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ABSTRACT
The Allen Brain Atlas (ABA) is a cellular-resolution, genome-
wide map of gene expression in the mouse brain which allows
users to compare gene expression patterns in neuroanatom-
ical structures. The correct localization of the structures is
the first step to carry on this comparison in an automatic
way.

In this paper we present a completely automatic tool for
the localization of the hippocampus that can be easily adapted
also to other subcortical structures. This goal is achieved in
two distinct phases.

The first phase, called “best reference slice selection”, is
performed by comparing the image of the brain with a ref-
erence Atlas provided by ABA using a two-step affine regis-
tration. By doing so the system is able to automatically find
to which brain section the image corresponds and wherein
the image the hippocampus is roughly located.

The second phase, the proper “hippocampus localization”,
is based on a method that combines Particle Swarm Op-
timization (PSO) and a novel technique inspired by Ac-
tive Shape Models (ASMs). The hippocampus is found by
adapting a deformable model derived statistically, in order
to make it overlap with the hippocampus image.

Experiments on a test set of 120 images yielded a perfect
or good localization in 89.2% of cases.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Computer Vi-
sion; I.2.10 [Artificial Intelligence]: Vision and Scene Un-
derstanding

General Terms
Algorithms, Experimentation

Keywords
Affine Registration, Hippocampus, Particle Swarm Opti-
mization, Allen Brain Atlas, Active Shape Models, Auto-
matic Localization

1. INTRODUCTION
The Allen Brain Atlas (ABA) project aims to bridge the

divide between genomics and neuroanatomy, by providing
a global approach to understanding the genetic structural
and cellular architecture of the mouse brain. It contains a
genome-scale collection of cellular resolution gene expression
profiles obtained by means of In Situ Hibridization (ISH),
performed on serial sections [1]. Using ISH, the spatial dis-
tribution of gene expression patterns (where genes are ac-
tively transcribed) can be generated throughout an entire
organ or organism for thousands of genes. In particular, the
ABA contains the expression patterns in the adult mouse
brain of about 20,000 genes. For each gene, several images
are provided, and each image is related to one reference slice,
extracted from a reference Atlas composed of 132 coronal
and of 21 sagittal sections.

Among the different brain structures, the hippocampal
formation (HF) is a particularly interesting component of
the mammalian brain. Indeed, considering the strong role
of the HF in learning and memory processes [16], it is ex-
tremely important to precisely map gene expression at the
cellular and subcelluar level within this region. Moreover,
since the hippocampal volume has turned out to be an early
biomarker for Alzheimer’s disease [4], there is great interest
in automated methods to accurately, robustly, and repro-
ducibly extract the hippocampus from medical images, in
order to automatize diagnostic screenings. The HF (Fig-
ure 1), composed by Hippocampus and Subiculum (SUB),
is located within the medial temporal lobe. In turn, the Hip-
pocampus is composed by Ammon’s Horn (CA) and Dentate
Gyrus (DG). We present a system aimed at the automatic lo-
calization of the entire hippocampus by localizing the pyra-
midal (SP) and granule (SG) cell layers, which belong to the



Figure 1: Regions in Hippocampal Formation

CA and DG regions, respectively.
In this work, we deal with sagittal slices of mouse brain

obtained from the ABA. The main features of these images
in general, and of hippocampus images in particular, are:

• presence of artifacts: tears, scraps, bubbles, streaks in
tissue, partial cut off of regions;

• fuzziness of the hippocampus boundaries;

• variability of brain structure shapes;

• no relevance of color for detecting anatomical struc-
tures;

• variable resolution: high resolution regions coexist with
low resolution ones;

• large image size (around 15.000x7.000 pixels, ∼35MB);

• contrast variability between structures: due to the na-
ture of gene expression patterns, different genes are not
expressed equally in the same anatomical region, mak-
ing it difficult to construct a consistent model for each
landmark in all images. Moreover, grained patterns
with many irregularities hamper the classification of
individual pixels into anatomical structures based on
intensity;

• orientation issues: images are rotated or displaced on
the slide;

• lighting issues: within a set, some images are much
brighter than others.

