
Disclosure Control in Multi-Domain
Publish/Subscribe Systems

Jatinder Singh
Computer Laboratory

University of Cambridge, UK
jatinder.singh@cl.cam.ac.uk

David M. Eyers
Dept. of Computer Science

University of Otago, NZ
dme@cs.otago.ac.nz

Jean Bacon
Computer Laboratory

University of Cambridge, UK
jean.bacon@cl.cam.ac.uk

ABSTRACT

Publish/subscribe is an effective paradigm for event dissem-
ination over wide-area systems. However, there is tension
between the convenience of open information delivery, and
the need to protect data from unauthorised access. Pub-
lish/subscribe security models tend to focus on protecting
the client API, or encrypting events and managing disclo-
sure through key distribution. However, some application
environments require more stringent, fine-grained controls
governing precisely the data disclosed and transmitted given
particular circumstances. In this paper, we present Interac-
tion Control, a policy model that overlays context-aware,
point-to-point (hop-level) controls onto a publish/subscribe
network. The approach is unique as it allows granular con-
trol over i) the construction of the dissemination network,
and ii) the information flows within the network. Interac-
tion Control was designed considering legal obligations, to
enable those responsible for information to transmit data on
a need-to-know basis. Security policies set the bounds for
communication, enforced only where necessary at specific
points of the publish/subscribe process, to provide control
while retaining the efficiency benefits of the paradigm. We
present implementation details and results showing that any
security overheads must be considered with respect to the
overall network load.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
security and protection; C.2.4 [Computer-Communication
Networks]: Distributed Systems—distributed applications

General Terms

Security, Design, Legal Aspects

Keywords

publish/subscribe, security, information flow control, access
control, policy enforcement, data governance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’11, July 11–15, 2011, New York, New York, USA.
Copyright 2011 ACM 978-1-4503-0423-8/11/07 ...$10.00.

1 Introduction

Publish/subscribe (pub/sub) is an effective paradigm for
wide-area event distribution, in which events encapsulate
self-contained data updates. Clients (information produc-
ers and consumers) are decoupled: producers produce (pub-
lish) events and consumers register their interest in (sub-
scribe to) information they wish to receive. Pub/sub is
push-based, where clients communicate through the pub/
sub middleware. Routing is information centric, delivering
relevant—based on the type, topic and/or content—events
from producers to consumers as they occur. The paradigm
is efficient and scalable, exploiting commonalities between
client preferences to avoid redundant transmissions.

Client decoupling favours anonymous communication: the
consumers are unaware of the information producers’ iden-
tities/addresses/locations, and vice-versa. Such information
could be encapsulated in the event itself, but even then the
producer has no control over who receives their publications.
The paradigm often includes the use of brokers—routing
entities that interconnect to provide the pub/sub service.
Clients communicate through brokers, where brokers inspect
events (at varying degrees) to make routing decisions.

For some applications it may be enough to simply se-
cure access to the entire pub/sub service, e.g. those services
where clients register to subsequently receive information.
This is typically sufficient for the financial services (stock
quote) scenarios common to pub/sub research. However,
there exist other application environments with more strin-
gent security requirements that require wide-area notifica-
tion services. Generally, pub/sub lacks the means to control
the data released to a (particular) consumer. Often secu-
rity concerns are context-dependent, in that the appropriate
constraints for a transmission depends on the circumstances.
Further, when considering wide-area services, such as at a
national-level, events will flow between and through vari-
ous domains of administrative control. Infrastructure (bro-
kers) will be managed by different entities that co-operate
to provide communication services. The security require-
ments can, and in practice will, often differ depending on
the domains involved in a particular delivery operation.

This paper addresses these concerns through the presenta-
tion and evaluation of Interaction Control (IC), an approach
that essentially overlays a point-to-point (i.e. hop by hop) se-
curity model onto a pub/sub network to enable precise con-
trol over connections and the information transmitted. It is
novel in that it allows context-aware control within a broker
network, at hop-level granularity, to account for notions of
responsibility and the naturally varying levels of trust be-

tween components in a wide-area network. It enables secu-
rity policy to be enforced at specific points of the pub/sub
process and in specific circumstances, to facilitate control
while retaining the efficiency benefits and delivery seman-
tics (e.g. clients specifying their interests) of the paradigm.

IC was developed as part of our work concerning infras-
tructure for supporting healthcare services. We begin with a
brief overview of the data governance requirements of Eng-
land’s National Health Service (NHS). We then detail IC,
describing the policy rules that control broker-broker and
broker-client connections, and that filter and transform in-
formation as it flows throughout the network. Next we
describe our IC implementation, where controls are inte-
grated into a pub/sub database system to facilitate policy
enforcement, context management, event storage and audit.
We present results indicating that despite the local (broker)
overheads of policy enforcement, restrictions can actually
improve the overall efficiency of a particular workload. We
then conclude with discussion and areas for further research.

2 Healthcare Information
This work stems from our research into middleware for sup-
porting federated national-level health services.1 Healthcare
is an interesting environment for the investigation of security
issues, as information must be shared, yet protected.

The care process is highly collaborative, involving the
sharing of health information between professionals from
various health service providers, as well as with other sup-
porting institutions, such as government and insurance com-
panies. However, personal health data is highly sensitive,
and remains so over time. Confidentiality underpins the
carer-patient relationship. Those who handle personal health
data as part of the care process are legally responsible
for maintaining its confidentiality, which includes service
providers that manage and maintain the technical infras-
tructure for their service [15]. In England, information may
only be shared if patients have given consent, subject to cer-
tain exceptions. In many situations, privacy concerns user
anonymity. Healthcare differs in that although patient data
must remain confidential, system users are generally medi-
cal professionals, whose actions (send/query/receive) must
be visible for reasons of accountability.

2.1 Information Sharing Protocols

For an organisation to meet its data management respon-
sibilities, information is best shared on a need-to-know ba-
sis [16, 15]: disclosing only that information required given
the circumstances. Appropriate disclosure is often context-
dependent, e.g. access restrictions may be relaxed in emer-
gency situations.

A national-level health service consists of a number of
providers, whose information requirements differ depending
on the particular service(s) they provide. For instance, a
pharmacist requires different information from a patholo-
gist, or an insurance agency. Often a health incident will be
relevant to several professionals in several organisations, e.g.
it may involve ordering medication, specialist testing and or-
ganising home care. A provider will have an understanding
of the reasons for dealing with another provider, and thus
the general information that the other party requires.

Health institutions define an information sharing proto-
col that describes precisely the data that may be shared

1We describe healthcare from the English NHS perspective.

in the particular circumstances [7]. It is designed to suit
local practice and procedure, but must also account for pa-
tient consent, and other legal/general practice requirements.
The protocol facilitates explanation of the data shared for a
course of treatment [26], which is useful for obtaining con-
sent. Patients tend to trust their physicians to act as their
information gatekeepers [3], meaning a prudent information
sharing protocol will often meet patients’ confidentiality ex-
pectations. However, the general protocol must be qualified
by any patient-specific disclosure preferences.

2.2 Domains

We define a domain as a unit governed by independent
administrative policy that provides particular services [1].
Clearly, domains exist in many application environments. A
domain naturally maps to an organisation (a legal entity), or
any body that is responsible for its own procedures, defines
its own policies and manages its own infrastructure. Health
service examples include a hospital, surgery, pathology lab-
oratory or insurance company. A domain hosts a number of
entities, such as doctors, nurses, software, accountants and
managers, often through service/employment contracts. As
part of its operations, a domain collects, stores and forwards
information relevant to the service it provides. Each domain
must appropriately share information with entities in the lo-
cal environment, and with other domains. It follows that a
domain is responsible for the information it handles.

We assume that a domain has control over its local com-
munication infrastructure (brokers), and defines its local
policy in accordance with that imposed by higher-level do-
mains, global directives and legislation.

