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ABSTRACT
Genetic  Programming  explores  the  problem  search  space  by 
means  of  operators  and  selection.  Mutation  and  crossover 
operators apply uniformly, while selection is the driving force for 
the search.  Constrained GP changes the uniform exploration to 
pruned  non-uniform,  skipping  some  subspaces  and  giving 
preferences  to  others,  according  to  some  heuristics.  Adaptable 
Constrained GP is  a  methodology for  discovery of  such useful 
heuristics.  Both  methodologies  have  previously  demonstrated 
their  surprising capabilities  using only first-order  (parent-child) 
heuristics.  Recently,  they  have  been  extended  to  second-order 
(parent-children) heuristics. This paper describes the second-order 
processing,  and  illustrates  the usefulness  and efficiency of  this 
approach  using  a  simple  problem  specifically  constructed  to 
exhibit strong second-order structure. 

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search 

I.2.6 [Artificial Intelligence]: Learning 

General Terms
Design, Experimentation.

Keywords
Genetic Programming, Heuristics, Search Space.

1. Background
Genetic  Programming  (GP)  is  an  evolutionary  computation 
method  bringing  together  concepts  from computer  science  and 
nature.  It  solves  a  problem at  hand  by  using  a  population  of 
candidate  solutions,  represented  as  chromosomes,  and  by 
manipulating the solutions via simulated mutation and crossover – 
while driven by selection to explore better solutions. 

Even though GP methods have been devised to work with a broad 
range of possible representations for the candidate solutions, the 
most common representation is that of a tree [1,6]. These trees are 
labeled  with  functions  and  terminals  representing  problem-
specific  elements:  functions,  connectors,  constants,  sensors,  etc. 
The actual search space, called genotype space, searched by GP is 

uniquely determined by the labels, and only constrained by limits 
on  tree  size  or  depth  –  the  trees  can  be  labeled  in  any  arity-
consistent manner (the  closure  property [6]). The corresponding 
solution  space,  called  phenotype space,  depends  on  the 
interpretations  of  the  labels  –  the  interpretations  provide  a 
mapping  from the  search  space  to  the  solution  space  or  from 
genotype to phenotype space. Somewhere in the search space, GP 
attempts  to  find  a  point  mapped  to  the  actual  solution  in  the 
solution space, which will provide the solution to the problem at 
hand.  The  quality  of  a  single  point  in  the  search  space  is 
determined by evaluating the mapped solution through a provided 
black-box fitness function.

There are some important issues to consider when designing GP, 
similar to those of other evolutionary methods yet specific to GP. 
If a given solution does not have a search space point mapped into 
it,  it will  never be discovered.  Therefore,  the mapping must be 
onto. To accomplish this, in the absence of detailed information 
about  the  problem  or  solution,  the  search  space  needs  to  be 
enlarged  (a  part  of  the  sufficiency principle  [6]).  This  leads to 
many-to-one mappings,  with  large  redundancy  in  the 
representation. To handle these problems, some properties need to 
be  there,  among  them  many-to-one  mappings  to  the  better 
solutions and proximity induced by the mapping – if two solution 
points  are  similar  in  quality,  they  should  be  mapped  to  from 
neighboring points in the search space [21].

Specifically in GP, sufficiency leads to huge redundancies, while 
often lacking the proximity. Moreover, the large search space also 
generally  reduces  the  search  efficiency  [2,4].  To  answer  these 
challenges,  a  number  of  methods  have  been  proposed  that 
ultimately  prune,  or  reduce  the  effective  search space,  such as 
STGP, CFG-based GP, etc. [1].

Constrained GP (CGP) is another such method. It allows certain 
constraints on the formation of labeled trees – constraints on a 
parent  and one of its children at  a time,  also called  first-order 
heuristics [4]  (CGP  also  supports  restrictions  based  on  types, 
along with polymorphic functions). The constraints are processed 
in a closed search space by operators with minimum overhead [2] 
– closed search space refers to generating only valid parents from 
valid  children.  The  heuristics  in  CGP  can  be  strong,  that  is 
conditions  that  must  be  satisfied,  or  weak expressed  as 
probabilities.  Such  local  probabilities  effectively  change  the 
density or uniformity of the GP search space, and as such it affects 
the proximity of the genotype and the phenotype. CGP has been 
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proven  very  successful  on  a  number  of  standard  GP problems 
when using the strong constraints only [3,4,5].

