of the particular com-

3Note that the inference of N is shown in Section 3.5.
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Figure 10: Product P(1) of M (1) and N (1). The states
in bold are the stable states in the product.

ponent. Each projection is then applied to its respective
component in isolation. If the behavior of the component
is different from its inferred model, then the model is to be
refined. In this example, the projection of Axbxbxb to the in-
put alphabet of M and N gives the sequences Abbb and xxx
respectively. It is found that the component M responds
same as its model M (1) on the sequence Abb. However, the
component N responds as bbD and its model N (1) responds
as bbb on the sequence xxx. This implies xxx is a counterex-
ample for N (1).

Figure 11: Model N (2)
Figure 12: Preliminary
Behavioral Model B

Figure 13: Product P(2)

of M (1) and N (2)

Figure 14: Distinguish-
ing Machine DM (1) of B
and P(2)

N (1) is refined after processing the counterexample xxx
through the inference algorithm as N (2) (Figure 11)4. Now

the product P(2) of M (1) and N (2) is computed, which is
shown in Figure 13. P(2) is a loop-free product, hence the
inference procedure terminates by providing the product to
the conformance checking procedure.

Let the partial FSM in Figure 12 be the preliminary be-
havioral model B. Then the distinguishing machine DM (1)

of B and P(2) is computed as shown in Figure 14. The
machine has a fail-trace, i.e., AxbxbxAxA, which is to be
confirmed on the system. The output behavior of the sys-
tem on the fail-trace is xbxbxDxDx, whereas the output
behavior of P(2) is xbxbxDxDy. Therefore, the fail-trace is
not confirmed and AxbxbxAxA is a counterexample for the
inferred models.

In order to find the model that is to be refined, the fail-
trace is projected to the input alphabet of each component.

4Note that the refinement of N (1) is shown in Section 3.5.

Figure 15: Model M (2)
Figure 16: Product P(3)

of M (2) and N (2)

Figure 17: DM (2) of B and P(3)

Therefore, the projection of AxbxbxAxA on the input alpha-
bet of M and N gives input sequences AbbAA and xxxx re-
spectively. Each projected sequence is applied to its respec-
tive component. It is found that the component N responds
same as its model N (2) on the sequence xxxx. However,
the component M responds as xxxxx and its model M (1)

as xxxxy on the sequence AbbAA. This means AbbAA is a
counterexample for M (1).

M (1) is refined after processing the counterexample AbbAA
through the inference algorithm as M (2) (Figure 15). Now

the loop-free product P(3) of M (2) and N (2) is computed,
which is shown in Figure 16.

This follows computing the distinguishing machine DM (2)

of B and P(3) as in Figure 17. The machine has a fail-trace,
i.e, AxbxbxAxAx, to be confirmed on the system. The out-
put behavior of the system on the fail-trace is xbxbxDxDxD,
which is same as the output behavior of P(3). Therefore, the
fail-trace is not confirmed. The procedure terminates by re-
porting the nonconformance between the system and the
behavioral model that is identified by AxbxbxAxAx. P(3) is
the refined specification obtained in this example.

5. EVALUATION
The approach of iterative refinement of specification has

been evaluated on an automotive system, precisely, an em-
bedded door control system. The system is located inside
the physical car doors and it controls functions related to
mirrors, windows and lockings. The textual specification [10]
of a driver’s side door was provided by our industrial partner
with regard to the general functionalities, but without repre-
senting the real existing system. The specification consisted
of 60+ pages, detailing the system characteristics and dia-
grams of its physical interfaces. The specification of the in-
ternal ECUs was by no means complete and the detailed de-
scription of all the interactions between ECUs was missing.
Only general behaviors of the ECUs and some input/output
signals were specified. The ECUs were black-boxes that were
collected from external sources and integrated by our indus-
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Figure 18: Snapshot of PROVEtech:TA GUI

trial partner in the final door control system.