Figure 2: Examples of slices from the ABA

All these characteristics (see some examples in Figures 2
and 3) significantly increase the difficulty of operations like
localization or segmentation. In this paper, we present a

fully automatic 2D localization method based on Particle
Swarm Optimization, atlas-based registration and deformable
models. We focus mainly on sagittal images of the brain to
locate the hippocampus, but the method can be applied to
coronal images, as well as to other subcortical structures.
The main idea is to capture the general structure of the
hippocampus, based on prior knowledge about shape, which
is the most invariant element on these images. The final
goal of our work is to create a tool for extracting statis-
tics for different genes, to be able to compare automatically
the levels and the spatial distribution of their expression
in corresponding parts of the brain through the analysis of
thousands of images. The first step of this process has to be
the fine localization and segmentation of brain structures,
to perform texture analysis of selected areas.

Section 2 explains the basics of the techniques we have ap-
plied and the previous work which has inspired the method
we have developed. In Section 3, an overview of the sys-
tem is presented, which offers a general description of the
method. Section 4 gives details on the method used to se-
lect the best reference slice and Section 5 focuses on the
hippocampus localization. Finally, Sections 6 and 7 present
some experimental results and the conclusions, respectively.

Figure 3: Hippocampus variability. Horizontal-wise
images show how hippocampus sections look differ-
ent in different parts of the brain. Vertical-wise, it
can be seen that corresponding sections from differ-
ent brains maintain some rough shape similarity.

2. BACKGROUND
This work takes advantage of the combination of sev-

eral techniques, such as Particle Swarm Optimization, de-
formable models and image registration.

2.1 Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a bio-inspired op-

timization algorithm introduced by Kennedy and Eberhart
[11] and used for optimization of non-linear functions. It
is based on the simulation of the social behaviour of bird
flocks. In the last fifteen years PSO has been applied to a
very large variety of problems [18] and many variants of the
original algorithm have been proposed [3].

During the execution of PSO a set of particles moves
within the function domain (called search space) searching



for the optimum of the function (best fitness value). The
motion of each particle can be described by the following
two simple equations which regulate the position and the
velocity update of the particles:

Pn(t) = Pn(t− 1) + vn(t)

vn(t) = w · vn(t− 1)

+ c1 · rand() · (BPn − Pn(t− 1))

+ c2 · rand() · (BGP − Pn(t− 1))

where Pn(t) and vn(t) are the position and velocity of the
nth particle in the present iteration, c1, c2 and w (inertia
factor) are positive constants, rand() returns random values
uniformly distributed in [0, 1], BPn is the best-fitness posi-
tion visited so far by the particle and BGP is the best-fitness
position visited so far by any particle of the swarm. Thus,
we can say that each particle relies both on “individual” and
on “swarm” intelligence.

One of the major problems with PSO is the so-called “pre-
mature convergence”, which is frequent especially when deal-
ing with multimodal functions. If a component of the swarm
finds a local optimum, other particles may converge to that
point before searching other unexplored better regions of the
function domain. This problem may be obviated (but in a
strongly problem-dependent way) by tuning (possibly dy-
namically) the parameters c1, c2 and w, but other different
solutions have been proposed in the last years [6].

2.2 Deformable Models
Deformable models are curves or surfaces, defined within

an image domain, that move under the influence of“internal”
forces, related with the curve features, and “external” forces,
related with the surrounding image. Internal forces keep
the model smooth during deformation. External forces are
defined such that the model is attracted toward an object or
other features of interest. Deformable models have become
a standard in medical image analysis [13].