One problem facing CGP is that it requires the user to know the  
heuristics  –  CGP only  provides  means  of  adjusting  the  search 
space  based  on  the  heuristics.  However,  even  though  knowing 
proper heuristics can lead to great efficiency gains, the process of 
finding  such  heuristics  can  be  very  slow  and  inefficient  [5]. 
Adaptable CGP (ACGP) was developed to automate the process 
of discovery of such useful heuristics, and the method was also 
shown to efficiently learn and apply the heuristics, as for example 
illustrated for the multiplexer problem [4]. 

The idea of restricting the GP search space has a long history.  
McPhee with Hopper [20], and Burke [16] analyzed the effect of 
the  root  node  selection  on  GP.  Hall  and  Soule  [18]  have 
performed even more extensive study of this phenomenon. They 
concluded that the choice of the root node has a very significant 
impact on the solutions generated, and that fixing the root node 
properly  amounts  to  limiting  the  search  space  needed  to  be 
searched.  Daida has shown  that  later  GP generations introduce 
little  variation  into  the  structure  of  the  generated  trees  [17],  
indicating that these later generations search a smaller subspace of 
the search space. Moreover, Langdon has shown that GP typically 
searches only a well defined region of the potential search space 
[19]. Hall and Soule call these phenomena the design evolved by 
GP,  which  process  in  fact  resembles  top-down  design strategy 
[18]. However, more needs to be done about studying the effect of 
imposing specific designs on GP, or automatic discovery of such 
designs in particular. CGP and ACGP does that, working not only 
at the root, but working locally as well.
Estimation Distribution Algorithms (EDA) is another approach to 
deal  with  these  design  or  more  general  structure  issues  at  the 
probabilistic level  [15], as are grammar-based methods [14] and 
semantic  optimization  methods  [13].  These methods  attempt  to 
build probabilistic models, which in turn can be used to generate 
solutions. ACGP differs from EDA as it builds very local models 
(first-order),  which  makes  it  very  efficient  and  thus  effective. 
Moreover, ACGP uses two kinds of such models: global – tied to 
specific positions in a tree, and local – independent of positions in 
the tree, and ACGP uses the models within a standard GP search. 
It is more obvious to see that some heuristics near the root node 
help  solving  a  problem,  but  it  is  surprising  that  very  local 
heuristics  can  accomplish  even  more  for  seemingly  complex 
problems [4].
Recently,  the  ACGP  methodology  has  been  extended  to  more 
complex heuristics – between parent and all of its children, called 
second order.  These heuristics are much richer,  able to express 
much more information. The methodology and its implementation 
have been extensively validated to ensure that not only they are 
correct  but  also that  they operate  comparably to  the first-order 
methodology,  for  better  comparison.  However,  the  question 
whether second-order processing can be more powerful than the 
first-order has yet to be answered - each second-order heuristic is 
already  processed  implicitly  in  the  first-order  ACGP,  by 
processing its first-order components. Our first attempts to answer 
the question using multiplexer and artificial ant indicated “no” – 
but  careful  problem  analysis  revealed  that  the  actual  explicit 
second-order  structures  did  not  differ  from  the  implicit  ones. 
Therefore, we have constructed an artificial problem with easily 
controllable strong explicit second-order structure that cannot be 
predicted from its first-order components. This paper introduces 

the ACGP second-order processing,  uses the simple function to 
illustrate that “yes” indeed second-order processing is both more 
effective and more efficient. 

