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ABSTRACT
Exploration and exploitation are two complementary as-
pects of Evolutionary Algorithms. Exploration, in partic-
ular, is promoted by specific diversity keeping mechanisms
generally relying on the genotype or on the fitness value. Re-
cent works suggest that, in the case of Evolutionary Robotics
or more generally behavioral system evolution, promoting
exploration directly in the behavioral space is of critical im-
portance. In this work an exploration indicator is proposed,
based on the sparseness of the population in the behavioral
space. This exploration measure is used on two challenging
neuro-evolution experiments and validated by showing the
dependence of the fitness at the end of the run on the ex-
ploration measure during the very first generations. Such a
prediction ability could be used to design parameter settings
algorithms or selection algorithms dedicated to the evolution
of behavioral systems. Several other potential uses of this
measure are also proposed and discussed.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning ; I.2.9 [Computing Methodologies]: Artificial
Intelligence—Robotics

General Terms
Algorithms

1. INTRODUCTION
The versatility of Evolutionary Algorithms (EA) allows

consideration of the evolution of robot parts, whether it be
their controllers, morphologies, or both [1]. For such an
application of EA, the fitness value results from the obser-
vation of the robot in interaction with its environment. The
mapping between a robot genotype and its behavior is com-
plex, as some evolved parts may not have any impact on the
output, while others may completely change the behavior:
in the case of the evolution of neuro-controllers, for instance,
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changing any part of the neural network not connected to the
outputs has no impact on function behavior, while switch-
ing the sign of a single connection weight may completely
change it.

The consequence of such a complex mapping is that pro-
moting diversity in the genotypic space only is not sufficient.
Promoting diversity in the behavioral space is an efficient so-
lution to the problem of premature convergence, a frequent
issue in deceptive behavioral systems [14] or in ER in gen-
eral [13]. This point is so critical that some studies rely on
promoting novelty in the behavioral space only. It can lead
to a given task resolution more surely than rewarding the
efficiency [9, 10].

This suggests that exploration in the behavioral space is
of critical importance. Measuring such an exploration may
have many applications:

• definition of fitness-independent criterion for run com-
parisons, in particular when they do not converge: it
may be a means of studying very challenging problems;

• parameter setting: finding the parameters that max-
imize the measure of exploration independently from
the task to be solved;

• definition of new Evolutionary Algorithms relying on
this measure and dedicated to the evolution of behav-
ioral systems in general and ER in particular, for in-
stance with a specific restart mechanism.

In this paper, we propose a simple measure of exploration
in the behavioral space. With the hypothesis that current
algorithms are not limited by their exploitation capacity, as
suggested by previous work on behavioral diversity [13, 14]
and novelty search [9, 10], exploration is a critical factor
and will then be strongly correlated to the performance. To
validate our indicator, we will then measure the correlation
between exploration at the beginning of a run and final per-
formance on two problems:

• a deceptive neuro-evolution problem where a neural
network must be able to compute a Xor And Xor func-
tion;

• a complex ER task where a simulated robot has to
collect balls in an arena.



2. RELATED WORK

2.1 Measuring Exploration
The impact of exploration and exploitation on the per-

formance of genetic algorithms has often been discussed [5].
However, only a few articles deal with explicitely measuring
exploration. One of the first approaches is the study of the
influence of mutation operators on an algorithm’s “explo-
ration power” in the genotypic space [2]. Paenke et al. [15]
use different approaches to perform a “diversity analysis” in
which they measure the genotypic diversity of populations
obtained with different parameters.

The problem of measuring exploration is also naturally
addressed in diversity maintenance techniques [7]. In [19],
the author calculates a diversity score based on the av-
erage distance between individuals and a so-called “aver-
age” individual. This measure allows one to know in which
state—exploration or exploitation—the algorithm is. Re-
cently, Lehman and Stanley proposed the novelty search al-
gorithm [9], which relies on the sparseness of the individual
among its generation, in addition to an archive of previous
behaviors. Such an approach explicitly rewards exploration,
and thus evaluates it.

