Graph-Transformation Verification using
Monadic Second-Order Logic

Kazuhiro Inaba
kinaba@nii.ac.jp

Soichiro Hidaka
hidaka@nii.ac.jp

Zhenjiang Hu
hu@nii.ac.jp

National Institute of Informatics, Japan

Hiroyuki Kato
kato@nii.ac.jp
National Institute of
Informatics, Japan

ABSTRACT

This paper presents a new approach to solving the problem of
verification of graph transformation, by proposing a new static
verification algorithm for the Core UnCAL, the query algebra for
graph-structured databases proposed by Bunemann et al. Given
a graph transformation annotated with schema information, our
algorithm statically verifies that any graph satisfying the input
schema is converted by the transformation to a graph satisfying the
output schema. We tackle the problem by first reformulating the
semantics of UnCAL into monadic second-order logic (MSO). The
logic-based foundation allows to express the schema satisfaction
of transformations as the validity of MSO formulas over graph
structures. Then by exploiting the two established properties of
UnCAL called bisimulation-genericity and compactness, we re-
duce the problem to the validity of MSO over trees, which has a
sound and complete decision procedure. The algorithm has been
efficiently implemented; all the graph transformations in this paper
and the system web page can be verified within several seconds.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

Keywords

Validation, Graph Transformation, Monadic Second-Order Logic

1. INTRODUCTION

Graphs are very useful means to describe complex structures and
systems and to model concepts and ideas in a direct and intuitive
way [2], and a number of languages, such as UnQL [7], Lorel [1],
Graphlog [9], have been proposed for graph transformations [23].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keisuke Nakano
ksk@cs.uec.ac.jp
The University of
Electro-Communications

UnCAL (Unstructured Calculus), being the underlying algebra of
the graph query language UnQL, is one of the useful graph trans-
formation languages for efficient graph transformations [6]. It is
recently adopted for bidirectional model-driven software develop-
ment [16, 15], where software components in different levels of
abstraction are modeled as graphs, and their relation is described
as graph transformations.

In these applications, it is often assumed, for each graph trans-
formation, that its input and output graphs have some structure
(schema) in them. However, due to the complicated structure like
cyclic reference of graphs, it is not straightforward for program-
mers to write a transformation that produces schema-conforming
outputs for every valid input. It is thus very important to provide
a static verification algorithm to check if the transformation is cor-
rect with respect to the input and output schemas, which describe
structural constraints of graph databases [4].

The objective of this paper is to provide a static verification al-
gorithm for transformations in UnCAL. More specifically, what we
want to solve is the following problem:

Verification Problem: Given an UnCAL transforma-
tion f, an input schema ¢y, and an output schema
©our, determine whether “for any graph g satistying
v the output graph f(g) satisfies pour”.

Although many efforts have been devoted to verification of tree
transformations [26, 21, 20, 12], there is little work on verification
of graph transformation. One challenge here is that many verifi-
cation problems turn to be undecidable when going from trees to
graphs. Therefore, to deal with verification of graph transforma-
tion, we should carefully impose reasonable constraints on graphs
and graph transformations.

One attempt made on verification of UnCAL transformation
was to use simulation-based schema [5] (with constraints on the
schema). There, a schema itself is again a graph, and data graphs
simulated by the schema graph (i.e., any traversal on the data graph
can be replicated on the schema graph) are defined to conform to
the schema. The advantage of such a schema is the simplicity of
verification of transformations. Since the input schema itself is a
graph, it can be passed as an argument to the transformation; the
transformation is valid if the outcome is subsumed by the output
schema. However, it has very limited expressiveness on structures
of graphs. Basically, simulation can state only conjunctions of
optional conditions, like “there can be an outgoing edge labeled
foo and there can be another edge of bar”. It fails to describe a

condition such as, “under the contact edge, we must have either
phone edge or mail edge, but not both”. Such “either one of”
feature is, however, crucial for writing structural constraints; it can
be seen in all the standard XML schema languages [11, 29, 8] or in
metamodeling language [3].

In this paper we propose a new approach to the verification
problem based on the two important characteristics of UnCAL,
bisimulation-equivalence of graphs and structured recursion,
where a graph transformation in the Core UnCAL can be automat-
ically checked against a schema in the powerful monadic second
order logic (MSO). Our verification system enjoys the following
features.

e Our verification system is powerful. First, it allows graph
schemas to be described in terms of MSO. MSO has ex-
actly the power of expressing regular languages [24], being
widely used as a schema language for XMLs and graphs. The
structural constraints expressible by commonly used graph
schema language KM3 [19] is just in this category. Sec-
ond, it accepts any graph transformation defined in terms of
type-annotated Core UnCAL so that all the types can be fully
checked.

e Our verification system is fully automatic and decidable.
We propose an automatic algorithm that can map the type-
annotated Core UnCAL to an MSO-definable graph trans-
duction [10], and show that verification of such the MSO
property on graphs can be reduced to that on infinite trees,
which is decidable. In particular, if the graph transformation
is compact [7], the problem can be reduced to verification on
finite trees.