2. ACGP and Second-Order Heuristics
2.1 Heuristics in ACGP
Heuristics in Artificial Intelligence are considered to be chunks of 
information,  or  rules-of  thumb,  that  can  lead  to  some 
improvements in knowledge or in processing. In ACGP, heuristics 
are probabilities attached to certain very local labeled structures. 
First-order heuristics are probabilities of certain parent-one-child 
structures, such as the probability that the binary function ‘+’ will  
have ‘+’ as its left argument – as illustrated in Figure 1a. Second-
order  heuristics  are  probabilities  of  certain  parent-all-children 
structures, such as the probability that the binary function ‘*’ will 
apply simultaneously to two ‘y’s – as illustrated in Figure 1b. One 
may revert this terminology to  zero-order heuristics, that is just 
label probabilities – but such probabilities are superseded by first 
order  heuristics,  and one may extend  to higher-order  heuristics 
where a node is considered with its children and their children 
simultaneously, etc.
The  heuristics  are  very  useful  in  guiding  the  GP  search.  For 
example,  if  the  structure  as  labeled  in  Figure  1b  has  high 
importance or usefulness, and some tree is being mutated with ‘*’ 
to label a node, then the two children of that node would have 
higher chances of being simultaneously labeled ‘y’ and ‘y’. The 
same would happen in crossover – if the first order heuristic from 
Figure 1a has high usefulness, the tree in Figure 1 is chosen for  
crossover, and the root’s left subtree is chosen as crossover node, 
CGP would  favor  bringing  subtrees  starting  with  ‘+’  from the 
other parent – because ‘+’ “prefers” having ‘+’ as its left child.

Figure 1. Illustration of a) global first-order and b) local 
second-order heuristics.

In ACGP, there are two kinds of heuristics. Global heuristics are 
position-specific  as  they  provide  information  starting  the  root 
node  –  for  example,  Figure  1a  is  a  global  heuristic.  Local 
heuristics  are  position-independent  and  they  can  be  applied 
“anywhere”  in  the  tree  –  Figure  1b  is  an  illustration  of  local 
heuristics.

2.2 Discovery of Heuristics in ACGP
The building block hypothesis asserts that evolutionary processes 
work by combining relatively fit, short schema to form complete 
solutions  [6].   However,  small  substructures  cannot  be  easily 
evaluated.  ACGP uses  the  assumption  that  building  blocks,  or 
structures,  that  occur  more  frequently  in  the  fittest  members 
contribute to the fitness of those solutions and are therefore  fit  
building blocks. Therefore, in ACGP, the method for discovery of 
heuristics  is  straightforward  –  the  heuristics  are  discovered  by 
analyzing  the  best  performing  trees  for  most  often  occurring 
patterns-structures.  This process does not take place after  every 
generation as it has been shown that more time is needed for the 
emergence  of  such  structures  and  to  reduce  conflicts  between 



heuristics from different  redundant representations.  Instead,  this 
happens after a number of generations, usually between 10 and 25 
[4], called an iteration.
In  addition  to  using  multi-generation  iterations,  ACGP  also 
adjusts its heuristics from the observed frequencies,  rather than 
greedily using the frequencies as its heuristics – empirical results 
show that heuristics applied too greedily can lead to premature 
convergence  into  a  search  subspace  which  is  incapable  of 
representing the sought solution [4]. This is also due to the fact 
that  GP,  given  its  large  label  set,  searches  a  space  of  many 
redundant  representations  and  early  heuristics  tend  to  conflict 
between these representations. Once the search begins to converge 
to  a  specific  solution  and  thus  into  specific  representation,  the 
heuristics are more reliable as a set. The slope-off method allows 
the discovered frequencies to replace a fixed part of the guiding 
heuristics (with 100% replacement this becomes completely greed 
approach). The slope-on method uses the frequencies to replace a 
growing  portion  of  the  previous  heuristics,  proportional  to 
generation number.
Another method used in ACGP to increase the reliability of the 
emerging heuristics is to run independent smaller-population runs 
simultaneously and to select best heuristics from the independent 
set.

