
Second Order Heuristics in ACGP
Cezary Z Janikow

University of Missouri-St Louis
St. Louis, MO 63121

1-314-516-6352

janikow@umsl.edu

John Aleshunas
University of Missouri St Louis

St. Louis, MO 63121

jja7w2@umsl.edu

Mark W Hauschild
University of Missouri-St Louis

St. Louis, MO 63121
1-314-972-2419

mwh308@umsl.edu

ABSTRACT
Genetic Programming explores the problem search space by
means of operators and selection. Mutation and crossover
operators apply uniformly, while selection is the driving force for
the search. Constrained GP changes the uniform exploration to
pruned non-uniform, skipping some subspaces and giving
preferences to others, according to some heuristics. Adaptable
Constrained GP is a methodology for discovery of such useful
heuristics. Both methodologies have previously demonstrated
their surprising capabilities using only first-order (parent-child)
heuristics. Recently, they have been extended to second-order
(parent-children) heuristics. This paper describes the second-order
processing, and illustrates the usefulness and efficiency of this
approach using a simple problem specifically constructed to
exhibit strong second-order structure.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

I.2.6 [Artificial Intelligence]: Learning

General Terms
Design, Experimentation.

Keywords
Genetic Programming, Heuristics, Search Space.

1. Background
Genetic Programming (GP) is an evolutionary computation
method bringing together concepts from computer science and
nature. It solves a problem at hand by using a population of
candidate solutions, represented as chromosomes, and by
manipulating the solutions via simulated mutation and crossover –
while driven by selection to explore better solutions.

Even though GP methods have been devised to work with a broad
range of possible representations for the candidate solutions, the
most common representation is that of a tree [1,6]. These trees are
labeled with functions and terminals representing problem-
specific elements: functions, connectors, constants, sensors, etc.
The actual search space, called genotype space, searched by GP is

uniquely determined by the labels, and only constrained by limits
on tree size or depth – the trees can be labeled in any arity-
consistent manner (the closure property [6]). The corresponding
solution space, called phenotype space, depends on the
interpretations of the labels – the interpretations provide a
mapping from the search space to the solution space or from
genotype to phenotype space. Somewhere in the search space, GP
attempts to find a point mapped to the actual solution in the
solution space, which will provide the solution to the problem at
hand. The quality of a single point in the search space is
determined by evaluating the mapped solution through a provided
black-box fitness function.

There are some important issues to consider when designing GP,
similar to those of other evolutionary methods yet specific to GP.
If a given solution does not have a search space point mapped into
it, it will never be discovered. Therefore, the mapping must be
onto. To accomplish this, in the absence of detailed information
about the problem or solution, the search space needs to be
enlarged (a part of the sufficiency principle [6]). This leads to
many-to-one mappings, with large redundancy in the
representation. To handle these problems, some properties need to
be there, among them many-to-one mappings to the better
solutions and proximity induced by the mapping – if two solution
points are similar in quality, they should be mapped to from
neighboring points in the search space [21].

Specifically in GP, sufficiency leads to huge redundancies, while
often lacking the proximity. Moreover, the large search space also
generally reduces the search efficiency [2,4]. To answer these
challenges, a number of methods have been proposed that
ultimately prune, or reduce the effective search space, such as
STGP, CFG-based GP, etc. [1].

Constrained GP (CGP) is another such method. It allows certain
constraints on the formation of labeled trees – constraints on a
parent and one of its children at a time, also called first-order
heuristics [4] (CGP also supports restrictions based on types,
along with polymorphic functions). The constraints are processed
in a closed search space by operators with minimum overhead [2]
– closed search space refers to generating only valid parents from
valid children. The heuristics in CGP can be strong, that is
conditions that must be satisfied, or weak expressed as
probabilities. Such local probabilities effectively change the
density or uniformity of the GP search space, and as such it affects
the proximity of the genotype and the phenotype. CGP has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
otherwise not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

GECCO’11, July 12-16, 2011, Dublin, Ireland.

Copyright 2011 ACM 978-1-4503-0690-4/11/07…$10.00.

mailto:jja7w2@umsl.edu

proven very successful on a number of standard GP problems
when using the strong constraints only [3,4,5].