Active Shape Models, introduced by Cootes et al [7], can
be seen as a way to add prior knowledge to deformable mod-
els. These shape models represent objects by sets of labelled
points selected by an expert on a set of training images.
Each point is placed on a specific part of the object. By ex-
amining the statistics of the positions of the labelled points a
“Point Distribution Model” is derived. The model considers
the average position of the points, and the main modes of
variation found in the training set. It is important to note
that an instance of the model can only take into account
deformations which appear in the training set: this way the
model has problems with unexpected shapes, but it is ro-
bust with respect to noise and image artifacts, like missing
or damaged parts.

2.3 Image Registration
Image registration is the process of finding a transforma-

tion that aligns one image to another one. The inputs are
two images: a reference image, and another one, known as
the target image, that can be modified to match it. The out-
put is a geometrical transformation or mathematical map-
ping. This transformation can be rigid (preserving angles
and distances), affine (parallel lines are preserved but not
lengths and angles), or elastic (where external forces tend
to minimize the deformation) [23].

2.4 Related Work
The previous work related with the system we have devel-

oped can be divided according to three main topics: brain
histological image processing; automatic localization of the
hippocampus and other brain structures; and Swarm Intel-
ligence or Evolutionary Computation applied to Image Pro-
cessing.

Regarding the first category, much work relates to histo-
logical image segmentation, registration and reconstruction
techniques, among which we could mention: 3D reconstruc-
tion from a sequence of histological coronal 2D slices using
a model built by non-linear transformations between the
neighbouring slices [17]; image registration combining the
high-frequency components of slice-to-slice histology regis-
tration with the low-frequency components of the histology-
to-MRI registration [22]; a 2D to 3D nonlinear registration
using a PDE-based registration technique driven by a lo-
cal normalized-mutual-information similarity measure [9];
slice-by-slice segmentation of anatomical structures where
the successful segmentation of one section provides a prior
for the subsequent one [19].

Concerning the second category, most work usually deals
with semi-automatic methods (in which some user interac-
tion or seed initialization is necessary) or relates to different
kind of images (like MRI) with very different characteris-
tics. In this context there are two main tendencies (which
are combined in many cases): shape models to introduce
prior knowledge [10] and atlas based segmentation [5, 21].

Finally, in relation to swarm intelligence or evolutionary
computation applied to image processing, a large number
of known techniques have been applied. Genetic Snakes [2]
are active contour models with an energy minimization pro-
cedure based on Genetic Algorithms (GAs). In [14], GAs
are applied to evolve a population of shapes, using prior
shape knowledge to produce feasible deformations while also
controlling the scale and localization of these deformations.
Scatter Search, in [8], is used to solve the registration match-
ing problem. Finally, Particle Swarm Optimization has been
successfully applied to road sign detection [15], considering
a set of key points representative of the shape and colors of
the object.

3. OVERVIEW OF THE SYSTEM
The goal of automatically extracting statistical informa-

tion about gene expression in brain structures (in this case,
the hippocampus in sagittal brain slices) can be achieved in
four main steps:

1. Best Reference Slice Selection. The Sagittal Atlas of
the ABA comprises 21 labelled reference slices, carry-
ing information related to the position of brain struc-
tures. Determining which slice is the most similar to
a target image allows one to refer to the correspond-
ing model of the structure of interest. This step is
particularly important for the hippocampus because
hippocampi of different brains have huge variability in
size and shape (see Figure 3). Along with the selec-
tion of the most suitable reference slice, the Region of
Interest (ROI) which is most likely to contain the par-
ticular anatomical structure is extracted by using the
coordinates of the Atlas;

2. Structure Localization. This stage refines the rough



localization of the structure of interest obtained in the
previous one;

3. Segmentation. In this phase the external and internal
boundaries of the localized structure are precisely de-
fined. For instance, the hippocampus is composed by
several sub-regions (CA1, CA2, CA3, sg, sp and DG)
which need to be identified to perform texture analysis
accurately;

4. Texture Analysis. Textural information about the dif-
ferent regions is extracted, in order to get some quanti-
tative values that define the genomic state of the tissue.
The system output is a vector of features for each gene
which allows one to cluster genes into similar subsets.

