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ABSTRACT

High-throughput sequencing (CHIP-Seq) data exhibit bind-
ing events with possible binding locations and their strengths,
followed by interpretations of the locations of peaks. Recent
methods tend to summarize all CHIP-Seq peaks detected
within a limited up and down region of each gene into one
real-valued score in order to quantify the probability of reg-
ulation in a region. Applying subspace clustering (or biclus-
tering) techniques on these scores would discover important
knowledge such as the potential co-regulation or co-factors
mechanisms. The ideal biclusters generated should contain
subsets of genes, and transcription factors (TF) such that
the cell-values in biclusters are distributed around a mean
value with low variance. Such biclusters would indicate TF
sets regulating gene sets with the same probability values.
However, most existing biclustering algorithms are neither
able to enforce variance as a strict limitation on the val-
ues contained in a bicluster, nor use variance as the guiding
metric while searching for the desirable biclusters. An algo-
rithm that uses search spaces defined by lattices containing
all overlapping biclusters and a bound on variance values as
the guiding metric is presented in this paper. The algorithm
is shown to be an efficient and effective method for discov-
ering the possibly overlapping biclusters under pre-defined
variance bounds. We present in this paper our algorithm,
its results with synthetic and CHIP-Seq and motif datasets,
and compare them with the results obtained by other al-
gorithms to demonstrate the power and effectiveness of our
algorithm.

1. BACKGROUND AND MOTIVATION

Mining biclusters (or co-clusters) from sequencing datasets
is one of the important ways to discover potential biologi-
cal mechanisms. Transcription Factors (TF) binding related
sequencing datasets, including High-throughput Chromatin
Immunoprecipitation Sequencing (CHIP-Seq) [22] and motif
searching [12] data, record potential matchings on genome
with many different metrics. For example, CHIP-Seq peaks
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records intensity and position. By balancing contributions
from several metrics, many researchers summarize them into
unified scores to quantify the binding strengths for gene-TF
pairs. These scores are very sensitive and minor differences
may reflect quite different binding scenarios. Biclusters con-
sisting of subsets of genes and TFs having very similar cell
values can help provide insights into coregulation. However,
traditional methods [29, 15, 14, 11] cannot be adapted eas-
ily to analyze the sequencing datasets because most of them
do not seek biclusters with specificable bounds on statistical
quantities such as the standard deviation (of the cell values).
We present in this paper an algorithm to solve this problem.
The generated biclusters are the largest possible in size such
that the cell values contained in them are distributed with
variance bounded by specified low thresholds.

High-throughput Chromatin Immunoprecipitation Sequenc-
ing (CHIP-Seq) experiments generate precise short DNA
sequences bound to Transcription Factors. After mapping
these short sequences back to the whole-genome sequence
and searching for enriched regions, CHIP-Seq datasets pro-
vide precise binding information in terms of binding loca-
tions and strengths (or peaks) [23, 26, 27, 2, 13]. Many
current methods summarize all peaks within up and down
regions of each gene into a unified score by combinding the
information of distances from peaks to transcription start
sites (TSS) and the information of binding strengths to-
gether. For example, Ouyang et. al [21] compute the score
by summing up all weighted peaks’ strengths, influenced by
the distances to TSS. Another similar type of sequencing
dataset is generated while searching for motifs matching
across the whole genome. The motifs are defined as posi-
tion weighted matrices (TRANSFC), and the final match-
ing scores are computed by using the method given in [12].
Both of these two types of sequencing scores are very sensi-
tive; slight differences in scores indicate quite different bind-
ing scenarios. For example, based on the Ouyang et. al’s
method, same intensity peaks (E2F1) bound at positions 500
and 800 away from TSS may lead to differences of less than
1 between the final scores.

