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ABSTRACT

Online bin-packing is a well-known problem in which im-
mediate decisions must be made about the placement of
items with various sizes into fixed capacity bins. The as-
sociated decisions can be based on an index policy in which
each decision option is independently given a value and the
highest value choice is selected. In this paper, we represent
such heuristics for online bin packing as a simple matrix
of scores. We then use a genetic algorithm to search for
matrices giving good performance. This might be regarded
as parameter tuning of the packing heuristic but in which
a fine-grained representation is used and so the number of
parameters is much larger than in standard parameter tun-
ing. The evolved matrices perform better than the standard
heuristics. They also reveal interesting structures and so
have impact on questions of how heuristic score functions
should be represented and what structure they might be ex-
pected to exhibit.

Categories and Subject Descriptors

1.2.8 [Computing Methodologies|: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords

Heuristics, hyper-heuristics, metaheuristics, index policies,
online problems

1. INTRODUCTION

In many situations, decisions must be made despite lack of
knowledge of the future or lack of computational resources
to precisely compute the effects of the decisions. In such
cases, it is usual to have some kind of heuristic to make
decisions. Usually, heuristics are produced by an expert in
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a domain carefully designing some decision procedure. Of-
ten, even an expert requires a great deal of trial and error
- though the errors are rarely reported, and so a mislead-
ing impression given suggesting that creation of heuristics
is not a time-consuming process. Of course, such difficulties
are well-known, and so there have been various attempts to
automate the production of heuristics (e.g. for some recent
work see [20, 8, 5]).

In this paper, we give an approach for the automatic cre-
ation of heuristics that might be viewed as a form of pa-
rameter tuning [24] but applied with a much larger number
of parameters than usual. The large number of parameters
arise from a ’brute force’ representation of the heuristic as
a matrix covering the various potential decisions, that is, it
defines a policy in terms of the ’features’ available at each
decision point. This is done in the style of an ’index policy’
[14] in that each potential outcome is given a score sepa-
rately of other outcomes and the largest score is selected.

In particular, we study the well-known online bin-packing
problem [9, 11], creating a policy that is based on using
a (large) matrix of ‘heuristic scores’. Packing problem in-
stances are specified in terms of the bin size and the range of
item sizes. For specific instances, good policies are found us-
ing a Genetic Algorithm (GA) to search the space of matri-
ces, with the matrix-based policies being evaluated directly
by packing a (large) number of items.

The first result is that the GA finds matrices for the spe-
cific packing problems that perform significantly better than
the standard general-purpose heuristics such as first and best
fit [19, 10]. We then endeavour to understand and explain
the improved performance by looking at the structure of the
resulting good policy matrices. We find that they have a sur-
prisingly ‘spiky’ and complex structure that is quite unlike
the simple structure associated with the standard heuris-
tics. The structure also does not seem to be a good match
to a simple arithmetic function of the score as a function of
the features. This could well help understand cases when
previous approaches using Genetic Programming [4, 6] were
unable to obtain similar improvements. Hence, this work
raises general questions about the need to pick appropriate
representations of index policies. The advantage of a matrix-
based approach is that it can be agnostic about the form of
the index values, and so not exclude potential policies by
making an inappropriate choice of representation. Gener-
ally this suggests that when using evolutionary (or other
methods) to discover heuristics that it is important not to
presume biased representations before looking at unbiased
ones in detail to discover the structures that good heuristics



ought to have. Of course, a potential disadvantage is that a
matrix based policy might lead to large number of parame-
ters, and so make the search task computationally challeng-
ing for a general-purpose GA. Specialized search methods
might of course help with this challenge. However, even if
very large instances were to remain impractical, our mo-
tivation is that heuristics could be generated on small to
medium instances, and their structure inspected and used
as the basis for creation of heuristics for larger instances.

We are of course aware that standard methods for pol-
icy creation in stochastic processes (Markov chains, rein-
forcement learning, etc) are also likely to be able to gen-
erate good policies. However, our driving motivation is to
form the basis for (evolutionary-)search methods to aid in
the generation of heuristics and heuristic policies for com-
plex situations (and out of the reach of analytical methods).
Such complex situations might include combinatorial opti-
misation problems using constructive heuristics, or queuing
networks.