2.3 Sharing Infrastructure

Healthcare is a data-driven environment and thus suits push-
based communication. This is not only to notify and alert
in situations of concern (e.g. emergencies), but also to en-
sure that the numerous parties/domains involved in the care
process are kept aware of the current situation and operate
on the latest representation of state. Unlike much work sup-
porting healthcare, we do not focus on the patient record,
but instead consider the streams/dataflows (events) neces-
sary to support the health service. These flows represent
patient data, the actions of practitioners, support services
such as billing, inventory and insurance, governmental infor-
mation requirements, etc. Indeed, an event-based messaging
middleware is considered an integral component of technical
healthcare infrastructure.2

2.4 Threat Model: Security & Responsibility

Security research is usually presented along with a defined
threat model that describes adversaries, system attacks and
the proposed countermeasures. In our case, we address con-
cerns that are orthogonal—and complementary—to those of
specific security mechanisms: we are concerned with provid-
ing the means for users of the system to meet their respon-
sibilities. We consider control only as it pertains to pub/sub
(cf. more general, non-middleware security approaches) be-
cause our interests concern transmission within information-
centric networks. Pub/sub generally deals with open infor-
mation delivery; our work considers controlling dissemina-
tion in pub/sub by allowing definition of the bounds for

2For instance, see the NHS Transaction Messaging Service
(TMS) and the TMS Event Service (TES) at http://www.
connectingforhealth.nhs.uk.

communication. Domains are autonomous, and co-operate
with entities and other domains by sharing information, but
this does not imply mutual, absolute trust. Clearly, it is
wholly inappropriate to allow one to access any information
they desire. Here security is realised by domains controlling
the data they transmit, in line with their legal and social
responsibilities. There must be the means to allow sharing
on a need-to-know basis. This is a technology directed at
realising the controls required by law, rather than simply
the mechanisms that enforce access control, for example.

In this model, responsibility is associated with data. Each
recipient becomes duly obliged to protect the information
that they receive. The responsibility for transmission passes
with the data itself; a domain meets its data management
obligations by passing information to a connected entity/
domain in accordance with (sound) local policy. It is not
responsible for the recipient’s shortcomings if the disclosure
was appropriate. Indeed, such a responsibility model tends
to exist in any environment where separate administrative
domains interact. Of course, this assumes that a domain
has some concept of why it communicates with another en-
tity/domain: the information exchange fits within some pre-
meditated arrangement. This, however, is not unreasonable
given the existence of sharing protocols in healthcare, and
more generally, workflows in other application areas. We use
healthcare as a real-world illustration where the responsibil-
ity model is overt, and legally imposed. Security is realised
by a domain sharing information in line with its sharing
protocol, qualified by any patient consent preferences.

IC enables these sorts of governance regimes to be built
into middleware, by allowing policy to be defined in bro-
kers for enforcement in particular circumstances at specific
points of the pub/sub process. Middleware enforcement
means security policy is consistently applied across appli-
cations/clients. Assuming a domain controls its technical
infrastructure (a NHS goal [6]), IC allows a domain to de-
fine policy to set the bounds for communication, ensuring
that data leaves its broker network—transferred to clients,
or brokers in remote domains—only when appropriate.

3 Related Work
This work aims to enable those responsible for information
to manage their communications, through explicit control
over the information channels and event flows in a pub/sub
system. We found that the literature in the area of pub/sub
security addresses different concerns from those described.

Much research considers the use of encryption in pub/
sub services, where events are encrypted and then transmit-
ted throughout the network. Some transmissions may be to
parties that are unauthorised to access the underlying data.
However, access to event content is managed through an ad-
ditional step of distributing encryption keys: keys are only
provided to those who are authorised to access event data.
Approaches differ in whether the broker network is trusted,
i.e. whether the brokers have access to event content [25, 18],
and how keys are generated and shared [17, 13]. The lib-
eral transmission of encrypted events throughout a pub/sub
network, where key allocations control security, is unsuitable
where information is perpetually sensitive. This is because a
compromised key, or broken encryption scheme3 at any time

3For instance, we have seen increases in computing power
cause encryption methods to be disregarded; e.g. 56-bit DES
keys: http://www.rsa.com/rsalabs/node.asp?id=2100.

in the future risks the inappropriate disclosure of a history
of prior events. Such an approach runs against the described
notions of control and responsibility. It follows that events,
even if encrypted, should only flow to those authorised to
receive that data. Further, encryption-based mechanisms
impose key-management overheads, and tend not to easily
deal with situations where access policy is context sensitive.

Other work concerns the enforcement of restrictions at the
edges of a broker network. The delivery of events to a client
can be controlled by restricting and/or validating subscrip-
tion filters [14, 30]. These operate on event type/content.
Access control mechanisms, such as Role-Based Access Con-
trol (RBAC) [2] and Access Control Lists [30] can protect
access to the pub/sub API. These are described in the con-
text of a single administrative domain, though [2] suggests
that a web-of-trust can govern broker access to event types.
Such approaches are limited in their flexibility. The respon-
sibility model (§2) requires the possibility to govern all com-
munications and connections, not just with clients (at the
edge of the broker network), but also with other brokers—
particularly where components reside in another administra-
tive domain. Further, context-aware controls—considering
more than just event type/content—are required to allow
for more granular security policy. For example, the time of
day, (client) location and situation’s severity can be relevant
to whether particular information should be disclosed.

A scope [11, 12] is a grouping structure that bundles sets
of pub/sub brokers and clients, constraining the visibility of
events to its members. A scope sets the boundaries for trans-
mission, allowing control over the propagation of events to
other scopes. A scope aligns well to the concept of domains.
However, there are situations where different levels of visi-
bility are required for members of the same scope/domain.
Thus, it is necessary to enable control over the communica-
tion to each principal, regardless of domain structure.

Wun and Jacobsen [29] describe a generic policy framework
that couples what are essentially Event-Condition-Action
(ECA) rules with pub/sub operations. As the framework
aims to be open and expressive, it addresses different con-
cerns to those of a security infrastructure. For instance pol-
icy actions are not semantically defined, in that an action
can undertake any (possible) function. This brings flexibil-
ity, though for security the functionality of policy actions
should be defined to provide certainty, facilitate correctness
and aid conflict resolution. Wun and Jacobsen describe poli-
cies for unstructured pub/sub overlays, where policy may be
defined by clients, attached to events, advertisements and
subscriptions to be enforced as they flow through the net-
work. However, this is unsuitable in an environment of re-
sponsibility between federated co-operative domains, as it
complicates policy combination and precludes separate no-
tions of trust and accountability. Enforcement in [29] occurs
with particular pub/sub operations, the authors concentrat-
ing on post-matching enforcement, where actions are exe-
cuted after a filter match to avoid the overheads of separately
evaluating policy conditions. However, this is inappropriate
in certain security contexts, e.g. where a policy executed on
delivery could circumvent a subscription filter (§5.1). For
proper control, actions need not be coupled to pub/sub op-
erations, but should be enforced where necessary.

The focus of IC differs from that of other pub/sub secu-
rity approaches in that it brings about security by controlled
disclosure, where those responsible for data meet their obli-

gations by setting granular, contextually-sensitive bounds for
pub/sub communication. IC is unique in that it explicitly
addresses pub/sub security by enabling specific control over
all connections (topology construction) and event flows in
a pub/sub network, including those between brokers. As a
broker enforces local policy against its direct connections,
issues of trust remain at the application-level. Our previous
publications regarding IC present our initial work with re-
spect to enforcement [24] and the controls as they apply to
events [22, 23]. Here we present the whole, mature model,
describing for the first time how the governance mechanisms
apply in a distributed broker network, how broker intercon-
nections are controlled, the management of requests and
some engineering specifics including overhead analysis.

4 Interaction Control: Rules
The goal of Interaction Control (IC) is to provide the mecha-
nism for realising a need-to-know, local responsibility model
in a pub/sub middleware. This involves giving a broker,
managed by a domain with a certain responsibility, the abil-
ity to govern all transmissions—including events, advertise-
ments and subscriptions—to directly connected clients and
brokers. Control is achieved through a policy model that en-
forces rules at specific points of the pub/sub process. Each
broker maintains a set of rules to enforce on its direct con-
nections.4 Here we describe the specifics of these rules.
Background and Assumptions Like much pub/sub work,
we consider application-layer routing. Transport-layer secu-
rity [9] protects lower-layers of the stack.

We describe IC for type-based pub/sub, where each event
conforms to a particular type, from the set of types τ . Each
type t ∈ τ consists of a name and a particular set of at-
tributes of specific data types. Events flow through a chan-
nel, which is a unidirectional, typed (logical) communica-
tion path between a broker and a connected client/broker.
A number of channels can exist within a connection.