For illustration, we consider a very small synthetic dataset
shown in Figure 1(a) in which the values are quite similar to
the CHIP-Seq scores and motif matching scores. Biclusters
shown in Figure 1(b) are such that the values in the selected
cells are all about the same (std. dev. < 0.5) and also sat-
isfy the size constraint, which is: biclusters should contain
at least two rows and two columns. For binary datasets the
theory of Formal Concept Analysis [17] treats all maximum
sized sub-matrices containing only 1’s as concepts and ar-
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Figure 1: Example Biclusters

ranges them in a partially ordered lattice. Here we consider
all those maximum sized sub-matrices as concepts for which
the standard deviation of all included cell values is below
some thresholds. The parent-child relationship in the lat-
tice is still defined by the superset-subset relationship among
the attributes included in the bicluster. In our extension of
the analogy to FCA lattices, each node of the lattice may
contain more than one bicluster. Biclusters shown in figure
1(b) meet all the above requirements and are qualified to be
concepts in the sense outlined above.

Potential co-factor or co-regulation mechanism could be
discovered from these sequencing datasets by taking subsets
of genes and subsets of TFs such that all TFs have sim-
ilar binding probability with select genes (or low-variance
cell values of the sub-matrices). The problem of discovering
the qualified biclusters, including the ones that may over-
lap some other biclusters, is NP-Hard [20] and most of the
proposed algorithms attack the problem in a greedy man-
ner [11, 8]. These algorithms, however, do not emphasis the
cell-values’ variance or STD. Some other algorithms utilize
pattern recognition techniques [28] to improve the quality
of clusters but they miss out on the many potential good
overlapping biclusters due to imposing hard pattern restric-
tions on real valued data. There are also many biclustering
algorithms which are based on statistical theory [15, 14, 25].
These algorithms use their own optimized metric for clus-
tering and it is still not clear how to control the variance of
the cell-values in biclusters.

One critical issue with real-valued datasets is that the
standard deviation of cell-values in any selected sub ma-
trix depends on the distribution of all of these values. This
means incremental addition of rows and/or columns to con-
struct a larger bicluster cannot be guided, in an algorithm,
by a monotonically increasing/decreasing variance of all the
included cell-values. The variance itself is not one such
monotonic metric and therefore, one challenge addressed by
us in this paper is to develop such a monotonic metric and
correlate it with the variance and standard deviation of a
bicluster.

A closed bicluster is one to which we cannot add either
an attribute (column) or an object (row) and still maintain
the standard deviation of all cells below the selected thresh-
old. Our analogy with Formal concept analysis, and also
our algorithms here, consider the lattice consisting of only
the closed biclusters. A lattice of partially ordered closed
biclusters is an efficient model of the search space in which

a search algorithm may look for desirable closed biclusters.
This approach has been adopted for finding biclusters in bi-
nary datasets [3, 7, 6, 30] and our work in this paper is
the first attempt to advance the same idea to datasets with
real-values entries in the cells.

In the following sections we formally define some ideas
including a monotonic quality that can be used to bound the
standard deviation of a non-closed bicluster. In section §3 we
prove the relationship between our monotonic metric with
standard deviation and present our algorithm; in section
§3.5 we present results of our algorithm after some efficiency
enhancing pruning is employed, and in section §4 we present
results with a synthetic dataset and two genomic datasets.

2. PRELIMINARIES

We need a monotonic metric to help us guide the search
for the best biclusters and we choose Range (max - min) of
all the values in a biclusters to be this metric. In this paper
we use dedicated symbols A (and ) to denote the Range
for a set of values in a submatrix.

Definition 1. The Range of a group of N data elements
is the difference between the maximum and the minimum
values of that group. That is,

A = max(N) — min(N) (1)

Given the range for a set of data elements we can de-
rive an upper bound on the standard deviation for the data
elements. This is possible because the standard deviation
depends on the difference between an element and the mean
and the value of Range is an upper bound on this difference
value. Consequently, we can derive the relationship between
standard deviation and range for single dimensional data in
equation 2, which means by limiting Range the standard
deviation is also limited.

52 <6 (2)

From the point of view of formulating a search algorithm,
we need a quantity that monotonically increases (or de-
creases) as the size of a potential biclusters increases. It
is easy to see that as the size of a biclusters is enlarged,
the Range of its values (and therefore the upper bound on
its standard deviation) can only increase. This information,
combined with the size of a potential biclusters, can be used
to prune some potential search paths and also determine the
most promising paths.

We represent a dataset as D = (R,C), where R indi-
cates the rows (or objects) of the table and C' indicates
the columns (or features). A bicluster is represented as
B = (sr,sc) where sr C R and sc C C. We use B to
indicate the number of columns in a bicluster B, B to in-
dicate its number of rows, and sp to indicate its standard
deviation.