This work presents only the first two steps, which define
an accurate, automatic and fast structure localization sys-
tem. The Best Reference Slice Selection has been imple-
mented as a two-step affine registration method (see Section
4). The Hippocampus Localization uses a PSO-based De-
formable Model approach, in which each particle of PSO is
a hippocampus model (see Section 5). For the optimization
of the parameters of both operations we designed and used
an improved PSO algorithm which limits, as far as possible,
premature convergence and stagnation. This is very impor-
tant because the fitness functions we are going to deal with
are strongly multimodal.

3.1 Proposed PSO
Two main features differentiate our PSO algorithm from

the original one. The first has been suggested by Liu et al
[12]. Instead of using a static inertia factor w, they adapt its
value to the fitness function of each particle. In particular,
if the objective is to minimize the fitness value, the so-called
adaptive inertia weight factor (AIWF) is determined as fol-
lows:

w =

{
wmin + (wmax−wmin)·(f−fmin)

favg−fmin
if f ≤ favg

wmax if f > favg

where wmax and wmin denote the maximum and minimum
possible values of w, f is the current fitness of the particle,
favg and fmin are the average and minimum fitnesses of all
particles of the swarm, respectively. This way, w varies de-
pending on a particle’s fitness so that good particles tend to
perform exploitation to refine results by local search, while
bad particles tend to further explore the search space.

The second change with respect to the original algorithm
is the re-initialization of a particle in case of stagnation.
When a particle can not improve its best position in a preset
number of iterations, it moves to a random direction with
very high velocity:

vn(t) = k · randn()

Pn(t) = Pn(t− 1) + vn(t)

where k > 1 is a constant and randn() returns random
values from a Gaussian distribution. This way, the search
performed by PSO privileges exploration of the search space
to reduce the probability of falling into a local optimum.

4. BEST REFERENCE SLICE SELECTION
The first step of the localization process consists of finding

the correct position of the target image within the brain. As

explained above, this is an important preliminary stage that
greatly influences the following steps.

The position of an image is selected according to the sim-
ilarity between the image itself and the ABA reference im-
ages. In order to define what“similar”means in this context,
we must take into account that intensity and color are not
relevant, while much more important is the likeness between
the global shape of the two brains and, as we have shown,
between the shapes of the hippocampi.

To find the best reference slice, we use a two-step method
(summarized in Figure 4) that considers the similarity be-
tween the global shape of the brains and of the two hip-
pocampi. The only piece of a-priori knowledge we use is
that the position of the hippocampus is broadly the same in
every brain and that all the hippocampi have roughly the
same shape.

Figure 4: Best Reference Slice Selection: Data Flow

The first step performs an affine registration between the
target image and each one of the Atlas references. Affine
registration is a widely used technique for reconstructing
and matching medical images since it can usually reach a
good trade-off between quality and computational effort.

We base the affine registration only on the shape of the two
brains. This means that the images downloaded from the
ABA are first segmented and binarized before registration
to obtain a binary image that is white where the brain is
visible (foreground) and black elsewhere (background).

After the global registration, we extract the region of the
target image that falls within the coordinates of the ROI
which contains the reference hippocampus. We assume that,
at this point, the hippocampus of the target image is entirely
or partially included in the extracted ROI, and that SP and
SG are among the brightest regions of the ROI. Then, an
equalization process is performed to reduce the differences
between the images, and we start a local affine registration
process, in which we expect to match the two hippocampi.

After these two registration steps, we have two measures
that represent the similarity between the target image and
each reference image:

• the first one, gk, is the squared difference between the
binarized target and the binarization of the kth refer-
ence brain slice;



• the second one, lk, is the squared difference between
the hippocampus regions in the two images.