One problem facing CGP is that it requires the user to know the
heuristics – CGP only provides means of adjusting the search
space based on the heuristics. However, even though knowing
proper heuristics can lead to great efficiency gains, the process of
finding such heuristics can be very slow and inefficient [5].
Adaptable CGP (ACGP) was developed to automate the process
of discovery of such useful heuristics, and the method was also
shown to efficiently learn and apply the heuristics, as for example
illustrated for the multiplexer problem [4].

The idea of restricting the GP search space has a long history.
McPhee with Hopper [20], and Burke [16] analyzed the effect of
the root node selection on GP. Hall and Soule [18] have
performed even more extensive study of this phenomenon. They
concluded that the choice of the root node has a very significant
impact on the solutions generated, and that fixing the root node
properly amounts to limiting the search space needed to be
searched. Daida has shown that later GP generations introduce
little variation into the structure of the generated trees [17],
indicating that these later generations search a smaller subspace of
the search space. Moreover, Langdon has shown that GP typically
searches only a well defined region of the potential search space
[19]. Hall and Soule call these phenomena the design evolved by
GP, which process in fact resembles top-down design strategy
[18]. However, more needs to be done about studying the effect of
imposing specific designs on GP, or automatic discovery of such
designs in particular. CGP and ACGP does that, working not only
at the root, but working locally as well.
Estimation Distribution Algorithms (EDA) is another approach to
deal with these design or more general structure issues at the
probabilistic level [15], as are grammar-based methods [14] and
semantic optimization methods [13]. These methods attempt to
build probabilistic models, which in turn can be used to generate
solutions. ACGP differs from EDA as it builds very local models
(first-order), which makes it very efficient and thus effective.
Moreover, ACGP uses two kinds of such models: global – tied to
specific positions in a tree, and local – independent of positions in
the tree, and ACGP uses the models within a standard GP search.
It is more obvious to see that some heuristics near the root node
help solving a problem, but it is surprising that very local
heuristics can accomplish even more for seemingly complex
problems [4].
Recently, the ACGP methodology has been extended to more
complex heuristics – between parent and all of its children, called
second order. These heuristics are much richer, able to express
much more information. The methodology and its implementation
have been extensively validated to ensure that not only they are
correct but also that they operate comparably to the first-order
methodology, for better comparison. However, the question
whether second-order processing can be more powerful than the
first-order has yet to be answered - each second-order heuristic is
already processed implicitly in the first-order ACGP, by
processing its first-order components. Our first attempts to answer
the question using multiplexer and artificial ant indicated “no” –
but careful problem analysis revealed that the actual explicit
second-order structures did not differ from the implicit ones.
Therefore, we have constructed an artificial problem with easily
controllable strong explicit second-order structure that cannot be
predicted from its first-order components. This paper introduces

the ACGP second-order processing, uses the simple function to
illustrate that “yes” indeed second-order processing is both more
effective and more efficient.

2. ACGP and Second-Order Heuristics
2.1 Heuristics in ACGP
Heuristics in Artificial Intelligence are considered to be chunks of
information, or rules-of thumb, that can lead to some
improvements in knowledge or in processing. In ACGP, heuristics
are probabilities attached to certain very local labeled structures.
First-order heuristics are probabilities of certain parent-one-child
structures, such as the probability that the binary function ‘+’ will
have ‘+’ as its left argument – as illustrated in Figure 1a. Second-
order heuristics are probabilities of certain parent-all-children
structures, such as the probability that the binary function ‘*’ will
apply simultaneously to two ‘y’s – as illustrated in Figure 1b. One
may revert this terminology to zero-order heuristics, that is just
label probabilities – but such probabilities are superseded by first
order heuristics, and one may extend to higher-order heuristics
where a node is considered with its children and their children
simultaneously, etc.
The heuristics are very useful in guiding the GP search. For
example, if the structure as labeled in Figure 1b has high
importance or usefulness, and some tree is being mutated with ‘*’
to label a node, then the two children of that node would have
higher chances of being simultaneously labeled ‘y’ and ‘y’. The
same would happen in crossover – if the first order heuristic from
Figure 1a has high usefulness, the tree in Figure 1 is chosen for
crossover, and the root’s left subtree is chosen as crossover node,
CGP would favor bringing subtrees starting with ‘+’ from the
other parent – because ‘+’ “prefers” having ‘+’ as its left child.