There are many algorithms [11, 25, 5, 18, 19, 28, 14] using
different metrics to define interesting biclusters. The quality
of desired biclusters are based on those metrics. Here we
give the definition of interesting biclusters which, compared
with others, is based on the statistical restriction (standard
deviation) directly:

Definition 2. A bicluster (B) is an interesting biclus-
ter if it satisfies all of the following constraints: (i) B > m;



(i) B > n; and (iii) sp < S, where m and n are pre-
specified row and column sizes and S’ is the threshold for
the standard deviation.

In order to compare two biclusters, we also define several
operators that will be used in pruning some branches of the
search algorithm presented in section 3.3.

Definition 3. 1. A biclusters B1 = (sr1,sc1) is con-
tained in biclusters Ba = (srz,sc2), if and only if,
sr1 C sry and sc1 C sca.

2. A biclusters B1 = (sr1, sc1) is similar to Ba = (sr2, scz2),
that is, B1 &~ Bs or B2 &~ Bj, if and only if,

|sr1 N sra] [sc1 N seq|

>0; and

|sriUsra| = 77 |sc1 U sea| —

where 6 is a user defined threshold for similarity and
has a value between 0 and 1.

For comparing two bicluster’s interestingness based only on
their sizes, we define an operator below which uses the num-
ber of cells included in each bicluster as the criterion. In-
tuitively, extending the Range bound for the biclusters to
be found will lead our algorithm to generate biclusters with
larger sizes. The trade-off between size and Range bound
could be easily defined, if needed, and implemented in our
algorithm.

Definition 4. A bicluster(B:) is more interesting than

a bicluster (Bsz), that is, B1 > Bz or B2 < Bj ,if and only
if

Bi x Bi > By x By ®3)

3. SEARCH ALGORITHM

The term Range is coined to restrict the statistical quality
of biclusters and conduct our searching algorithm. We will
prove its capability in restricting standard deviation and ex-
plain its usages in searching process. Relevant optimization
strategies used in the searching algorithm are also discussed
and analyzed.

3.1 Relating Range to Standard Deviation

Our criterion for choosing biclusters includes the standard
deviation for all the values included in a bicluster. In order
to construct relationship between range and standard devia-
tion we define a few qualities computing standard deviations
for individual rows and columns.

The Range for the i*" row of elements is denoted by ;. for
the 5 column it is denoted by &, and for whole bicluster
it is denoted by Ap. The symbol B;. denotes all the data
in the " rows of a bicluster B; | Bl;. denotes the number of
cells in the i*" row; B.;j denotes the data in the jth column of
B; | B|.; denotes the number of data cells in j*" column; and
w and s denote the mean and standard deviation, defined as
follows:
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Lemma 1. Given a bicluster B = (sr, sc), if for
{i € sr| 6;. < S} and {j € s¢| d.; < S}, then Ap <2x S.
(That is, if the Range for each row and each column of a
bicluster is bounded by certain threshold S then the range
for the whole bicluster is bounded by 25.)

PROOF. Let d;; indicate the maximum value in the bi-
cluster B, dpq indicate the minimum value, min(d;.) indicate
the minimum value in the i*" row and maz(d. ,) indicate the
maximum value in the ¢** column. From the definition of 1,
we can derive the following inequalities:

dij — mzn(dz) Z dij — diq
max(d.q) — dpg 2 dig — dpq. (5)

The left hand side of each inequality is smaller than S and
adding the two expressions on the left and right hand sides
gives us:

dij — dpq <2x S. (6)
U

Then a stronger conclusion about the relationship between
the bound of the standard deviation and Range for the val-
ues in a bicluster can be derived.

Lemma 2. Given a bicluster B = (sr, sc), if for
{i € sr| 6;. < S} and {j € sc| §; < S}, then the standard
deviation s% is less than 2 x S2. (That is, if the range for
each row and each column of a bicluster is less than S then
the standard deviation of the bicluster is less than 2 x 52.)