In addition, thanks to the property that the inverse image
of an MSO-definable set of graphs under an MSO-definable
transduction is MSO-definable, validity of the transformation
can be checked by the input-side subsumption. This makes it
possible to generate a more understandable counterexample
with respect to the input rather than on the output, which is
in sharp contrast to the simulation-based approach [5].

e Our verification system is efficient and practical especially
for compact [7] transformations. As not only schemas but
also transformations can be described by MSO formula, and
verification of graph transformation in UnCAL can be effi-
ciently implemented' with MONA [14] MSO solver. In fact,
all the examples in this paper can be verified by our system
within several seconds.

The paper is structured as follows. In Section 2, we give an
overview of our approach with an example for showing the taste
how our verification works. In Section 3, we explain the graph
data-model and transformation of Core UnCAL. In Section 4, we
introduce MSO, and their usage as schema language. Section 5 is
the main technical part, which shows how to translate Core Un-
CAL programs to MSO formula. Then in Section 6 we discuss two
theorems that ensures the decidability of the generated MSO for-
mulas. Section 7 compares the present paper by related work, and
Section 8 concludes.

2. OVERVIEW

Before proceeding with the technical details, let us demonstrate
through several examples to show a very informal overview how
our verification works.

'The implementation is available at http://www.biglab.
org.

2.1 A Simple Example

Consider the friend graph $db in Figure 1(a), which consists of a
set of members, each member having a name, a contact information
(either mail or phone), and a set of friends. The structure of this
graph can be described by the following schema definition:

type Members = { mem : Person }
type Person = {

name . Data,

contact MailOrPhone,

friend Person }
type MailOrPhone = Mail | Phone
type Mail { mail Data }
type Phone = { phone Data }

Now suppose that we want to transform this graph by renaming mem
to member, friend to knows, and flattening the contact informa-
tion. This transformation can be described as flatten (rename($db))
where flatten and rename can be defined by structured recursions
as follows.

rename = rec(A($L1,$G1).
&1 := if $L1 = mem then {member : & }
else if $L1 = friend then {knows: &}
else {$L; : &1})
I‘GC()\($L17 $G1)
&1 = if $L; = contact then $&;
else {$L; : &1})

flatten =

Now our verifier can check that the above transformation is cor-
rect in the sense that if the input is Member, the output will always
produce the graph meeting the following structure:

type Members2 = {member:Person?2}

type Person2 = PM | PP

type PM={name:Data, mail:Data, knows:Person2}
type PP={name:Data, phone:Data, knows:Person2}

2.2 An Example of Verification Procedure
Our second example is to transform the friend graph to a friend-
pair graph with the following structure:

type Pair = { fst: Person, snd: Person }
type Pairs = { pair: Pair }

For instance, the graph structured data in Figure 1(a) is transformed
to the table-like structure in Figure 1(b).

To make sure this transformation does generate a structure that
we intuitively expect, we annotate schema information to the Un-
CAL code. By using this schema, we describe the expected type
of each graph-variable and a return-expression of the rec recursion
as follows, where input schema ¢,y corresponds to Members, and
output schema gy corresponds to Pairs.
rec()\($L1 5 $ Gl)

&1 :: Pairs :== if $L1 = mem then
rec(A($Lz, $G2).
&1 :: Pairs := if $ Lo = friend then
{pair : {fst : $G :: Person, snd : $G> :: Person}}
else {}

)(8Gh)

else {}
)($db :: Members) :: Pairs

Figure 1: Example Graph Data

Then what the verifier confirms are: (1) under the assumption $db
conforms to the type Members, the node bound to $G; during re-
cursion always conforms to the type Person, (2) under the assump-
tion $ Gy conforms to the type Person, the node bound to $ G2 dur-
ing recursion always conforms to the type Person, (3) under the as-
sumption $ G1 and $ G5 conforms to the type Person, the inner most
recursion returns a graph conforming to Pairs for each edge, (4) un-
der the assumption that the inner recursion returns Pairs graphs, the
outer recursion returns Pairs, and (5) the whole expression evalu-
ates to a Pairs graph. Our verifier is sound, that is, if the verifier
answers that all the above conditions hold, then it does hold. Also it
is complete in the sense that if it says the conditions may be broken,
then there indeed is a concrete assignment of graphs to variables
that breaks the conditions. In such a case, our verifier emits an in-
stance of a counter-example variable assignment that does break the
conditions imposed by output schemas. For instance, if we forgot
to write the generation of an edge {pair : - - - }, the verifier reports
an error with a counter-example. In this case, any input graph can
be a counter-example. But the following example more appreciates
the power of our contribution: the transformation extracts contact
information, assuming it only has Mail information, the verifier re-
port the counter-example of the input having Phone.