The structure of the paper is as follows: Section 2 gives a
brief review and pointers into the literature of existing work
on firstly bin-packing and also computer-based methods to
help design heuristics. Section 3 gives basic definitions of
the bin-packing problem, the instances that we use, and the
existing standard heuristics. Section 4 specifies the matrix-
based framework we use in order to define the packing poli-
cies. Section 5 describes the GA search method we use to
find good policies. Section 6 describes in depth a simple il-
lustrative example in which asymptotically optimal policies
are easy to find and understand. Section 7 gives the main
results on examples that are large enough to allow policy
improvements, but still small enough that the structure of
the resulting policies can be (partially) understood. Sec-
tion 8 summarises our results and their implications, and
then discusses future plans.

2. RELATED WORK

We now give a brief review and pointers into the liter-
ature of existing work, firstly on bin-packing and then on
computer-based methods to help design heuristics.

2.1 Bin-packing

One dimensional bin packing is a combinatorial optimi-
sation grouping problem, proven to be NP-hard [13]. This
problem involves packing a number of pieces with given sizes
into a minimal number of bins, where every bin has the same
fixed capacity. In other words, a set of integers must be par-
titioned into subsets (groups) so that the sum of the integers
within a subset does not exceed the capacity. In this generic
offline problem, the solution approaches have complete infor-
mation about the number of pieces and their sizes. Heuris-
tics are commonly used for bin packing [10], whenever exact
algorithms fail to produce a result in reasonable time for a
given problem. There are also other studies addressing the
representation issues for bin packing in metaheuristics. For
example, [12] used group encoding for candidate solution
representation in the framework of genetic algorithm and
combined the grouping genetic algorithm with local search
based on the Martello and Toth’s branch and bound reduc-
tion algorithm [16]. Ulker et al. [25] presented a linear
linkage encoding to overcome the redundancy in the group
encoding representation within another grouping genetic al-

gorithm framework. More on bin packing can be found in
[9, 11].

Online bin packing problem is a well known variant in
which the pieces arrive sequentially and at each step, a pack-
ing decision has to be made before the next item size is
revealed [23]. The decision is made under incomplete in-
formation about the number of pieces and their sizes, and
results in putting the current item into an already open bin
or opening a new bin.

2.2 Existing methods to discover heuristics

Hyper-heuristics provide search and optimisation frame-
works which allow the exploration of heuristics space for
solving complex problems [2, 20, 17, 8]. There are two main
classes of hyper-heuristics; methodologies that select or gen-
erate low level heuristics [3]. Genetic Programming (GP) is
an Evolutionary Algorithm that searches the space of com-
puter programs. It has been applied to many different chal-
lenging problems [18]. GP has been used as a hyper-heuristic
for the automated design of heuristics [5].

In [21], a learning classifier system of the Michigan type
XCS was trained to generate a hyper-heuristic for solving
unseen bin packing problem instances. The system learns
how to choose a low level heuristic to iteratively construct a
solution starting from an initial state towards a final state,
in which no item is left for packing. The authors reported
that XCS performed well across a large collection of data. In
this study, the number of training instances used was much
larger than the test cases.

Particularly relevant is the work in [4] that used GP to
evolve heuristics to decide the choice of bin for packing a
given item. The results showed that the first fit heuristic
could be generated by the genetic programming approach.
The authors reported that the code-bloat [1] existed in their
genetic programming. Moreover, they confirmed the redun-
dancy in the representation, as GP generated four trees
with depth of 2 showing similar performances to the first
fit heuristic. Subsequent work in [7] obtained new heuristics
after a training phase using genetic programming and tested
these online bin packing heuristics on randomly generated
problem instances. The authors investigated the behavior
of the computer generated heuristics as the problem size in-
creases against different sizes of training problem instances.
As expected, they have observed that the performance of
generated heuristics improves as the size of training prob-
lems and test problems increase. The new heuristics pro-
duced a competitive performance to the best fit heuristic.
The same authors [6] further studied the trade off between
performance and level of generality of a heuristic generated
by genetic programming for online bin packing. The authors
have illustrated that indeed there is a trade-off and the rep-
resentative problem instances used during the training phase
is crucial.

3. ONLINE BIN PACKING PROBLEM

This section gives the definitions, notation and standard
heuristics for online bin-packing that form the context for
the rest of the paper.

Basic definitions.