The reference image that minimizes the following fitness
function (see Figure 4) is selected as best slice:

fk = (1− α) · gk + α · lk

where α ∈ (0, 1) is a parameter that depends on the“qual-
ity” of the extracted ROI. A good quality ROI is an image
where the anatomical parts of the hippocampus are clearly
visible. We observed that good images can be distinguished
from bad ones by simply looking at the standard deviation
of the intensity levels of the image: bad images usually have
small standard deviations and vice versa. Accordingly, we
set α to be proportional to the standard deviation of the
ROI. In this way images in which the hippocampus is not
clearly visible (and consequently may cause a bad local reg-
istration) do not influence the results of slice selection.

The output of this phase consists of the region of the tar-
get image where the hippocampus is expected to be found
and the estimated position of the image within the brain.
This also indicates which are the best models to use for the
localization, ranked by similarity.

5. HIPPOCAMPUS LOCALIZATION
The use of prior knowledge for tasks like localization and

object recognition considerably increases the quality of re-
sults. For instance, Mussi et al [15] perform road signs de-
tection with a simple but effective algorithm. They search
within an image using a model which has the same shape
as the signs to be found. A model is composed by three
sets of points: for danger signs one lies just outside the ex-
ternal border (therefore, on the image background), one on
the external red band and one on the central white area.
Then, an affine registration is applied to the model and the
histograms of each transformed set of coordinates are com-
puted; a sign is detected when the histograms of the first
two sets of points are as different as possible, the histogram
of the points in the red band is as different as possible from
the one computed on the inner part of the sign and the his-
togram of the set on the red band resembles as much as
possible a reference histogram centered on the red hue.

For the detection and localization of the hippocampi we
adapt Active Shape Models to this approach. While in stan-
dard ASMs external forces are driven by the contours on the
image, in our case we force the model’s shape to resemble as
much as possible the shape of the hippocampus region we
want to locate.

A substantial difference between hippocampus and road
sign localization is the great variability of colors and shapes,
even in the same slice (see Figure 3), which makes it impos-
sible to define the reference histogram of a “standard” hip-
pocampus. The only common information we have about all
the hippocampi is that they have two main parts (SG and
SP) which have roughly the same shape and are surrounded
by lower-intensity pixels.

For this reason, we pre-process the ROIs produced by the
procedure described in Section 4 to magnify the contrast
between SG, SP and the rest of the hippocampus. This
step is performed by saturating the brighter 65% of the im-
age (that we suppose to contain only background) and the
darker 5%; then we rescale the remaining over the entire in-
tensity range and perform a binarization of the image with

a dynamic threshold.

5.1 Template Models
For every slice of the reference Atlas two template models

(one for SG, one for SP) have been created by manually
selecting the points from a training set which includes 5 to
12 images for each reference slice. A template model does
not refer to the absolute position of the points, but to the
relative positions (or shifts) between consecutive points in
polar coordinates. This way the template model is more
robust to the variation of position, shape and size among
different hippocampi. Every template model is composed of
two parts:

• an inner set of points that lies on the anatomical part
we want to locate;

• an outer set of points that lies just outside. It is de-
scribed by a rigid shift of the previous set.

A template model is described by four 2 × n matrices,
where n is the number of the points of the template model:

M =


ρm1 ϑm1

ρm2 ϑm2

...
...

ρmn ϑmn

 ∆ =


∆ρ1 ∆ϑ1

∆ρ2 ∆ϑ2

...
...

∆ρn ∆ϑn



L =


ρl1 ϑl1
ρl2 ϑl2
...

...
ρln ϑln

 U =


ρu1 ϑu1
ρu2 ϑu2

...
...

ρun ϑun


where M is the “best model” and represents the standard

coordinates of the inner set, ∆ is the displacement of the
outer set with respect to the inner set, L and U are the min-
imum and maximum values of every parameter that forms
the inner set. It should be noticed that ρ1 and ϑ1 represent
the positions of the first point with respect to the upper
left corner of the image. Proceeding row-wise, every (ρ, ϑ)
pair represents the position of a point with respect to the
previous one.

A model, during its evolution, will tend to keep itself as
similar as possible to the best model M and its deformations
will range within the “boundary models” L and U.