rec(A\($L1,$G1).
&1 :: Pairs := if $L; = mem then
rec(A($L2, $Go).
&1 :: Pairs := if $L» = contact then G5 :: Mail
else {})($G1)
else {})($db :: Members) :: Mail

The check is carried out in the following three steps. Firstly, the
schema is converted to a logic formula (more specifically, a formula
of MSO logic) that exactly stats the conditions that are imposed by
the schema.

Secondly, the annotated UnCAL transformation is converted into
a set of MSO formulas describing the transformation. For instance,
from the root node of the formula, the following is the excerpt of

the set of formulas generated.

edgepair,3,4,5($7yv z) =

Fv,e, u(:lf =y=z=eA edgefriend,l,l,l(v7 €, u))
edgefst,s,G,l(‘rv Y, Z) =

Fv,e,u(z=y=eAz=root Aedges g 111V, € 1))
edgesnd,5,7,2($: Y, 2) =

Fv,e,u(z=y=eAz=root Aedges, g 111V, € 1))

We assign a number (we call copy-id) 1 to the graph bound to the
variable $G1 and the number 2 to $G> (and 0 to $db). The sub-
formula edge;,; 41,11 (v, €, u) asserts that v and v are nodes of
copy-id 1, and e is an edge with label friend connecting them.
The nodes and edges created by the transformation is also num-
bered (in this case, we use 3 to 7).

air {657%)3 (U7 1)
(v,3) —ledy>(e,5)
(e,s
snd 7 (g, 2).
The definition of the predicate edge,,;, 3 4,5(z, Yy, 2), for exam-
ple, can be read as follows: “if Ist copy of e is an edge of label
friend, then (and only then) an edge of label pair is drawn from
the 3rd copy of e and 5th copy of e.” This is essentially a complete
description of the transformation represented by MSO.

Thirdly, the MSO formulas representing schema conformance
is then expanded to a formula that only uses the predicates
edge,.;, 1. .1 (2, Y, z) arose from the variables, (i.e., k is a copy-
id assigned to a variable, not a generated output). For instance, the
type annotation &; :: Pairs asserts that the return-value of the body
of the recursion must satisfy the schema formula:

isPairs(x) := 3° Pairs. 3° Pair. 3° Person. x € Pairs

A

A Yy € Pair. ¥ 2z w. edge,., (y, z, w) — w € Person
Acee).

Since the body expression generates nodes and edges having the 1st
to the 7th copy-id, the formula is instantiated to use edge;, 5 4 5
etc. instead of the bare edge,.,. The conversion is an inductive
expansions of V and 3 into a finite number of As and Vs, e.g.,
v/ x.qp(z) is converted to VY z.ap1 (z) A ... A thr(z) where v; is
a result for inductive transformation of the subformula 1) assuming
that the variable x points to the ¢-th copy entity. After this process,
the conditions that need to be verified can be written as a single
MSO formula, which is valid on any interpretation of edge ; ; ;
if and only if the conditions are always satisfied. B

Finally, the validity of the generated MSO formula is checked.
Technical problem here is that validity of MSO on graphs is unde-
cidable in general [27]. Fortunately, we can manage the problem
by utilizing the property called bisimulation-genericity, which is
shared in common for all UnCAL transformations; for bisimula-
tion generic transformations, the validity on graphs can be reduced
to the decidable validity on infinite trees [22]. Furthermore, the
property called compactness that holds among a certain subset of
UnCAL allows to reduce the validity problem to that on finite trees.
On finite tree domain, good existing MSO solvers can be exploited
for our implementation.

3. CORE UNCAL: A GRAPH TRANSFOR-
MATION LANGUAGE

We present the target language of our verification technique:
a core fragment of UnCAL graph algebra, and recall important
aspects of the language (for the detail, see [7]).