Clients communicate with brokers, where brokers inter-
connect to form the distributed pub/sub service. The only
assumption of trust is that a client entrusts its local (directly-
connected) broker to operate on its behalf. An event dissem-
ination tree is built by brokers propagating advertisements
and subscriptions [28], similar to the popular advertisement
forwarding approach of Siena [4]. Also like Siena, we as-
sume that brokers hold a particular position in the network
topology—that links (broker interconnections) exist for a
reason, to share particular information with specific bro-
kers. This is in line with the notions of domain knowledge,
co-operation and responsibility as described in §2. Note that
this does not entail that brokers are continually connected;
instead, the possible connections between brokers are pre-
authorised (discussed later). In IC the connections them-
selves are dynamic, in the sense that a broker may connect/
disconnect from another.
Broker Context Disclosure policy is encoded in rules
defined for (particular) brokers. A broker enforces policy
against its direct connections in accordance with its local
ruleset. IC rules are context-senstive, where context encap-
sulates anything accessible by the enforcing broker. Thus,
“context” is implementation specific. Rules reference con-

4Disclosure policy is encoded in rules distributed to specific
brokers to effect appropriate disclosure. A domain may have
a number of brokers, but may define different rules for each,
depending on the particular broker’s role—e.g. in §7.1.

text using sets of predicates, which a broker evaluates as
part of the enforcement process. Credential predicates as-
sert characteristics about a principal, including their unique
identifier, group memberships, qualifications, roles or cer-
tificates that they hold. Such predicates define the class of
users to which a rule applies. Environmental predicates refer
to other aspects of context, such as system type, workflow
state or patient status (e.g. stable, critical). See [22] for
more details regarding IC predicates.

A permission attribute consists of an attribute name and
type, the value for which a client must include with their ad-
vertisement/subscription. Rule predicates can reference the
values of the permission attributes supplied in the request.
This supplements broker-accessible context to allow com-
putations with data outside the system, e.g. requiring the
inclusion of a patient_id enables rules to verify a treating
relationship between the subscriber and patient.

4.1 Authorisation Rules

Authorisation rules specify when to authorise the estab-
lishment of connections and event-channels between com-
ponents. There are two types of authorisation rule:
Connection Authorisation Principal authorisation rules
govern the connection of a principal (client/broker) to a bro-
ker. We define C to be the complete set of credential predi-
cates. Each rule refers to a set of credential predicates C ⊆ C
of the remote principal. This brings flexibility, in that a rule
can apply to a specific principal by referencing its unique id;
or to sets of principals, e.g. by referencing a role such as doc-
tor, thus avoiding a separate rule for each. The rules apply
equally to connecting brokers as they do to clients. These
rules are simple as they merely concern connection, other
rules govern channel establishment and transmission.
Request Authorisation An advertisement or subscription
can be characterised as a request. A client issues a request to
a broker to publish (through an advertisement) or subscribe
to information. If authorised, a channel is established for
the (directional) flow of events of the specified type.

Request authorisation rules define the circumstances in
which channel establishment is allowed. Each such rule
can be represented as a tuple of the form: (rt , t, C,E) ∈
RT × τ × P(C) × P(E). The set of request types is defined
as RT = {advertisement, subscription} and is used to
indicate whether the rule applies to advertisement or sub-
scription requests. The event type that this rule refers to is
t. We use P to mean power-set: the set of all subsets. The
target of the rule is defined by the set of credential predi-
cates (C ⊆ C) that are matched against those held by the
requesting client. A set of environmental predicates (E ⊆ E)
further refine the circumstances in which the rule applies.
To enable evaluation, a client must supply the permission
attributes required by the rule’s predicates.

Channels are durative, and persist until the channel is
closed. Authorisation depends on context, thus a change
in state can affect rule applicability. As such, the environ-
mental predicates of an authorisation rule can be defined
as monitored, causing re-evaluation of the request should
the value(s) change. For example, a rule might authorise
a doctor to subscribe to data while on duty in a ward:
C = {doctor},E = {onDuty(user)}. If the onDuty(user)
predicate is monitored, the request will be re-evaluated when
the doctor ends his shift, in this case closing the channel.5 As

5Assuming that no other rule authorises the channel.

credentials represent the intrinsic characteristics of a prin-
cipal, credential predicates are implicitly monitored as they
define the rule’s target(s). For example, if a doctor is struck-
off, it is important that his access rights are reconsidered.

Request authorisation rules control access to event types
by ensuring the legitimacy of event channels. Such rules are
useful as they avoid the (potentially expensive) evaluation
of authorisation conditions on each access attempt (event).
Once a channel is established, individual events are con-
trolled through imposed conditions and transformations.

4.2 Event Controls

The following two rules control the propagation of events
through an event channel.
Imposed Conditions restrict the tranmission of events
through a channel. They are similar to subscription filters,
except that they are specified by policy rather than the sub-
scriber. For example, a filter can ensure that details of a
condition are not sent to a particular doctor.

An imposed condition rule r is a tuple: (rt , t, C,E,R, h) ∈
IP × τ × P(C) × P(E) × P(R) × H. The rule restriction
predicates R ⊆ R act to filter the event. These are evaluated
in the context of an event instance, thus they may reference
attributes of the event type. Also specified are a subset of
credential predicates from C, an event type (from τ) and an
interaction point IP = {publication, subscription} that
defines the target channel type for the imposed conditions.

Restriction filters may encode sensitive information. For
instance, the restriction Treatment6=HIV might exist to pre-
vent a particular patient’s information from flowing to one
of their doctors. Revealing this restriction to the doctor
suggests that the patient could be HIV positive. Each rule
selects from the set H = {>,⊥} as to whether the imposed
conditions are disclosed to the client or not. If hidden, the
filters are imposed silently: publications appear to be ac-
cepted but are ignored, while subscribers have events filtered
without their knowledge of the restriction.
Event Transformations These transformation rules alter
an event. They can enrich, degrade or produce new events
that are related to the original event in some application-
specific manner. While typically considered for interoper-
ability [27, 11], from a security perspective transformations
allow more than binary (permit/deny) access control, as
event data can be tailored to the situation. Further, mid-
dleware transformations avoid clients publishing multiple in-
stances of a semantically similar event with differing levels of
visibility (see §7.2). An example transformation might ob-
fuscate location data for a remotely monitored patient, save
in emergency situations. In §7 we describe a transformation
rule to effect data segmentation regarding prescriptions.

A transformation rule r is a tuple: (ip, t, C,G, f, t′, c) ∈
IP × τ ×P(C)×P(G)×F × τ ×D where t, ip and C perform
the same previously discussed function of relating the rule to
the relevant channels. G ⊆ P(G) is the set of predicates that
define when the transformation is performed. G is evaluated
in the context of the event—if G holds, the transformation
applies.6 The transform occurs through the function f : τ →
τ ∈ F , which takes an event of type t and returns an event
of type t′: an altered event of the same or another type.

For flexibility, the c ∈ D = {>,⊥} tuple element allows
each rule to specify whether or not it is consumable. Con-
sumable functions prevent the original event from propa-

6This is subject to conflict resolution definitions—see §5.

gating further—only the result from the function proceeds
to the next stage of the pub/sub process. Non-consumable
transformations allow all events to proceed.

4.3 Broker Controls

As mentioned, brokers interconnect to form a distributed
dissemination network. An event dissemination tree is built
by the brokers propagating advertisements and subscrip-
tions [28], similar to the advertisement forwarding approach
of Siena [4]. A broker connects to another via a link, which
(logically) differs from a client connection as brokers only
forward requests through links. Principal authorisation rules
authorise links, meaning that rules can apply to classes of
brokers, avoiding the enumeration of every broker combina-
tion. This better suits the scale of national-level services.

A broker maintains a set of policies to control the flow of
information to directly connected principals. IC does not dis-
tinguish between events and requests received from clients
and those from brokers that may be forwarding on behalf of
others. Instead, an event received through a link is treated
as a publication from the adjacent (remote) broker, and
an advertisement or subscription received through a link is
characterised as a request issued by the adjacent broker. IC
rules are defined for, and enforced against, brokers just as
they are for clients—subject to the same policies and en-
forcement processes. In this way, IC is a point-to-point se-
curity model since a rule only concerns interactions with the
next hop. This is in line with the described model of re-
sponsibility, giving each domain local control over the trans-
missions of their brokers. Rules are defined to only restrict
flows when necessary, concerning certain transmissions in
particular circumstances. In this way, rules set the bounds
for transmission. Requests and events are able to flow freely
to allow wide-scale distribution, subject to the (necessary)
constraints imposed by intermediate brokers (domains).