All bins will be taken to have the same integer capacity
C > 1 that is a hard limit on the total of the sizes of the
items that it can contain. Item sizes are also positive integers



within the range [1,C — 1]. Items arrive one at a time, and
must be assigned irrevocably to a bin before the next item
is seen.

A single empty new bin is always guaranteed to be avail-
able. If an item is packed into the empty bin then it is said
to have been opened and a new empty bin is created. A
bin will is referred to as closed if the remaining space is too
small to handle any potential item. Otherwise, non-empty
bins will be said to be open. (In some circumstances, an
item might open the empty bin and simultaneously close it
because there is not enough space for any other item.)

Standard heuristics.
Well known heuristics are First Fit (FF), Best Fit (BF)
and Worst Fit (WF) [15, 19, 10]. Specifically, we take

FF First fit packs the item in the earliest available bin that
has sufficient space to take it. The motivation is that,
in the long run, earlier bins will tend to be packed well
and then closed.

BF Best fit packs the item in the fullest available bin that
will take it. Ties are broken using FF (take the earliest
fullest bin). The motivation is to encourage each bin
to be packed perfectly or as near as possible to perfect.

WEF Worst fit packs an item into the emptiest available non-
empty bin. The motivation is to leave space for other
items (not surprisingly it is not a very good heuristic).
Ties are again broken using FF.

Uniform Bin Packing Instances.

We will use instances with N items in total, bin capacity
C, and integer item sizes selected uniformly and indepen-
dently at random from the range from the interval [$min,
smm]. For compactness we will refer to these as

UBP(C,Smin ySmaz 7N)

We will assume Smin > 0 and Smaee < C as items of zero
size can be ignored, and items of size C' or larger do not need
a policy to handle them.

Some of the data sets of [22] and [12] as included in the OR
library are generated similarly, however are smaller in terms
of number of items as they are designed for testing offline
algorithms. Hence, we simply generated our own random
instances.

Performance Measures.
Performance of packing policy will be measured using one
or more of the following:

Bins-Used, B: Simply the number of bins that are
used. Although having the convenience of being an
integer it will increase with the number of items N, and
not be useful as N grows large. So assuming that bin
t has fullness fi, t € {1,..., B}, it is more convenient
to report:

Average-Fullness, F,;: The overage, over the bins
that have been used of the space occupied to capacity.

Faf:]-/Btht

Average-Generic-Fullness, Fy;: This value gives
some insight into the variation of resulting fullness be-
tween bins. Fyy =1/BY", f?

Average-Perfection, Fj,: This value indicates how
successful the packing heuristic is in filling bins per-

fectly. Fop =1/B Zt,ftzl fr

In this paper we will search for policies that maximise
the average fullness, though we will also report the generic
fullness and average perfection as they can give insight into
how the policy is behaving. (Maximising the generic full-
ness would lead to packing that are more fairly distributed
between bins.)

4. VALUE MATRIX FRAMEWORK

We will define the packing policy using a matrix of heuris-
tic values:

We; is the integer value (score) associated with assigning
an item of size i to a bin of remaining capacity c.

The algorithm for packing an incoming item of size i is
then simply:

1. For each open bin (including the always-available new
empty bin), find its remaining capacity c. If it satisfies
¢ > i, so that the item might be placed in the bin, then
give the bin a value of W;.

2. The item is placed into the bin with the largest value.
We take ties to be broken using the FF heuristic. That
is, the earliest highest-scoring bin is selected.

We will take the values We; from a range [Wmin,Wmaz)
which is chosen according to the instance. Generally, the
aim will be to keep the range as small as possible while
retaining sufficient expressive power.

It is straightforward to generate matrices that correspond
to the standard heuristics. For first-fit all values are equal,
and then the tie-breaking rule always applies. For best fit
values increase as the diagonal is approached, and for worst
fit values decrease as the diagonal is approached. This will
be illustrated in the small example in section 6; see equa-
tions (3)-(5).

It is important to observe that the matrix representation
is general and fair. A wide range of policies are expressible.
In this paper, for simplicity we use FF to break ties, but in
general other tie breaking rules could be considered. The
system is fair in the sense that all policies correspond to
a matrix of the same size, and so there is no bias towards
smoother or ’nicely-structured’ heuristics. Such ’learning
without preconceptions’ can allow it to reach heuristics and
policies that might not otherwise be considered.