5.1 Identification of System Boundaries
The first step in the evaluation study was to identify sys-

tem boundaries in order to execute inference and confor-
mance checking procedures. There were multiple interfaces
that could be taken into account to estimate the bound-
aries. They were CAN/LIN bus inputs (messages from the
CAN/LIN into the ECUs), CAN/LIN bus outputs (messages
put by the ECUs onto the CAN/LIN), actuators (output
signals sent as a result of ECU behaviors), user inputs (mes-
sages from the human operators to the ECUs) and sensors
(messages from the devices such as temperature sensors to
the ECUs). In our case, some information about the inter-
faces and the concrete signals was given but scattered all
over the specification document. Moreover, only those sig-
nals were given that were necessary to explain interfacing
and/or describing general behaviors of the ECUs.

This partial information was insufficient to extract a broad
spectrum of behaviors during the inference procedure. There-
fore, other sources were sought out such as domain exper-
tise and knowledge of the testing tools that are commonly
used in the automotive domain. For our industrial partner,
PROVEtech:TA [12] is a well-known test runner that auto-
mates the test execution process for ECUs. The tool is also
equipped with a GUI that provides monitors for observing
sensors and actuators of ECUs graphically (see Figure 18 for
a snapshot). It also provides a common vocabulary of signal
names for CAN/LIN buses so that the tester can observe the
signal values while ECUs are active. Using these monitors
and signals, the ECUs were simulated on some basic func-
tions relative to each ECU one by one. A script was written
in the tool to capture data for signals that were stimulated
when a sensor or an actuator became active. Finally, those
signals became a part of our larger input set. To avoid ex-
haustiveness, only relevant values were considered, and fur-
thermore, continuous stimuli (e.g., time, temperature) were
abstracted into discrete values.

5.2 System Configuration
The door control system was composed of mainly three

ECUs: Mirror Control Unit (MCU), power Window Control
Unit (WCU) and Locking System (LS). The ECUs were em-
bedded with additional subsystems such as telemetric and

temperature sensors. The three ECUs were real systems but
the subsystems were simulated by our execution environ-
ment. According to the available specification, a simplified
view of the ECU behaviors can be summarized as follows:

• MCU controls mirror movement around its horizon-
tal and vertical axis and also folding and expansion of
the mirror frame with specialized motors. It is also
equipped with a heater that responds to the outside
temperature and turns on/off heating automatically.

• WCU controls the window’s opening/closing move-
ment with the help of specialized motors. It is equipped
with position sensors to stop motor rotating when the
window is opened/closed completely. An obstacle de-
tector is also embedded that interrupts window closing
when an obstacle is detected in the window frame.

• LS controls automatic locking/unlocking of the door.

5.3 Behavioral Model
Using the 60+ page textual specification document [10], a

total of 44 functional requirements were extracted for MCU,
WCU and the Locking System. Not all the requirements
were relevant as some of them were only obligated to hold in
certain contexts. The preliminary behavioral model was de-
rived by slightly modifying the sequences enumeration pro-
cedure [3]. This was done by starting from the initial state
and empty sequence, enumerating sequences of all inputs
one by one, annotating the corresponding outputs with each
input, adding the next state. Finally, the enumeration is
folded into an FSM by deriving the behavior equivalence re-
lation between different sequences. Whenever the behavior
of a particular sequence was unclear or unspecified, further
enumeration of the sequence was halted since the next state
of the path was uncertain. This resulted in a partial FSM
model where some inputs on the states were undefined. The
model was produced after peer-reviews by the domain ex-
perts that helped removing further inconsistencies. The final
model B(1) consisted of 23 states and 305 transitions.

5.4 Tool Support
The framework has been implemented in our in-house tool

called RALT. It is equipped with GUI, which helps user to
plug the system to the tool via test adapters. The user
can also interact with the tool during the framework exe-
cution and can visualize outputs (e.g., inferred models, fail-
traces) at the intermediate steps. The visualization is pro-
vided by external tools (e.g., Graphviz5) that are connected
with RALT via their relevant automata libraries.