More recently, Risi et al. tried to characterize the geno-
typic space of an evolutionary robotics experiment by pro-
jecting it into a two dimensional space [16]. That way, they
represented graphically the covered genotypic space of the
population obtained with different setups, thus performing
a qualitative analysis of exploration.

2.2 Behavioral approaches
In the previously mentioned works, the characterization of

exploration or diversity maintenance techniques are usually
performed in the genotypic space. However, in Evolutionary
Robotics and behavioral systems the mapping between geno-
type and behavior is very complex, and comparing genotypes
is not enough. Recent methods [9, 4] have shown that using
behavioral comparisons is more meaningful for those sys-
tems. Another recent study focuses on analysing the differ-
ent spaces, by measuring neutrality and ruggedness, which
can both influence exploration [17].

The diversity [14] or novelty [9] techniques use those dis-
tances in a behavioral space to foster exploration. Such
behavioral-based approaches require the definition of dis-
tances between behaviors. The following distances have
been explored: Edit distance between trajectories [18], NCD
(Normalized Compression Distance, an approximation of the
Kolmogorov complexity) and Entropy-based distance [8], Ham-
ming distance and Fourrier analysis [4], as well as more
problem-dependent distances [9, 14]. These distances are
a key factor for comparing behaviors, and so for computing
a behavioral exploration measure. Despite all these works,
there is no common agreement at the time of writing on the
best way to compare behaviors.

The archive of the Novelty search algorithm [9] can also
reveal information about behavioral exploration. The algo-
rithm adds individuals in an archive if their novelty score is
higher than an adaptive threshold ρmin. If many (resp. too
few) individuals are added during a single generation, ρmin

decreases (resp. increases). As a consequence, the analysis
of ρmin can give an insight into the exploration fluctuations.
This measure, however, is biased by the update mechanism
of ρmin, which depends on many parameters.

3. METHODS

3.1 Exploration measure
In order to measure how the evolutionary algorithm ex-

plores through the behavioral space, we need to define an
exploration indicator.

We propose an indicator based on the sparseness of each
individual among the population because intuitively, the
more scattered the population is, the higher the exploration
capacity of the algorithm should be.

Assuming we have a distance db(x, y) between the behav-
iors of individuals x and y, we can compute the sparseness
of x in its generation with the following formula:

sk(x) =
1

k

k
∑

j=0

db(x, σj) (1)

where σj is the j-th nearest neighbor of x, and k a fixed
parameter determined experimentally. The exploration (or
sparseness) measure at generation n is defined as the mean
sparseness of the population:

E
n =

1

N

∑

x∈popn

sk(x) (2)

where N is the size of the population. If k = N the explo-
ration is then:

E
n =

1

N2

∑

x,y

db(x, y)

Preliminary tests showed better results with k ∼ 15 for a
population size of 200. If En is high, then the population
is scattered and we will show empirically that the search is
more likely to find a solution quickly. However, the distance
db(x, y) is yet to be defined.

To define the distance between behaviors db(x, y), we will
consider behavior descriptors. The choice of the descriptors
obviously affects how the exploration is computed. For in-
stance, in an ER experiment, one can consider to describe
the behavior of the robot by tracing its trajectory, or the
stream of its sensors, etc.

The next section covers two neuro-evolution experiments
which will be used to validate our exploration measure. In
those experiments we will show that exploration is a critical
factor, therefore it will have a strong impact on the perfor-
mance of the experiment.

3.2 Xor And Xor

3.2.1 Artificial Neural Network Setup
The goal of this experiment is to evolve an artificial neural

network to compute a Xor And Xor Boolean function
[

(a⊕

b) ∧ (c ⊕ d)
]

, where a, b, c and d are Boolean values and
⊕ is the exclusive “or” operator (xor). The neural network
outputs one floating point value for each possible value of
its four inputs a, b, c and d, and the fitness function is the
sum of errors for each possible value of a, b, c and d.