2.3 Representation of Heuristics in ACGP
ACGP  computes  substructure  frequencies  and  represents  the 
heuristics in tables, eventually translated into so called mutation 
tables. Table-representation allows for indexed random access and 
thus  fast  retrieval  of  information.  Moreover,  ACGP separately 
maintains  its  global  heuristics  from  its  local  heuristics.  The 
minimal size for the tables is completely dependent on the size of 
the  function  set  F,  the  terminal  set  T,  and  the  arity  of  each 
function, and it is shown below for the first-order heuristics:

The constant 1 is added to account for the global heuristics, which 
at the root are only maintained at the zero order. In the absence of 
any  initial  heuristics,  such  probability  tables  are  initialized 
uniformly for every possible heuristic. The heuristics can also be 
initialized non-uniformly using the input interface. When ACGP 
analyzes  the  heuristics,  it  counts  the  frequencies  for  building 
blocks appearing in the fittest  population members,  and adjusts 
the probabilities of those heuristics after each iteration according 
to either  slope-on or  off  schedule.  The heuristics  discovered  in 
ACGP  are  used  in  crossover,  mutation,  and  a  new  operator, 
regrow – a reinitialization operator used by ACGP to start each 
new  iteration.  In  GP,  generations  build  on  top  of  each  other. 
However, the search also converges into some subspaces. When 
ACGP  extracts  its  heuristics  at  each  iteration,  it  prefers  to 
reinitialize the population according to the new heuristics in order 
to allow more exploration using the newly discovered heuristics,  
leading to better overall performance [4].
The  newly  discovered  heuristics  effectively  change  the  space 
being search by GP – the search space becomes non-uniform, or 
the  proximity  between  genotype  and  phenotype  is  dynamically 
adjusted.  As shown before,  this  results  in  much more  efficient 
search while examining smaller number of trees [4,5]. 

Recently, ACGP expanded the heuristic analysis and methodology 
to  consider  second-order  heuristics,  as  shown  in  Figure1b. 
However, this also leads to more overhead both in time and space. 
The  main  reason  is  that  the  number  of  heuristics  grows 
exponentially with increasing order.  The equation below shows 
how many second-order heuristics are needed.  In  this case,  the 
global heuristics are truly second order and thus we multiply the 
global factor rather than add. Moreover, function arity is in the 
exponent to account for all potential children combinations.

For a simple problem illustrated here, with 4 binary functions, 3 
variables  and  11  constants,  the  number  of  heuristics  computed 
from the above equations grows from 162 for first order, to 2592 
for second order, and it would grow to about 1.37x107 for third 
order if implemented.
Another important ACGP property is that it includes tree size in 
determining the best trees from the population when it comes to 
counting heuristics. This feature was added to dampen heuristics 
coming from tress unnecessarily large for their fitness – ACGP 
uses two-key sorting, the first key is the fitness, while the second 
key  is  tree  size  and  it  applies  whenever  two  trees  are  in  an 
equivalence class based on similar fitness. Alternatively,  ACGP 
can  also  skip  counting  subtrees  which  have  not  contributed  to 
fitness evaluation.

3. Empirical Illustration
3.1 Empirical Problem and its Expected 
Heuristics
Every second-order heuristic can be implicitly constructed from 
its  first-order  components,  and  thus  every  such  second-order 
heuristic  is  already  processed  in  the  first-order  system.  For 
example,  assume  a  problem  where  binary  multiplication  is 
discovered to apply to nothing but x as its left child, and nothing 
but y as its right child. Therefore, using just first-order processing, 
multiplication will  always  select x as its left  child and y as its 
right child, and therefore will select x, y as its children – a second-
order structure.  Therefore,  to compare first-order processing vs. 
second-order processing we need a function where at least some 
second-order  structures  cannot  be  implicitly  processed  when 
running first-order ACGP. WE also want to be able to modify the 
function  easily  to  weaken  the  difference  between  implicit  and 
explicit second-order heuristics. The initial function chosen is the 
three-variable parabolic bowl3 = x*x + y*y + z*z. 
The  second-order  structure  apparent  in  this  problem  is  that 
multiplication  has to  apply to  same-variables  simultaneously,  a 
fact which cannot be implicitly constructed from observing just 
one child at a  time. The bowl3 function has two basic minimal  
solutions, as seen in Figure 2. Adjusting for different permutations 
at  the  leaves,  there  are  6  permutations  of  the  left  tree  and  6 
permutations of the right tree, giving 12 minimal solution trees. 