Figure 1. Illustration of a) global first-order and b) local
second-order heuristics.

In ACGP, there are two kinds of heuristics. Global heuristics are
position-specific as they provide information starting the root
node – for example, Figure 1a is a global heuristic. Local
heuristics are position-independent and they can be applied
“anywhere” in the tree – Figure 1b is an illustration of local
heuristics.

2.2 Discovery of Heuristics in ACGP
The building block hypothesis asserts that evolutionary processes
work by combining relatively fit, short schema to form complete
solutions [6]. However, small substructures cannot be easily
evaluated. ACGP uses the assumption that building blocks, or
structures, that occur more frequently in the fittest members
contribute to the fitness of those solutions and are therefore fit
building blocks. Therefore, in ACGP, the method for discovery of
heuristics is straightforward – the heuristics are discovered by
analyzing the best performing trees for most often occurring
patterns-structures. This process does not take place after every
generation as it has been shown that more time is needed for the
emergence of such structures and to reduce conflicts between

heuristics from different redundant representations. Instead, this
happens after a number of generations, usually between 10 and 25
[4], called an iteration.
In addition to using multi-generation iterations, ACGP also
adjusts its heuristics from the observed frequencies, rather than
greedily using the frequencies as its heuristics – empirical results
show that heuristics applied too greedily can lead to premature
convergence into a search subspace which is incapable of
representing the sought solution [4]. This is also due to the fact
that GP, given its large label set, searches a space of many
redundant representations and early heuristics tend to conflict
between these representations. Once the search begins to converge
to a specific solution and thus into specific representation, the
heuristics are more reliable as a set. The slope-off method allows
the discovered frequencies to replace a fixed part of the guiding
heuristics (with 100% replacement this becomes completely greed
approach). The slope-on method uses the frequencies to replace a
growing portion of the previous heuristics, proportional to
generation number.
Another method used in ACGP to increase the reliability of the
emerging heuristics is to run independent smaller-population runs
simultaneously and to select best heuristics from the independent
set.

2.3 Representation of Heuristics in ACGP
ACGP computes substructure frequencies and represents the
heuristics in tables, eventually translated into so called mutation
tables. Table-representation allows for indexed random access and
thus fast retrieval of information. Moreover, ACGP separately
maintains its global heuristics from its local heuristics. The
minimal size for the tables is completely dependent on the size of
the function set F, the terminal set T, and the arity of each
function, and it is shown below for the first-order heuristics:

The constant 1 is added to account for the global heuristics, which
at the root are only maintained at the zero order. In the absence of
any initial heuristics, such probability tables are initialized
uniformly for every possible heuristic. The heuristics can also be
initialized non-uniformly using the input interface. When ACGP
analyzes the heuristics, it counts the frequencies for building
blocks appearing in the fittest population members, and adjusts
the probabilities of those heuristics after each iteration according
to either slope-on or off schedule. The heuristics discovered in
ACGP are used in crossover, mutation, and a new operator,
regrow – a reinitialization operator used by ACGP to start each
new iteration. In GP, generations build on top of each other.
However, the search also converges into some subspaces. When
ACGP extracts its heuristics at each iteration, it prefers to
reinitialize the population according to the new heuristics in order
to allow more exploration using the newly discovered heuristics,
leading to better overall performance [4].
The newly discovered heuristics effectively change the space
being search by GP – the search space becomes non-uniform, or
the proximity between genotype and phenotype is dynamically
adjusted. As shown before, this results in much more efficient
search while examining smaller number of trees [4,5].

Recently, ACGP expanded the heuristic analysis and methodology
to consider second-order heuristics, as shown in Figure1b.
However, this also leads to more overhead both in time and space.
The main reason is that the number of heuristics grows
exponentially with increasing order. The equation below shows
how many second-order heuristics are needed. In this case, the
global heuristics are truly second order and thus we multiply the
global factor rather than add. Moreover, function arity is in the
exponent to account for all potential children combinations.

For a simple problem illustrated here, with 4 binary functions, 3
variables and 11 constants, the number of heuristics computed
from the above equations grows from 162 for first order, to 2592
for second order, and it would grow to about 1.37x107 for third
order if implemented.
Another important ACGP property is that it includes tree size in
determining the best trees from the population when it comes to
counting heuristics. This feature was added to dampen heuristics
coming from tress unnecessarily large for their fitness – ACGP
uses two-key sorting, the first key is the fitness, while the second
key is tree size and it applies whenever two trees are in an
equivalence class based on similar fitness. Alternatively, ACGP
can also skip counting subtrees which have not contributed to
fitness evaluation.