4.4 Request Forwarding and Processing

If a broker authorises a request and creates a channel, the
request is forwarded to other brokers to establish the dis-
semination network. This requires control.

The mechanisms for controlling request propagation are
similar to those for events, where requests can be trans-
formed and filtered before transmission to the adjacent bro-
ker. The rules relevant to a broker depend on its position
in the network infrastructure. Such restrictions are defined
by administrators, who have specific knowledge/concerns of
(local) network topology. Forwarding restrictions set the
general boundaries for interaction.

Request Filters Conditions can be imposed on links to
filter the requests forwarded to a broker. This is to protect
any sensitive data related to what is on offer; e.g. filters can
ensure that advertisements are forwarded only to brokers
authorised to subscribe to the type, or that subscriptions
are forwarded only to brokers in domains with a treating
relationship to the patient who is the subject of the request.

The rules take the form (rt , t,C ,Rr) ∈ RT × τ × P(C) ×
P(R). They are defined for a particular request type (rt),
advertisement/subscription, and event type (t). The set of
credential predicates (C) refers to that of the remote bro-
ker. The restrictions (Rr) are evaluated in the context of
a request pertaining to an event type, not in the context of
the event itself; thus the filter predicates reference request
content, along with other aspects of environmental state.

Request Transformation rules allow a request to be tai-
lored specifically to a remote broker. The rules facilitate
interoperability, e.g. translating an identifier from a local
system to a shared NHS ID, and controlled disclosure, e.g.
anonymising identifiers or removing any sensitive informa-
tion contained within the request.

Request transformation rules alter a request before propa-
gation to an adjancent broker. A request transformation rule
is a tuple of the form (rt , t, ς,Gr , f) ∈ RT ×τ×S×P(G)×F
defined for a particular request type rt . The rule’s guarding
predicates (Gr) are evaluated in the context of the request.
The transformation function f takes a request and returns a
modified one. Request transformations implicitly consume
(i.e. replace) the incoming request tuple. The rules are de-
fined for a particular link, specified by ς, which identifies
the principal authorisation rule authorising the connection
to the adjacent broker. Events convey information, and thus
it may be appropriate to transform and transmit a number of
events. Request transformations, however, are enforced on
(request) propagation to govern the establishment of chan-
nels with a particular broker. Thus only a single transfor-
mation function may be defined for an event type and link.

4.5 Rule Fragmentation

We do not encapsulate all restrictions—authorisations, re-
striction filters and transformations—into a single rule struc-
ture. Instead, rules are defined independently to allow a
many-to-many relationship between the rules. This brings
flexibility as it enables different sets of rules to apply in
different circumstances. Further, it removes the need to re-
author existing rules to deal with specific requests, e.g. we
avoid modifying all rules concerning an event type when in-
troducing a filter for an individual patient.

5 Interaction Control: Enforcement

Each IC broker maintains a set of rules that it enforces at
particular points of the messaging process. In this section
we describe enforcement. Given that IC rules are context
sensitive, several can apply at an enforcement point. We
begin by detailing the general process of enforcement. We
then discuss the application of multiple rules, and methods
for resolving conflict.

5.1 Event Flow Enforcement

A broker enforces its policies as an event passes through a
particular enforcement point. A broker’s processing of an
event is illustrated in Fig. 1.

Publication
Transformations

Notification
Transformations

 Publication
Filters

Subscription
Filters

Subscription
Type Matchm sm

s

m’

publish

sub 2
(m)

sub 1
(s)

Figure 1: A broker’s enforcement process for the
publication of the event m.

A publication first is validated against any conditions im-
posed on the publication channel. If the filters are satisfied,
the event is subjected to the relevant publication transfor-
mations. In this example, one transform applies that takes
event m and produces s, an event of a different type. As

it does not consume the original event, both events move
to the delivery phase. Note the output of a transformation
function moves to the next stage of processing (see §5.3).

Delivery involves moving a copy of the event through each
active notification (subscription) channel for its type. In this
example, there exists one subscription for each type. The
events are subjected to the notification transforms applica-
ble to the subscriber in the circumstances. Here, a trans-
formation function exists for sub 2 that consumes event m,
returning a modified version m’. There is no transformation
defined for s, so it passes through unperturbed. The final
stage involves evaluating the event against the subscription
(and imposed) filters. Only event m’ is delivered, as s fails
to satisfy sub 1’s filter.

Subscription filters act as a barrier to prevent certain
information from leaving the broker. IC involves a two-
phase subscription matching process. First, the events are
matched against active subscriptions considering only the
event type; filter predicates are applied after the notification
transformations. This prevents notification transformations
from circumventing any filter restrictions.7

5.2 Request Enforcement

A connection must exist before requests and events can be
transmitted. A broker will allow a connection if the request
is authorised by a principal authorisation rule. On receipt of
an advertisement request, the broker determines whether a
request authorisation rule permits the request in the circum-
stances. If so, the channel is established. The advertisement
is then forwarded to each adjacent broker after the execution
of any request transformation, subject to validation against
any advertisement filters defined for the link and event type.
The request is only forwarded to those brokers that have not
already received a similar advertisement.8

The process is similar for subscription requests. After the
establishment of the subscription channel, the subscription
request is forwarded to the adjacent brokers that advertise
the event type, subject to any subscription transformation
functions or filters defined for the advertising brokers.

5.3 Multiple Rules

As rules are context sensitive, it is possible that several rules
(of the same type) apply at an enforcement point. An au-
thorisation rule must hold to authorise a connection or the
establishment of a channel. The rule’s monitored conditions
and the principal’s credential allocations are monitored to
trigger re-evaluation should values change. A number of im-
posed condition rules may apply at an enforcement point.
The filter predicates of all relevant imposed condition rules
are evaluated in conjunction, along with any client speci-
fied (e.g. subscription) filters. As request transformations
are connected to (link) authorisation rules, only one request
transformation applies per link.

In the appropriate context, a number of event transfor-
mation rules might apply to an event. In this situation, the
transformation functions are executed in parallel, in that
each function takes as input (a copy of) the original event,
the output of which moves to the next stage of process-
ing. An output event is not subject to further transforma-

7As opposed to the post-matching [29] application of policy.
8Our implementation only permits a broker to forward an
advertisement to those that have the possibility of subscrib-
ing to the event type, as defined by its authorisation rules.

tion functions at the same enforcement point. This avoids
complex transformation loops that can be difficult to rea-
son about, particularly when the output is of the same type.
An event transformation function is executed only once per
event at an enforcement point, regardless of the number of
policies causing the function to execute. This is to avoid du-
plicates resulting from multiple function invocations. The
original (input) event will not propagate if any (applied)
transformation is consumable.

5.4 Policy Conflict

Often it is appropriate that multiple policies apply at an
enforcement point, however there will be situations in which
policies conflict, in that they are incompatible. A common
example of conflict concerns specialisation or exception, e.g.
where a rule concerning a specific patient should override
that for patients generally. It is argued that application-level
conflict resolution is often better addressed by careful policy
(re)authoring, rather than automated resolution [5]. We do
not attempt to resolve conflicts automatically, as doing so
in a complex environment such as healthcare is difficult and
dangerous. Instead, we provide the tools for policy authors
to detect possible conflicts, which they can ignore, redefine
the policy-set, or specify a runtime resolution strategy. This
is practicable given that IC policies are local to a broker,
maintained by a single administrative domain.

Conflict Detection The first step in dealing with policy
conflict is to determine the rules that have the potential
to conflict. This is necessary given the declarative nature
of our rules. Rule predicates can be statically compared
with others to detect the situations in which multiple rules
simultaneously apply. It is then for the policy author to
decide whether the rules in fact conflict.

If rules statically overlap, then they all necessarily apply in
certain conditions. Otherwise, it is some coincidental set of
circumstances that causes the rules to apply. This is termed
dynamic conflict, as there is the potential for the rules to ap-
ply depending on context. Such classification highlights the
potential seriousness of a conflict, as statically conflicting
rules are directed at similar targets. Other considerations
can assist policy analysis, e.g. two notification transforma-
tions with the same output type may indicate a policy er-
ror, as the subscriber may be misled by receiving several
(similar) events of the same type. There may also be other
application/domain-specific considerations relevant to rank-
ing a conflict, such as rules authored by the inexperienced.

