arXiv:1108.0342v1 [csNE] 1 Aug 2011

Black-Box Complexities of Combinatorial Problems*

Benjamin Doerr!, Timo Kotzing!, Johannes Lengler?, Carola Winzen!

"Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
2ETH Ziirich, Ziirich, Switzerland

Abstract

Black-box complexity is a complexity theoretic measure for how difficult a problem is to be
optimized by a general purpose optimization algorithm. It is thus one of the few means trying
to understand which problems are tractable for genetic algorithms and other randomized search
heuristics.

Most previous work on black-box complexity is on artificial test functions. In this paper, we
move a step forward and give a detailed analysis for the two combinatorial problems minimum
spanning tree and single-source shortest paths. Besides giving interesting bounds for their black-
box complexities, our work reveals that the choice of how to model the optimization problem
is non-trivial here. This in particular comes true where the search space does not consist of bit
strings and where a reasonable definition of unbiasedness has to be agreed on.

1 Introduction

Black-box complexity is a notion trying to capture how difficult a problem is to be solved via
problem-independent, possibly randomized, search heuristics. Roughly speaking, the black-box
complexity of a problem (a class of functions to be optimized) is the expected number of function
evaluations needed to find the optimum of an unknown member of the class (Droste, Jansen, and
Wegener [DJWOG]).

This unrestricted black-box model sometimes gives unrealistically small complexity values (as
compared with run times exhibited by standard randomized search heuristics (RSH)). A way to
overcome this is to restrict the class of randomized algorithms regarded (of course, in a way that
classic RSH are still included). To this aim, Lehre and Witt [LW10] suggested an unbiased black-box
model, in which algorithms are only allowed to generate new solutions from existing ones, and only
via so-called unbiased variation operators. Doerr and Winzen [DW11] regard the restriction that
the algorithm has no access to the absolute objective values of solutions, but only to the ranking
implied by their fitnesses. This leads to an (unrestricted or unbiased) ranking-based black-box
model.

A number of deep and sometimes unexpected results exist for the different notions, most of
them, however, only regarding artificial test problems like ONEMAX, LEADINGONES, or jump
functions. The focus of this paper is to start an in-depth analysis of black-box complexities for
combinatorial problems. As we will see in this paper, a number of additional modeling issues have to

*This is the full version of the one presented at the Genetic and Evolutionary Computation Conference (GECCO
2011) [DKLWTI]. A journal version is currently in preparation.

http://arxiv.org/abs/1108.0342v1

be regarded here. We start our analysis with the minimum spanning tree (MST) problem, because
here it is generally agreed on that a bit-string representation is most natural. This allows to use the
definition of unbiasedness as in [LW10]. When talking about ranking-based black-box complexity,
the two-criteria fitness (total weight, number of connected components) needs attention, but the
only reasonable model is to treat the two criteria separately, i.e., to assume comparability in both
criteria.

We then proceed to the single-source shortest path (SSSP) problem, where current-best evolu-

tionary approaches use representations different from bit-strings. Here it is not clear a priori what
unbiasedness shall mean. Transforming the definition from Lehre and Witt [LW10] in a straight-
forward way leads to not very useful results. Taking the problem semantics into account, we find
a reasonable definition for unbiasedness and prove meaningful black-box complexities.
Spanning Trees. In one of the earliest theoretical works on evolutionary algorithms for com-
binatorial optimization problems, Neumann and Wegener INWOQT] analyze the (expected)
optimization time of the (1+1) evolutionary algorithm (EA) for the MST problem. They prove
that the expected time to find one is O(m?log(nwmax)), where n is the number of vertices, m the
number of edges and wpay i the maximum of the positive and integral edge weights. It is a major
open problem whether the dependence on the maximum edge weight is necessary.

The same bound is proven for a randomized local search (RLS) variant doing one-bit and two-
bit flips each with probability 1/2. This can be easily improved to O(m?logn) by noting that
the optimization behavior remains exactly the same if we replace the existing edge weights by the
numbers from 1 to m (keeping the relative order of the edge weights unchanged) [RS09].

Since the MST problem has a natural representation via bit strings, for this combinatorial
problem we can easily use the four black-box complexity notions. Our results can be found in
Table [l They imply that the unbiased black-box complexity is asymptotically different for the
unary case and for arities > 3.

In a nutshell, the results show that, on the one hand, simple algorithms based on unary op-
erators, such as EAs and RLS can get run times very close to the theoretically optimal; on the
other hand, they show how operators of higher arity can further improve on the run time (see also
[DHKO0S, [DT09L m for higher-arity operators for combinatorial optimization problems).
Shortest Paths. In another one of the earliest theoretical works on evolutionary algorithms for
combinatorial optimization problems, Scharnow, Tinnefeld, and Wegener [STW02] [STW04] analyze
how a (141) EA solves the SSSP problem.

Since in the SSSP problem a shortest path between the source and any other vertex is sought for,
a bit-string representation for solution candidates seems not very natural. Therefore, most works
resort to trees or slightly more general structures as representations. To ease the comparison with
most existing works on the SSSP problem, in this work we shall only work with the vertex-based
representation employed in [STWO04], which, roughly speaking, for each vertex stores its predecessor
on the path from the source to it. We note that superior run times were recently proven for an
edge-based approach [DJI0].

In addition, also the choice of the fitness function is subtle. In [STWO04], a multi-criteria fitness
was suggested. For each vertex, the objective function returns the distance from the source in the
current solution (infinity, if the vertex is not connected to the source). An offspring is only accepted
if, in each of these n — 1 criteria, it is not worse than the parent. For the natural (141) EA building
on this framework, they prove an expected optimization time of O(n?). This was improved to a
bound of O(n? max{/,log(n)}), where ¢ is the smallest height of a shortest path tree [DHKOT].

|| (rb) unrestr. | *-ary unb. | unary unb. | rb unary unb. | (rb) binary unb. | (rb) 3-ary unb.
2m+1 O(m) O(mn(logn)?) O(mlogn) O(m)
(1—=o0(1))n Q(n) Q(m/logn) Q(m/logn)

upper bound O(mnlogn)t

lower bound

Q(mlogn) Q(mlogn)

Table 1: Upper and lower bounds for the black-box complexity of MST in the different models.
Abbreviations: unrestr.= unrestricted, rb = ranking-based, unb. = unbiased.
T O(mnlog(m/n)) if all edge weights are distinct.

When analyzing the black-box complexity of this formulation of the SSSP problem, we first note
that both unbiased and ranking-based complexities make little sense. Since the multi-objective
fitness explicitly distinguishes the vertices, treating vertices equally here (as done by unbiased
operators) or making individual distances incomparable (as done by component-wise ranking) is
ill-natured.

Hence for the multi-criteria fitness, we shall only regard the unrestricted black-box complexity.
Interestingly, this problem is also among the few combinatorial problems for which black-box com-
plexity results exist. Droste, Jansen, (Tinnefeld,) and Wegener [DJTWO03, [DJW0G] showed that
the unrestricted black-box complexity of the SSSP in the multi-criteria formulation is at least n/2
and at most 2n — 3E| We first improve these bounds to exactly n — 1 for both the upper and the
lower boundH Surprisingly, if we may assume that the input graph is a complete graph, we obtain a
black-box complexity of at most n/2+ O(1), see Table Blin Section 41l That is, the SSSP problem
becomes easier (in the black-box complexity sense) if we transform an arbitrary instance to one on
a complete graph (but adding expensive dummy edges).

The natural single-criterion formulation of the SSSP problem takes as objective simply the sum
of the distances of all vertices to the source in the current solution. This approach was dismissed
n [STWO04] for the reason that then all solutions with at least one vertex not connected to the
source form a huge plateau of equal fitness.

In [BBDT09], it was observed that this (artificial) problem dissolves if each unconnected vertex
only contributes a large value (e.g., larger than the sum of all edge weights) to the objective value.
This is the common way to implement the oo-value in most algorithms. In this setting, also the
single-criterion EA is efficient and finds the optimum, on average, in O(n3log(nwmay)) iterations.

For the single-criterion version of the SSSP problem, there is no reason to not regard unbiased
black-box complexities. However, we shall see that finding a good notion for unbiasedness is a
crucial point here. From the representation point of view, since individuals are nothing more than
certain mappings from the vertex set into itself, unbiasedness in the sense of Lehre and Witt would
mean that we treat all possible images of each vertex symmetrically. From the problem view-point,
unbiased should mean that we treat all vertices (apart from the source) equal. This is a substantial
difference, as we shall discuss in detail in Section Both approaches lead to different black-box
complexities, cf. Table 2

The only other result published on the black-box complexity of a combinatorial problem is the proof that the
N P-complete MAXCLIQUE problem has a polynomial black-box complexity, see again [DJW06].
2Note that the upper bound in [DJWG6] still holds in a more restricted setting, cf. Section [4.11

|| unrestr. | rb unrestr. | unary struct | binary struct | 3-ary struct | unary redir

upper bound n(n—l)/2| (n—1)2 | O(n3logn) | O(n?logn) | O(n?) | O(n?)