Figure 2  x2 + y2 + z2 represented as two different trees.

By analyzing the minimal solution trees (and their permutations), 
we can see that even though the two trees are different in top-level 
structure, the local (not root) second-order heuristics are exactly 
the same in both: 

‘*’ applies to same-variables simultaneously, and 

‘+’ applies to two ‘*’ simultaneously. 

While  the  latter  heuristic  can  be  deduced  from  first-order 
heuristics (‘+’ applies to ‘*’ on the left, and separately ‘+’ applies 
to  ‘*’  on  the  right),  the  former  heuristics  cannot  be  possibly 
constructed  from  first-order  structures  and  thus  will  require 
extraction and processing of second-order heuristics to possibly 
improve  over  what  first-order  heuristics  could  accomplish. 
Therefore, these are perfect heuristics to determine if ACGP can 
improve  while  operating  on  second-level  structures,  over  first-
order structures. 

As  mentioned,  the  global  second-order  heuristics,  on  the  other 
hand, are different in the left and the right trees:  

‘+’ applies to ‘*’ and ‘+’ in the left subtree, and

 ‘+’ applies to ‘+’ and ‘*’ in the right subtree. 

Because the heuristics are opposite, there will be a conflict when 
combining global heuristics from multiple trees (some trees can 
come from the left family, others from the right family), and we 
can expect the initial search for heuristics to suffer until one of 
these families, or representations, takes over the population while 
using heuristics to further speed up this take-over at that time.

To add some level  of  complexity to  this artificial  problem,  we 
enlarged the function to four binary operators {+,*,/,-}. We also 
enlarged  the terminal  set  to  fourteen  elements  by including,  in 
addition to required {x,y,z}, eleven integer constants between   -5  
and 5. None of these additional functions or terminals is needed in 
the optimal solution. 

3.2 Experimental Setup
Unless  otherwise  noted,  all  experiments  were  conducted  as 
follow: 

Target Equation: x*x + y*y + z*z

Function set: {+, -, *, /} (protected divide)

Terminal set: {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

Population size: 500 

Generations: 500

Operators: crossover 85%, mutation 10%, selection 5%, 
regrow 100% at each iteration

Number of independent runs: 30 

Fitness: sum of square errors on 100 random data points 
in the range -10 to 10

Iteration length: 20 generations 

When tracing fitness, the best solution from the 30 independent 
runs was averaged.

3.3 Problem Solving Results 
The first experiment was to compare the learning curves, that is 
the  quality  of  the  best  solution  found  per  generation,  for  a 
standard  GP  run,  called  Base,  and  for  two  ACGP runs  while 
learning  heuristics  and  applying  them by updating  50% of  the 
previous heuristics with the currently observed frequencies. The 
results are presented in Figure 3.

As seen, the GP-base run cannot solve the problem with better 
than about 10% quality. However, both ACGP runs can raise this 
quality  to  about  60-70%.  On  the  other  hand,  there  is  little 
advantage in processing second-order heuristics here, while – as 
we already know - this problem has some second-order heuristics 
which  cannot  be constructed from their first-order components. 
The apparent reason for this, and for ACGP’s inability to solve the 
problem  beyond  70%,  lies  in  the  heuristics  being  applied  too 
greedily – as previously noted, the early heuristics are not reliable 
as some tend to be missing and others can come from conflicting 
representations [4]. Therefore, in the next experiment, we allow 
the heuristics to change slowly at the beginning.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

Fitness

Generation

Bowl3  Learning Curve
population = 500, generations = 500

2nd OH

1st OH

Base

Figure 3.  Comparison of GP-Base, ACGP with 1st order and 
2nd order heuristics. Training slope-off with 50% update.