Conflict Resolution An obvious method for handling con-
flict is to ‘author-out’ any issues by redefining the policy set.
This involves detecting and presenting potential conflicts to
a policy administrator who deals with resolution. There
are strong arguments that this is preferable to automated
strategies [5, 19]. However, re-definition may be inappropri-
ate for certain classes of conflict, e.g. if the conflicts occur
infrequently, or only in particular situations. As such, our
model provides for the definition of constraints—ordering,
overriding and explicit declarations of incompatibility—that
instruct the system on how to enforce the policies at run-
time. The constraints are defined as separate entities that
refer specifically to the rules involved in the conflict. This
provides certainty and visibility as to how the rules are com-
bined. The enforcement process is depicted in Fig. 2.

Figure 2: The process of policy enforcement.

6 IC-Database Integration

Our implementation integrates IC into PostgreSQL-PS [10,
28]: an extended PostgreSQL9 database system that in-
cludes type-based pub/sub functionality. Databases are an
integral component of large-scale infrastructure. A coupled
database-messaging infrastructure has advantages over sep-
arate systems: a single interface and common type system,
simplified replication, transactional delivery and improved
performance (see [10] for discussion). Such an environment
is particularly attractive for implementing IC functionality.
An integrated pub/sub-database system enables IC predi-
cates access to a rich representation of state: anything ac-
cessible from the broker, including event details, stored data,
type schemata and stored procedures (that may call external
services, e.g. shared credential services [22]). This provides
much contextual information on which to base disclosure
decisions. Persistence is facilitated, important not only for
maintaining current (business/workflow) state, but also be-
cause the transfer of sensitive information often requires au-
dit. Further, we can leverage existing database functionality,
such as transactions, stored procedures and active rules to
realise IC functionality and manage contextual change.

PostgreSQL-PS takes an advertisement-based approach to
routing, where each database instance is a pub/sub bro-
ker. The filter model is highly expressive, allowing predi-
cates to reference anything accessible by the query engine of
the database-broker (subject to permissions). A store-and-
forward approach is used for reliable delivery. We represent
policy in the same format as events, so that rules may be
defined using the same messaging infrastructure.

6.1 Hook Rules

We implement IC as a data control layer that operates above
the pub/sub-database system. IC interacts with the pub/
sub system through hook rules [24], which are active (ECA)
rules, somewhat like triggers, that execute at specific points
of the pub/sub process. Hook rules are distinct from IC
rules, in that they are used to support the implementation
of IC functionality.10 A hook rule provides a callback mech-
anism, which we use so that the pub/sub layer executes
a function in the appropriate circumstances to effect some
data control operation(s). Hook rules are transformational:
here a data structure containing relevant data/state is passed
to a function in the data control layer, the output of which
is returned to the pub/sub layer on which processing con-
tinues. Hook rules may be conditional, defined with (SQL)
predicates that must hold for the rule to be enforced. Table
1 provides an overview of the hook rules used to realise IC
and Fig. 3 illustrates their points of enforcement.

9http://www.postgresql.org
10There is not always a direct, one-to-one mapping between
hook rules and IC rules. This is because hook rules are
distinct, merely providing the callback (ECA) functionality
for realising IC.

Table 1: Hook rule types and their associated description.
Rule Type Input/Output Purpose

CONNECTION VALIDATOR Connection Details Validates and authorises a connection. Establishes advertisement
forwarding restrictions for brokers.

REQUEST VALIDATOR Request Authorises and processes the incoming request.
LINK ADV PROCESSOR Advertisement Executed when an advertisement is received through a link. Es-

tablishes subscription forwarding restrictions.
REQUEST TRANSFORM Request Modifies the request for delivery to a specific broker.

RESOLVE TRANSFORMS Applicable Rules Resolves any conflicts between applicable transformations at an
interaction point.

EVENT TRANSFORM Event Executes the transformation function on the event.

The validator hooks use a function to determine whether
the request/connection is authorised by any rules (after con-
flict resolution). For an authorised request, the request val-
idator function loads the appropriate imposed conditions as
channel filters, and creates the event transform hooks rele-
vant to the newly created channel. Given that the applicable
event transformations (hooks) are determined at runtime—
evaluated in the context of an event—separate conflict res-
olution (resolve transform) hooks are required. The request
validator function also creates the active rules to cause re-
quest re-evaluation on a change in monitored condition.

The advertisement restrictions relevant to a remote broker
are loaded on link (connection) establishment by the connec-
tion validator. This is because advertisements are forwarded
immediately after connection, or on receipt from another
broker. Subscription forwarding restrictions, however, are
loaded in response to the receipt of an advertisement from
a broker. This is enabled by the link adv processor hook.

Resolve
(publication)

 Message Transformation
(publication)

Subscription
Type Match

Resolve
(notification)

 Message Transformation
(notification)

Request
Validator

 Request
Transformation

Message Message

RequestRequest

 Connection Validator

AckConnect
Link Adv
Processor

 Request-Link
Match

Figure 3: Hook rule enforcement points.

6.2 Audit

An IC implementation should facilitate audit by each bro-
ker recording data surrounding the operations that it under-
takes. Such information is important as it provides evidence
that one is meeting their data management responsibilities.
In this way, audit brings about accountability. This informa-
tion can also help to identify system or higher-level (organi-
sational) issues, and may assist in discovering policy errors.

The database-broker environment greatly simplifies the
implementation of audit processes. We use triggers to record
in dedicated (unmodifiable) tables the details of pub/sub
and IC operations including: request processing, connec-
tion/link state, event receipt/delivery, and the transforma-
tions and filters applied. This includes recording informa-
tion of the applicable policies and those enforced (including
details of conflict resolution), the clients/brokers involved
and details of changes in context. Internal identifiers are
assigned to processes to enable tracking of flows throughout
the system, i.e. from receipt of an event to delivery (of it
and its derivatives) to a number of clients. As audit data
is persisted in tables, it can be queried using existing SQL
constructs, and archived/managed in a similar manner to
other data.

Audit may also be active, where the existing infrastruc-
ture is used to raise alerts (create new events) in particular
situations; for example, to inform of a processing exceptions,
policy incompatibilities or some higher-level concern.

7 Case Study: A Prescribing Scenario

In this section, we describe the use of IC in a scenario based
on real-world health requirements. The focus of IC is to
allow broker policy to set the boundaries for controlled dis-
semination. This is in contrast to other pub/sub security
approaches, which rather than being tied to application-
level semantics, focus on providing specific security mech-
anisms (see §3): security enforced at network edges ignores
intermediaries, encryption-based schemes are inflexible and
raise accountability concerns. Existing systems do not aim
to provide a unified link between application concerns and
granular, contextually-aware controls over connection/link
establishment, event filtration and security transformations.

The enforcement of security policy necessarily imposes a
processing overhead. However, any such overhead should be
considered alongside whether it offers savings in data trans-
mission and/or processing throughout the network. In this
section, we apply IC to a prescribing scenario, presenting
the rules necessary for restricting the data-flows of scenarios
based on real-world requirements and to demonstrate that
IC can in fact improve net performance of a pub/sub system.

Prescriptions are an integral part of care provision. Here
we present two different implementations of a prescribing
scenario, one from the perspective of a single Surgery broker
that supports local and homecare services, the other consid-
ering a distributed broker network of a Hospital. Both have
much the same restrictions. The dataflows of this scenario
are presented in Fig. 4. This scenario, although simple, il-
lustrates the need to control data flows to parties involved
in the care process.

 Surgery

EPS

Auditor

Doctor

Prescribe
Patient Details
Drug Information
Patient Observations
Prescriber Specifics

Drug_Audit
Drug Information
Prescriber Specifics

Prescribe
Patient Details
Drug Information
Patient Observations
Prescriber Specifics

Prescription
Patient Details
Drug Information
Prescriber Specifics

Figure 4: Data flows for prescribe events.