Table 2: Upper bounds for the black-box complexity of SSSP with single-criteria fitness function in
the different models. Abbreviations: unrestr.= unrestricted, rb = ranking-based, struct = structure
preserving unbiased, redir = redirecting unbiased.

2 The Four Black-Box Models

In this section we present two black-box models, the unrestricted black-box model by Droste et
al. [DJWOG] and the unbiased model by Lehre and Witt [LW10]. Furthermore, we shall introduce
the unrestricted and the unbiased ranking-based black-box models in Section Bl We give only a
short presentation of the models. For a more detailed exposure confer [DJW06, DWT1Tl, [CWT0].
The description below follows closely the one in [DKWTI].

Throughout this work, we use the following notations. We denote the positive integers by N
and the positive reals by RT. For any k € N, we abbreviate [k] := {1,...,k}. Analogously, we
define [0..k] := [k] U {0}. For z = 1 ---x, € {0,1}" we denote by Z the bitwise complement of =
(i.e., for all i € [n] we have Z; = 1 — ;). The bitwise exclusive OR is denoted by @. For any set S
we denote by 2° the power set of S, i.e., the set of all subsets of S. By S,, we denote the set of all
permutations of [n]. Lastly, with log, we denote the logarithm to base a, and with log we denote
the natural logarithm to base e := exp(1).

The Unrestricted and Unbiased Black-Box Models. We are interested in measuring the
complexity of a problem’s optimizability by randomized search heuristics. Black-box complexity
follows the usual approach to take as a measure the performance of the best algorithm out of some
class of algorithms. As our main interest is in the performance of RSH, we restrict our attention to
the class of algorithms which obtain information about the problem to be solved only by learning
the objective value of possible solutions. The objective function is given by an oracle, or as a
black-box. Using this oracle, the algorithm may query the objective value of all possible solutions,
but any such query does only return this solution’s objective value and no other information about
the objective function.

Naturally, we allow that the algorithms are adaptive and that they use random decisions.
However, the only type of action the algorithm may perform is, based on the objective values
learned so far, deciding on a probability distribution on the search space S, sampling from it a
solution (“search point”) x € S, and querying its objective value (“fitness”) from the oracle. This
leads to the black-box model by Droste et al. which contains all algorithms following the
scheme of an unrestricted black-box algorithm, cf. Algorithm [

In typical applications of RSH, the evaluation of the fitness of a search point is more costly
than the generation of a new one. Thus, we take as performance measure of a black-box algorithm
the number of queries to the oracle until the algorithm first queries an optimal solution. Since we
mainly talk about randomized algorithms, we regard the expected number of such queries and call
this value the run time of the black-box algorithm.

For a class F of functions, the complexity of an algorithm A for F is the worst-case run time,
i.e., the maximum run time of A on a function f € F. The complexity of F with respect to
a class A of algorithms is the minimum (“best”) complexity among all A € A for F. Hence,

the unrestricted black-box complexity of F is the complexity of F with respect to the class of all
unrestricted black-box algorithms.

Algorithm 1: Scheme of an Unrestricted Black-Box Algorithm

1 Initialization: Sample z(©) according to some probability distribution p@ on S. Query

().
2 Optimization: for ¢t = 1,2,3,... until termination condition met do
3 Depending on ((ZE(O), FO), ..., (=D, f(a:(t_l)))) choose a probability distribution
® on S
p*) on S.

4 Sample z(!) according to p®, and query f(z®).

Already the authors of [DJWO0G] noted that the unrestricted black-box is very powerful. As an
example, consider a single objective function f. Clearly, the unrestricted black-box complexity of
{f} is 1 — the algorithm which queries an optimal solution of f as first action shows this bound.

This motivated Lehre and Witt [LW10] to introduce a more restrictive black-box model, where
algorithms may generate new solution candidates only from random or previously generated search
points and only by using unbiased variation operators. Note already here that Lehre and Witt
formulated their model only for the hypercube {0, 1}d as search space. In Section M, we propose
two ways to carry over the notion to a different setting. Next is a brief presentation of the model
by Lehre and Witt.

Definition 1. Let £k € N. A k-ary unbiased distribution is a family of probability distributions
(D(- |y, ,y(k)))y(l) W efo1ya Over {0,1}% such that for all inputs y),...,y*) € {0,1}¢ the
following two conditions hold.

(Vo2 {0,1}: D@ |y, ...y =Daaz|yWaz...,.y¥ &2,
(ii))Vz € {0,1}Vo € S, - D(z|yW,...,y*®) = D(o(z) | o(y™),...,o(y™)),

where 0() = Ty(1)*** To(d)-
We refer to the first condition as @-invariance and to the second as permutation invariance. An
operator sampling from a k-ary unbiased distribution is called a k-ary unbiased variation operator.

l-ary (i.e., mutation only) operators are also called unary and we refer to 2-ary (i.e., crossover
type) operators as binary ones. If arbitrary arity is considered, we call the corresponding model
the x-ary unbiased black-box model.

A k-ary unbiased black-box algorithm [LW10] can now be described via the scheme of Algo-
rithm 2l The k-ary unbiased black-box complexity of some class of functions F is the complexity of
F with respect to all k-ary unbiased black-box algorithms.

Contrary to the unrestricted model, Lehre and Witt [LW10] could show that all functions with a
single global optimum have a unary unbiased black-box complexity of (nlogn), a bound which, for
several standard test problems, is met by different unary randomized search heuristics, such as the
(1+1) EA or RLS. For results on higher arity models we refer to the work of Doerr et al. [DJKT11].

Ranking-Based Black-Box Models. Another possible restriction of the black-box model was
introduced by Doerr and Winzen [DW11]. The authors observed that many standard RSH do not

Algorithm 2: Scheme of a k-ary Unbiased Black-Box Algorithm

1 Initialization: Sample z(®) € {0,1}? uniformly at random and query f(z(®).

2 Optimization: for ¢t = 1,2,3,... until termination condition met do

3 Depending on (f(x(o)), ..., f(@®V)) choose up to k indices i1,...,i € [t — 1] and a
k-ary unbiased distribution D(-|z() ... z(#)).

4 Sample () according to D(- |z ... 2%)) and query f(z®).

take advantage of knowing exact objective values. Rather, for creating the next search points,
many RSH always select those individuals with largest fitness values, examples are given below.

Definition 2. Let S be a finite set, let f : S — R be a function, and let C' be a subset of S. The
ranking p of C with respect to f assigns to each element ¢ € C' the number of elements in C with
a smaller f-value plus 1, formally, p(c) := 14 |{c € C| f() < f(c)}].

Note that two elements with the same f-value are assigned the same ranking.

Following [DW11], we restrict the two black-box models which we introduced in the previous
section to black-box algorithms that use no other information than this ranking.

Unrestricted Ranking-Based Black-Box Model. The unrestricted ranking-based black-
box model can be described via the scheme of Algorithm [where we replace the third line by
“Depending on the ranking of {3:(0), e ,az(t_l)} with respect to f, choose a probability distribution
p® on 8.

Unbiased Ranking-Based Black-Box Model. For the definition of the unbiased ranking-
based model we consider the scheme of Algorithm [2] and replace the third line by “Depending on
the ranking of {z(® ... 2~} with respect to f, choose up to k indices iy,...,i, € [t — 1] and a
k-ary unbiased distribution D(-|z() ... z(#))?

Both ranking-based black-box models capture many common search heuristics, such as (u + A)
evolutionary algorithms, some ant colony optimization algorithms, and RLS. They do not include
algorithms like simulated annealing algorithms, threshold accepting algorithms, or evolutionary
algorithms using fitness proportional selection.

Doerr and Winzen [DW11] could show that while the basic and the ranking-based models yield
the same asymptotic bounds for some problems (e.g., the ONEMAX function class), it does matter
not to consider exact fitness values for other problems, e.g., the BINARY VALUE function class.

3 Minimum Spanning Trees

Definition 3 (MST). The Minimum Spanning Tree (MST) problem consists of a connected
graph G = (V,E) on n := |V| vertices and m := |E| weighted edges. The edge weights w(e),
e € E, are positive real numbers. The objective is to find an edge set E' C E of minimal weight
that connects all vertices.

We encode this problem in binary representation as follows. First, we enumerate the edges in
E in arbitrary order v : E — [m]. For every bit string x € {0,1}"™ we then interpret x as the
subset of edges E, := {v~1(i) € E|x; = 1}. In the following, we assume that the enumeration of
the edges is not known to the algorithm. So the algorithm only knows the numbers n and m, but

neither knows the geometry of the graph nor which bit corresponds to which edge. However, it
may assume that the graph is connected since otherwise no solution of MST exists.

For E' C FE let ¢(E") be the number of connected components induced by E’, and let w(E') =
> e w(e) be the total weight of E'. The book [NW10] argues that the objective function f(E') =
(¢(E"),w(E")) is “appropriate in the black-box scenario”. Thus, if an algorithm queries some
x € 4{0,1}™, it receives f(E,) = (c(E;),w(E,)) as answer.

In the ranking-based models, the objective value consists of a ranking of both components.
That is, the oracle reveals two rankings of the search points, based on the first and the second
component, respectively.