PROVEtech:TA [12] was used as a test runner that au-
tomates the test execution process for the ECUs. It uses
WinWrap Basic for writing test scripts in which signal val-
ues were set for each ECU. Thus, the test adapter for RALT
was developed by writing test scripts in PROVEtech:TA
that executes tests and provides the observations. The map-
ping from abstract inputs/output to actual signals (and vice
versa) was hard-coded in the scripts, but is planned to be
extended towards a more generic solution.

The real-time interfacing between PROVEtech:TA and
the door control system and the electrical emulation of ex-
terior sensors and actuators was provided by the hardware-
in-the-loop (HiL) simulator from dSPACE6. It eventually

5www.graphviz.org
6www.dspaceinc.com
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Figure 19: Physical Setup for the Evaluation Study

applied tests to the target ECUs and received output sig-
nals accordingly. Figure 19 shows the physical setup of our
evaluation study in which the car door and the HiL simula-
tor are visible. Once the setup was prepared, the framework
execution was completely automatic.

5.5 Initialization
The preconditions of the experiments were set according

to an initialization setup. The door was locked and all ECUs
were switched off. The window was closed completely and
the mirror was folded. These conditions were also viewed
as system reset before applying each test sequence. In or-
der to control timing issues, appropriate delays were added
between two inputs in a test sequence. The delays were se-
lected after a careful study of the physical latencies in the
system. For example, it takes almost three seconds for the
power window ECU to open/close window completely start-
ing from the initial point. Similarly, appropriate delays were
injected to capture values of the selected output signals.

5.6 Experimental Results
The framework was executed in a total of five iterations

for inferring a refined specification of the door control sys-
tem. In the first iteration, the inference procedure yielded
a loop-free product P(1). The conformance checking proce-
dure computed the distinguishing machine of P(1) and B(1)

that produced fail-traces. The fail-traces occurred due to the
coarse behavioral model that had missed few non-obvious
initial states of the start-up/wake-up behavior in ECUs. For
example, it is required for activating the mirror heating func-
tion that the revolving motor (for mirror movement) should
also be in a running state. The framework reported the
nonconformance between B(1) and the door control system.

We added the initial states in the behavioral model and
created a new version B(2). The framework was restarted
for the second iteration. In this iteration, the distinguishing
machine of P(1) and B(2) produced fail-traces, which were
not confirmed on the door control system. The fail-traces oc-
curred due to the inaccurately inferred model of WCU. The
behavioral model showed that the window opening function
halts if the window closing signal is given in a time span less
than 5 seconds. As a consequence, the window stops opening
in the middle of the frame and it does not close in response
to the closing signal. The fail-trace acted as a counterexam-
ple and the inferred model of WCU was refined through the
inference procedure in the third iteration, automatically.

The third iteration computed the new product P(2) and

then the distinguishing machine of P(2) and B(2). It pro-
duced fail-traces, which in fact identified an interaction be-
tween the mirror folding/expansion function and the tele-
metric sensor. The mirror cannot be expanded if the car’s
velocity is greater than 50 mph. This behavior was partially
reflected in the product. Actually, the first few states of the
inferred MCU model represented this behavior via different
transitions for different velocities. As the model grew in size
during its inference, the latter states could not distinguish
this behavior on all velocities. This was due to the fewer
observations recorded during the inference procedure that
converged the behavior on those states for all velocities. A
longer counterexample could distinguish those states. This
longer counterexample was provided by the fault-trace of
the distinguishing machine, which was not confirmed on the
door control system. This triggered the fourth iteration au-
tomatically to refine the inferred model of MCU and then
computed the new product P(3). It is important to note
that B(2) also did not distinguish states for mirror expansion
function on different velocities. The fault-trace occurred
only due to the difference between the first few states of B(2)

and P(2). Therefore, the distinguishing machine of P(3) and
B(2) in the fourth iteration identified fail-traces, which were
confirmed on the system. Thus, the framework reported the
nonconformance between B(2) and the door control system.