The problem is solved using an artificial network whose
structure and parameters are evolved. See figure 1 for an
illustration. For simplicity reasons, we employed a typi-
cal graph-based direct encoding for neural networks named
DNN for Direct Neural Network in which two kinds of mu-
tations are possible:
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Figure 1: An evolved neural network in the Xor
And Xor problem. For each combination of a, b,
c and d, the network is simulated during 100 time
steps, and if the network is stable, we compare the
output o with the expected value of

[

(a⊕ b)∧ (c⊕ d)
]

.
If the output is oscillating or unstable, the fitness
associated to the network is arbitrarily set to 0. Only
connection weights are represented. This network
solves the problem with maximum fitness Fx = 1.0.

• structural mutation: addition/removal of a random
neuron or a random connection;

• parametric mutation: change of a randomly chosen
synaptic weight or a neuronal bias;

Cross-over was not used. The parameters of the evolutionary
algorithm are described in the appendix.

This problem is very deceptive: by returning 0 for any
possible Boolean input the network would be 75% correct
(for example if the output neuron o is not connected at all
to the input neurons). This way, those degenerate networks
are good solutions and are selected by the evolutionary al-
gorithm.

The fitness of an individual x is the sum of errors for each
possible set of inputs:

Fx = 1−
1

16

∑

{a,b,c,d}={0,1}4

|ox(a, b, c, d)−
[

(a⊕ b)∧ (c⊕ d)
]

|

where ox(a, b, c, d) is the output of the neural network x for
the input set (a, b, c, d). Each neural network is simulated
during 100 time-steps. Since we do not constrain the struc-
ture of the neural network, nothing prevents it from oscillat-
ing (See Figure 1). To avoid such behaviors, we attribute an
arbitrary low fitness if the variation of the output is above
0.0001 during the last 10 time-steps.

3.2.2 Behavior description for the exploration mea-
sure

To describe behaviors, each individual x is associated with
a vector vx that contains the outputs of the neural network
for each of the 16 different input sets:

v
x
j = ox(ij)

where ij is one of the 16 possible inputs for a, b, c and d. The
chosen distance between behaviors is the Euclidian distance:

db(x, y) =
∣

∣

∣

∣v
y − v

x
∣

∣

∣

∣

Table 1: Proposed setups for the Xor And Xor Ex-
periment.

Setup Goal-oriented Diversity
objective mechanism

1 No Novelty
2 Yes Novelty
3 Yes Diversity
4 Yes Graph Probing
5 Yes None

3.2.3 Setups description
Describe here are several setups based on those described

in [14]. In this paper, Mouret and Doncieux used a Pareto-
based multi-objective optimization in which a second objec-
tive is added to explicitly foster diversity. There are many
ways to do so, in both genotypic (comparing the neural

networks) and behavioral spaces (comparing the behaviors).
The following are the diversity setups we chose:

• genotypic diversity based on graph probing [11]. This
method gives a score allowing comparison of the net-
works based on their topologies.

• behavioral diversity using the previously defined be-
havior description. The diversity is based on the be-
havioral distances between itself and individuals in the
current population.

• behavioral novelty using the previously defined behav-
ior description. The novelty score is based on the
sparseness of the individual among the population and
an archive of previously selected behaviors. We will
consider this objective alone (as defined in [9]) or to-
gether with a goal-oriented one in a multi-objective
scheme [14].

The implementation is made using the NSGA-II algorithm
[3]. The population size is 200 and the algorithms stops
after 1500 generations. The setups are described in Table 1.
More information can be found in [14], and the source code is
available online at http://pages.isir.upmc.fr/evorob_db

3.3 Evolutionary Robotics Experiment

3.3.1 Ball Collector description
In this section we present a challenging simulated Evolu-

tionary Robotics experiment. The task is derived from [4].
It consists of picking up balls in a virtual arena and placing
them into a basket (fig. 2). The robot is a two-wheeled
robot with the following sensors:

• three wall distance sensors (normalized between 0 and
1);

• two bumpers (1 if it touches a wall, 0 otherwise);

• two ball detection sensors (1 if a ball is in the view
field of the sensor, 0 otherwise);

• two switch detectors (1 if the switch is in the view field
of the sensor, 0 otherwise);



Figure 2: Overview of the arena and of the robot.
The goal of the experiment is to place as many balls
as possible into the basket. A robot controller is
evaluated three times at three different initial po-
sitions. To reach the four balls in the left room,
the robot has to open the door by first pressing the
switch.