We obtain the following upper bounds by modifying Kruskal’s algorithm to fit the black-box
setting at hand.

Theorem 4 (Upper Bounds for MST). The (ranking-based) unrestricted black-box complezity of
the MST problem is at most 2m + 1. The unary unbiased black-box complexity is O(mnlog(m/n))
if there are no duplicate weights and O(mmnlogn) if there are. The ranking-based unary unbiased
black-box complexity is O(mnlogn). The (ranking-based) binary unbiased black boxz-complezity is
O(mlogn). The (ranking-based) 3-ary unbiased black-box complezity is O(m).

We conjecture that it is not an artifact of our methods that we obtain different upper bounds,
but that all four complexity classes of the MST problem are different. The proofs can be found in
the appendix, cf. Section [Bl

Theorem 5 (Lower Bounds for MST). The unrestricted black-box complexity of MST for complete
graphs is at least (1 —o(1))n.

Proof. We apply Yao’s minimax principle [Yao77]. To this end, we show that there exists a prob-
ability distribution on the input set of all weighted complete graphs such that every deterministic
algorithm needs at least (1 — o(1))n queries to compute a MST. More precisely, we consider the
distribution p on the set of all inputs where we sample uniformly at random a spanning tree, and
give weight 1 to all of its edges. All other edges receive weight 2. We call edges of weight 1 “cheap”,
and all other edges “expensive”.

Let us now consider a fixed deterministic algorithm A. We assume that the algorithm already
knows which bit in the vector corresponds to which edge in the graph. This assumption makes
life only easier for the algorithm. Then for each query the algorithm knows in advance how many
connected component its query has. So the first component of the objective function does not
contain any information. If the algorithm makes a query consisting of k edges, then the total
weight of all these edges is contained in the interval [2k —n + 1, 2k], depending of how many cheap
edges the query contains. Therefore, each query gives at most logy(n) bits of information.

Obviously, the algorithm A needs to learn the set of all cheap edges. It is well known that the
number of spanning trees on n vertices is n"~? (so-calles Cayley’s formula). Therefore A needs to
learn (n — 2)logy(n) many bits, so it has in the worst case a run time of 7' := n — 2. Moreover, for
every 0 < t < T, after T'— t many queries the probability to find the correct solution is at most
n~t. Therefore, the probability that A needs at least T steps is at least

S

—1 1
Pr[T(I,,A)>T|>1-Y nt>1— —n
t=1

=1-—o(1).

Note that the hidden constant in o(1) does not depend on the algorithm A. By Markov’s inequality,
the expected run time is at least

E[T(I,, A)] T - Pr[T(I,, A) > T]
T-(1-o(1))

= (1—-o0(1))n.

Since this holds for all deterministic algorithms A, Yao’s minimax principle implies the statement.
O

In order to prove a lower bound in the unbiased setting, we compare MST with the auxiliary
problem ONEMAX,,. The search space of ONEMAX,, is the space {0,1}", and for each vector
x € {0,1}™ the objective value is given by ONEMAX,, (z) := Y ;" ;, the number of 1-bits in z.

Theorem 6. The k-ary unbiased black-box complexity of MST for n wvertices and m edges is at
least as large as the k-ary unbiased black-box complexity of ONEMAX,,.

Proof. For a given m, consider a path P on m + 1 vertices, all m edges having unit weight. For the
associated MST fitness function f we have, for all bit strings = € {0,1}™,

f(x) = (ONEMAX,,,(z),m + 1 — ONEMAX,,(z)).

In particular, any algorithm solving optimizing f can be used to optimize ONEMAX with the exact
same number of queries. O

It has been shown in [LW10] that ONEMAX,,, has a unary unbiased complexity of ©(mlogm) =
©(mlogn) and in [DJK™11] it was proven that the x-ary unbiased complexity of ONEMAX,, is
©(m/logm) = ©(m/logn). This yields the following.

Corollary 7. The unary unbiased black-box complexity of MST is in Q(mlogn); for all other
arities, the unbiased black-box complexity of MST is in Q(m/logn).

4 Single-Source Shortest Path

Definition 8 (SSSP). The Single-Source Shortest Path (SSSP) problem consists of a connected
graph G = (V,E) on n := |V| vertices and m := |E| edges. The edge weights w(e), e € E, are
positive real numbers. There is a distinguished source vertex s € V. The objective is to find for all
vertices v € V' a path p, in G from s to v such that the total weight of p,, Zeepv w(e), is minimal
among all paths from s to v.

For the SSSP problem, it is less clear what a good choice of the search space and the objective
function is. Two approaches have been regarded, which we discuss in the following subsections.

We assume without loss of generality that the nodes are labeled by 1,...,n and that s = 1 is
the source for which we need to compute the shortest path tree. Let w : E — R* be the weight
function of the edges.

4.1 SSSP with Multi-Criteria Fitness

The paper [DJW06] argues for a multi-criteria objective function, where any algorithm may query
arbitrary trees on [n] and the objective value of any such tree is an n — 1 tuple of the distances of
the n — 1 non-source vertices to the source s = 1 (if an edge is traversed which does not exist in
the input graph, the entry of the tuple is 0o).

The paradigm underlying the unbiased black-box complexity is that the algorithm should not
be allowed to exploit knowledge about solution candidates stemming from their representation, but
only information stemming from their fitness and the population history. This is why only unbiased
variation operators are admitted, which fulfill certain symmetry properties.

For the multi-objective formulation of the SSSP problem, we thus feel that there is little room
for unbiasedness. With the fitness explicitly distinguishing the vertices, imposing certain symmetry
conditions among the vertices makes little sense. A similar argument makes us not regard ranking-
based black-box complexities for this problem.

shows that the unrestricted black-box complexity of this problem is lower bounded by
n/2 and upper bounded by 2n — 38

In this section, we first improve the bounds from and match them. Then we restrict
the problem instances to complete graphs, which will avoid objective values of co for the different
objectives.

|| arbitrary connected graph | complete graph
n—1 [((n+1)/2] +1
n—1 n/4

upper

lower

Table 3: Upper and lower bounds for the unrestricted black-box complexity of SSSP with multi-
criteria objective function,

Theorem 9. The unrestricted black-box complexity of SSSP with arbitrary input graphs is n — 1.

Proof. We start with the upper bound. We simulate Dijkstra’s algorithm by first connecting all
vertices to the source, then all but one vertices to the vertex of lowest distance to the source, then
all but the two of lowest distance to the vertex of second lowest distance and so on, fixing one
vertex with each query. This will cost an overall of n — 1 queries.

For the lower bound consider the set S of all graphs on {1,...,n} which contain exactly one
path as edges (all of weight 1), one of the endpoints being the source s = 0, and no other edges.
Again we apply Yao’s minimax principle. To this end, let a deterministic algorithm A be given; we
show that A uses in expectation n — 1 queries on a graph drawn uniformly at random from S. We
do this by showing that, in expectation, each query will give at most one new non-oco entry in the
tuple. To this we shall apply the additive drift theorem for lower bounds [HY04].

We can assume without loss of generality that, during the run of algorithm A, the number of
finite entries in the objective value does never decrease. Suppose that after some queries A has
determined n — 1 — k finite entries in the objective value, so for k vertices A has still not discovered

3Note that the upper bound holds in a restricted setting where the algorithm may only store up to two previous
data points. However, the algorithm witnessing our upper bound for the unrestricted black-box setting does also not
require the full storage granted by the unrestricted setting, but merely needs to store a linear number of pointers at
any given time.

a path to the source. Let T be the next query of A. Let U be the set of all vertices that A connects,
in T, with a vertex with finite distance to the source. For all v € U, let t(v) be the number of
vertices that A connects to the source via v. The expected number of new non-co entries in the
objective value of T is at most

Yo,)

velU

as 1/k is the probability that a given v € U is the next vertex in the path after the known vertices,
and once we get that vertex right, we gain at most 1+ ¢(v) new non-co entries. As we have a total
of k vertices left to connect with the source, we have) ., t(v) =k —|U|. We have that (I equals
|U|/k + (k — |U|)/k = 1. Now the additive drift theorem [HY04] gives the desired bound. O

Surprisingly, if we may assume that the input graph is complete, we obtain a lower complexity.
Note that this includes the case where the complete graph is obtained from on arbitrary one by
adding dummy edges with artificially high weight. This shows, again, that even small changes in
modeling the combinatorial problem can lead to substantial changes in the complexity.

For the upper bound, we cover the graph with |(n + 1)/2] spanning trees, and query each of
them. From the objective values, it is possible to compute all edge weights in the graph, and thus to
compute the optimal solution. For the lower bound, we apply the same techniques as in the proof
of @ but use a more intricate distribution on the set of all spanning trees. Skipping the detais, we
obtain the following.

Theorem 10. The unrestricted black-box complexity of SSSP with complete input graphs is bounded
from above by [(n+1)/2] + 1 and bounded from below by n/4.

Proof. We start with showing the upper bound. Essentially we prove that it is possible to learn
the problem instance quickly.