In providing care, nurses record symptoms and notes con-
cerning patients’ well being, and may also prescribe medi-
cation, though only for drugs within their competence [8].
As part of treatment, a nurse might publish a prescribe

event11 that encapsulates all data concerning a prescribing

11The notion of event-driven workflow is well established in
the NHS, see §2.3.

incident, including the reasons for the medications. This in-
formation requires storage in the provider’s care database(s),
and must be transmitted to other domains for audit and
dispensing purposes. Doctors access information from their
surgery. A doctor may request notification of when drugs
are prescribed for some patients, as this may indicate a sit-
uation of concern. An authorisation rule allows a doctor to
subscribe to prescribe events for patients that they treat:12

(subscription, prescribe, {doctor}, {treatsPatient(user
, att.patientid)}) ∈ RT × τ × P(C)× P(E).13

Prescriptions must flow to the Electronic Prescription Ser-
vice (EPS), a domain that operates as a clearing-house, as-
sisting pharmacies in dispensing and reimbursement. The
EPS requires prescription information, but not the reasons
(notes or observations) for the medication. A transforma-
tion rule converts all prescribe events into a prescription,
which involves copying relevant details from the prescribe

events, and augmenting them with extra patient informa-
tion, such as the patient’s address and date-of-birth, and
their surgery and/or hospital details. The rule is defined as:
(publication, prescribe, ∅, ∅, toPrescription,
prescription,⊥) ∈ IP × τ × P(C) × P(G) × F × τ × D,
where an empty predicate set is interpreted as a need to al-
ways apply the rule. An authorisation rule allows the EPS
to subscribe to all prescription events.

The auditor must be informed when certain ‘controlled
drugs’ are prescribed. The audit is prescriber focused, thus
the auditor will only receive patient details in exceptional
circumstances. To balance confidentiality with the duty to
inform the auditor, a drug_audit event is created through a
transformation function that removes sensitive information
by filtering various fields from prescriptions for controlled
drugs. However, when a prescriber is under suspicion, the
auditor may receive their prescribe events to provide de-
tailed information to assist the investigation. This is because
it is in the interests of public safety to ensure that the pre-
scriber is acting appropriately. This transmission occurs in
line with patient consent, which might be obtained when
providing care, or perhaps in reference to the individual in-
vestigation. This is enforced by an imposed condition rule:
(subscription, prescribe, {auditor}, {auditConsent(msg.
patientid)}, {investigating(msg.prescriberid),⊥)
∈ IP × τ × P(C)× P(E)× P(R)×H.

7.1 Distributed Scenario

We extend the scenario to a distributed environment, where
the hospital (an administrative domain) must also control
the dataflows throughout its own broker network. Fig. 5
depicts the topology, where a number of nurses are assigned
to work the wards. Each ward has its own broker. The
central (ward) broker manages all ward information, receiv-
ing (subscribing to) all events from the wards. The hospital
dispenser acts as the local pharmacy, and thus is responsi-
ble for distributing information to the EPS, and forwarding
audit events for controlled drugs. The local trust broker
(exclusively) manages the information flows to local health
institutions. Here there are two surgeries who have doc-
tors subscribing to information on their patients, as well as

12For want of space, we only present only the most perti-
nent rules to serve as examples. The complete set of rules
governing this scenario can be found in [20].

13Note that att refers to permission attribute values, msg to
event content, and user to the client’s unique idenitifer.

the regional auditor who receives all drug_audit events and
the prescribe events issued by nurses under investigation.
The hospital is responsible for sending the appropriate pa-
tient information to the surgeries, who must then pass on
the information to the relevant doctors. For both examples,
the appropriate principal and request authorisation rules are
defined to enable the described connections and data flows.

 Hospital

ward2
ward3ward1

central

dispenser
local trust

prescription

Auditor

EPS

 drug_audit

prescr
ibe

drug_audit

prescribe
prescription

prescr
ibe

Surgery 1

Surgery 2

Figure 5: The distributed prescribing environment.

7.2 Experimental Setup

Each broker consisted of an integrated IC-PostgreSQL-PS
instance running on its own Intel Core 2 Duo 2.4Ghz CPU
machine with 2GiB of RAM. The clients were distributed
amongst a number of machines on a different subnet from the
brokers. We present the mean values over 10 trials. The en-
vironment contains 1,000 active patient records, where four
doctors manage 250 patients each. Five nurses attend to
the patients, raising prescribe events for the drugs they
prescribe. Each doctor subscribes to prescribe events per-
taining to the top 25 (10%) most critically ill patients that
they treat. In the trials, the event size is fixed for each
event type, as in practice many attributes are fixed length
identifiers that refer to treatments, drugs and patients.

The workload involves each nurse publishing 1,000 events,
200 of which concern patients to which doctors are sub-
scribed.14 All of the prescribe events are transformed into
prescriptions, and those for controlled medications into
a drug_audit event. The auditor receives all prescribe

messages published by the single nurse that is under inves-
tigation (all patients have consented). To better gauge the
processing overheads of IC, it is necessary to compare that
to an implementation of vanilla pub/sub; i.e. one lacking
restriction functionality.15 Without IC, the publishers be-
come the sole source of information, who must deal with
confidentiality concerns by publishing separate events for
each level of visibility. This involves publishing two or three
events for each prescription: prescribe relevant for the doc-
tors/surgery/hospital/auditor, prescription as relevant for
the EPS, and if the drug is controlled, a drug_audit event.
We implement the vanilla pub/sub scenario using the same
database-broker infrastructure,16 to ensure that the infor-
mation is reliably recorded, audited, processed and deliv-
ered. However, the vanilla implementation is unrestricted—
i.e. without any IC rules. To enable comparison we assume

14In practice prescriptions occur relatively infrequently, i.e.
in the order of tens per day. However, a large number of
publications were used in this scenario to provide a general
indication of performance, accounting for database optimi-
sations such as write buffers and caching, and to ensure that
nurses publish simultaneously to interleave processing.

15To reiterate, we do not compare IC to other pub/sub sys-
tems as we are unaware of any that provide a complete set
of comparable controls. Instead, here the comparison is to
illustrate that the overheads of policy enforcement must be
considered with respect to overall system performance.

16Note that [10] compares the performance of (vanilla)
PostgreSQL-PS to other pub/sub implementations.

0 20 40 60 80 100
Controlled Drug Publications (%)

25

30

35

40

45

50

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(s

ec
s) IC

Van

(a) Workload processing comparison!"##$%

&'(#)*

+,-.$)/0'12 +,-.$)/342 &5#675.8$.91)/0'12 &5#675.8$.91)/342 &5#675.:#)/0'12 &5#675.:#)/342
;

*

<

=

>

%

?

*@%%)?=A

;@>*)?>A

*@B)?CA

;@>*)?;A

=@<<)?CA =@<*)?<A

;@D*)=BA

;@<<)=?A

;@C*)=<A

;@<?)>;A

;@DC)<*A

;@DB)*DA

;@%<)**A ;@=D)CA

!"#$%$&'

&597#66.1(

E5'16F95G

H'$7")

E5'16'7$.91

H#66'(#)EI8#

&
59
7
#
6
6
.1
(
)E
.G
#
)/
G
6
2

(b) Processing time per event type

Figure 6: Single broker performance results.

that the vanilla subscribers are honest and cooperative, is-
suing filters in line with the restrictions otherwise required
by the scenario.

7.3 Single-Broker Comparison

Prescriptions for controlled drugs require more processing
to create and deliver drug_audit events. Therefore, this
scenario consisted of five workloads, each with a different
percentage of controlled drug prescriptions. Fig. 6(a) shows
that the overall processing time for the vanilla implement-
ation is significantly greater than that of the IC model for
each workload. This is because the vanilla approach involves
a broker receiving 2–3 times the number of publications to
account for varying levels of data visibility, where each pub-
lication is subject to all event processing operations.

To give a clearer indication of the overheads, Fig. 6(b)
presents a breakdown of processing time per event type.
Transactions are necessary for reliable processing of events;
however, transactions also impose an overhead. Here, the
transactional overheads (begin/commit) of event processing
outweigh those imposed by the transformations.

The figure also shows that the drug_audit and prescrip-

tion events for the IC approach involve a significantly lower
processing time than their vanilla counterparts, due to the
fact that the transformed events are subject to fewer mes-
saging operations. The match category refers to the time the
query engine spends in evaluating subscription filters. This
is negligible where a subscription is filterless (i.e. match all),
as for prescription and drug_audit subscriptions.
Prescribe events take greater processing effort as they

are subject to more subscriptions, and thus involve more
processing and transactions. The IC approach is slower at
processing a single prescribe event due to the overheads
imposed by the transformations; however, the difference is
comparatively small with respect to the overall processing
time for the event type. Considering the total processing
time for a prescription incident, i.e. accounting for all infor-

mation flows for the action of prescribing, the IC implement-
ation is shown to be more efficient, taking 6.48ms compared
to 9.82ms for the vanilla approach.