• two basket detection sensors (1 if the basket is in the
view field of the sensor, 0 otherwise);

• one “ball carrying” sensor (1 if a ball is carried, 0 oth-
erwise).

Two effectors set the left and right wheel motor speeds and
the third is an ”action”motor: if greater than 0.5, pick up a
ball if possible, else throw the carried ball if any; if no ball is
carried and greater than 0.5, press the switch if possible). A
ball disappears when it is released, and if the robot is close
enough to the basket, the ball is collected. The switch has
to be pushed only once, and the door remains open for the
rest of the run. Each individual is simulated during 4000
time-steps for each of the 3 possible initial positions; the
balls and the switch are reinitialized each time.

The main motivation behind the choice of the experiment
is that it is very challenging:

• Collecting a ball implies catching a ball, avoiding the
walls, reaching the basket, and releasing the ball at
the right moment. The individuals are rewarded only
when the full sequence is performed.

• After releasing a ball, the robot has to perform a half-
turn, and make its way to new balls, which may be
hidden behind walls.

• To foster the need of exploration, the robot has to
press the switch—which has no direct impact on per-
formance or exploration—to widen its search space,
and have more balls within reach.

The goal-oriented objective of a robot is simply the num-
ber of balls it collects divided by the maximum number of
balls.

Table 2: Proposed setups for the ER experiment.
Setup Genotype Goal-oriented Diversity

objective mechanism
1 DNN No Novelty
2 DNN Yes Novelty
3 DNN Yes Diversity
4 DNN Yes -
5 ELMAN No Novelty
6 ELMAN Yes Novelty
7 ELMAN Yes Diversity
8 ELMAN Yes -

3.3.2 Encoding
A robot’s genotype is the neural network that controls

it. As in [4], we have chosen two different setups for the
controller:

• DNN - The previously defined encoding with evolving
structure.

• ELMAN - A network with fixed structure as described
in [6]. The number of hidden context units was arbi-
trarily set to 20.

3.3.3 Behavior description for the exploration mea-
sure

Partial behavior descriptors are used to characterize a
robot behavior. The descriptor should carry enough infor-
mation to differentiate very different behaviors from close
ones. Several approaches have been tried, such as a Ham-
ming description, Normalized Compressed Distance, Four-
rier analysis, etc. [4]. Based on preliminary tests, we se-
lected the following two descriptors:

• Trajectory Description: The position of the robot
is recorded and discretized every 50 time-steps. The
vector of positions represents the behavior. The dis-
tance between two behaviors is the Edit distance be-
tween vectors, derived from [18]:

– the cost of an insertion or deletion is 1;

– the cost of a substitution is

c(a(t)
, b

(t)) =
∣

∣xa(t) − xb(t)

∣

∣+
∣

∣ya(t) − yb(t)
∣

∣

where xa(t) and ya(t) are the normalized coordi-
nates of the robot a at time-step t.

The substitution cost can never exceed the cost of a
deletion plus an insertion. This distance outperforms a
basic Euclidian distance between trajectories because
it acts as an alignment distance: the distance between
two trajectories that are only shifted in time will be
smaller than with the Euclidian distance, which allows
a better comparison of trajectories.

• Ad hoc Description: This task is centered on what
the robot does with the balls. As a consequence, a
natural ad hoc descriptor is the latest position of the
balls, whether they stayed at their initial position or
were moved and dropped. The descriptor is then a
vector v with all the final positions of the balls, and the



Figure 3: (dots) Scatterplot between fitness after
800 generations and exploration generation 20 for the
Xor And Xor Experiment. The runs are picked from
each of the previous setups except for the single ob-
jective novelty search. There is a positive correla-
tion between the two variables. (crosses) Scatter-
plot between final fitness and fitness at generation
20. There is almost no correlation.

distance between two vectors v and u is the Euclidian
distance between the two vectors

∣

∣

∣

∣u− v
∣

∣

∣

∣

Being the most generic, the Trajectory Description is
chosen to compute the exploration indicator. The Ad hoc
Description will be used in some of the setups described
below.