Notice that each column of the matrix essentially defines
a policy for how the corresponding item size is handled. The
GA search procedure allows columns to be independent of
each other; and so a policy for size 7 is permitted to be quite
different from that for size i + 1. We will see later that this
’column independence’ is important.

Generally we will be working with instances in which item
sizes are within a restricted range. In this case some entries
within the value matrix W,; will be irrelevant because the
pair (¢, ) can never occur, or will be irrelevant. For example,
1 > c is irrelevant as the item is too big to fit. We also only
need to consider values of ¢ corresponding to item sizes that
can occur. In practice this means that the search for a good
matrix only needs to consider a subset of the values. We
represent this in practice using a boolean “mask matrix”



M.; that is true if and only if W,; might be used within
the instances considered. In the explicit examples in later
sections we will use a dot ‘. for the irrelevant unused entries
in the matrices. From now on, reference to a matrix will be
taken to mean that only the used, un-masked, entries are
considered.

4.1 Normalisation of the Value Matrix

The decisions made during packing depend only on rela-
tive values given to bins. For example, doubling all values
of We; will always give exactly the same packing.

Hence, many different matrices are equivalent to each
other. The search process we use does not use any crite-
ria to select between different elements of such equivalence
classes. This has the practical impact that the raw matri-
ces it produces are harder to interpret and compare. Hence,
we defined and used a rewrite procedure to convert matri-
ces to a standard form selects a unique representative for
each equivalence class and having a structure that is easier
to interpret.

Recalling that the columns of the matrix are essentially
independent, then we just need rewrite rules for a column.
The primary rules we use, and applied to each value of ¢
separately, are as follows:

1. Uniformly add to all scores to guarantee the score of
the empty bin We; > 1

2. The empty bin, of capacity C, is always available, so if
some other capacity ¢ < C has a lower score then it will
never be selected. Hence, given the first rule, we can
now re-assign the scores of such unusable capacities to
a fixed value: W,; = 1.

3. The empty bin is always considered last, so if it is in a
tie-break (using FF) it will be last choice. Hence a bin
with a higher score can be reduced to the same score
as the empty bin, as long as this does not change its
order relative to other values of c.

4. Remove all gaps in the set of values in the column,
and at the same time reduce them as much as possible
without changing their relative ordering.

5. EVOLVING POLICY MATRICES

We have seen that the packing policy is determined by a
simple matrix, and an associated mask matrix saying which
entries are active in the sense that they might be used on
the set of instances under consideration. Hence, given an
instance of packing (as determined by the bin capacity and
the stream of items), evaluation is simply done by running
the policy on the instance and measuring performance using
one (or more) of the measures in Section 3.

We optimise the matrix using an offline learning Genetic
Algorithm (GA) with the individuals (candidate solutions)
representing the active members of the policy matrix. Hence,
each gene carries an allele value in [Wmin, Wmaz]. The pop-
ulation of individuals goes though the usual cyclic evolu-
tionary process of selection, recombination, mutation and
evaluation. The individuals for crossover is selected based
on tournament selection with a tour-size of 2. Uniform
crossover which exchanges each gene from parents with a
probability of 0.5 is used. The crossover probability is set

to 1.0. The traditional mutation goes over each gene suc-
cessively and randomly assigns a new value from [wmin,
Wmae] With a probability of 1.0/individual_length, where
the individual_length is the number of the active members
of the policy matrix. As illustrated in Figure 1, the control
function generator and fitness evaluator are physically sep-
arated in the implementation for generality, flexibility and
extendibility purposes. The GA and the fitness evaluator
communicate through text files: The GA saves an individual
into a file in a matrix form and invokes the online bin packing
program. The packing algorithm uses the matrix as a policy
as described in Section 4 and evaluates its quality using a set
of 50 different training instances of UBP(C,$min,Smaz,500).
The total number of bins used while solving each training
case is accumulated and then saved as the fitness of the in-
dividual into another file for GA to read from. The initial
population is randomly generated and the training process
continues until a maximum number of iterations is exceeded.

Optimiser

Genetic Algorithm

Fitness Evaluator

Online Bin Packer

5 Run the packing
1 heuristic based on

X

Individual Fitness
[3]2]2[ 1] ]]4]

Iy

(

Evolve Population of

oo the Policy Matrix
\ Policy Matrices e b LoLos sl \ /
Masked Policy Matrix,

Figure 1: Heuristic generation using a GA for the
online bin packing problem.