We show that the complete graph K, on n vertices may be written as the union of [(n +1)/2]
spanning trees. If n is even then it is well known that K, may be decomposed into n/2 edge-disjoint
spanning trees [KKQ09]. If n is odd, then we choose a node v and all edges adjacent to v, thereby
getting a spanning tree. The remaining edges form a K,,_1. Since n — 1 is even we may decompose
the remaining edges into (n—1)/2 spanning trees of K,, —{v}, which we complete to spanning trees
of K, in an arbitrary way. Hence we have written K,, as the union of (n + 1)/2 spanning trees.

Now we describe our strategy. We choose a cover of |(n + 1)/2| spanning trees as above. For
each spanning tree 7', we make a query to the oracle which contains exactly the vertices in T.
After the query, we know for each vertex v its distance from the source s. Since T is a spanning
tree, all distances are finite and all nodes can be reached via a unique path from s. Therefore, we
can compute all the weights of edges in T'. Since the spanning trees cover all edges, we know all
edge weights after |(n + 1)/2| queries. By our unrestricted computational power, we compute the
minimal spanning tree and query for it.

As for the lower bound, we will use Yao’s minimax principle (Theorem[I8]). We sample instances
by having each vertex i > 0 choose uniformly at random a j € {0,...,7 — 1} and then giving 1 as
the weight to the edge between ¢ and j, and weight n to all other edges. We call edges of weight 1
“cheap”, and all other edges “expensive”. By construction, the desired shortest path tree consists
precisely of the the cheap edges (and for each i, the chosen j is the predecessor on that shortest
path tree).

10

Optimizing an instance as described above is only easier if we allow querying arbitrary sets of
n — 1 edges instead of trees, and even allowing these queries to be sequential (this means that the
algorithm gets n — 1 edge queries instead of one tree query). Each edge-query will reveal the weight
of that edge to the algorithm. Furthermore, we will consider an algorithm done once all cheap
edges have been queried in some previous query. Let a deterministic algorithm A be given. For
each ¢ < n, A has to find a needle-in-the-haystack of size i. Note that the different haystacks are
completely independent; hence, the haystack associated with vertex ¢ requires an expected number
of (i 4+ 1)/2 (edge) queries [DJWOG]. It is of no importance in which order the algorithm uses its
queries for the different haystacks. We can assume that all haystacks will be queried in order of
increasing i, each until the cheap edge for vertex i has been found. Thus, we get an overall expected
number of

Vit onn+1) 1

2 4 2’

i=1

edge queries; hence, A will need an expected number > n/4 tree queries. O

We do not regard unbiased models for this setting. As mentioned before, it seems inappropriate
to use an objective function that gives vertex-specific information and to still require unbiased
variation operators.

4.2 SSSP with Single-Criterion Fitness

It is an interesting question how the bounds of Section 1] change if we require the algorithms
to be unbiased. The unbiased model of Lehre and Witt in [LWI0] has only been formulated for
pseudo-Boolean functions, cf. Section[2l As we are dealing with a different representation here, our
first step is to generalize the unbiasedness conditions to the setting of SSSP. As we discuss below,
there is no unique best way to generalize unbiasedness to a more general class of problems. Even
more, the upper bounds which we obtain for the different unbiasedness models differ by a factor of
log n, cf. Theorem [IHl and Corollary We conjecture that this difference is not an artifact of our
analysis but that there actually exists an asymptotic difference between the two models.

In this section, we consider the following model for the SSSP problem. A representation of
a candidate solution will be a vector (p(2),...,p(n)) € [n]*~! to be interpreted as follows. The
predecessor of node i is p(i). Note that we do not require that p(i) # i, nor do we require that the
candidate solution forms a tree; RSH without repair mechanisms might generate such solutions. In
order to reflect the meaning of the components, the indices of such an x will run from 2 to n, i.e.,
T = (T, ..., Tp).

We can now formulate a first unbiasedness condition for this model. We require that, for
any source-preserving permutation of the nodes, the probabilities are preserved. Intuitively, all
subgraphs with the same structure but different labels are equally likely to be chosen.

Definition 11. Let K € N. A k-ary structure preserving unbiased distribution is a family of
probability distributions (D('\y(l),...,y(k)))y(l) o1 OVer [n]"~1 such that for all inputs

y Wy e [n]"! the distribution D(-|yM, ... y®) is invariant under relabeling of the non-
source nodes.
That is, for all o € S, with (1) =1 and for all x € [n]"~' we have that

11

where &(x) := (U(ngl(z)), e 70(‘T0*1(n)))'

Alternatively, as search points are just mappings from the vertex set into itself, we might require
that all possible images of each vertex are to be treated symmetrically. Formally, we require the
following.

Definition 12. Let k € N. A family (D(| y@® ,y(k)))y(l) B of probability distributions

over [n]"~! is a k-ary redirecting unbiased distribution if, for all inputs y™), ... y*) € [n]"~! the
distribution D(-]y(l), e ,y(k)) is invariant under redirecting the nodes. That is, for all vectors
o= (09,...,00) €SP of permutations, and for all x € [n]"~1 we require

D(z|yW,...,y™) = D@E () | #yD),...,ey™M)),

where &(z) = (02(x2),...,0n(zn)).

As in the hypercube model, we call an operator sampling from a k-ary structure preserving
unbiased distribution a k-ary structure preserving unbiased variation operator and, similarly, an
operator that samples from a k-ary redirecting unbiased distribution is called a k-ary redirecting
unbiased variation operator.

To get a better understanding of the above definitions, let us investigate the restrictions for
the unary case k = 1. We first look at the structure preserving model. Assume we have a search
point z, and we would like to sample the next search point according to a probability distribution
D, on the search space. We may do so if and only if there is an unbiased family of probability
distributions (D(-|y))y such that D(-|z) = D.. A necessary condition is

For every source-preserving permutation o with 6(z) = z and all 2 € [n]"~!)

it holds that D,(z) = D,(o(z)).
This condition is also sufficient. Assume D, satisfies (2]). Then for every y there are two possibilities.

1. Either there exists a o such that 6(y) = z. In this case, we define D(z | y) := D(6(x) | 2z) for
all z € [n]" L.

2. Or there does not exist such a o. In this case, we let D(-|y) be the uniform distribution on
the search space.

It can be checked that the family D(-|y) is a structure preserving unbiased family of distributions.
The same holds for the redirecting unbiased model if we take o from the set of all vectors in S~
and replace ¢ by &.

Now we can determine the distributions D, satisfying condition (2)). For the structure-preserving
model, we need to find all source-preserving permutations that leave z unchanged. These are in
one-to-one correspondence with the source-preserving automorphisms of the graph induced by z.
If A denotes the group of these automorphisms, then condition (2)) is that D, must be invariant
under A, i.e., for all a € A and all = € [n]"~! we require D,(z) = D,(a(z)).

For the redirecting model, we need to determine all families o € S?~! such that &(z) = 2.
Consider any component y; of y. Then we can choose o; to be any permutation of [n] with
0i(z;) = z. In particular, for all s,t € [n]\ {z} there is such a permutation mapping s to t.
Therefore, a distribution D, is redirecting unbiased if and only if the following condition is satisfied.

(1)

T 2,22 € [n]"! are vectors such that for every i € [2,...,n] the equations z; ' = z and

12

2)

x;”) = z; are either both true or are both false, then D,(z1)) = D,(2(?)).” Similar considerations
hold for higher arity. We omit the details.

Since we do not want the objective function to give vertex-specific information, we use the
single-criterion objective function fg(p(2),...,p(n)) := > ", d; where d; is the distance of the i-th
node to the source. If an edge — including loops — is traversed which does not exist in the input
graph, we set d; :== C where C' is some very large constant (e.g., we could choose C := nwpyax). In
all models, the constant C' can be learned by the algorithm in a constant number of queries, e.g.,
by querying the objective value of search point (2,...,2) in the unrestricted model and dividing
it by n — 1 and, similarly, querying a search point with “all nodes to one non-source node” in the
structure preserving unbiased model, and “all nodes to the same node” in the redirecting unbiased
model. In the latter one we may perform two independent such queries to guarantee a probability
of at least 1 — n~2 to learn the exact value of C. Thus, we assume that the value C is known to
the algorithm.

It has been argued in that the RLS algorithm, which in each iteration flips exactly
one bit chosen uniformly at random, solves the single-source shortest path problem with the single-
criterion objective function in O(n?) iterations. Since this algorithm is contained in the ranking-
based unrestricted black-box model, we immediately gain an upper bound of O(n?). RLS is also
contained in the redirecting unbiased model.

Corollary 13. The ranking-based unrestricted black-box complexity and the ranking-based unary
redirecting unbiased black-box complexity of the SSSP with the single-criterion fitness function is

O(n?).

We conjecture that already for the (non-ranking-based) unary redirecting unbiased model this
bound is tight. However, the following shows that we can achieve better bounds in the unrestricted
black-box model.

Theorem 14. The unrestricted black-box complexity of the SSSP with the single-criterion objective
function is at most Z?;lli =n(n—1)/2 and the ranking-based unrestricted one is at most (n—1)2.