Another  worthy  observation  from  this  experiment  is  that  the 
population reinitialized with the regrow operator at each iteration 
tend  to  eventually  provide  better  quality  solution  on  the  first 
generation (of a given iteration, the “dips” in the figure), due to 
random sampling not from the original uniform search space but 
from the discovered non-uniform space.

The  second  experiment  followed  the  first  one  except  that  the 
heuristics were updated less greedily – using the slope-on method. 
The results are presented in Figure 4. As seen, ACGP with first-
order heuristics cannot solve the problem better than with about 
75%  quality.  On  the  other  hand,  ACGP  with  second-order 
heuristics  apparently is  able  to  discovered  the  strongly  present 
second-order structure and solve the problem with 100% quality 
after about 10 iterations. 
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Figure 4.  Comparison of GP-Base, ACGP with 1st order and 
2nd order heuristics with training slope-on. 

Another  observation  from  Figure  4  is  that  even  though  both 
ACGP  runs  can  clearly  outperform  the  GP  run  performing 
uniform search, this advantage does not exists in the initial few 
iterations. This fact is better illustrated in Figure 5. As seen, all 
three runs are identical in the first iteration – before any heuristics 
are  discovered.  Moreover,  it  takes  the  first-order  ACGP  three 
iterations  to  outperform  the  standard  GP.  The  reason  is  most 
likely  the  fact  that  initially  there  are  the  two  competing 
representations with different global (root level) heuristics for the 
second-order  case  and  different  local  heuristics  for  ‘+’  for  the 
first-order heuristics case, as speculated before. Once the process 
starts  “preferring”  one  of  the  representations,  possibly  due  to 
random genetic drift,  the process feeds back on this and further 
reinforces  the  representation,  leading  to  quick  and  dramatic 
improvements.
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Figure 5.  The first 5 iterations from Figure 4.

All  previous  experiments  started  with  no  heuristics  (uniform 
operator  search)  and then attempted  to  improve  the runs while  
discovering the heuristics. This is why the first iterations are the 
same for all three cases in Figure 5. However, by analyzing the 
problem we already know what the sought heuristics should be, 
both  the  first  order  and  second  order.  Therefore,  the  next 
experiment was designed to trace the system’s behavior when the 
heuristics  are  provided  up  front  –  that  is  when  the  search  is 
completely  non-uniform  for  ACGP  from  the  beginning,  while 
using the ideal heuristics from one representation only to avoid 
conflicts. 
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Figure 6.  Comparison of GP-Base, Strong 1st Order and 
Strong 2nd Order Heuristics on 200 generation, no iterations.

The results are presented in Figure 6. There are no iterations here 
as the ACGP runs are conducted with the ideal heuristics already 
entered  up  front  –  ACGP allows  entering  first-order  heuristics 
from the interface but the second-order heuristics were entered by 
modifying the code. As seen, following the early speculations, this 
problem has very strong set of heuristics which if already known 
can dramatically speed up the problem-solving process. Of course, 
ACGP with second-order heuristics outperforms ACGP with first 
order only – it requires only about 10 generations to consistently 
solve  the  problem with  100% quality  while  the  other  requires 
about 35.

This first experiment demonstrated the ACGP can both discover 
first  and  second-order  heuristics  leading  to  performance  gains 
when  compared  generation  to  generation.  However,  if  the 
processing overhead is too complex, this may not necessarily lead 
to better efficiency. To answer the question, we redraw the results 
from Figure 4 on time rather than generation scale.
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Figure 7.  Comparison of Base, 1st Order and 2nd Order 
Heuristics on a Time Scale.

The results are illustrated in Figure 7. The apparent reinitialization 
dips cannot be easily seen due to averaging on time scale. The 
graph clearly shows that even when taking processing complexity 
into  account,  ACGP still  provides  a  clear  advantage  over  GP. 
Moreover, ACGP with the more-complex second-order heuristics 
still outperforms ACGP with only first-order heuristics.

These speedups of course result from finding better solutions in 
fewer generations, as seen in Figure 4. However,  there is more 



into the story. When running with better heuristics, the tree sizes 
tend  to  be  smaller  due  to  the  algorithm  learning  to  avoid 
unnecessary  and  non-contributing  subtrees.  This  can  in  fact 
amplify the efficiency gains.  