The matrices M, L and U have been computed during
the manual selection of the points from the training set. The
first one is calculated as the median of the selected shifts and
the other two are the minimum and the maximum values
observed in training, respectively. To improve the template
models, a manual refinement of the parameters has been
performed. The matrix ∆ has been manually built based
on the observation of several hippocampi.

The models used for the localization of SP and SG are
composed by 8 and 7 points respectively. A description of
the models used for reference slice 15 is shown in Figure 5.

5.2 Fitness function
The fitness function has three components: external en-

ergy E, internal energy I and contraction factor C:

F = E − (I + C)

The external forces try to move (and deform) the model
to maximize the intensity of pixels in the inner set and mini-
mize the intensity of pixels in the outer set. For both of them



Figure 5: Best model (solid line) and boundary mod-
els (dashed lines) for SP and SG in slice 15.

we evaluate the intensity of the image within a 3×3 neigh-
bourhood N3 of all points in the model (Punctual Energy,
PE) and in p intermediate points that lie on the segment
between two consecutive points (Continuous Energy, CE).

PE =

n∑
i=1

[T (N3(Ii))− T (N3(Oi))]

where n is the number of points in the model, Ii = {xk, yk}
is a point of the inner set (in cartesian coordinates), Oi =
{xk + ∆xk, yk + ∆yk} is a point of the outer set, T (P ) is
the intensity of the image in P if P is a point, or the aver-
age intensity if P is a neighbourhood and ∆xk,∆yk are the
elements of ∆ in cartesian coordinates.

CE =

n∑
i=2

p∑
j=1

T (Ii−1 +
j

p+ 1
(Ii − Ii−1))

−
n∑
i=2

p∑
j=1

T (Oi−1 +
j

p+ 1
(Oi −Oi−1))

In our case we set p = 20. The first shift (which actually
represents the starting position of the model) was not used
to keep the model independent of the localization in the
image. The final external energy is computed as

E = γP · PE + γC · CE

where γP and γC were set to 5 and 1 respectively.
The next step is to compute the internal energy I, or those

forces that reduce the deformation of the model.

I = ξρ ·

√√√√ n∑
i=2

(ρi − ρbi)2 + ξϑ ·

√√√√ n∑
i=2

(ϑi − ϑbi)2

where ξρ and ξϑ are two positive parameters that weight
the deformation ability of the model. The higher their val-
ues, the more the model will tend to fit the best model M.

The contraction factor C depends on the deformation of
the model and is defined as follows:

C = ξc · ‖In − I1‖

If ξc < 0 the two extremes of the model repel each other,
if ξc > 0 they attract each other. In our case we set ξc > 0
for the SP models and ξc < 0 for SG models. Figure 6 shows
the importance of the contraction factor.

Figure 6: Two localizations of the same hippocam-
pus with the same model and the same parameters,
except for the contraction factor. On the left ξc is 0
for both models, on the right it was set to 0.12 for
the SP model and -0.07 for the SG model.

6. EXPERIMENTAL RESULTS
For testing the system we selected images located within

10 slices of the reference Atlas (from slice 9 to 18). For
every slice, four images that have that slice as reference have
been chosen for a total of 40 test images. The images have
been selected randomly within subsets which represent good
sample of all possible hippocampi, featuring high and low
levels of gene expression, good quality and low quality, and
so on. Tests were run on a computer equipped with a 64-bit
IntelR© CoreTMi7 CPU running at 2.67 GHz with 4 Gb of
RAM.

6.1 Optimization Methods Comparison
Our first goal is to demonstrate that PSO in general, and

the proposed variant in particular, is good at managing this
kind of problems. Tables 1 and 2 show the fitness values
of the localization of SP and SG, respectively, obtained by
using the model relative to the reference slices suggested by
ABA. We compare four different optimization methods. For
every method we ran 50 tests for every image for a total of
2000 experiments. The methods used for testing are:

• Genetic Algorithm;

• Scatter Search with local search based on simulated
annealing;

• PSO with linearly decreasing inertia as proposed by
Shi and Eberhart [20];

• the PSO version proposed in section 3.1.