3. Empirical Illustration
3.1 Empirical Problem and its Expected
Heuristics
Every second-order heuristic can be implicitly constructed from
its first-order components, and thus every such second-order
heuristic is already processed in the first-order system. For
example, assume a problem where binary multiplication is
discovered to apply to nothing but x as its left child, and nothing
but y as its right child. Therefore, using just first-order processing,
multiplication will always select x as its left child and y as its
right child, and therefore will select x, y as its children – a second-
order structure. Therefore, to compare first-order processing vs.
second-order processing we need a function where at least some
second-order structures cannot be implicitly processed when
running first-order ACGP. WE also want to be able to modify the
function easily to weaken the difference between implicit and
explicit second-order heuristics. The initial function chosen is the
three-variable parabolic bowl3 = x*x + y*y + z*z.
The second-order structure apparent in this problem is that
multiplication has to apply to same-variables simultaneously, a
fact which cannot be implicitly constructed from observing just
one child at a time. The bowl3 function has two basic minimal
solutions, as seen in Figure 2. Adjusting for different permutations
at the leaves, there are 6 permutations of the left tree and 6
permutations of the right tree, giving 12 minimal solution trees.

Figure 2 x2 + y2 + z2 represented as two different trees.

By analyzing the minimal solution trees (and their permutations),
we can see that even though the two trees are different in top-level
structure, the local (not root) second-order heuristics are exactly
the same in both:

‘*’ applies to same-variables simultaneously, and

‘+’ applies to two ‘*’ simultaneously.

While the latter heuristic can be deduced from first-order
heuristics (‘+’ applies to ‘*’ on the left, and separately ‘+’ applies
to ‘*’ on the right), the former heuristics cannot be possibly
constructed from first-order structures and thus will require
extraction and processing of second-order heuristics to possibly
improve over what first-order heuristics could accomplish.
Therefore, these are perfect heuristics to determine if ACGP can
improve while operating on second-level structures, over first-
order structures.

As mentioned, the global second-order heuristics, on the other
hand, are different in the left and the right trees:

‘+’ applies to ‘*’ and ‘+’ in the left subtree, and

 ‘+’ applies to ‘+’ and ‘*’ in the right subtree.

Because the heuristics are opposite, there will be a conflict when
combining global heuristics from multiple trees (some trees can
come from the left family, others from the right family), and we
can expect the initial search for heuristics to suffer until one of
these families, or representations, takes over the population while
using heuristics to further speed up this take-over at that time.

To add some level of complexity to this artificial problem, we
enlarged the function to four binary operators {+,*,/,-}. We also
enlarged the terminal set to fourteen elements by including, in
addition to required {x,y,z}, eleven integer constants between -5
and 5. None of these additional functions or terminals is needed in
the optimal solution.

3.2 Experimental Setup
Unless otherwise noted, all experiments were conducted as
follow:

Target Equation: x*x + y*y + z*z

Function set: {+, -, *, /} (protected divide)

Terminal set: {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

Population size: 500

Generations: 500

Operators: crossover 85%, mutation 10%, selection 5%,
regrow 100% at each iteration

Number of independent runs: 30

Fitness: sum of square errors on 100 random data points
in the range -10 to 10

Iteration length: 20 generations

When tracing fitness, the best solution from the 30 independent
runs was averaged.

3.3 Problem Solving Results
The first experiment was to compare the learning curves, that is
the quality of the best solution found per generation, for a
standard GP run, called Base, and for two ACGP runs while
learning heuristics and applying them by updating 50% of the
previous heuristics with the currently observed frequencies. The
results are presented in Figure 3.