A policy matrix represents a heuristic. Hence, here the
GA is used as a hyper-heuristic searching for a good heuris-
tic for online bin packing. A hyper-heuristic operates at a
domain-independent level and does not access problem spe-
cific information (e.g. see [20]), thus, the framework we use,
as shown in Figure 1, follows the same structure.

The resultant best (B-PM) and worst (W-PM) perform-
ing matrices (constructive heuristics) from 50 runs are then
tested on randomly generated 100 different instances of
UBP(C’,smin,smm,l()s’). The goal is to observe how the
learned policies perform when compared to the human de-
signed heuristics for online packing on unseen problem in-
stances drawn from the same distribution. The experiments
are conducted on 2.1GHz dual core computers with 2GB
memory.

In this paper, we fix wmin = 1, while for each instance,
Wmaz is set to the largest number of active entries among
the columns of the masked policy matrix. This means that
each active entry in every column can be given a different
value and so any preference ordering can be expressed for
any (used) item size.

In Section 7, we will report the results of applying the
framework to three problems:

UBP(6,2,3,10°), UBP(20,5,10,10°) and UBP(40,10,20,10°).
The GA uses a population size of 4, 12 and 24 for each in-
stance, respectively, and so each iteration (except the first)
requires 2, 10 and 22 fitness evaluations (FEs). The max-
imum number of iterations is 200, and so the maximum
number of FEs per training run are 402, 2002 and 4402,



respectively. Each FE during training with 500 items typ-
ically takes less than 10ms. (The testing phase with 10°
items takes less than 1 second.) Wall-clock run-times are
generally around a minute per training run, however, we do
not report the exact time as they are relatively small and
we have not tuned the GA parameters. Also, the implemen-
tation started a new process for each FE and so we suspect
significant time is spent on file read/write operations. This
could be improved by combining the GA and online bin-
packing codes.

6. AN ILLUSTRATIVE CASE: UBP(6,2,3)

In order to illustrate the ideas we will first look in detail
at the simple example UBP(6,2,3) (we suppress the last en-
try for number of items when no specific value is intended).
That is, bins of capacity 6 and items of size 2 or 3 only.

Firstly, observe that just two perfect packings are avail-
able: 24242 or 3+3. Also, there is only one packing, 2+3,
that results in wasted unusable space. Hence, in this case
it is straightforward to invent a good heuristic for a policy:
Never mix the two item sizes in the same bin.

Open bins will then fall into two classes;

e “even”: these have one or two items of size=2, and are
'waiting’ for another size 2 item

e ”0dd”: these have a single size=3 item and waiting for
another size 3

Of course, it also then makes sense for incoming items to
be placed in the most full bin of the correct parity. This
policy in terms of the of the value matrix is simply:

1 .
2 3.
3.1 2 . .
Wi=1|4 |. 21 . . (1)
5 o
6 |. 22 . .
c/i|l 2 3 4 5

where temporarily, for clarity, we have added labels to the
rows and columns giving the remaining space, ¢, in the bin,
and the item size, 7, respectively.

Interpreting such matrices can be done column-wise, as a
column defines the policy for a given item size. For example,
Wys = 1 compared to Ws3 = 2 means that for items of size
3, a remaining capacity of c=4 is never taken, and instead a
new bin is opened. Since c=4 can only arise from having put
a size=1 item, then this matches the non-mixing of items.
The tie W33 = Wgs is broken using FF, and so is always
won by the case ¢=3, as open bins are always earlier than
the empty bin.

In this case, it happens that the following similar matrix
will behave essentially identically:

N -

12 ..
Wo=1| o9 1 . (2)
2 2

The change from Wa2 from 3 to 2 means that for item size=2,
a remaining space of 2 is no longer strictly preferred over

one of 4. However, because ties are broken using FF then
naturally the cases of 2 will occur first, and so will be taken.

These hand-designed policies will give an essential per-
fect packing (only being imperfect with the last few items).
Since the sizes are kept separate then all the 2s will end up
together allowing 2+4-2+2=6, and similarly the 3s will stay
together and give a 3+3=6. Also notice that in this partic-
ularly simple case with items being of distinct classes, the
relative probability of each item size does not matter (ignor-
ing possible boundary cases). Sizes 2 and 3 should be packed
separately independently of the ratio of their frequencies.