We corrected this nonconformance in the behavioral model
and computed a new version B(3). After this, the frame-
work was started again for the fifth iteration. This time,
the distinguishing machine of P(3) and B(3) did not yield
any fail-traces and hence the procedure terminated by out-
putting P(3) as the refined specification. P(3) comprised of
45 states, compared to 40 states of B(3). The root cause for
this difference was that B(3) was still partial (as not all the
inputs were defined on all the states), hence the distinguish-
ing machine did not compute the transitions on those states
as per its definition.

5.7 Effort and Estimation Data
The evaluation study required relatively high initial ef-

fort. This included setting system boundaries, developing
test adapters and preliminary behavioral model. However,
the large degree of automation and automatic switching be-
tween inference and conformance checking procedures paid-
off this effort. The aggregated effort data is presented in
Figure 20.

As shown in the table, the major effort (34.5%) was in-
curred on scrutinizing the specification document for under-
standing the default behavior of the system. Many incon-
sistencies, unclear requirements and vague statements were
found during this process. In most cases, the problems were
resolved by consulting the domain experts with knowledge
about the possible implementation (e.g, voltage, sensor read-
ings) and conceptual issues (e.g., mechanical maneuvers).

The identification of system boundaries and finalizing the
inputs/outputs sets required a considerable effort (17.2%)
that included a careful review of signals (given in the doc-
ument) and monitors (given in PROVEtech:TA [12]). Once
the sets were prepared, developing the test adapters required
lesser effort (10.3%) as it involved only mapping abstract in-
puts/outputs to concrete signals in the test scripts.

Constructing the preliminary behavioral model was little
time consuming, but a relatively easy task after completing
the activity #1. The task was shared among three engineers
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Figure 20: Aggregated Effort Data

who were also involved in the activity #1. The effort (25.9%)
shown in the table is the total effort for constructing all
behavioral models (i.e., B(1), B(2) and B(3)) during the study.

The execution phase took much less effort (3.5%) as it was
supported by a high degree of automation setup. The data
collection (e.g, models, fail-traces) was represented graphi-
cally thanks to the external automata tools.

The effort spent over analyzing the results (8.6%) pro-
vided the complete landscape of all iterations discussed in
the previous section. Finally, the delta of the refined speci-
fication (P(3)) and the behavioral model (B(3)) highlighted
the missing transitions in the behavioral model.

5.8 Traditional vs. Current Approach
We have evaluated our approach against the traditional

inference approach, i.e., inference without taking into ac-
count any behavioral model. We conducted experiments for
the traditional approach on the same door control system
whose results have been presented in our previous work [17].
In those experiments, each component was inferred individu-
ally through the active inference algorithm [18] and then re-
finement iterations were triggered by applying random test-
ing. Figure 21 compares the two approaches on the door
control system by measuring the number of states and tran-
sitions for each component.

As using the behavioral model is the crux of the difference
between the two approaches, the current approach appeared
to be more effective. The inference of Locking System has
produced same number of states in both approaches. But
the number of transitions obtained in the current approach
is greater. The additional transitions were produced due to
the discrepancies from the behavioral model that specified
interactions between MCU and Locking System. However,
the tests generated in the traditional approach could not
produce those transitions. For all the rest of the ECUs,
many more states and transitions were obtained in the cur-
rent approach compared to the traditional approach. We
also noted that the provision of the behavioral model expe-
dites the inference procedure because the systematic compu-
tation of counterexamples explores the hidden states more
efficiently. Thus, the current approach has a better chance
to quickly converge upon the hidden model.