PROOF. When a bicluster B = (sr, sc) has n rows and
m columns, each of which has an upper bound of S on its
Range. From equation 2, we can derive that:

s; <6 < 8°
55 <64 <8? (7)
We use [i to denote the mean of all individual row means,
wi.’s, s, to denote the standard deviation of all the individ-

ual row means, and p is the mean of all the elements in the
bicluster. Then we can say that:
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Combining equations 4 and 8 we get:
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Also, for any row p € n we claim the following and then
prove it by induction.

(z;il (dps — 11.5) ) S ()’

= = (12)

The main steps of the induction proof, done on the number
of columns, are as follows. Let ¢, = dpq — pt.q, and let &
indicate the number of columns. When k£ = 2, equation 12
is satisfied. Now assuming the equation 12 to be correct for
k =T, we get:

T 2 T
<Z m) <7ty o (13)
q=1 q=1
Then for k=7+1

T+1 2 T 2 T
(Z%) = (Z%) +2*(Z¢q>*¢f+1+¢3+1
q=1 q=1 q=1

T 2 T
< (Z%) Y TG+ b
q=1 q=1
T+1
< (t+1) *Z¢§ (14)

The above is done for a single row, and summing for all rows
we can derive that:
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Combining conclusions from equations 7,11 and 15 we can
derive that:

s < 2% 5% (16)

This means that by bounding the Range for each row and
column (§ < S), the standard deviation of the whole biclus-
ter also gets bounded (sp < +/25) which is also denoted as
S’ in definition 2. This conclusion is an important theoreti-
cal support for our search algorithm, which looks at biclus-
ters as combinations of rows and columns and advances in
the search space by adding columns or deleting rows. If the
search algorithm wants to find biclusters with some bound
on the standard deviation of its values, it could focus on a
bound on the Range for each row and column separately. []

3.2 Enumerate Biclusters

There are many ways incorporating Range in clustering
procedure. What we are interested, also believed to be more
practical to real problems, is to discover most interesting
clusters base on definition 2 and 4. In order to discover
biclusters with largest possible size, we need to limit the
range of rows and columns separately which is also the rea-
son we need supports from Lemma 2. We start our searching
process by setting every single column with all rows as one
searching branch of lattice. It is also applied for setting rows
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Figure 2: Prefix Tree

as one search branch. The basic operations for our search
algorithm performed on intermediate biclusters are adding
columns and removing rows. Biclusters which is covered by
larger ones will not occurred in the final results. For exam-
ple, in figure 1(b), < {g1, 92}, {a,b} >, < {g1,92},{a,c} >
and < {g1, g2}, {b, c} > will not appear since they are cov-
ered by < {g¢1, g2},{a,b,c} >.

Prefix-based equivalence classes have been used to formu-
late many search algorithms. We can form prefixes either
from column headings or from row headings and in our case
we have chosen to use the column headings. This helps
divide the search space into independent sub-spaces of the
search space at each level. This approach has been success-
fully adopted in [30] and [3] for searching biclusters in binary
datasets.

Our search process can be viewed as made up of two
independent phases. In the first phase, we generate chil-
dren candidates by adding columns to each parent bicluster,
updating the range for each row in the context of newly
added columns, and removing those rows whose range val-
ues exceed the specified threshold. Such prefix tree based
enumeration guarantees that every possible combinations of



columns will be examined. The first phase of the search al-
gorithm for the example given earlier in figure 1 is shown in
figure 2(a) here. In the second phase we re-examine all the
generated candidate biclusters and check the Range values
for each column. If a column’s Range exceeds the specified
threshold, the offending rows are removed from the candi-
date to make each column comply with the Range threshold.

At top level of each search branch, we enumerate every
single column combined with all rows as one candidate bi-
cluster. Since the order of the columns (a,b, ¢, d) are fixed,
each candidate can only add columns that follow it. For
example the only column that could be added to candidate
< {91, 92, 93},{a,c} > is d. After adding some columns and
then removing rows, some candidate biclusters may violate
the size constraint, such as < {¢}, {a,d} >, < {¢}, {b,d} >,
and may be removed. The candidate < {¢1, ¢2, g3}, {a,c} >
is removed because it is contained in an already generated
bicluster.