3.1 Graph Data Model

UnCAL deals with rooted, directed, finite-branching and edge-
labeled graphs whose nodes conveying no particular information.
We fix the finite set Label of labels and the set Data of data val-
ues throughout the paper. We assume a special label ¢ ¢ Label,
and denote by Label. the set Label U {¢}. We usually write the
elements of Label by typewriter font like a, foo, or name, and
write the elements of Data as double-quoted strings like "John™"
or"3.14". A graph g = (V,r, E) consists of a set V' of nodes,
a designated root node € V/, and a set E of edges equipped with
three mappings: src : £ — V,lab : E — Label. U Data, and
dst : E — V. The mappings src and dst denote the source and
the destination node of the edge respectively, and lab denotes the
label of the edge. We often write (v, [,) to indicate the edge e
with dst(e) =wu, lab(e) =1, and src(e) =wv.

UnCAL’s graph model has c-edges resembling e-transitions of
automata, which work as shortcuts between nodes. Schemas and
transformations will be defined to respect this intention of e-edges.
For example, the following two graphs are considered to be seman-
tically equivalent.

a a d
€ ./1;*0;.;0 — o[; o> (*)
o N o L,,bo;-o
Nesesele c

Here, the white circle o denotes the root node of each graph. The
reason for using e-edges is to make the transformation language as
simple as possible. For instance, we do not need a union operator
71 U T2 of two edge-sets explicitly, because it can be simulated
by a construction of a new node having two outgoing e-edges,
as exemplified by the root node of the figure above. We define
the set E(v) of outgoing edges of a node v as the set of non-
€ edges reachable from v by traversing only e-edges. That is,
e = (v,l,u) € E7(v) if and only if I # ¢ and there exists a
sequence v = vo, V1, . - ., vx = v’ of nodes with (v, &,vi41) € E
fort > 0.

In addition, two graphs in UnCAL are considered to be
equal if they are bisimilar. Graphs g1 = (Vi,r1,E1) and
g2 = (Va,re, Ey) are defined to be bisimilar and written
g1 = g2 if there exists a relation (called (extended-)bisimulation)
S C Vi x V; satisfying the following conditions: (1) (r1,72) € S,
(2) for all (v1,v2) € S and (_,l,u1) € E7’(v1), there exists
ug such that (_,l,u2) € E3(v2) and (u1,u2) € S, and (3) for
all (vi,v2) € S and (_,1,uz2) € E3 (v2), there exists u; such
that (_,l,u1) € E7 (v1) and (u1,u2) € S. Here _ is wild-card
pattern indicating existence of some element whose particular
value is not cared. Intuitive understanding of bisimulation is that
unfolding of cycles and duplication of equivalent subgraphs are
not distinguished, and unreachable part from the root is ignored.
In particular, a rooted graph always has a (possibly infinite) tree
bisimilar to it; it is obtained by infinitely unfolding all the cycles
and sharings. Note that bisimulation is different from a weaker
notion “set of all paths from root is equal”.

b b b
a 0>0>0>0

a a_b
o>e _ o>exe _ 04 b 0lele olele
V=N A G . ANE
b (o)) *>e

b

Benefits of exploiting bisimulation rather than isomorphism in the
semantics are throughly discussed in [7] and not repeated here.

3.2 Core UnCAL

We define Core UnCAL, a subset of UnCAL graph algebra. The
syntax is shown in Fig. 2. In addition, we syntactically restrict the

uses of markers &;. Markers do not occur globally nor directly in
the argument expression 7 in an expression rec(- - -)(7); they can
only appear in the body expressions of recs.

The relationship between the Core UnCAL and the full UnCAL
resembles that of the Core XPath [13] and XPath XML Query
Language. That is, manipulation of the data values (comparison
with data-values $/ = "John" or $/; = $1; in the if-expressions,
and operations on labels such as {" foo" +$! : {}}) are prohibited
in Core UnCAL. Also, we have simplified the use of markers (they
can only be used for connecting rec bodies), but this is just a
syntactic difference. All the UnCAL expressions compiled from its
front-end language UnQL satisfies the syntactic condition. Except
the restrictions, the full computational power of UnCAL is also
available in Core UnCAL.

We hope the intuition of the most of the constructs is clear. Node
construction expression {l1 : 71,...,l, : T, } creates a fresh node
v and edges {(v,l1,71), ..., (v,ln, o)} where r; is the root node
of the graph obtained by evaluating the expression 7;. Variable
reference and conditional branch is defined as usual. The isEmpty
Boolean expression returns true if and only if the passed node has
no outgoing edge. The output marker expression &; is used only
in the body of rec expressions as explained below. The distinct
feature of UnCAL is that basically all graph manipulations are
expressed in terms of one unified and powerful construct called
structural recursion, expressed by the rec(. . .) expression.