Figure 21: Traditional vs. current approach for re-
fining specification of the door control system

5.9 Threats to Validity
We identify the following threats to the validity of our

approach. Firstly, the refined specification obtained is only
complete to the extent that the approach has been able to
infer with the additional information from the behavioral
model. Therefore, all possible behaviors are not captured
in the specification. Secondly, there is a possibility of er-
ror masking. This can happen when there is an inaccuracy
in the preliminary behavioral model that coincides with the
product of the inferred models. The distinguishing machine
in this case will not have a fail-trace and the refined spec-
ification obtained will carry the inaccuracy. However, both
these threats are not particular to our proposed approach.
While the first one is due to the theoretical limitations of in-
ference techniques, the second is common to techniques rely-
ing on reference models. We believe that such threats can be
mitigated by involving domain experts for validating the be-
havioral model before its use, and later, for ascertaining the
quality of the refined specification. Finally, our evaluation is
based on relatively smaller, but real black-box components.
As discussed, the approach has demonstrated its benefit in
unraveling previously unknown behaviors, compared to the
traditional approach, with an acceptable additional effort.
However, further evaluation with larger examples is neces-
sary to argue for its scalability.

5.10 Lessons Learned
Many of the lessons learned from this evaluation study are

not new, but might not always be explicitly stated in similar
studies. The principal lessons are summarized below.

• The specification should never be treated as a golden ref-
erence, but as an alternate source of description for sys-
tem behaviors. In reality, even a mature specification
contains errors, ambiguities and inconsistencies especially
when different parts are provided by different partners
(OEMs, suppliers). Scrutinizing the evolving documents
is costly and often leads to different interpretations in dif-
ferent engineering environments.

• Inference of black-box components is more efficient when
supported by additional artifacts. Otherwise, the proce-
dure would most likely terminate by outputting inaccu-
rate models. In our study, this additional artifact was a
behavioral model, which even though incomplete, proved
effective in triggering the refinement iterations.
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• The text-to-model formalization step for the behavioral
model is mainly a manual effort. Our experience suggests
that it is better to involve only a small number of engineers
for this task. This reduces confusions caused by conflicting
interpretations and provides faster convergence.

• Selecting an appropriate set of system inputs for specifi-
cation inference is not an easy task. Even in white-box
case (e.g., when source code is available), setting the range
of input values requires a certain level of domain knowl-
edge, especially for hybrid systems. Similarly, mapping
abstract with concrete data is not trivial. A real system
works on concrete signals, timing notions, tags, and other
data fields. One has to abstract from all these details to
apply formal techniques, which is a formidable task.

6. SUMMARY AND PERSPECTIVES
The paper presented a solution for an increasingly chal-

lenging problem in component based engineering practice.
The problem stems from the fact that different components
are developed in different environments that give rise to mis-
matching behaviors and interoperability problems in an in-
tegrated system. The informal specification available with
these components often remains inaccurate and also lacks
details of the specific design decisions and implementations.

Our contribution is a framework for iterative refinement
of specification of component based systems. The frame-
work exploits formal techniques of inference, conformance
checking and reachability analysis. The novelty of our ap-
proach is the use of a preliminary behavioral model as an
additional source of information that triggers specification
refinement iterations in the inference procedure. Moreover,
it is also useful in achieving high-level system validation as
an integral part of the specification refinement procedure.

The evaluation of the framework has been conducted on
an automotive system, i.e., the door control system, which
is composed of a number of ECUs developed by third-party
suppliers. Although evaluated for embedded systems, the
framework can also be applied to other domains of compo-
nent based engineering where similar problems emerge.

A perspective to improve this framework is to devise tech-
niques for automatic construction of behavioral models. This
is planned for future work on specification refinement for au-
tomotive systems: Adaptive Cruise Control and Automated
Gear Selection systems, developed by our industrial part-
ner. Furthermore, better modeling techniques are required
to capture pertinent details of embedded systems, especially
for hybrid systems, which have both discrete and continuous
dynamics.
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