Phase-one guarantees that all prefix combinations will be
enumerated but the candidates may not comply with the
constraint on the Range value for each column; In phase-
two the algorithm removes some rows to bring each column
within the acceptable Range limit. For example, in figure

2(b) < {91, g2, g3, g4}, {b, ¢} > generates < {g1, g2, g4}, {b,c} >

by removing ¢3, thus the only row could drop next is g4. Af-
ter the removal the final results are < {g1, g2, g3}, {a, c} >,
<{91,92},{b,c} > and < {g3,94},{b, c} >.

3.3 Pruning

To reduce the computational cost of the search, we em-
ploy a number of pruning strategies while still guaranteeing
that all interesting biclusters will still be retained. These
strategies are outlined below.

Pruning based on containment: In figure 2(a), our
algorithms prune the candidate < {g1, g2, g3}, {a, ¢} > since
the depth first ordering of the search has already generated
the hypothesis < {g1, g2, g3}, {a, b, ¢} > which contains the
former.

Pruning based on size: As stated in definition 4 we
may compare the sizes of candidate biclusters and if only
top k biclusters were needed from the entire search, we may
without any loss, keep only top k candidates in each top
level branch of the search and prune the rest.

Pruning based on similarity: In most real world datasets,

a large number of the biclusters are similar to each other
(definition 3). Our algorithm prunes the smaller sized bi-
clusters among similar pairs of biclusters. All of the ex-
periments reported in this paper have a threshold value of
0 = 0.8 as cutoff for pruning.

Pruning based on redundancy: Many real world datasets

contain biclusters with very large number of rows. Instead
of keeping all permutations of fewer rows as biclusters hy-
potheses, we delete from the parent bicluster those rows that
reduce the Range the most and keep the rest of the rows in
the hypotheses.

Even after previous prunings, the searching bicluster still
could be more succinct. During the whole process, lattice
could generate millions of biclusters. However what scien-
tists really want to find is the biclusters which satisfy their
own interestingness definitions. With modifications of defi-
nition 4, our algorithm could cut off the search branch which
can not generate more interesting biclusters than those al-
ready had. Although this kind of pruning bring in some

computations, compared to its reduction of searching space,
it is really deserve. We also paralleled our algorithm by
setting each searching branch as one thread. Hence the al-
gorithm top K interesting biclusters for each thread and
generate final biclusters by comparing those biclusters from
each threads.

input : Data matrix DM X, Range 4, Share
memory all current final biclusters Result,
top interesting biclusters number K

output: semi-qualified bicluster set BS

1 begin

2 Initialize BS each bs € BS has one column with
all rows ;

3 while 3bs € BS can add more column do

4 ¢ = Next column id satisfying depth-first

search prefix-tree;

5 bs’ = Add c to bs ;

6 bs’ remove rows which exceed J;

7 if bs’ is interesting then

8 Remove

{bs"|bs" € BS Nbs" ~bs' ANbs" < bs'};
9 if no
{bs"|bs"” € BS ANbs" =~ bs’ Abs" = bs'}

then
10 | Add bs" to BS ;
11 if Result has K members then
12 for bs’ € Result do
13 | Remove {bs"|bs” € BS Abs" < bs'} ;

14 R;turn(BS)
15 end

Procedure 1. Adding Columns

3.4 Pseudo Code

The prefixes are constructed by each column and its com-
binations with those that follow it in the column ordering.
Here we give the pseudo code of the algorithm to show how
one of the prefix branches is pursued by the search algorithm
(we call each branch a thread). The complete algorithm can
be easily parallelized by having each thread run on a sep-
arate processor which also saves running times. We search
biclusters from a real genetic dataset which contains 24190
rows and 5 columns on a computer equipped with a Intel
Core 2 Quad 2.66GHz processor. By setting size limita-
tion as 2000 rows, 2 column, range limitation as 2.1 and 4
threads working simultaneously, the searching process fin-
ishes in only 59 seconds.

3.5 Pruning Efficiency:

In order to analyze the effect of pruning we created a
synthetic dataset with 25 rows and 25 columns, as shown
in Figure 3(a); with the gray scale reflecting the cell val-
ues. There are four big blocks (biclusters) embedded in Fig-
ure 3(a), right-top, center, left-bottom and background, and
the cell values within each block are distributed uniformly
within a narrow range.