3.3.4 Description of the Setups
As in the Xor And Xor problem, we define several se-

tups supposed to have a different exploration capacity. For
some of the setups we added a diversity maintenance goal-
independant objective.

Different behavior descriptors are used for exploration mea-
sure and diversity maintenance to check if promoting be-
havioral diversity in a behavioral space also enhances explo-
ration in another behavioral space.

Here are the considered diversity mechanisms:

• Behavioral diversity based on the previously defined
Ad hoc Description.

• Behavioral novelty based on the Ad hoc Descrip-
tion.

As in the Xor And Xor experiment, both single-objective
and multi-objective approaches are considered. Table 2 sum-
marizes the considered setups.

The eight previous setups were implemented using the
Sferesv2 framework [12]. The parameters are detailed in
the Appendix.

4. RESULTS

4.1 Xor And Xor Experiment
In Figure 4 the leftmost plot shows the fitness of the result-

ing neural networks for the Xor And Xor problem, between

Table 3: Correlation between fitness at generation
800 and sparseness or fitness at generation g for all
the Xor And Xor Experiments.

Generation g 0 20 40 60 80 100
Corr. Final Fit/

0.46 0.71 0.71 0.69 0.70 0.74
Sparseness

Corr. Final Fit/
0.05 0.22 0.14 0.22 0.17 0.26

Fitness at gen

1 and 1500 generations. These results confirm the previous
work on this problem as reported in [14]:

• The objective-only search falls into the deceptive trap
in 90% of the runs, so its fitness almost never exceeds
0.75.

• The novelty-only approach had much more diverse scores,
sometimes over the 0.75 deceptive trap, but could never
attain the maximum scores.

• Most of the Novelty and Diversity Multiobjective runs
could achieve maximum fitness before the 1500 gener-
ations.

The rightmost graph shows two results. If we temporarily
put aside the case of novelty-only, we can see that the explo-
ration measure converges to a stable value after 20 genera-
tions only and we notice statistical differences between the
four setups (p < 0.0001 for each four setups compared from
top to bottom, Mann-Withney U test). Moreover, there is a
strong correlation between the exploration measure and the
final fitness of the run: setups with low exploration do not
achieve the maximum fitness while those with a high explo-
ration always achieve greater fitness, and faster. This can be
seen on the scatterplot (Figure 3) of fitness at generation 800
(the relative performance of the setups is well represented
by fitness at generation 800) against the measure of explo-
ration at generation 20. In Table 3 the first line presents
the Pearson’s correlation values between exploration and fi-
nal fitness for all runs. The correlations between variable X

and Y are computed using the following formula:

corr(X,Y ) =
E[(X − µX)(Y − µY )]

σXσY

where µX is the expected value of X and σX its standard
deviation.

The correlation is high even during the first generations:
one can rank the exploration ability of the setups after gen-
eration 20, while in the first generations the fitness of the
different setups are indistinguishable (at generation 100 for
instance, we have p > 0.1 for most of the setup comparisons
- Novelty only still set aside). This is confirmed by Table 3,
which shows that the correlation between the fitness at the
first generations and the final fitness is much weaker than
the correlation between the exploration measure and the fi-
nal fitness. Therefore, using only fitness, one must wait for
many more generations (often even until the end of the runs)
to infer the final fitness of the setup. This makes the ex-
ploration measure a good and fast predictor to the
relative global performance of different setups: the
more exploration, the better the final performance.



Figure 4: Fitness results for the Xor And Xor Setup. The left plot corresponds to the fitness for 5 different
setups (the inset is a zoom on the first 100 generations). The right plot shows the exploration measure
based on the behavioral distance, for the 100 first generations. The curves are averaged over 30 runs, for a
population of 200 individuals, and the neural network encoding is DNN.