As seen, the GP-base run cannot solve the problem with better
than about 10% quality. However, both ACGP runs can raise this
quality to about 60-70%. On the other hand, there is little
advantage in processing second-order heuristics here, while – as
we already know - this problem has some second-order heuristics
which cannot be constructed from their first-order components.
The apparent reason for this, and for ACGP’s inability to solve the
problem beyond 70%, lies in the heuristics being applied too
greedily – as previously noted, the early heuristics are not reliable
as some tend to be missing and others can come from conflicting
representations [4]. Therefore, in the next experiment, we allow
the heuristics to change slowly at the beginning.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Fitness

Generation

Bowl3 Learning Curve
population = 500, generations = 500

2nd OH

1st OH

Base

Figure 3. Comparison of GP-Base, ACGP with 1st order and
2nd order heuristics. Training slope-off with 50% update.

Another worthy observation from this experiment is that the
population reinitialized with the regrow operator at each iteration
tend to eventually provide better quality solution on the first
generation (of a given iteration, the “dips” in the figure), due to
random sampling not from the original uniform search space but
from the discovered non-uniform space.

The second experiment followed the first one except that the
heuristics were updated less greedily – using the slope-on method.
The results are presented in Figure 4. As seen, ACGP with first-
order heuristics cannot solve the problem better than with about
75% quality. On the other hand, ACGP with second-order
heuristics apparently is able to discovered the strongly present
second-order structure and solve the problem with 100% quality
after about 10 iterations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Fitness

Generation

Bowl3 Learning Curve
population = 500, generations = 500

2nd OH

1st OH

Base

Figure 4. Comparison of GP-Base, ACGP with 1st order and
2nd order heuristics with training slope-on.

Another observation from Figure 4 is that even though both
ACGP runs can clearly outperform the GP run performing
uniform search, this advantage does not exists in the initial few
iterations. This fact is better illustrated in Figure 5. As seen, all
three runs are identical in the first iteration – before any heuristics
are discovered. Moreover, it takes the first-order ACGP three
iterations to outperform the standard GP. The reason is most
likely the fact that initially there are the two competing
representations with different global (root level) heuristics for the
second-order case and different local heuristics for ‘+’ for the
first-order heuristics case, as speculated before. Once the process
starts “preferring” one of the representations, possibly due to
random genetic drift, the process feeds back on this and further
reinforces the representation, leading to quick and dramatic
improvements.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Fitness

Generation

Bowl3 Learning Curve
population = 500, generations = 100

2nd OH
1st OH
Base

Figure 5. The first 5 iterations from Figure 4.

All previous experiments started with no heuristics (uniform
operator search) and then attempted to improve the runs while
discovering the heuristics. This is why the first iterations are the
same for all three cases in Figure 5. However, by analyzing the
problem we already know what the sought heuristics should be,
both the first order and second order. Therefore, the next
experiment was designed to trace the system’s behavior when the
heuristics are provided up front – that is when the search is
completely non-uniform for ACGP from the beginning, while
using the ideal heuristics from one representation only to avoid
conflicts.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Fitness

Generations

Bowl3 Learning Curve
populations = 100, generations = 200

2nd OH
1st OH
Base

Figure 6. Comparison of GP-Base, Strong 1st Order and
Strong 2nd Order Heuristics on 200 generation, no iterations.

The results are presented in Figure 6. There are no iterations here
as the ACGP runs are conducted with the ideal heuristics already
entered up front – ACGP allows entering first-order heuristics
from the interface but the second-order heuristics were entered by
modifying the code. As seen, following the early speculations, this
problem has very strong set of heuristics which if already known
can dramatically speed up the problem-solving process. Of course,
ACGP with second-order heuristics outperforms ACGP with first
order only – it requires only about 10 generations to consistently
solve the problem with 100% quality while the other requires
about 35.

This first experiment demonstrated the ACGP can both discover
first and second-order heuristics leading to performance gains
when compared generation to generation. However, if the
processing overhead is too complex, this may not necessarily lead
to better efficiency. To answer the question, we redraw the results
from Figure 4 on time rather than generation scale.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Fitness

Seconds

Bowl3 Learning Curve
population = 500, generations = 500

2nd OH
1st OH
Base

Figure 7. Comparison of Base, 1st Order and 2nd Order
Heuristics on a Time Scale.

The results are illustrated in Figure 7. The apparent reinitialization
dips cannot be easily seen due to averaging on time scale. The
graph clearly shows that even when taking processing complexity
into account, ACGP still provides a clear advantage over GP.
Moreover, ACGP with the more-complex second-order heuristics
still outperforms ACGP with only first-order heuristics.