Proof. Let G = (V, E) be a connected graph and w a positive weight function on E. We show that
adding the i-th node to the shortest-path tree costs at most n — 4 queries in the unrestricted model
and at most n — 1 queries in the ranking-based unrestricted model. Basically, we are imitating
Dijkstra’s algorithm. We say that a node is unconnected if in the current solution there does not
yet exist a path from that node to the source and we say it is connected otherwise. Recall that
the indices run from 2 to n, so (2,3,...,n) encodes the graph where every node except the source
points to itself and is thus not connected to the source.

In the first n—1 iterations query the strings (1,3,4,...,n), (2,1,4,5,...,n), ..., (2,...,n—1,1),
each of which connects exactly one node to the source and lets all other node point to themselves.
Then each of these strings has n — 2 unconnected nodes, which contribute equal to the fitness
function. In the non-ranking-based model, we learn the costs of the edges adjacent to the source.
In the ranking-based model, we still learn their ranking. In particular, in both models we learn
which node can be connected to the source at the lowest cost.

Now assume that £ < n — 1 nodes v1,...,v; have been added to the shortest path tree already.
We call the remaining non-source nodes “free nodes”.

In the non-ranking-based model, we proceed as follows. Test all n —k —1 possibilities to connect
exactly one free node to vy, and let every other free node point to itself. We learn the costs of all edges

13

between free nodes and vi. Furthermore, we compute for each j < k the lowest cost for connecting
a free node to the source via v;. Note that for j < k we have gathered the required information in
previous steps. The cheapest such connection is added to the current solution, and we denote this
node by vgy1. Thus, we have constructed the shortest path tree in Z?:_lli =n(n —1)/2 queries.

In the ranking-based model we perform the following n — 1 queries in the k-th step. In each
query, we connect the node vq,...,v; as learned before. For the free nodes, we query the following
combinations.

e For each free node v make the following query. Connect v to v, and let all other free nodes
point to themselves.

e For each j € [k — 1], take the free node with minimal edge cost to v;. Connect this node to
vj, and connect all other free node to themselves.

Note for the second type that we know the free node with minimal edge cost to v; because we have
learned the ranking of all edges adjacent to v; in an earlier step.

Since all queries have exactly n — k — 1 unconnected nodes, the contribution of these nodes to
the cost function is equal for all queries. Thus we learn which free node produces minimal cost
when attached to nq,...,ng. We call this node vi11. Moreover, we learn the ranking of all edges
from free nodes to vy, which we need in the forthcoming steps.

Together, the algorithm adds an additional vertex to the current solution using n — 1 queries.
Since we have to add n — 1 vertices in total, the claim follows. O

This theorem, as all the subsequent theorems, can be proven by applying some variants of
Dijkstra’s algorithm. It is possible to derive the edge weights in the unrestricted model from the
oracle’s answers, so we need only n — 1 — ¢ queries to add the i-th vertex to the tree. In the
ranking-based model we have less information and need up to (n — 1) queries to add a new edge.

For the structure-preserving unbiased model, things get more involved. In the unary case we
need O(n?logn) queries to add a new edge. In the binary and 3-nary case, some precomputations
are possible that reduce the run time.

Theorem 15. The wunary structure-preserving wunbiased black-boxr complexity of SSSP is
O(n3logn).

Proof. In the structure-preserving unbiased black-box we are not allowed to direct a free nodeH to
the node that was lastly added to the search tree. For this reason, in each step we need not only
to search for the node that we want to add, but also for the place where we want to attach it.

To add the first node, the algorithm does the following. It queries 3nlogn times a vertex using
the following operator. Draw z € [n]"~! such that x has exactly one entry j equaling 1 (i.e., that
is connected to the source) and such that all every other entry points to itself. Clearly, all but one
node are connected to the source and all other have contribution C' to the costs.

By standard coupon collector arguments we have that the probability to have connected each
possible edge at least once is at least 1 —n~2. To continue, let « be one of the queried search points
with the lowest costs. Then x encodes a shortest path.

It is lengthy, but straightforward to verify that the above variation operator is a (0-ary)
structure-preserving unbiased one. We omit this computation.

4 Again, we say that a node is free if its shortest path to the source is not yet known.

14

Assume now that we have already learned k nodes vq,...,v; to be added to the shortest path
tree. We do not assume that we have a search point z encoding the whole shortest path tree.
However, we require that for every j € [k], we have a search point encoding the shortest path to
v;. Let z¥ be the search point encoding the shortest path to vy, the vertex that we have discovered
latest. We query 3k(n—k)log(k(n—Fk)) times the following. “Create the path z from 2* by pointing
exactly one of the unconnected nodes to one of the v;, for j € [k]. Let every other unconnected
node point to itself.”

With probability at least 1 — n~2 we have queried all n — 1 — k possible attachments of free
nodes to an n;. We compute the lowest cost and continue with one of the vertices sampled in the
last phase with lowest cost.

It is again lengthy, but straightforward to verify that the variation operators is structure-
preserving unbiased. We omit the details.

The complexity of the problem is upper bounded by the run time of the algorithm, which is

O <Z kE(n — k) log(k(n — k:))) = O(n?logn).
k=1

O

Theorem 16. The binary structure-preserving unbiased black-box complexity of SSSP is
O(n?logn).

We give an intuitive proof of this theorem here; a detailed analysis can be found in the appendix,
in Section

Proof(sketch). We imitate Dijkstra’s algorithm. Note however, that in the structure-preserving
unbiased model we are not allowed to (i) direct a node to some node of our choice, e.g., to the node
that was lastly added to the search tree; and (ii) we cannot simply add a vertex to the current
solution but need to construct this new solution.

To overcome the first point, we split up the algorithm in two phases. In the search phase, we
do not actually find a search point encoding the search tree T', but rather for every leaf v of the
tree we store a search point that contains the path in T' from the source to v, with all other nodes
pointing to themselves.

When the search phase is completed, we know the structure of the search tree, and start the
construction phase. In this phase, we grow the desired search tree T

Remarkably, we need binary operators only to check whether we have added the correct vertex
to the tree in the construction phase.

Let us start with the search phase. For the first step, let v; be the source, and store the search
point where every vertex points to itself. For learning how to add the k 4 1-th node, assume that
for k nodes vy, ..., v we have learned already how to add them to the shortest path tree. We call
the other nodes “free nodes”.

Consider the search point 2(%) lastly found. As mentioned above, z(¥) consists of a the shortest
path from the source to vy, and all nodes not on this path point to themselves. We call the nodes
on the shortest path from v to vy “connected nodes”. Note that a node cannot at the same time
be free and connected, but there may be nodes that are neither free nor connected. We apply
O(nlogn) times the following unary unbiased operator. “Create the path z from z(*) by pointing
exactly one of the unconnected nodes to v,. Let every other unconnected node point to itself.”

15

The operator is unbiased since every source-preserving automorphism of z®) must fix the path in
z®) and hence must fix vy,.

With high probability we have queried all possible attachments of free nodes to vi. We compute
the lowest cost for connecting one of them via vy and compare it with the lowest cost for connecting
a free node via one of the vertices vy, ...,vy_1. Of all these connections, we choose the cheapest
and store the corresponding search point.

Since we need to add n — 1 vertices, the search phase needs O(n?logn) queries.

For the construction phase, assume that we have learned the complete shortest path tree T'.
Le., for every vertex v, we have a search point encoding the path in 7' from the source to v. We
want to construct T explicitly. We start with the empty search tree (i.e., the search point where
all nodes point to themselves), and add vertices in a depth-first manner.

Now we describe how to construct T iteratively. We call the queries between adding the (k—1)st
and k-th node the k-th phase. At the end of each phase, we choose an active node, to which the
next node is to be attached. We start with the source being active.

For the (k 4 1)st phase, assume we have already constructed a tree T} of size k, encoded in
a search point y*). We will make use of the unary operator attach(y(k)), which creates a search
point z from y*) by redirecting exactly one unconnected node to the active node. In general,
this operator does not need to be unbiased, since there may be automorphisms of the search tree
mapping the active node somewhere else. However, it is possible to avoid such automorphisms by
carefully choosing the order in which the depth first search traverses the children of the active node.
The key idea is to traverse longest search paths first. We omit the details.

Let v be the node we want to attach to the active node, and let z, be the search point storing
the shortest path from s to v, i.e., z, = 2 for some i € [n]. We add v to T as follows. Sample
2 + attach(y*)). Skipping the details, we note that it is possible by binary unbiased operations
to compute in a constant number of queries the number of edges in which z and x, coincide. Hence
we can decide whether the newly added node was v. We keep on sampling z < attach(y*)) until
we find a z that adds v to y*), then setting y*t1) «— z. If v has a child in T then we make v the
next active node. Otherwise, we backtrack until we find a node that has an unconnected child, and
make this node active.

The expected number of queries needed to add a new node is O(n). Since n nodes need to be
added, the construction phase needs O(n?) queries.]

By allowing 3-ary operators it is possible to imitate Dijkstra’s algorithm more directly, without
any need to split up the algorithm into two phases as in the proof of the previous theorem. We get
the following theorem.

Corollary 17. The 3-ary structure-preserving unbiased black-box complezity of SSSP is O(n?).