Table 4: Correlation between final fitness and
sparseness or fitness at generation g for the Evo-
lutionary Robotics experiment with DNN.

Generation g 0 20 40 60 80 100
Corr. Final Fit/

0.25 0.62 0.70 0.72 0.79 0.76
Sparseness

Corr. Final Fit/
0.0 0.38 0.48 0.53 0.62 0.63

Fitness at gen

Table 5: Correlation between final fitness and
sparseness or fitness at generation g for the Evo-
lutionary Robotics experiment with ELMAN.

Generation g 0 20 40 60 80 100
Corr. Final Fit/

0.46 0.54 0.58 0.61 0.64 0.64
Sparseness

Corr. Final Fit/
0.0 0.02 0.02 0.25 0.26 0.26

Fitness at gen

Meanwhile, the novelty only (which rewards only the ex-
ploration) has the best exploration measure, but has a poor
fitness. It probably results from the fact that there is no
pressure towards exploitation. On the other hand, the ob-
jective only search, which has a poor exploration capacity,
also has poor final fitness. This confirms the importance
of a good trade-off between exploration and exploitation in
this setup. The use of exploration measure as a relative per-
formance predictor is then only relevant to compare setups
that have a similar exploitation capacity.

4.2 Ball Collecting Experiment
The previous results show that the measure of exploration

can bring useful information about the performance of the
search even within the first generations. This section will
now cover the ER setup, which has a much higher complex-
ity.

Figure 5: (dots) Scatterplot between final fitness
after and exploration at generation 80 for the ER
setup. The points correspond to each of the six pre-
vious setups. There is a positive correlation between
the two variables. (crosses) Scatterplot between fi-
nal fitness and fitness at generation 80. There is
almost no correlation.

In Figure 6, the leftmost plot presents the mean fitness of
the resulting robot behavior. As the problem is very com-
plex, the mean fitness can sometimes be very low. However,
some of the best individuals could collect up to 21 out of
24 balls. Even if the fitness is low because of the difficulty
of the task, the plot exhibits a clear separation between all
final fitnesses of the runs (comparison from top to bottom:
p < 0.001 for each pair of setups). Meanwhile at genera-
tion 100, only Novelty+Objective setup can be statistically
separated from all others, on the basis of the fitness only.

We can see that without artificially fostering behavioral
diversity, both of the neural networks setups have very poor
results. The runs using ELMAN also performed poorly com-
pared to those using DNN: This could be a result of the
arbitrary chosen parameters of the network topology. The
novelty only setup is much less efficient than multi-objective
ones, but also outperforms the objective-only setup.



Figure 6: (left) Mean number of collected balls for Elman or DNN encoding, with different behavior diversity
preserving setups. The inset shows the fitness for the first 100 generations. (right) Exploration measure based
on the trajectory distance for the 100 first generations. As the run are much longer to perform, the curves
are averaged over 10 runs only, for a population of 200 individuals.

As in the Xor And Xor case, the novelty-only setup has a
high exploration measure compared to other runs, but lacks
selective pressure towards exploiting the best individuals;
therefore its final fitness is rather low.

Considering the other 6 runs, the right plot of Figure 6
indicates that the final fitness is correlated to the exploration
measure, even in this complex setup. This can be interpreted
in the following way: this task requires the robot to move
around the arena; if the exploration in the trajectory space
is high, the robot will more likely solve the task. Figure 5 is
a scatterplot of the exploration during the first generations
against the final fitness for each run of each setup.

The correlation at different generations is indicated in Ta-
ble 4 for DNN and Table 5 for ELMAN. In both experiments,
the correlation between exploration and final fitness is higher
than the correlation between fitness in the first generations
and final fitness.