7.4 Distributed Broker Scenario

Again, we compare a vanilla and IC implementation, how-
ever there is a slight variation in the routing paths between
the approaches.17 As the dispenser is responsible for all
pharmaceutical data, a transformation enables the central
ward to pass the prescription events to the dispenser, who
forwards them to the EPS service. The dispenser is also
responsible for producing the audit events. In the vanilla
approach the routing paths are determined solely by (un-
restricted) advertisement/subscription propagation. This
means that drug_audit events are produced by the nurses
(publishers) rather than the dispenser, and thus flow directly
from the central broker to the local trust broker for distri-
bution to the auditor. This experiment uses the same work-
load, except the number of controlled drugs publications is
fixed at 40%. The nurse in Ward3 is under investigation.

We observed that for the workload, IC resulted in a ∼36%
reduction in events transmitted, and ∼33% reduction in pro-
cessing time. To show the effects of distribution, Fig. 7
presents a breakdown of processing for each broker in the
topology. Each IC broker incurs equal, or significantly less
overhead than its vanilla counterpart, except for the dis-
penser whose auditing responsibilities require additional op-
erations in the IC implementation.

Generally, pub/sub models aim to reduce multiplicative
event fan-out by pushing subscriptions as close to the pub-
lisher as possible. Similarly, transformations can improve
distribution by routing a single copy of an event as far as
possible before transforming it as relevant to the subscriber.
This is reflected in Fig. 7(d),18 where the prescription and
audit events resulting from a transformation travel only one
hop, as opposed to the vanilla implementation where events
travel the whole path from the publisher to the subscriber.
The other subfigures show that this reduces the event count,
byte count and processing time. Where transformations do
not impact on propagation, i.e. in the delivery of prescribe
events, the results are similar for both approaches.

7.5 Scenario Discussion

As IC involves policy enforcement and event processing, it
is useful to consider its overheads. Although our focus is on
security rather than performance, this section demonstrates
that the overheads brought by enforcing security policies
should be considered with respect to the overall savings (in
transmission/processing) throughout the infrastructure.

We observe that a significant proportion of processing
time relates to transactions. We argue that transactions
are necessary in an implementation because sensitive infor-
mation is typically important, and thus must be reliably
stored, audited, processed and delivered. It follows that
transactional and storage overhead is likely to be incurred
regardless of the implementation. In this scenario, transfor-
mation functions, despite involving queries on stored data,
did not greatly impact overall performance as the operations
were comparatively less expensive than the transactions.

17This is indicated in Fig. 5 by the dashed line for the
drug_audit event.

18The bars in Fig. 7(d) represent the mean, and the error-
bars the maximum and minimum hops travelled.

!"##$%

&'(#)*

+

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

?>>>>>

/>>>>>>

/?>>>>>

0>>>>>>

0?>>>>>

%>>>>>>

%?>>>>>

@1)A=$#6)@2

B'2)A=$#6)@2

@1)A=$#6)C<$

B'2)A=$#6)C<$

A
=$
#
6)
;
-'
2
6
D
5$
$#
.

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

0>>>

E>>>

F>>>

G>>>

/>>>>

/0>>>

/E>>>

@1)H6(6)@2

B'2)H6(6)@2

@1)H6(6)C<$

B'2)H6(6)C<$

H
#
6
6
'
(
#
)1
9
<
2
$

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>
@1

B'2

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

K&! LM4@;CN 4C1;CN)
>

/

0

%

E

?
&-#6:-5O#)I@1J

&-#6:-5O#)IB'2J

4-<(L<.5$)I@1J

4-<(L<.5$)IB'2J

&-#6:-57$592)I@1J

&-#6:-57$592)
IB'2J

P
9
7
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLQ

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>
@1

BLQ

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

(a) Traffic distribution

!"##$%

&'(#)*

+

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

?>>>>>

/>>>>>>

/?>>>>>

0>>>>>>

0?>>>>>

%>>>>>>

%?>>>>>

@1)A=$#6)@2

B'2)A=$#6)@2

@1)A=$#6)C<$

B'2)A=$#6)C<$

A
=$
#
6)
;
-'
2
6
D
5$
$#
.

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

0>>>

E>>>

F>>>

G>>>

/>>>>

/0>>>

/E>>>

@1)H6(6)@2

B'2)H6(6)@2

@1)H6(6)C<$

B'2)H6(6)C<$

H
#
6
6
'
(
#
)1
9
<
2
$

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>
@1

B'2

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

K&! LM4@;CN 4C1;CN)
>

/

0

%

E

?
&-#6:-5O#)I@1J

&-#6:-5O#)IB'2J

4-<(L<.5$)I@1J

4-<(L<.5$)IB'2J

&-#6:-57$592)I@1J

&-#6:-57$592)
IB'2J

P
9
7
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLQ

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>
@1

BLQ

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

(b) Event counts!"##$%

&'(#)*

+',-)*
+',-).

+',-)%
/#0$,'1

2345#04#,
678'1)9,:4$

!:,(#,;)*
!:,(#,;).

<

=

*<

*=

.<

.=

%<

%=

><
?/

@AB

&
,7
8
#
4
4
30
(
)9
3C
#
)D
4
#
8
4
E

(c) Total processing time

!"##$%

&'(#)*

+

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

?>>>>>

/>>>>>>

/?>>>>>

0>>>>>>

0?>>>>>

%>>>>>>

%?>>>>>

@1)A=$#6)@2

B'2)A=$#6)@2

@1)A=$#6)C<$

B'2)A=$#6)C<$

A
=$
#
6)
;
-'
2
6
D
5$
$#
.

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

0>>>

E>>>

F>>>

G>>>

/>>>>

/0>>>

/E>>>

@1)H6(6)@2

B'2)H6(6)@2

@1)H6(6)C<$

B'2)H6(6)C<$

H
#
6
6
'
(
#
)1
9
<
2
$

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>
@1

B'2

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

K&! LM4@;CN 4C1;CN)
>

/

0

%

E

?
&-#6:-5O#)I@1J

&-#6:-5O#)IB'2J

4-<(L<.5$)I@1J

4-<(L<.5$)IB'2J

&-#6:-57$592)I@1J

&-#6:-57$592)
IB'2J

P
9
7
)1
9
<
2
$

,'-.)/ ,'-.)0 ,'-.)% 1#2$-'3 4567#26#- 89:'3);-<6$!<-(#-=)/ !<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>

@1

BLQ

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

,'-.)/
,'-.)0

,'-.)%
1#2$-'3

4567#26#-
89:'3);-<6$

!<-(#-=)/
!<-(#-=)0

>

?

/>

/?

0>

0?

%>

%?

E>
@1

BLQ

&
-9
:
#
6
6
52
(
);
5D
#
)I
6
#
:
6
J

(d) Hop counts

Figure 7: Performance of the IC and Vanilla implementations in the distributed scenario.

Intuitively, processing overheads can be reduced given that
restrictions and transformations can limit information flows,
thereby reducing event fan-out. This, of course, depends on
the nature of the scenario; clearly, the results will vary de-
pending on the complexity of the operations (e.g. transfor-
mation functions), and the representation of context. These
are application-level concerns, where performance charac-
teristics depend on the specific requirements of the scenario
and the implementation environment. That said, our ex-
periments indicate the scalability of IC, where policy en-
forcement does not necessarily degrade performance, but in
certain circumstances improves efficiency, particularly when
considering the overall workload (net performance).

Although a vanilla implementation is unrestricted, and
thus useful for performance comparisons as it avoids policy
overheads, it is important to remember the differences re-
garding security. A vanilla approach assumes that clients
are trusted i) to publish events with the appropriate level(s)
of visibility for all potential recipients, and ii) to (only) sub-
scribe to information for which they are authorised. In-
formation is routed through the brokers in an uncontrolled
manner, thus brokers are also trusted to behave appropri-
ately. This is unsuitable in situations where data is sensitive,
as even without malice, there are negligence and curiosity
concerns. Further, the vanilla approach is insufficient even
in an environment of overarching responsibility, as account-
ability is diminished. As described, other pub/sub security
models lack a comparable set of controls, meaning that they
would address only a subset of these issues.