As mentioned in section 4, the standard heuristics can
also be expressed as matrices. In this example, they are as
follows:

1 .
1 1
Wrr = 11 (3)
L 11 J
3 .
L. 202 .
Wer = 11 (4)
L 11 J
1 .
2 1 . .
Wwr = 3 9 (5)
1 1

None of these standard heuristics will keep the item sizes
separate. If a single item of size=2 has arrived, and then an
item size=3 arrives, the standard heuristics will all place it
in the bin with the 2, rather than opening a new bin. Table 1
gives their performances, and they achieve a relatively poor
fullness.

Table 1: Comparison of the standard heuristics FF,
BF, WF, with a selection of the matrix-based poli-
cies found by the GA search for solving UBP(6, 2,

3, 10°)

Heuristic Foy Fyr Fop
FF 0.92251 | 0.85794 | 0.53511
BF 0.92251 | 0.85794 | 0.53511
WF 0.91658 | 0.84707 | 0.49952

B-PM | 0.99999 | 0.99998 | 0.99997
W-PM 0.96273 | 0.93167 | 0.77640

On the same instance, we have also run the training sys-
tem of Section 5 in order to see whether or not better poli-
cies can be found automatically. With multiple training
runs, Table 1 reports the performance of the best policy ma-
trix, B-PM, and worst policy matrix, W-PM, of the train-
ing runs. Even the worst of the evolved matrices outper-
forms the standard heuristics. The best runs often find the



hand-crafted heuristics above, and achieve essentially per-
fect packing. The only imperfections arise from horizon ef-
fects on the last few items. For example, if the last item is
size 3 then it should be packed into a c=4 if possible, but
the policy might wastefully open a new bin.

7. COMPUTATIONAL RESULTS

Here we first report on the main results of experiments
using of generating value matrices for specific problems using
the evolutionary search methods given in section 5, showing
they perform better than the general heuristics. We then
analyze and interpret the matrices to see why they might be
doing so much better.

Table 2: Results for UBP(20, 5, 10, 105). Compar-
ing the standard heuristics FF, BF, and WF, with
the best, B-PM, and worst, W-PM, of the runs of
the matrix evolution according the the performance
criteria in section 3.

Heuristic Foy Fyr Fop
FF 0.91536 | 0.84340 | 0.31739
BF 0.91549 | 0.84365 | 0.31983
WF 0.90545 | 0.82608 | 0.27505

B-PM | 0.98433 | 0.96983 | 0.75897
W-PM 0.97305 | 0.94879 | 0.62763

Table 3: Results for UBP(40, 10, 20, 105) in the
same format as table 2.

Heuristic Fay Fyy Fap
FF 0.90224 | 0.82009 | 0.20765
BF 0.90238 | 0.82036 | 0.21191
WF 0.88669 | 0.79289 | 0.13565

B-PM | 0.97124 | 0.94506 | 0.57340
W-PM 0.95867 | 0.92233 | 0.57184

The instances we will look at here are UBP(20, 5, 10, 105)

and UBP(40, 10, 20, 1()5). These are selected because initial
experiments showed that they were cases in which the usual
heuristics perform particularly poorly, and so most clearly
illustrate the potential gains from the overall method. (How-
ever, we intend to report a much broader study elsewhere.)
The results for these two instances are summarised in ta-
bles 2 and 3. In both tables, we give results for the standard
heuristics, and then the performances of best matrices found
in the best run B-PM and worst runs W-PM of the matrix
evolution. Performances are given in terms of average and
generic fullness and also the average perfection as described
in section 3. The results are given to 5 decimal places as the
statistical variance is very small due to the large number,

1057 of items that are packed in the testing phase.

The first observation is that in all cases even the worst
results from the matrix evolution (with statistical signifi-
cance) outperforms the standard heuristic. (That every one
of the 50 training runs outperform the standard heuristics
shows the statistical significance of the results.) Further-
more, the policy generated from the best runs of the evolved
heuristic substantial outperform the standard ones. Perhaps
most striking is the difference in the average perfection; the

5
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Figure 2: One of the best evolved matrices for

UBP(20,5,10), labeled by residual capacity r and
item size s.

evolved policies are a lot more successful at managing to
totally fill bins.