5 Conclusions

This first analysis of the different black-box complexity notions for two classic combinatorial op-
timization problems showed the following. In general, all notions make sense for combinatorial
problems as well, though some care has to be taken of how to implement unbiasedness condi-
tions. The particular bounds we find are reasonably close to actual run times observed by existing
randomized search heuristics, that is, the black-box complexities give reasonable bounds for the
problem difficulties here. In cases where our bounds are smaller than those observed by current

16

best search heuristics, further studies are needed to determine whether current heuristics can be
improved, e.g., by using higher-arity variation operators, or whether additional restrictions to the
black-box model are needed to exclude artificial algorithms.

Acknowledgment

Timo Kotzing was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
NE 1182/5-1.

Carola Winzen is a recipient of the Google Europe Fellowship in Randomized Algorithms, and
this research is supported in part by this Google Fellowship.

References

[BBDT09]

[DHKO7]

[DHKO08]

[DJ10]

[DJKT10]

[DIK*11]

[DITWO3]

[DJWO6]

[DKLW11]

Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias Friedrich, Piyush P. Ku-
rur, and Frank Neumann, Computing single source shortest paths using single-objective
fitness functions, Proc. of Foundations of Genetic Algorithms (FOGA’09), ACM, 2009,
pp- 59-66.

Benjamin Doerr, Edda Happ, and Christian Klein, A tight analysis of the (1+1)-EA for
the single source shortest path problem, IEEE Congress on Evolutionary Computation
(CEC 2007), IEEE, 2007, pp. 1890-1895.

, Crossover can provably be useful in evolutionary computation, Proc. of Genetic
and Evolutionary Computation Conference (GECCO’08), ACM, 2008, pp. 539-546.

Benjamin Doerr and Daniel Johannsen, Edge-based representation beats vertex-based

representation in shortest path problems, Proc. of Genetic and Evolutionary Computa-
tion Conference (GECCO’10), ACM, 2010, pp. 758-766.

Benjamin Doerr, Daniel Johannsen, Timo Koétzing, Frank Neumann, and Madeleine
Theile, More effective crossover operators for the all-pairs shortest path problem,
Proc. of Parallel Problem Solving From Nature (PPSN’10), Springer, 2010, pp. 184-193.

Benjamin Doerr, Daniel Johannsen, Timo Ko6tzing, Per Kristian Lehre, Markus Wagner,
and Carola Winzen, Fuaster black-box algorithms through higher arity operators, Proc. of
Foundations of Genetic Algorithms (FOGA’11), ACM, 2011, pp. 163-172.

Stefan Droste, Thomas Jansen, Karsten Tinnefeld, and Ingo Wegener, A new frame-
work for the valuation of algorithms for black-box optimization, Proc. of Foundations
of Genetic Algorithms (FOGA’03), Morgan Kaufmann, 2003, pp. 253-270.

Stefan Droste, Thomas Jansen, and Ingo Wegener, Upper and lower bounds for ran-
domized search heuristics in black-box optimization, Theoretical Computer Science 39
(2006), 525-544.

Benjamin Doerr, Timo Kotzing, Johannes Lengler, and Carola Winzen, Black-Box
Complezities of Combinatorial Problems, Proc. of Genetic and Evolutionary Computa-
tion Conference (GECCO’11), ACM, 2011, pp. 981-988.

17

[DKW11]

[DT09)

[DW11]

[HY04]

[KK09)

[LW10]

[MRO7]

INWO04]

[INWO07]

[NW10]

[RS09]

[STWO02]

[STWO4]

[YaoT77]

Benjamin Doerr, Timo K&tzing, and Carola Winzen, Too fast unbiased black-box al-
gorithms, Proc. of Genetic and Evolutionary Computation Conference (GECCO’11),
ACM, 2011, pp. 2043-2050.

Benjamin Doerr and Madeleine Theile, Improved analysis methods for crossover-based
algorithms, Proc. of Genetic and Evolutionary Computation Conference (GECCO’09),
ACM, 2009, pp. 247-254.

Benjamin Doerr and Carola Winzen, Towards a Complexity Theory of Randomized
Search Heuristics: Ranking-Based Black-Box Complezity, Proc. of Computer Science
Symposium in Russia (CSR’11), Springer, 2011, pp. 15-28.

Jun He and Xin Yao, A study of drift analysis for estimating computation time of
evolutionary algorithms, Natural Computing 3 (2004), 21-35.

Petr Kovar and Michael Kubesa, Factorizations of complete graphs into spanning trees
with all possible maximum degrees, Combinatorial Algorithms (Jir{ Fiala, Jan Kra-
tochvil, and Mirka Miller, eds.), Lecture Notes in Computer Science, vol. 5874, Springer
Berlin / Heidelberg, 2009, pp. 334-344.

Per Kristian Lehre and Carsten Witt, Black-box search by wunbiased variation,
Proc. of Genetic and Evolutionary Computation Conference (GECCO’10), ACM, 2010,
pp. 1441-1448.

R. Motwani and P. Raghavan, Randomized algorithms, Cambridge University Press,
1997.

Frank Neumann and Ingo Wegener, Randomized local search, evolutionary algorithms,
and the minimum spanning tree problem, Proc. of Genetic and Evolutionary Computa-
tion Conference (GECCO’04), Springer, 2004, pp. 713-724.

Frank Neumann and Ingo Wegener, Randomized local search, evolutionary algorithms,
and the minimum spanning tree problem, Theoretical Computer Science 378 (2007),
32-40.

Frank Neumann and Carsten Witt, Bioinspired Computation in Combinatorial Opti-
mization — Algorithms and Their Computational Complezity, Springer, 2010.

Joachim Reichel and Martin Skutella, On the size of weights in randomized search
heuristics, Proc. of Foundations of Genetic Algorithms (FOGA’09), ACM, 2009, pp. 21—
28.

J. Scharnow, K. Tinnefeld, and I. Wegener, Fitness landscapes based on sorting and
shortest path problems, Proc. of Parallel Problem Solving From Nature (PPSN’02),
Springer, 2002, pp. 54-63.

, The analysis of evolutionary algorithms on sorting and shortest paths problems,
Journal of Mathematical Modelling and Algorithms 3 (2004), 349-366.

Andrew Chi-Chin Yao, Probabilistic computations: Toward a unified measure of com-
plexity, Proc. of Foundations of Computer Science (FOCS’77), 1977, pp. 222-227.

18

Appendix

A Mathematical Background

The following presentation of Yao’s minimax principle is taken from the book by Motwani and

Raghavan [MR97].

Theorem 18 (Yao’s Minimax Principle). Let IT be a problem with a finite set Z of input instances
(of a fized size) permitting a finite set A of deterministic algorithms. Let p be a probability distri-
bution over I and q be a probability distribution over A. Then,

in E[T(I,, A)] < E[T(I,A
min B[T(I, A)] < maxE[T(I, 44)],
where I, denotes a random input chosen from I according to p, A, a random algorithm chosen
from A according to q and T'(I, A) denotes the running time of algorithm A on input I.

Furthermore, we will use the following drift theorem in our proofs.

Theorem 19 (Additive Drift [HY04]). Let (X¢)i>0 be random variables describing a Markov process
over a finite state space S C R. Let T be the random variable that denotes the earliest point in
time t > 0 such that Xy = 0. If there exist ¢ > 0 such that

E[Xt — Xt_;,_l‘T > t] <cg,

then

If there exist d > 0 such that
E[Xt — Xt+1|T > t] > d,
then x
E[T|X,) < 22,
d
Rather than bounding the expected runtime of an algorithm, it is sometimes easier to show
that it solves the given problem with good probability in some number s of iterations. If we are
only interested in asymptotic black-box complexities, the following remark allows us to use such
statements for upper bounds.

Remark 20. Suppose for a problem P there exists a black-box algorithm A that, with constant
success probability, solves P in s iterations. Then the black-box complexity of P is at most O(s).

Proof. Let ¢ be an upper bound for the failure probability of algorithm A after s iterations. We
call the s iterations of A a run of A. If X; denotes the indicator variable for the event that the i-th
independent run of A is successful (i.e., computes an optimum), then Pr[X; = 1] > 1 — ¢. Clearly,
Y := min{k € N| X} = 1} is a geometric random variable with success probability at least 1 — c.

Hence, E[Y] = (1 — ¢)7!, i.e., the expected number of independent runs of A until success is at
most (1 —¢)~!. Thus, we can optimize P in an expected number of at most (1 — ¢)~!s iterations.
Since c is at least constant, the claim follows. O

19

B Upper Bounds for MST

In this section, we prove Theorem [l
We start with the statement in the unrestricted setting, which is very simple.

Proof for Unrestricted Black-Box Complexity. Query the empty graph (0,...,0) as a reference
point, then query all edges e;, i € [m], where e; denotes the i-th unit vector (0,...,0,1,0,...,0).
Then test all edges in increasing order of their weights (ties broken arbitrarily). Accept an edge if it
does not form a cycle (note that this can be checked trough the first component of the bi-objective
objective function). O

The unbiased model is much more involved. For all three arities, the basic principle of the
algorithm is the same as for the unrestricted algorithm, basically following Kruskal’s algorithm for
MST construction. In the first step, we create the empty graph. This serves as a reference point
for all further iterations.