We count the number of intermediate candidate biclus-
ters generated before the biclusters are output. The perfor-
mances for various pruning strategies are shown in Figure
3(b). The x-axis shows the value of pre-specified Range



input : Data matrix DM X, Range §,
semi-qualified bicluster set B.S, top
interesting biclusters number K,

output: Share memory all current final biclusters

Result
1 begin
2 while Jbs € BS do
3 if System memory is not enough then
4 r = Next row id increasing interest the
most;
5 bs’ = Remove r from bs ;
6 Remove bs ;
7 else
8 r = Next row id satisfying depth-first
search prefix-tree;
9 bs’ = Remove r from bs ;
10 if bs’ is interesting then
11 Remove
{bs"|bs"” € BS Nbs" ~bs' Abs" <bs'};
12 if no
{bs"|bs"” € BS A bs" =~ bs’ Abs" = bs'}
then
13 | Add bs" to BS ;

14 Add BS to Result;

15 Keep top K interesting biclusters;
16 Return(Result)

17 end

Procedure 2. Removing Rows

value and y-axis shows the number of intermediate biclus-
ters. There are four cases plotted in Figure 3(b): the line
with circles represents the performance of the original search
algorithm based on pruning based on containment only; the
line with triangles represents the performances of search us-
ing pruning based on size and containment; the line with
crosses represents search with pruning based on similarity
and containment; and the line with rectangles represents
search with all the pruning strategies combined. Thus we
can see that each pruning strategy has its impact on reduc-
ing the number of intermediate biclusters and using all the
pruning techniques simultaneously performs the best.

In real world dataset, the strategy of pruning based on
similarity will greatly improve the performance. The reason
why it dose not achieve much optimizations is that the the
standard judging two biclusters are similar is very critical for
this synthetic dataset. In our algorithm we set 6 equals to
0.8 which means if two biclusters both have 9 columns and
9 rows, they are similar to each other only when 8 columns
and 8 rows are the same.

4. EMPIRICAL EVALUATION

There are many biclustering algorithms can be compared
with, we choose Cheng et al.’s algorithm [11] delegating di-
rect biclustering algorithm and SAMBA[25] algorithm del-
egating graph theory based biclustering algorithm for syn-
thetic dataset. We compare both accuracy and effectiveness
of our algorithm with them. We also test our algorithm
with two datasets from genomics domain to show the bio-
logical significance of output biclusters and compared with
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Figure 3: Efficiency Test

two more recent algorithms: Co-clustering [14], OPSM [5]
and ISA [18, 19].

4.1 Synthetic Data Analysis

We consider the following metric for determining the qual-
ity of a bicluster found in a dataset. This evaluation metrics
is not objective function for our algorithms and we do permit
users to define their own interestingness setting by altering
definition 4.

Bow R /2
o B Bifsh, (17)
D x D/s?
Here D represents the whole dataset, D denotes its number
of columns, D denotes its number of rows, and sp denotes
the standard deviation of D. This metric gives larger values
for biclusters with larger sizes and smaller standard devia-
tions. The metric is also normalized by sp so that it is still
meaningful across different datasets.

We have used two synthetic datasets, shown in Figure
4(a) and 4(b). The dataset in Figure 4(a) is 100 rows by
100 columns and values are reflected by the gray code inten-
sity. There are five biclusters embedded in this dataset and
all of them follow a uniform distribution of values. Four of
the clusters are uniformly distributed around different cen-
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Figure 4: Synthetic Data

ters and values are within a range 1.2. The background
cluster is distributed in the range of 2. Dataset in Figure
4(b) has the same size but the values of data cells in each
biclusters follow normal distributions. Four overlapping bi-
clusters are distributed normally with different p and o (less
than 1.2). The background cluster is distributed normally
with u equals to zero and o less than 2. We ran Cheng
et al’s algorithm by setting the size limit to 20 rows by 20
columns and our algorithm by setting the Range limit to 1.3.
We also run SAMBA by setting option files type valsp_3p,
with an overlap factor of 0.8, hashing kernel range from 1
to 7, and all other parameters as default value. We record
the top 10 interesting biclusters for our clustering algorithm,
first 10 biclusters generated by Cheng’s algorithm and top
10 best biclusters based on metric value. The performance
are presented in Figure 4(c). The x-axis in figure shows the
metric value (A) and y-axis shows the number of biclusters.
There are three kind of bars in the figure: white bars repre-
sent the histogram of metric value for biclusters discovered
by our algorithms; gray bars represent histogram of Cheng’s
algorithm and black bars represent histogram of SAMBA
algorithm. biclusters discovered by our algorithm are shown
to achieve the best quality as per the above metric.