These speedups of course result from finding better solutions in
fewer generations, as seen in Figure 4. However, there is more

into the story. When running with better heuristics, the tree sizes
tend to be smaller due to the algorithm learning to avoid
unnecessary and non-contributing subtrees. This can in fact
amplify the efficiency gains.

Table 1. Average tree structure for Base, 1st Order and 2nd
Order Heuristics.

Average
Best Tree

Size
Best Tree

Depth
Execution

Time
Base 728.40 19.43 347.6

1st OH 123.67 10.37 44.70

2nd OH 123.87 11.40 65.67

Table 1 summarizes the best tree complexity in the three
experimental cases. It indeed shows that the trees created using
the first-order order and second-order heuristics contain fewer
nodes and are shallower than the trees explored in the standard
GP.

So far we have demonstrated that ACGP does indeed process
second-order heuristics and does it very efficiently. The heuristics
can be provided up front or discovered in iterations. However, the
problem used so far was designed with very strong second-order
structure in order to clearly validate ACGP’s capability to
discover and process such information. Yet, most practical
problems are likely to exhibit some but not so profound second-
order structure.

Therefore, the next experiment was designed to test ACGP on
such cases. In this experiment, we modified the bowl3 equation as
follows: bowl3ext = x*x + y*y + z*z + x*y + x*z + y*z. This
problem still has very explicit first order structure, but the explicit
second-order structure is very similar but not equal to the implicit
second-order structure processed with first-order mechanisms. For
example, the first-order heuristics for the multiplication are
exactly the same as before, and thus the implicit seond-order
heuristics are the same as before – but now they are the same as
the explicit second-order heuristics. Figure 8 illustrates runs with
this modified bowl3ext. As seen, ACGP has harder time
discovering the heuristics now, and there is no apparent difference
between processing explicit and implicit second-order heuristics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Fitness

Generation

Bowl3ext Learning Curve
population = 500, generations = 500

2nd OH

1st OH

Base

Figure 8. Comparison of Base, 1st Order and 2nd Order
Heuristics with Training Slope on for an extended Bowl3

equation.

3.4 Discovered Heuristics
Another way of analyzing ACGP’s performance is to look at the
actual heuristics discovered after all iterations and compare them
against the speculated values assumed from problem analysis.

Table 2 illustrates the first-order heuristics discovered by ACGP
running in the first-order mode. The results are very close to what
was speculated in Section 3.1. All heuristics start uniformly (no
apriori information). The multiplication function can easily
discover that it needs to apply mostly to the variables (about 72%
combined out of needed 100%). The addition function also
discovers that it should apply mostly to ‘*’ and also allow
association, but it clearly still cannot distinguish between the two
solution families as illustrated in Figure 2 (‘+’ is both left and
right associative while only one of them is sufficient). The reason
for this confusion is that except for the ‘+” association, the two
families have identical heuristics making it hard to distinguish
between them.

The global zero-order fact that ‘+’ should label the root node was
also discovered easily. It is important to note that due to mutation
and slowly updated rather than greedily computed heuristics, and
some introns usually present in the trees, 100%-correct final
heuristics are not expected.

Table 2. First-order heuristics discovered. Root’s heuristics
are zero-order.

1st Order Heuristics
Heuristic Initial Final

‘*’

Left arg
X 0.056 0.2289
Y 0.056 0.2426
Z 0.056 0.2403

Right arg
X 0.056 0.2323
Y 0.056 0.2489
Z 0.056 0.2087

‘+’
Left arg ‘*’ 0.056 0.4796

‘+’ 0.056 0.2171

Right arg ‘*’ 0.056 0.4168
‘+’ 0.056 0.2410

Root ‘+’ 0.056 0.7669
Average of all other heuristics 0.056 0.0371

If we estimate the second-order heuristics from the available first-
order heuristics, our estimate will be lower than needed to capture
the heuristics actually present in the bowl3 equation. The first-
order heuristics for the function ‘*’ will estimate nine potential
second-order heuristics {x * x, x * y, x * z, y * x, y * y, y * z, z *
x, z * y, z * z}. However, we already know that bowl3 has only 3
useful second-order heuristics for ‘*’: {x * x, y * y, z * z} and
will suppress the other six heuristics. Table 3 summarizes the final
second-order heuristics computed for ‘*’ – again, the total for the
three heuristics come in the 74% range out of the actual 100%.