The PSO parameters for global registration were set to
wmin = 0.2, wmax = 1.0, c1 = c2 = 2.05. The swarm was
composed by 80 particles and was run for 300 iterations. The
parameters were selected starting from the most commonly
used and refined during system development.

Table 1: Comparative Results of SP Localization.
Method Average Std Deviation Paired t-test

GA 108.1460 15.3365 3.05E-4
Scatter Search 87.3281 20.6248 <1.00E-16
Original PSO 110.2262 14.2808 0.2856
Modified PSO 109.6110 8.3123 -

The third column of each table indicates the average stan-
dard deviation of fitness over the single experiment repeti-
tions. They show that the proposed PSO is more reliable
than the other methods, including original PSO, because



Table 2: Comparative Results of SG Localization.
Method Average Std Deviation Paired t-test

GA 140.6531 11.5352 <1.00E-16
Scatter Search 127.7413 14.5662 <1.00E-16
Original PSO 141.5991 9.3224 <1.00E-16
Modified PSO 145.2641 4.8102 -

it falls in local optima less often. An ANOVA test proved
the existence of differences between the result sets, where
at least one sample mean was significantly different from
the others. After that, the paired Student’s t-test was per-
formed, with a level of confidence α=0.05, for the Null Hy-
pothesis that there are no differences between the modified
PSO and the other methods. The obtained p-values (see
last column of Tables 1 and 2) refute the Null Hypothe-
sis confirming that significant differences exist between the
performance of the method we propose and the other ones.
The only exception is in the localization of SP, in which both
PSOs achieve similar results.

6.2 Overall System Performance
In this section we report results of the entire system. The

best way to evaluate the hippocampus localization is by vi-
sual observation. We divided results into three classes:

1. Perfect match: all points of the two models are on the
corresponding parts and cover them almost entirely;

2. Good Localization: (i) all points of the two models
are on the parts to detect but they do not cover them
entirely or (ii) at most two points are slightly outside;

3. Error: all other possibilities, from three or more mis-
placed points to models which are located in a com-
pletely different position of the brain.

At the end of the PSO-based localization, we perform a
local search to improve the results. This is made simply
by re-evaluating the function, but only within a neighbour-
hood of size 5x5 around the points found. Our experimental
results show that this helps to slightly improve the localiza-
tion with very low computational effort. This improvement
is due to the fact that, in this search, the points are consid-
ered independent from one another, while in the proposed
model every point localization depends on all previous ones.

Table 3 summarizes the results of localization. In the
actual system, we try up to three different models (according
to the similarity ranking computed in the best reference slice
selection) and select the one with the best fitness. We ran
three tests for every image. Figure 7 shows some hippocampi
with the calculated models superimposed.

Table 3: Results of Hippocampus localization.
Evaluation Occurrences

Perfect 58 (48.3%)
Good 49 (40.9%)
Error 13 (10.8%)

Regarding time complexity, the average and standard de-
viation of a single experiment duration are 129s and 18s re-
spectively. This time includes the whole process performed
sequentially, from reading images to writing output to disk.

7. CONCLUSIONS
We have introduced a system for fast, accurate and com-

pletely automatic localization of subcortical structures in
histological images, a problem that has been rarely discussed
in the literature. We accomplished this goal in two phases.
The first phase roughly locates the structure by comparing
the image of the brain with images taken from the ABA
reference Atlas. In the second phase, the structure is more
precisely localized using a method that combines Particle
Swarm Optimization and a novel technique inspired by Ac-
tive Shape Models. One of the main difficulties of the sys-
tem is having to deal with very variable, as well as severely
damaged, images in many cases. Despite this, using the
hippocampus as target structure, it has been localized with
perfect or good precision in the 89.2% of cases.
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