8 Concluding Remarks

IC rules concern transmission (only) to the next hop. This
is because a broker is not qualified to make decisions regard-
ing the event flows of other brokers, especially those in other

domains. To do so is impractical, as it requires information
of the local processes, context and policies of each broker
along the dissemination path. Further, enforcing disclosure
policy at the subscriber’s broker fails to protect inter-broker
communications, while enforcing at the publisher’s broker in
the worst cases causes a separate event to be routed for each
subscription. Aside from policy management and scalability
concerns, such approaches complicate notions of responsibil-
ity and accountability.

Typically in practice, databases form an essential compo-
nent of large-scale infrastructure. In addition to the fact
that sensitive information not only requires transmission,
but also storage and audit,19 we have integrated IC into a
database system to show that such controls can both operate
with, and leverage from, technology already commonplace.

Local control underpins the model of responsibility. If do-
mains manage their technical infrastructure, it seems rea-
sonable to couple the control mechanisms with the data
they protect. General pub/sub is by itself inappropriate
for environments where information is sensitive, thus some
security-related overheads will be imposed regardless of the
implementation. As future work, we hope that gathering
further experience in real deployments will allow us to make
quantified statements of scalability: data is required con-
cerning the number of clients, event types and policy rules,
event load, rule complexity, connection churn, and other
variables and constraints. Of course, this is a moving tar-
get. That said, although simple, our case study based on
real-world requirements indicates that an IC implementation
is possible by extending existing technology, and that the
model can encapsulate the data flow requirements of real

19See [21] for a discussion of security issues concerning the
replay of historical events.

care processes. While policy enforcement necessarily intro-
duces overheads, we have shown that these must be consid-
ered with respect to any savings in overall network activity.

IC essentially overlays a point-to-point security model over
a distributed pub/sub service. This is a direct product
of the responsibility model (local-control). Domains pro-
cess and share information for a particular purpose, mean-
ing that connections and the associated security constraints
form naturally. A domain maintains a sharing policy that
it implemets within the brokers it controls. In this way, a
broker’s policy store merely reflects a domain’s trust and
security concerns. Local enforcement can lead to Chinese-
Whispers effects, where an event/request changes or is fil-
tered as it moves through the network. This is the result of
the responsibility model. End-to-end concerns could arise if
policy is incorrectly formulated (at the high-level) or spec-
ified (at the system-level); though clearly policy issues will
affect any approach that enforces application-level consid-
erations. IC rules enable the definition of the boundaries
for communication, allowing events to flow freely where au-
thorised. The purpose of IC is to allow the advantages
of a scalable, push-based, subscription-oriented distribution
paradigm safely in environments of sensitive information, by
allowing security constraints to be imposed where necessary.

Ultimately, information protection is not just a technical
issue. There are legal requirements and social pressures re-
garding the use and management of sensitive information.
Technical infrastructure must facilitate data sharing, stor-
age and protection, in line with higher-level concerns. IC
is designed specifically for environments of federated policy,
where those active in the environment are responsible for the
information they access, generate and manage. It is novel
in that it brings the notion of local-control to the pub/sub
middleware, so that those responsible for information encode
rules in their brokers to restrict data flows where necessary.
The model is unique as it enables control in situations where
wide-area notification services are required across admin-
istrative boundaries and/or where security policy dictates
that data visibility must vary between clients and/or net-
work components (brokers). It is not a security panacea—
indeed, it is unlikely such a thing exists—but instead pro-
vides a mechanism for control, giving those managing data
the ability to meet their data sharing and protection obliga-
tions. Local control and responsibility brings accountability,
which is necessary for the protection of sensitive information.

Acknowledgments

The authors acknowledge the Technology Strategy Board
(TS/H000062/1) and EPSRC (RG55622) for their support.

9 References

[1] J. Bacon, D. M. Eyers, J. Singh, and P. R. Pietzuch. Access
control in publish/subscribe systems. In DEBS ’08, pages
23–34. ACM, 2008.

[2] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon,
and K. Moody. Role-based access control for
publish/subscribe middleware architectures. In DEBS ’03,
pages 1–8. ACM, 2003.

[3] Bolton Research Group. Patients’ knowledge and
expectations of confidentiality in primary health care: a
quantitative study. British Journal of General Practice,
50:901–902, 2000.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and Evaluation of a Wide-Area Event Notification Service.

ACM Transactions on Computer Systems, 19(3):332–383,
2001.

[5] R. Chadha. A cautionary note about policy conflict
resolution. In MILCOM, pages 1–8. IEEE, 2006.

[6] L. Darzi. High quality care for all: NHS Next Stage
Review. Department of Health, 2008.

[7] Department of Health. Confidentiality: NHS Code of
Practice, 2003.

[8] Department of Health. Safer management of Controlled
Drugs, 2007.

[9] T. Dierks and C. Allen. The TLS Protocol (RFC 2246).
Internet Engineering Task Force (IETF), 1999.

[10] D. M. Eyers, L. Vargas, J. Singh, K. Moody, and J. Bacon.
Relational database support for event-based middleware
functionality. In DEBS ’10, pages 160–171. ACM, 2010.

[11] L. Fiege. Visibility in Event-Based Systems. PhD thesis,
TU Darmstadt, 2004.

[12] L. Fiege, A. Zeidler, A. Buchmann, R. Kilian-Kehr, and
G. Muehl. Security aspects in publish/subscribe systems. In
DEBS ’04, pages 44–49. IEEE, 2004.

[13] H. Khurana. Scalable security and accounting services for
content-based publish/subscribe systems. In SAC ’05,
pages 801–807. ACM, 2005.

[14] Z. Miklós. Towards an access control mechanism for
wide-area publish/subscribe systems. In ICDCSW ’02,
pages 516–524. IEEE, 2002.

[15] NHS Care Record Development Board. The care record
guarantee—our guarantee for NHS Care Records in
England, 2009.

[16] NHS Information Authority. Share with Care! People’s
views on consent confidentiality of patient information,
2002.

[17] L. Opyrchal and A. Prakash. Secure distribution of events
in content-based publish subscribe systems. In SSYM’01,
pages 21–21. USENIX, 2001.

[18] L. I. Pesonen, D. M. Eyers, and J. Bacon. Access control in
decentralised publish/subscribe systems. Journal of
Networks, 2(2):57–67, 2007.

[19] C.-C. Shu, E. Y. Yang, and A. E. Arenas. Detecting
conflicts in ABAC policies with rule-reduction and
binary-search techniques. In Policy ’09, pages 182–185.
IEEE, 2009.

[20] J. Singh. Controlling the dissemination and disclosure of
healthcare events. PhD thesis, University of Cambridge,
2010.

[21] J. Singh, D. M. Eyers, and J. Bacon. Controlling historical
information dissemination in publish/subscribe. In MidSec
’08, pages 34–39. ACM, 2008.

[22] J. Singh, D. M. Eyers, and J. Bacon. Credential
management in event-driven healthcare systems. In
Middleware ’08 Companion, pages 48–53. ACM, 2008.

[23] J. Singh, L. Vargas, and J. Bacon. A model for controlling
data flow in distributed healthcare environments. In
Pervasive Health ’08, pages 188–191. IEEE, 2008.

[24] J. Singh, L. Vargas, J. Bacon, and K. Moody. Policy-Based
Information Sharing in Publish/Subscribe Middleware. In
Policy ’08, pages 137–144. IEEE, 2008.

[25] M. Srivatsa and L. Liu. Secure event dissemination in
publish-subscribe networks. In ICDCS ’07, page 22. IEEE,
2007.

[26] M. A. Stone, S. A. Redsell, J. T. Ling, and A. D. Hay.
Sharing patient data: competing demands of privacy, trust
and research in primary care. British Journal of General
Practice, 55:783–789, 2005.

[27] D. Sturman, G. Banavar, and R. Strom. Reflection in the
Gryphon message brokering system. In Reflection
Workshop, OOPSLA ’08, 2008.

[28] L. Vargas, J. Bacon, and K. Moody. Event-Driven
Database Information Sharing. In BNCOD ’08, pages
113–125. Springer, 2008.

[29] A. Wun and H.-A. Jacobsen. A policy management
framework for content-based publish/subscribe. In
Middleware ’07, pages 368–388. Springer, 2007.

[30] Y. Zhao and D. C. Sturman. Dynamic access control in a
content-based publish/subscribe system with delivery
guarantees. In ICDCS ’06, pages 60–68. IEEE, 2006.