5. DISCUSSION
Exploration is a key factor, and considering the complex-

ity of the mapping between the genotype and the exhibited
behavior, characterizing how well a setup explores in the be-
havioral space is of critical importance. Our straightforward
approach can already catch a glimpse of how the exploration
is related to performance. In the considered experiments,
the novelty objective outperforms diversity in terms of fit-
ness as well as exploration. The novelty alone, however, has
its results damaged by the lack of exploitation. The conflict
between exploration and exploitation has been highlighted
by our results: the Novelty + Objective traded a part of its
exploration capacity for exploitation. Likewise, for all setups
using the problem-dependent objective, for which we may

then hypothesize that exploitation is at the same level, ex-
ploration revealed to be strongly correlated to performance.

When evolving behavioral systems on challenging prob-
lems, it is frequent to get only failed runs, i.e. runs with a
low fitness. In this case, no conclusion can be drawn and the
experimenter usually starts to dive in a frustrating trial and
error loop. By measuring the exploration, differences be-
tween runs can be identified and those that explored better
can be considered as more promising.

This measure may also help monitor a run: a premature
convergence can be identified by a sudden drop of explo-
ration and likewise, a rapid increase in the exploration may
reveal an important discovery. For instance, in the ball col-
lector experiment, there is an increase in the exploration
measure when the robot manages to open the door.

When looking at the correlation tables (Tables 3, 4 and
5), correlation between fitness at the first generation and
final fitness is surprisingly high. We would expect—or at
least hope—that the random initialization of the population
has almost no impact on the run. Further analysis shows
that the correlation at generation 0 for the ELMAN setup
is much higher than for the DNN setup. As the number
of parameters in ELMAN are much higher at generation 0
(more than 500 parameters evolved here), while in DNN all
starting neural networks have the same topology (no hidden
neuron) and have only about 40 parameters (even though
this number grows fast when the topology evolves). This
search space dimensionality could partly explain why the
random initialization has a stronger impact on ELMAN than
on DNN. The exploration at generation 0 could prove useful
to identify the impact of initialization on the run, an impact
that we may want to minimize.

The exploration during the first generations of the algo-



rithm gives good insight to the final fitness. This could lead
to several possibilities:

• a Restart Algorithm. Using an on-line measure of the
exploration, determine a criterion for generating a new
population and restart the run. As the exploration in-
dicator is a relative indicator, it may rely on a pre-
viously evaluated threshold or on a sudden drop of
exploration;

• as in [19], an on-line exploration measure could deter-
mine whether the algorithm should explore or exploit;

• a parameter setting application. Parameter setting re-
quires a lot of evolutionary runs, which usually are, in
ER for instance, CPU-intensive. Using the proposed
method we could reduce the number of generations
drastically and still be able to determine the parame-
ter set quality, thus significantly reducing the compu-
tational time.

6. CONCLUSION
We have shown that the behavioral sparseness of the pop-

ulation in difficult neuro-evolution problems is highly related
to the exploration of the evolutionary algorithm in the be-
havioral space. In many problems this exploration rather
than the exploitation might be the bottleneck of the search.
In those problems, there is a strong correlation between the
performance of the algorithm and the exploration, while the
fitness is not always a good indicator of how good an algo-
rithm is (because of deceptive problems for instance). We
have shown that the behavioral exploration measure is a
good alternative: exploration can bring better information
on a setup than just fitness comparisons. Future work might
use it, for instance, as a tool to compare different setups, to
tune algorithms parameters or to monitor runs.
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APPENDIX

A. PARAMETERS
• MOEA: NSGA-II (pop. size : 200)

• DNN (direct encoding):

– prob. of changing weight/bias: 0.1

– prob. of adding/deleting a conn.: 0.15/0.25

– prob. of changing a conn.: 0.1

– prob. of adding/deleting a neuron: 0.025/0.025

– activation function for neurons:

yi = ϕ

(

∑

j wijxj

)

where ϕ(x) = 1
1+exp(b−kx)

• ELMAN (fixed structure):

– prob. of weight/bias change: 0.1

– prob. of changing a conn.: 0.1

– number of hidden and context units: 20

• Source code :
http://pages.isir.upmc.fr/evorob_db