In the second step, we learn (in the unbiased model) or order (in the ranking-based model) the
weights of the edges (including multiplicities) and we test the inclusion of the edges in increasing
order of their weights in the third step. From basic facts about Kruskal’s algorithm we know that
for edges with the same weight, it does not matter in which order we test them.

In the following, we prove upper bounds for the expected number of queries needed to complete
each step. For readability purposes, we split the proof into 4 parts, one for each model.

Let us remark already here that in the proof we apply only few variation operators, namely
uniform() which samples a bit string « € {0, 1}" uniformly at random, RLS(-) (random local search)
which, given some z € {0,1}", creates from x a new bit string y € {0,1}" by flipping exactly one bit
in x, the bit position being chosen uniformly at random. We also use the operator complement(-),
which assigns to every x € {0, 1}" its bit-wise complement z. Lastly, we use the operator RLSy(-,).
Given some bit stings z,y € {0,1}", RLSk(x,y) outputs a bit string z that has been created from
x by flipping exactly k bits of x, chosen uniformly at random, in which x and y differ. If x and y
differ in less than k bits, it outputs x.

The following is straightforward to verify, for a discussion of the properties of unbiased variation

operators confer [LWT0].

Remark 21. uniform() is a (0-ary) unbiased variation operator and both RLS(-) and complement(-)
are unary unbiased ones. Furthermore, for all k, RLSk(+,-) is a binary unbiased variation operator.

B.1 The Unary Unbiased Model

The bound of O(mnlogm) for multiple edge weights will follow from the bound for the ranking-
based unary unbiased model, so we postpone it to section [B.2]

Proof of O(mnlog(m/n)) bound.

First step. As required by the unbiased black-box model, we first draw a search point z €
{0, 1} uniformly at random. We construct the empty graph by creating y <— RLS(z) and accepting
x <y if and only if w(y) < w(z). We do so until w(x) = 0. By the standard coupon collector
argument, this takes an expected O(mlogm) queries. In the following, we denote the empty graph
by V.

Second step. In order to learn the weights, we again employ the operator RLS(+) iteratively

to 2° until we have added all edges. More precisely, we generate a sequence of search points z* as

20

follows. In the k-th iteration of the second step we create z < RLS(z*~!) and query the objective
value of z. If it is larger than the objective value of 2~ !, we set zF < z. Otherwise, we discard
z and keep on sampling from z¥~'. Then the difference of the objective values of 2* and z*~!
is exactly the weight of the edge added in the k-th iteration, so we learn all edge weights. By
the same coupon collector argument as before, this takes an expected O(mlogm) queries. Let
wy < ... < w,, be the ordering of the weights.

Third step. We return to the search point 2%, and show how to construct an MST for the
underlying graph. For any k < n — 1 we call the queries needed to add the k-th edge to the MST
the k-th phase. We start by applying RLS(-) to 2 until we have found an edge of minimal weight
wi. We call the last sample 7!

Assume now that we have already added i edges of the MST. Let 4’ be this search point and let
us assume that we have tested t; edges to find the i-th one. To test the inclusion of the (t; + 1)st
edge, we query z(ht) « RLS(y"). By the change in the second value of the objective function
w(zY) — w(y’) we learn how large the weight of the flipped edge is and by the first value ¢(z(%)
we learn whether we can add this edge without creating a cycle (if and only if ¢(2(%)) < ¢(y?)).

We do so until we have flipped the (t; 4 1)st heaviest edge (or one of them, if there exist multiple
such edges). This requires an expected number of m queries. If we cannot add this edge to the
current solution without creating a cycle, we check whether we have already created in one of the
2(it)g the string which includes the (t; + 2)nd heaviest edge. If so, we check whether or not to add
it to the current solution. If we have not created it already, we continue drawing z(it) « RLS(y")
until we have found the edge with the lowest weight that can be included to our current solution
y'. We call the new solution y*! and continue with the (i +2)nd phase until we have added a total
number of n — 1 edges to 2°.

To determine an upper bound for the number of queries needed, let k; := ¢; — t;_1 be the
number of edges for which we have tested the inclusion in the i-th phase (including the lastly
included one). By a coupon collector argument the expected number of queries needed in the i-th
phase is m/k; - k;log k; = mlogk;. This follows from the fact that we need to sample all k; edges
(“coupons”) but the chance of getting one of them equals only m/k;, for each query. Note that this
argument works only in the case when all edge weights are distinct. Otherwise, we would need to
sample more often to be sure that we have seen all edges of the given weight.

This shows that the third phase of the algorithm takes no more than O(m 2?2_11 log k;) queries.
Since Z?:_ll k; < m we conclude that

n—1 n—1
Zlog ki = log (H ki) <log ((m/n)") = nlog(m/n),
i=1 1=1

and thus, O(m 2"~ 'log k;) = O(mnlog(m/n)) Hence, the unary unbiased black-box complexity
of MST is

O(mlog m) + O(mlogm)+ O(mnlog(m/n)) = O(mnlog(m/n)).

B.2 The Ranking-Based Unary Unbiased Model

In the following, we speak of weights, even if we are in the ranking-based black-box model. Note
however, that we do not need to know the exact value of the weight but only its rank.

21

Proof of O(mnlogn) bounds.

First step. The first step is exactly the same as in the unary unbiased model. Note that,
thanks to the information given by the ranking, we are still able to determine if w(y) < w(z) holds.
Again we denote the empty graph by 2.

Second step. For this model, we can skip the second step.

Third step. The difference for the ranking-based unbiased model compared to the unbiased
one is quite obvious. Since we cannot query for the objective value (¢(z), w(z)) but only the relative
ranks of ¢(x) and w(x), we do not know which bits we have flipped in either one of the iterations.
Thus, for the inclusion of the (i + 1)st edge, we perform O(mlogm) queries (%) « RLS(y") to
find, with high probability, the edge with the smallest weight that can be included into the current
solution. Note that we can check the ranking of the weights via the second component of the
objective function and the feasibility of adding it to the current solution via the first component.
If and only if the rank of ¢(z(*")) is strictly less than that of ¢(y*) we can include the corresponding
edge. Since we need to include n — 1 edges into the MST, we need an expected O(nm logm) queries
until all edges of the MST have been added.

O

B.3 The Ranking-Based Binary Unbiased Model

Compared to the unary case, the binary unbiased black-box complexity allows to gain information
about the Hamming distance for two search points. We formalize this in the following lemma.

Lemma 22. There is a procedure using binary unbiased variation operators only such that, given
k,x and y, decides whether the Hamming distance from x to y is k (on MST objective functions).

Proof. We define a binary unbiased operator which returns x if the distance between x and y is k
and otherwise returns a 1-Hamming neighbor of . Due to the nature of MST objective functions,
a 1-Hamming neighbor of x cannot have the same objective value as = (an edge was either added
or removed, and all weights of edges are positive). O

Proof of O(mlogn) bound.

First step. As required by the unbiased black-box model, we first draw a search point z €
{0,1}™ uniformly at random.

We can create the empty graph in an expected time of 2m as follows. Set y < complement(x).
We then set z < RLSy(z,y) with probability 1/2 and z < RLS;(y,x) with probability 1/2. We
update x < z (in the first case) and y < z (in the second case) if and only if w(z) < w(z) or
w(z) < w(y), respectively.

With probability 1/2, this operation decreases the Hamming distance of z and y by 1 and thus,
the expected number of calls to RLSy(-,-) is 2m (just note that initially x and y had a Hamming
distance of m). Note that choosing RLS;(z,y) with probability 1/2 and RLS; (y,) with probability
1/2 is still an unbiased operation. As before, let 20 denote the empty graph.

Second step. The binary model allows us to store the information which bits have been flipped
already, where we need time O(logm) to add a bit to the storage, and where we can perform a
lookup, i.e., decide whether a bit has already been stored, in constant time. The idea is to maintain
a search point s consisting of all the edges that have been stored. Adding an edge is done by binary
search, and given a graph consisting of only a single edge, the Hamming distance of s tells us
whether the edge is stored or not (here we use Lemma 22)).

22

With this tool, we can accelerate the second phase. We query an expected number of mlogm
times the objective value of z! < RLS(2”) until we have learned all m different weights/rankings.
For each sample, we lookup whether it has been stored. If so, it is discarded. If not, its edge
is added to the storage. We need to perform m store operations and O(mlogm) lookups, both
contribution O(mlogm) to the runtime. Therefore, we can learn all weights with multiplicities in
time O(mlogm).

We fix some labeling of the the edges e;,,...,¢e;,, such that their weights are ordered w; =
w(ej,) < ... < wy = wlej,). Note that for every i, we have already sampled a search point y*
containing only the edge e;.

Third step. As in the unary model, we successively add edges to our current solution. This
time, we call the queries needed to test the inclusion of the i-th heaviest edge e;,, given that we
have tested already the inclusion of edge e;, ,, the i-th phase.