7.1 Structure of Good Policies

Given the success shown above of the evolved matrices it
is natural to look at them in detail to try to understand why
they are so much better. For the UBP(20,5,10) instance, one
of the resulting best matrices is given in Figure 2 where again
we have converted to the normalized form and the dots are
unused inactive entries. Since reading the matrix directly is
not very easy we also give a colour map version in figure 3.
The picture is restricted to the active part of the matrix and
we also show the colourmaps for the standard heuristics to
allow a visual comparison.

For the winning evolved matrix, perhaps the most striking
feature is the absence of a striking structure.

The low values for entries near to, but not on, the diagonal
are understandable as their use would correspond to choices
that leave bins with some unusable space and so ought to be
avoided. However, unlike the standard heuristics the matrix
seems to have more ’spikes’ in the middle of the range of
remaining capacity values. Furthermore, the spikes in dif-
ferent columns are not neatly aligned. For example, item
sizes 6 and 7 have quite different sets of preferred values for
the remaining capacities. Our hypothesis is that the struc-
ture of 'non-aligned spikes’ manages to precisely exploit the
probability distribution of item sizes and so assign them in
a carefully interlocking fashion to different remaining capac-
ities.

Figure 7.1 gives a picture for the best evolved matrix for
the case of UBP(4O,1O,20,105) and shows that the spiky
structure is not an accident of a single case.

7.2 Evolving Hyper-Heuristic Policies

Briefly, we mention that an alternative to using matrix-
based heuristics would be to have a row matrix, indexed
by items size ¢ and with entries W; € {FF, BF,WF} used
to select which heuristics should be applied for that item
size. One might conjecture that a suitable W; might have
a good mix of selections that leads to an improved policy.
We have also experimented with this approach, but it failed
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Figure 3: Pictures of the active areas of matrices for
FF, BF, WF and one of the best evolved matrices.

to give any significant improvements, and was substantially
outperformed by the methods given above. This gives some
evidence, at least in this case, for the view that it is better to
generate (index) policies rather than rely on trying to make
clever selections between existing ones.

8. CONCLUSION

We have found that if we use a policy defined by a simple
matrix of score values, then a standard GA approach can
produce policies tuned to the instances under consideration
and substantially outperforming the generic heuristics such
as first and best fit. Inspection of the discovered policies, as
in figures 3 and 7.1, shows a “non-aligned spiky” structure.
This gives evidence for two main conclusions:

1. Although such matrices could be converted into sepa-
rate packing rules for each item size, and might well
be understandable post facto, it also seems that the
correlations needed between item sizes would be hard
to create by hand. It is unlikely that such heuristics
would be designed by a human; giving evidence for the
need for their search-based discovery.

2. It does not seem likely that the structures will be easy
to represent using a ‘nice’ arithmetic function of re-
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Figure 4: For UBP(40,10,20,105), a picture of the
well-performing evolved matrix.

maining capacity and item size. This representational
issue might well explain why previous work [4] was
only able to equal the performance of standard heuris-
tics whereas we significantly out perform them.

However, we do note that we have only demonstrated that
some of the best matrices can be ’spiky’. We are not claiming
here to have shown that all well-performing matrices need to
be ’spiky’; but only that it should not be assumed policies
will necessarily have a nice clean structure. It might well
be that ’nicer’ matrices do also exist and maybe also have
a good performance. Possibly, there is a tradeoff between
the ’smoothness’ of the matrix and the performance. Inves-
tigation of such a ’smoothness’ vs. performance tradeoff is
currently under investigation. An advantage of the matrix
representation is that it allows such issues to be explored.

Notice that in the case of UBP(4O,1O,2O,1O5) the policy
matrix contains 147 active entries, and each one can be re-
garded as a different parameter of a policy. Hence, this
approach may be viewed as a form of parameter tuning [24]
but with a large number of parameters taking discrete val-
ues from a relatively small domain. This makes it more like
discrete optimisation on a high dimensional space than the
continuous optimisation of a lower-dimensional space. We
suspect that this difference is ultimately likely to have effects
on the search methods.

Obvious avenues for future research are: To study bigger
and more varied instances; improve the search methods used
to discover good matrices; and apply the general approach
to other problem domains.

Perhaps, most importantly, the mechanisms of landscape
analysis (fitness-distance correlation, etc) can be applied to
the space of matrices. Since matrices represent heuristics,
this opens the intriguing possibility of deepening the un-
derstanding of the space of heuristics using well-established
techniques from the area of evolutionary search.
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