Table 3. Second-order heuristics summary for ‘*’.

Multiply Heuristics
Heuristic Initial Final

‘*’
X X 0.0031 0.2545
Y Y 0.0031 0.2368
Z Z 0.0031 0.2436

Average of all other
heuristics 0.0031 0.0008

A similar discussion can be made regarding the second-order
heuristics for ‘+’. The three preferred heuristics {‘*’ ‘+’ ‘*’, ‘*’
‘+’ ‘+’, ‘+’ ‘+’ ‘*’} are found after the iterations. Moreover, we
can see here that using second-order heuristics ACGP is able to
put preference on left-associative ‘+’ – ACGP with first-order
heuristics was not able to make this distinction as seen in Table 2.

The only dominant heuristics found for division and subtraction
are a few heuristics that have no impact on the evaluation of the
candidate solution. These neutral heuristics are division sub-trees
that evaluate to 1 or subtraction sub-trees that evaluate to 0. An
example of one of these heuristics would be (5 / 5). In other
words, ACGP was able to discover that if these extraneous
functions are present, they should evaluate to values easily
neglected by the evaluation.

Table 4. Second-order heuristics summary for ‘+’.

Addition Heuristics
Heuristic Initial Final

‘+’
‘*’ ‘*’ 0.0031 0.3110
‘*’ ‘+’ 0.0031 0.0688
‘+’ ‘*’ 0.0031 0.1289

Average of all other
heuristics 0.0031 0.0015

4. Conclusions
We have presented here the ACGP methodology for processing
and discovery of useful second-order heuristics. This is an
extension to the previously introduced and illustrated first-order
ACGP, which was shown to improve search efficiency
considerably on a class of standard problems. This paper
demonstrates that if very strong second-order heuristics are
present, ACGP is able to process them and also to discover them,
does it very efficiently, and the discovered heuristics are similar to
what one would expect by carefully analyzing the problem
solution.
The paper also illustrated that if a problem does not have explicit
second-order structure, ACGP running in first or second-order
mode is the same – there are always implicitly constructed
second-order structures. This is very important because it means
that, in the absence of any information on second-order structures,
it is not necessary to run ACGP in both modes – the second-order
mode is at least as powerful regardless what heuristics are present
in the domain. This feature needs to be validated with more
experimentation, but it was already observed on other problems as
well.
Of course, some of the local heuristics are context-specific, that is
they should be different in different subtrees. ACGP relies on the

simplicity of its completely local heuristics for its efficiency, but
it is possible to provide some context-sensitivity – we hope to
investigate this in the future.
The paper used a simple artificial problem allowing very detailed
analysis of the difference between explicit and implicit second-
order structures, for the sake of illustration the method’s
effectiveness and efficiency. The next step will be to move on to
standard test or real world problems. If anything, ACGP can at
least be used to predict the existence of second-order structures
beyond those implicit ones. So far, we have concluded that the 11
multiplexer and the SantaFe trail problems do not have any such
explicit second-order structures. If second-order processing proves
beneficial on some real life problems, the next step will be to
extend the method to higher-order structures.

5. REFERENCES
[1] Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and

Francone Frank D. Genetic Programming - An Introduction.
On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann Publishers, Inc. 1998.

[2] Janikow, Cezary Z. A Methodology for Processing Problem
Constraints in Genetic Programming, Computers and
Mathematics with Applications. 32(8):97-113, 1996.

[3] Janikow, Cezary Z., Deshpande, Rahul, Adaptation of
Representation in GP. AMS 2003

[4] Janikow, Cezary Z. ACGP: Adaptable Constrained Genetic
Programming. In O’Reilly, Una-May, Yu, Tina, and Riolo,
Rick L., editors. Genetic Programming Theory and Practice
(II). Springer, New York, NY, 2005, 191-206.

[5] Janikow, Cezary Z., and Mann, Christopher J. CGP Visits
the Santa Fe Trail – Effects of Heuristics on GP.
GECCO’05, June 25-29, 2005.

[6] Koza, John R. Genetic Programming. The MIT Press. 1992.
[7] Koza, John R. Genetic Programming II. The MIT Press.