Figure 4(d) shows the clustering comparisons for dataset
in Figure 4(b). For Cheng et al’s algorithm and SAMBA,
parameter are set the same as in dataset in Figure 4(c). For

our algorithm we extend range limit to 2.5 which covers more
than two times the standard deviation for the normal dis-
tribution of biclusters (+20). We see again from the second
histogram that our algorithm performs significantly better
that the other two. SAMBA achieve worse performance in
both cases since it can not find biclusters with large size.

0.8 0.9

Metric
0.7

0.6

0.5

22 2 26 28
Range
Figure 5: Effect of Parameter Changes

The impact of parameters on the performance of our algo-
rithm can be analyzed by examining the evaluation metric



Algorithm CLEAN Score | Variance Of Biclusters | Size (Rows X Cols) | Average Column STD
Lattice(our algo- 80.95 0.21 97x2 0.43

rithm)

CC 33.65 1.27 847x12 0.89

OPSM 50.15 0.49 1726x6 0.53
Co-Clustering 40.44 0.99 469x2 0.99

Figure 6: Mouse

Equation 17 for different values of the range and the value
of k used for selecting the top k candidates. Apparently,
our algorithm should generate more biclusters if we extend
the range limit and/or increase the number k. Intuitively,
extending range limit will increase allowable standard devia-
tion but may also increase the size of the bicluster, and thus
the metric may or may not be affected much. Meanwhile
keeping more of the less interesting biclusters will reduce
average of the metric value for the resulting biclusters. We
use the dataset in Figure 4(b) to analyze the performance
trend by modifying the parameters. For each parameter
combination we record the average metric value for the ob-
tained biclusters. Figure 5 shows the relationship between
the Range parameter and the average of the metric value
obtained. There are three lines in the figure: the top line
with crosses shows the performance when we keep the top 5
most interesting biclusters based on size criterion; the line
with circles shows the performance while keeping the top 10;
and line with triangles shows the performance while keeping
the top 15. When we extend the range from 2.2 to 2.5, the
metric value increase due to a faster increase in the sizes of
the resulting biclusters than the increases in their variances.
However, for range values larger than 2.5 the increase in
sizes is slower than the increase in the variances; see Figure
5; (This dataset consists of values that follow a normal dis-
tribution). Consequently, we can conclude that extending
the Range does not always improve the performance be-
cause after certain point the increase of bicluster’s size can
not compensate for the decrease of accuracy (or increase in
STD). Also, we see that keeping a smaller number of most
interesting biclusters will always increase the performance
for a specific value of Range because the standard deviation
of those biclusters is relatively stable.

4.2 Mouse Embryonic Stem Cell Dataset

The authors Ouyang et al. [21] have reported their CHIP-
Sequence scores on mouse embryonic stem cell in [10]. In
this dataset the rows represent genes, the columns repre-
sent transcription factors (proteins), and the cell-values rep-
resent the strength of binding between the row and col-
umn elements. Twelve proteins and 18936 genes included
in this dataset have been known to show correlations in
some other studies. Using our algorithm on their original
data without any normalization, we seek to discover un-
derlying co-factor mechanisms. One bicluster unveiled co-
regulated TFs (Nanog and Oct4) with a variance of 0.21
and that is well corroborated by [10]. In order to demon-
strate the functional coherence of the genes co-regulated in
the bicluster, we use the CLEAN [16] metric to check the
functional enrichment with Gene Ontology terms [4]. The
higher the CLEAN score the better is the functional coher-
ence of the genes. Low-Variance biclusters found by our

Embryonic Stem Cell

algorithm show the highest CLEAN-Score values and the
lowest variance when compared with the biclusters found
by other methods (first row in table of Figure 6 shows our
results). It should be noted that traditional biclustering al-
gorithms could discover biclusters with relatively low stan-
dard deviations within each column of a bicluster but the
variance of the whole data blocks is larger, and therefore
they could not find highly functionally correlated gene sets;
and therefore their CLEAN scores are lower. For each algo-
rithm, the data shown in the table represents the bicluster
with highest CLEAN score (if many biclusters were found
then the best one was selected and reported); the table also
lists the bicluster variance and the average column standard
deviation for each reported bicluster (Figure 6).