We show that such a phase requires at most O(logn) queries. Let x be the current search point.
Let d be the Hamming distance from z to the search point y’ containing only the edge e;. For
simplicity, assume that d is even. Then we flip exactly half of the bits in which = and %° differ by
setting z <~ RLS;/9 (z,5%). By computing the Hamming distance between z and 2°, we may decide
whether we have flipped e; or not. If e; is not contained in z then we discard z and try again.
Otherwise, we replace ¢’ with z and again flip half of the bits in which z and x differ, updating z
whenever e; is contained in the new sample.

Repeating like this, we have in each step a probability of 1/2 to reduce the Hamming distance
between z and x by half. Meanwhile, by comparing with z° we ensure that e; is always contained
in z. Therefore, when the Hamming distance of z and z decreases to 1, the search point z differs
from x only by the edge e;, as desired.

As for the ranking-based unary unbiased model, the objective value of z tells us whether to
include the edge e; or not. For the i-th phase, we need O(logn) queries. As we need to check each
edge, the third step needs time O(mlogn). O

B.4 The Ranking-Based 3-Ary Unbiased Model

In the 3-ary model, we have some more flexibility. The main advantage is that we can create any
particular 1-bit flip in a linear number of queries (linear in the length of the bit string). Using this,
we can optimize the MST problem in a linear number of queries. Again, we use the word “weight”
but are aware that we are not given the exact value but only its rank.

Proof of O(m) black-box complezity. First step. The bound for the binary model holds for the
3-ary as well, and thus, O(m) is an upper bound for the first step in the 3-ary model, too. Let us
again denote the empty graph by z°.

Second step. We show how to learn the weights of the edges in linear time. To encode which
edges have been looked at already, we set y < complement(x), the bit-wise complement of z.
Throughout the run of the algorithm it will hold that the edges we have looked at correspond to
the bit positions in which and y do not differ.

We learn the first edge weight by querying z <— RLS(2"). We update y < update(y, z, z"), where
update(, -, -) is the 3-ary variation operator that can be described as follows. Given a,b,c € {0,1}"™,
the operator update(a, b, ¢) returns ¢ for those positions where a and b do not differ and returns a
otherwise.

23

It is easy to verify that the Hamming distance of y and 2" decreases by 1 in each such step.
Furthermore, we have created all possible 1-bit flips, after only m such steps (i.e., 2m queries since
each step consists of 2 queries). Let us again fix an ordering of the edges ey, ..., e, such that
w(er) < ... < w(ey). Let z1,..., 2z, € {0,1}™ be the corresponding ordering of the bit strings
which are of Hamming distance 1 to 2° (the zs in the description above).

Third step. We now check the inclusion of the edges to the current solution in increasing order
of their weights. Since e; can be included without any further consideration, we may assume that
we have already tested the inclusion of the i edges with the lowest weights. Let x be our current
solution. To test the inclusion of edge e; 11 into the current solution, we query z + test(x, 2%, z;11),
which is again an unbiased 3-ary variation operator that can be described as follows. For any
a,b,c € {0,1}™ the operator test(a, b, c) outputs a string that has entries equal to a in all positions
for which b and ¢ do not differ and entries equal to 1 — a otherwise.

Note that in our case, we clearly have that the strings x and z differ in exactly one bit position
(because 29 and zi+1 do). We update x <— z if the edge e;+1 can be included into the current
solution and we continue with testing the inclusion of edge e; 1o otherwise.

As this third phase requires at most m queries, the ranking-based unbiased 3-ary black-box
complexity of MST can be bounded by O(m). O

C Single-Criterion SSSP

In this section, we carry out the details for the proof of Theorem

Proof. We imitate Dijkstra’s algorithm. Note however, that in the structure-preserving unbiased
model we are not allowed to (i) direct a node to some node of our choice, e.g., to the node that was
lastly added to the search tree; and (ii) we cannot simply add a vertex to the current solution but
need to construct this new solution.

To overcome the first point, we split up the algorithm in two phases. In the search phase, we
do not actually find a search point encoding the search tree T', but rather for every leaf v of the
tree we store a search point that contains the path in T from the source s to v, with all other nodes
pointing to themselves.

When the search phase is completed, we know the structure of the search tree, and start the
construction phase. In this phase, we actually grow the desired search tree.

Let us start with the search phase. In the first step, we set v1 := s and store the search point
where every vertex points to itself. For the k + 1-th step, assume that we have already learned k
nodes v1,...,v; to be added to the shortest path tree. We call the other nodes “free nodes”.

We assume that for every j € [k], we have a search point () encoding the shortest path P;
to v;. Further, we assume that for every j € [k] and every free vertex v we have a search point
encoding the path P; extended by attaching v to 2,

Consider the search point z(*) lastly found. We call the nodes belonging to the path in z(*)
“connected nodes”. Note that a node cannot at the same time be free and connected, but there
may be nodes that are neither free nor connected. We apply 3nlogn times the following unary
unbiased operator. “Create the path z from %) by pointing exactly one of the unconnected nodes
to vg. Let every other unconnected node point to itself.” The operator is unbiased since every
source-preserving automorphism of z(*¥) must fix the path in 2*), and hence must fix vy.

24

With probability at least 1 — n~2 we have queried all n — 1 — k possible attachments of free
nodes to vi. We compute the lowest cost for connecting one of them via n; and compare it with the
lowest cost for connecting a free vertex via one of the vertices vy, ...,vp_1. Of all these connections,
we choose the cheapest and store the corresponding search point.

Since we need to add n — 1 vertices, the search phase needs time O(n?logn).

For the construction phase, assume that we have learned the complete shortest path tree T'.
Le., for every vertex v, we have a search point encoding the path in 7' from the source to v. We
want to construct T explicitly. We start with the empty search tree (i.e., the search point where
all nodes point to themselves), and add vertices in a depth-first manner with a particular order in
which we traverse the children. To describe this order, we define for every node v of T' the lengths
sequence as follows. Consider the subtree T, of T consisting of v and all its descendants. The
lengths sequence is the ordered sequence of the lengths of all paths from v to a leaf in T}, with
the largest length coming first. We say that a node has mazximal length if its length sequence is
maximal with respect to lexicographic ordering.

Now we describe how to construct 7' iteratively. We refer to the time between adding the
(k — 1)st and k-th node the k-th phase. At the end of each phase, we choose an active node, to
which the next node is to be attached. We start with the source being active.

For the (k 4 1)st phase, assume we have already constructed a tree T} of size k, encoded in
a search point y*). We will make use of the unary operator attach(y(k)), which creates a search
point z from y*) by redirecting exactly one unconnected node to the active node. We will choose
the active node in such a way that this operator is structure-preserving unbiased.

Consider all children of the active node in the shortest path tree 1" that are not yet connected
in 7. Among those, choose a child v of maximal length. Let z, be the search point storing the
shortest path from s to v. We add v to T}, as follows. Sample z < attach(y¥)). Skipping the
details, we note that it is possible by binary unbiased operations to compute in constant time the
number of edges in which z and x, coincide. Hence we can decide whether the newly added node
was v. We keep on sampling z < attach(y(k)) until we find a z that adds v to y®), then setting
y*+1) « 2. If v has a child in T that is not yet connected then we make v the next active node.
Otherwise, we ascend the tree from v until we find a node that has such a child, and make this
node active.

The expected time needed to add a new node is O(n). Since n nodes need to be added, the
construction phase needs time O(n?).

It remains to be shown that the variation operator is structure-preserving unbiased for our
choice of the active node. Assume that the algorithm has already added k nodes forming a tree T},
and the active node is w. We need to show that every permutation of the non-source nodes mapping
the tree T}, isomorphic to itself must map w to itself. Assume that there is such an isomorphism
mapping w to a different node w’. Then w’ is contained in T}, so it must be either a leaf, or it must
have been active at some time. Let u be the closest common ancestor of w and w’, and let v and v’
be the children of u that are ancestor of w and w’, respectively. Then the algorithm has explored v’
before v, so the length sequence of v was larger or equal to the length sequence of v. Moreover, the
subtree with root v has been explored completely. But since w is active, not all children of w have
been discovered yet, and so the subtree with root v has been explored only partially. Together, the
subtree of v/ in T}, has strictly greater length sequence than the subtree of v in T},. Therefore, there
is no isomorphism of T}, mapping v to v'. Consequently, there is no isomorphism of T}, mapping w
to w’, because every isomorphism must preserve ancestor relations. This concludes the proof that

25

the variation operator is structure-preserving unbiased.
Summing up, the algorithm needs time O(n?logn) + O(n?) = O(n?logn).

26

	1 Introduction
	2 The Four Black-Box Models
	3 Minimum Spanning Trees
	4 Single-Source Shortest Path
	4.1 SSSP with Multi-Criteria Fitness
	4.2 SSSP with Single-Criterion Fitness

	5 Conclusions
	A Mathematical Background
	B Upper Bounds for MST
	B.1 The Unary Unbiased Model
	B.2 The Ranking-Based Unary Unbiased Model
	B.3 The Ranking-Based Binary Unbiased Model
	B.4 The Ranking-Based 3-Ary Unbiased Model

	C Single-Criterion SSSP