1994.
[8] Looks, Moshe, Competent Program Evolution, Sever

Institute of Washington University, December 2006
[9] McKay, Robert I., Hoai, Nguyen X., Whigham, Peter A.,

Shan, Yin, O’Neill, Michael, Grammar-based Genetic
Programming: a survey, Genetic Programming and
Evolvable Machines, Springer Science + Business Media,
September 2010

[10] Poli, Riccardo, Langdon, William, B., Schema Theory for
Genetic Programming with One-point Crossover and Point
Mutation, Evolutionary Computation, MIT Press, Fall 1998

[11] Sastry, Kumara, O’Reilly, Una-May, Goldberg, David, Hill,
David, Building-Block Supply in Genetic Programming,
IlliGAL Report No. 2003012, April 2003

[12] Shan, Yin, McKay, Robert, Essam, Daryl, Abbass, Hussein,
A Survey of Probabilistic Model Building Genetic
Programming, The Artificial Life and Adaptive Robotics
Laboratory, School of Information Technology and Electrical
Engineering, University of New South Wales, Australia,
2005

[13] Looks, Moshe, Competent Program Evolution, Sever
Institute of Washington University, December 2006

[14] McKay, Robert I., Hoai, Nguyen X., Whigham, Peter A.,
Shan, Yin, O’Neill, Michael, Grammar-based Genetic
Programming: a survey, Genetic Programming and
Evolvable Machines, Springer Science + Business Media,
September 2010

[15] Shan, Yin, McKay, Robert, Essam, Daryl, Abbass, Hussein,
A Survey of Probabilistic Model Building Genetic
Programming, The Artificial Life and Adaptive Robotics
Laboratory, School of Information Technology and Electrical
Engineering, University of New South Wales, Australia,
2005

[16] Burke, Edmund, Gustafson, Steven, and Kendall, Graham. A
survey and analysis of diversity measures in genetic
programming. In Langdon, W., Cantu-Paz, E. Mathias, K.,
Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V.,
Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A.,
Miller, J., Burke, E. and Jonoska, N., editors. GECCO2002:
Proceedings of the Genetic and Evolutionary Computation
Conference, 716-723, New York. Morgan Kaufmann.

[17] Daida, Jason, Hills, Adam, Ward, David, and Long, Stephen.
Visualizing tree structures in genetic programming. In Cantu-
Paz, E., Foster, J., Deb, K., Davis, D., Roy, R., O’Reilly, U.,
Beyer, H., Standish, R., Kendall, G., Wilson, S., Harman, M.,

Wegener, J., Dasgupta, D., Potter, M., Schultz, A.,
Dowsland, K., Jonoska, N., and Miller, J., editors, Genetic
and Evolutionary Computation – GECCO-2003, volume
2724 of LNCS, 1652-1664, Chicago. Springer Verlag.

[18] Hall, John M. and Soule, Terence. Does Genetic
Programming Inherently Adopt Structured Design
Techniques? In O’Reilly, Una-May, Yu, Tina, and Riolo,
Rick L., editors. Genetic Programming Theory and Practice
(II). Springer, New York, NY, 2005, 159-174.

[19] Langon, William. Quadratic bloat in genetic programming.
In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L.,
Parmee, I., and Beyer, H-G., editors, Proceedings of the
Genetic and Evolutionary Conference GECCO 2000, 451-
458, Las Vegas. Morgan Kaufmann.

[20] McPhee, Nicholas F. and Hopper, Nicholas J. Analysis of
genetic diversity through population history. In Banzhaf, W.,
Daida, J., Eiben, A. Garzon, M. Honavar, V., Jakiela, M. and
Smith, R., editors Proceedings of the Genetic and
Evolutionary Computation Conference, volume 2, pages
1112-1120, Orlando, Florida, USA. Morgan Kaufmann.

[21] Franz Rothlauf. Representations for Genetic and
Evolutionary Algorithm. Springer, 2010.

	1. Background
	2. ACGP and Second-Order Heuristics
	2.1 Heuristics in ACGP
	2.2 Discovery of Heuristics in ACGP
	2.3 Representation of Heuristics in ACGP

	3. Empirical Illustration
	3.1 Empirical Problem and its Expected Heuristics
	3.2 Experimental Setup
	3.3 Problem Solving Results
	3.4 Discovered Heuristics

	4. Conclusions
	5. REFERENCES