4.3 Human Genomic Dataset

We consider the dataset from human genome from hg18 [1]
and calculate the maximum possible relative probability as-
sociated with each gene-motif pair using the Sequence Motif-
Matching Scoring model [12]. The data contains 24190 genes
(rows) and 287 motifs (columns). Relative probability val-
ues in data cells are in the range of [0,4.3]. The data is taken
from [24]. The other source of data that we use is based on
experiments [9]. They present the distributions of five mo-
tifs (ERE, AP-1, Oct, FKH and C/EBP) for these genes and
also the pair-wise relationships between those motifs. The
heat map of these five motifs with 24190 genes is shown in
Figure 7(a) and the distribution of values is shown in Figure
7(b) in the format of histogram.

We want to see whether biclusters found by our algorithm
in the theoretically obtained data match the ones reported
in the experimental results. We use the Fisher’s Exact Test
to determine whether our clustering algorithm could really
generate the biclusters predicted by the experimental re-
sults. The criteria used here is the negative of log 10 based
p-value, meaning the higher the value the more significantly
the two sets match. Results of our algorithm for various pa-
rameter values are shown in Figure 7(d). As we expected,
keeping Range the same and increasing the minimum row-
limit size reduces the number of clusters discovered (the first
row and the second row), and increasing the Range bound
discovers more biclusters but makes the accuracy worse (the
second, third, and fourth rows). The best p-value of this
test is 2.90 x 1077 (or 6.54 for —log,, (pvalue)) in the third
row which is much smaller than conventional cutoff 0.05 (or
1.3 for —log;, (pvalue)). Therefore we conclude that the
biclusters discovered by our algorithm significantly overlap
with the experimental results.

We also compare the results with some well known algo-
rithms [11, 5, 18, 19, 14] using the metric defined in equa-
tion 17. Parameters used in all of the algorithms are kept
as the default ones. For Cheng et al.’s algorithm, we re-
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2.5 4000 8 5.35

(d) Motif Bicluster Statistics

Figure 7: Genomic Data Validation

tained the first bicluster that is generated; for biclustering
algorithm ISA [18, 19], we could not find any biclusters; for
biclustering algorithm OPSM [5], we kept all the biclusters
generated; for our algorithm, we kept the top 3 biclusters
with minimum size of 4000 rows and 2 columns in which
data values have a range of 2.1 and for Co-clustering [14]
algorithm we keep the same number of biclusters as our al-
gorithm. The biclustering results are summarized using the
metric (A from equation 17) in Figure 7(c). We first listed
all metric values for each bicluster generated in the second
column, then we took the average of those metric values for
each algorithm and it is reported in the third column of the
table. ISA did not find any biclusters, so we did not put
in the table. It is clear from the results that our algorithm
could discover biclusters with largest metric values, either
considering individual biclusters or their average.

5. CONCLUSION

We have presented a search based algorithm for discover-
ing low-variance biclusters in sequencing datasets and have
shown that it performs much better than several other com-
peting algorithms using a statistical metric for merit. Our
algorithm can enumerate overlapping biclusters and gener-

ate the top K interesting biclusters based on the specified
size and standard deviation requirements. Other algorithms
are not capable of discovering all overlapping biclusters and
controlling the variance at the same time. Challenges still
exist for discovering the complete set of low-variance biclus-
ters because our algorithm presented here generates only
those biclusters that satisfy the low-variance criterion but
it cannot discover all low-variance biclusters - particularly
those that have low variance despite a large range for the in-
cluded values. But the combination of large range and low
variance is not desirable for the sequencing data applications
and our algorithm is therefore very suitable.
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