Table 1.  Average tree structure for Base, 1st Order and 2nd 
Order Heuristics.

Average
Best Tree 

Size
Best Tree 

Depth
Execution 

Time
Base 728.40 19.43 347.6

1st OH 123.67 10.37 44.70

2nd OH 123.87 11.40 65.67

Table  1  summarizes  the  best  tree  complexity  in  the  three 
experimental cases. It  indeed shows that the trees created using 
the  first-order  order  and  second-order  heuristics  contain  fewer 
nodes and are shallower than the trees explored in the standard 
GP.

So far  we  have  demonstrated  that  ACGP does  indeed  process 
second-order heuristics and does it very efficiently. The heuristics 
can be provided up front or discovered in iterations. However, the 
problem used so far was designed with very strong second-order 
structure  in  order  to  clearly  validate  ACGP’s  capability  to 
discover  and  process  such  information.  Yet,  most  practical 
problems are likely to exhibit some but not so profound second-
order structure. 

Therefore,  the next  experiment  was  designed  to  test  ACGP on 
such cases. In this experiment, we modified the bowl3 equation as 
follows:  bowl3ext = x*x + y*y + z*z + x*y + x*z + y*z.  This 
problem still has very explicit first order structure, but the explicit 
second-order structure is very similar but not equal to the implicit  
second-order structure processed with first-order mechanisms. For 
example,  the  first-order  heuristics  for  the  multiplication  are 
exactly  the  same  as  before,  and  thus  the  implicit  seond-order 
heuristics are the same as before – but now they are the same as 
the explicit second-order heuristics. Figure 8 illustrates runs with 
this  modified  bowl3ext.  As  seen,  ACGP  has  harder  time 
discovering the heuristics now, and there is no apparent difference  
between processing explicit and implicit second-order heuristics.
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Figure 8.  Comparison of Base, 1st Order and 2nd Order 
Heuristics with Training Slope on for an extended Bowl3 

equation.

3.4 Discovered Heuristics
Another way of analyzing ACGP’s performance is to look at the 
actual heuristics discovered after all iterations and compare them 
against the speculated values assumed from problem analysis.

Table 2 illustrates the first-order heuristics discovered by ACGP 
running in the first-order mode. The results are very close to what 
was speculated in Section 3.1. All heuristics start uniformly (no 
apriori  information).  The  multiplication  function  can  easily 
discover that it needs to apply mostly to the variables (about 72% 
combined  out  of  needed  100%).  The  addition  function  also 
discovers  that  it  should  apply  mostly  to  ‘*’  and  also  allow 
association, but it clearly still cannot distinguish between the two 
solution families  as illustrated in Figure 2 (‘+’ is both left  and 
right associative while only one of them is sufficient). The reason 
for this confusion is that except for the ‘+” association, the two 
families  have  identical  heuristics  making  it  hard  to  distinguish 
between them.

The global zero-order fact that ‘+’ should label the root node was 
also discovered easily. It is important to note that due to mutation 
and slowly updated rather than greedily computed heuristics, and 
some  introns  usually  present  in  the  trees,  100%-correct  final 
heuristics are not expected.

Table 2.  First-order heuristics discovered. Root’s heuristics 
are zero-order.

1st Order Heuristics
Heuristic Initial Final

‘*’

Left arg
X 0.056 0.2289
Y 0.056 0.2426
Z 0.056 0.2403

Right arg
X 0.056 0.2323
Y 0.056 0.2489
Z 0.056 0.2087

‘+’
Left arg ‘*’ 0.056 0.4796

‘+’ 0.056 0.2171

Right arg ‘*’ 0.056 0.4168
‘+’ 0.056 0.2410

Root ‘+’ 0.056 0.7669
Average of all other heuristics 0.056 0.0371

If we estimate the second-order heuristics from the available first-
order heuristics, our estimate will be lower than needed to capture 
the heuristics actually present in the bowl3  equation.  The first-
order heuristics for  the function ‘*’  will  estimate  nine potential 
second-order heuristics {x * x, x * y, x * z, y * x, y * y, y * z, z *  
x, z * y, z * z}. However, we already know that bowl3 has only 3 
useful second-order heuristics for ‘*’: {x * x, y * y, z * z} and 
will suppress the other six heuristics. Table 3 summarizes the final 
second-order heuristics computed for ‘*’ – again, the total for the 
three heuristics come in the 74% range out of the actual 100%.



Table 3.  Second-order heuristics summary for ‘*’.

Multiply Heuristics
Heuristic Initial Final

‘*’
X X 0.0031 0.2545
Y Y 0.0031 0.2368
Z Z 0.0031 0.2436

Average of all other 
heuristics 0.0031 0.0008

A  similar  discussion  can  be  made  regarding  the  second-order 
heuristics for ‘+’. The three preferred heuristics {‘*’ ‘+’ ‘*’, ‘*’ 
‘+’ ‘+’, ‘+’ ‘+’ ‘*’} are found after the iterations. Moreover, we 
can see here that using second-order heuristics ACGP is able to 
put  preference  on  left-associative  ‘+’  –  ACGP with  first-order 
heuristics was not able to make this distinction as seen in Table 2. 

The only dominant heuristics found for division and subtraction 
are a few heuristics that have no impact on the evaluation of the 
candidate solution. These neutral heuristics are division sub-trees 
that evaluate to 1 or subtraction sub-trees that evaluate to 0. An 
example  of  one  of  these  heuristics  would  be  (5  /  5).  In  other 
words,  ACGP  was  able  to  discover  that  if  these  extraneous 
functions  are  present,  they  should  evaluate  to  values  easily 
neglected by the evaluation.

Table 4.  Second-order heuristics summary for ‘+’.

Addition Heuristics
Heuristic Initial Final 

‘+’
‘*’ ‘*’ 0.0031 0.3110
‘*’ ‘+’ 0.0031 0.0688
‘+’ ‘*’ 0.0031 0.1289

Average of all other 
heuristics 0.0031 0.0015

4. Conclusions
We have presented here the ACGP methodology for processing 
and  discovery  of  useful  second-order  heuristics.  This  is  an 
extension to the previously introduced and illustrated first-order 
ACGP,  which  was  shown  to  improve  search  efficiency 
considerably  on  a  class  of  standard  problems.  This  paper 
demonstrates  that  if  very  strong  second-order  heuristics  are 
present, ACGP is able to process them and also to discover them, 
does it very efficiently, and the discovered heuristics are similar to 
what  one  would  expect  by  carefully  analyzing  the  problem 
solution. 
The paper also illustrated that if a problem does not have explicit 
second-order  structure,  ACGP running  in  first  or  second-order 
mode  is  the  same  –  there  are  always  implicitly  constructed 
second-order structures. This is very important because it means 
that, in the absence of any information on second-order structures, 
it is not necessary to run ACGP in both modes – the second-order 
mode is at least as powerful regardless what heuristics are present 
in  the  domain.  This  feature  needs  to  be  validated  with  more 
experimentation, but it was already observed on other problems as 
well.
Of course, some of the local heuristics are context-specific, that is 
they should be different in different subtrees. ACGP relies on the 

simplicity of its completely local heuristics for its efficiency, but 
it  is  possible  to  provide  some context-sensitivity – we  hope to 
investigate this in the future.
The paper  used a simple artificial problem allowing very detailed 
analysis  of the difference between explicit  and implicit  second-
order  structures,  for  the  sake  of  illustration  the  method’s 
effectiveness and efficiency. The next step will be to move on to 
standard test or real world problems. If  anything,  ACGP can at 
least be used to predict the existence of second-order structures 
beyond those implicit ones. So far, we have concluded that the 11 
multiplexer and the SantaFe trail problems do not have any such 
explicit second-order structures. If second-order processing proves 
beneficial  on some real  life  problems,  the next  step will  be  to 
extend the method to higher-order structures. 
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