3.2.1 Structural Recursion

Let us first explain the structural recursion in intuitive fashion by
using a union operator U for two graphs temporally for the sake of
explanation. A function f on graphs is called a structural recursion
if it is defined by the following equations >

ACH)) = {
f({$!:8g}) = w($l,89) © f(8g)
FUISL = $1} U U {8l : Sgu})

= FU{SL :$a}) U U F({Sh : Sgn})

where © is a given binary operator and the term w($/, $g) does not
contain recursive calls to f. Different choices of ©® define different
functions. Since the first and the third equations are common in
all structural recursions, we may omit them and simplify the above
definition as:

sfun f({$: $g}) = w(81,89) © f(39).

As a simple example, we may use the following structural recursion
to replace all edges labeled a by d and delete the edges labeled c
for an input graph.

sfun a2d_zc({$!: $g}) = if$l =athen {d:a2d_zc($g)}
else if $/ = c then a2d_zc($g)
else {31 : a2d_zc($g)}

The recursion sfun f {$! : $g} = w($,89) © f(3g) is repre-
sented in Core UnCAL by

rec(A($1,89).(s1 := w(8$1,89) © &1).

For example, the structural recursive function a2d_xc shown in the

YInformally, the meaning of this definition can be considered to be
a fixed point (though may not necessarily unique) over the graph,
which is again defined by a set of equations using the three con-
structors {}, :, and U. For instance, the graph marked with (x)
in Section 3.1 can be considered to be the fixed point of the fol-
lowing equations: Groot = {a : G1,b : G1},c : {e : {}} and
Gi=A{d:{}}

{L:7,...,0l: 7}

$g

if b then 7 else 7

&;

rec(A($,89). &1:=7,...
8l

a

$l=a

isEmpty($g)
bandb|borb|notb

o~

s & i=T)(T)

node with edges

variable reference
conditional

output marker

structural recursion

label variable reference
label (a € Labele U Data)
label comparison a € Label
emptiness checking

logical connectives.

Figure 2: Core UnCAL Language

15¢ order variables
15 order terms

274 order variables
274 order terms

v = A{z,y,...}
ty = wy | root
(X,v,..}
ts u= ws | tsUts | tsNts | 0
@ u= true | false
| e levelerplp—p | oo
| tp=t; | ts=ts | ty Ets | ts Cts
| Forp | Vorp | Fose | Yousp
| vert(ty) | edge(ty,ty, ty)

Figure 3: Syntax of Monadic Second-Order Logic

above is represented by

rec(A($/,8¢9).&1 :=if $/ =athen {d: &}
else if $/ = c then {e: &}
else {$: &1}).

Let us explain by an example. Up to bisimulation, the following
UnCAL expression abab

rec(A($1,89). s1:={a: &2}, &2:={b: &1})($db)

changes all edges of even distance from the root node to a, and odd
distance edges to b. Here, $db is a designated variable referring to
the input graph and 7(g) for any UnCAL expression 7 should be
read as “evaluate 7 under the environment {$db — g}”.
b b(ole ; .) o;o;o;o;o;o
abab(oze>e) =

e

b

Note that in our Core UnCAL, &; always corresponds to the defined
function.

As we have mentioned in the explanation of the graph data
model, the semantics of UnCAL is carefully designed to treat
bisimilar graphs equally. Indeed, it is proved that all UnCAL
transformations are bisimulation-generic (Proposition 4 of [7]),
that is, for any g = ¢’, we have f(g) = f(g’).

4. GRAPH SCHEMA IN MSO

We employ powerful monadic second-order logic (MSO) to
describe a graph schema which specifies structural constrains of
graphs. MSO is first-order logic extended with set quantification.
It has exactly the power of expressing regular tree languages [24],
being widely used as a schema language for XMLs and graphs.

The syntax of the formula of MSO over edge-labeled graph
structure is shown in Fig. 3. We adopt a variant of MSO which

Schema = Decl--- Decl
Decl = type Name = {Edge,...,Edge}
| type Name = {Edge,..., Edge,}
FEdge ;= Label : Type
Type := Name | Data | Type Type

Figure 4: Graph Schema Language GS

is used to describe so called (2, 2)-definable MSO transductions
of Courcelle [10], with customizations to adjust for our purpose,
namely adding the root constant and making edge predicates
edge, inspect labels. For a graph ¢ = (V,r, E)) and an environ-
ment I" that maps first-order variables to V' U E and second-order
variables to subsets of V' U FE, the entailment relation g,I' F ¢
is defined. We present the definition of the two graph-specific
primitives:

g, E vert(t)
g, 'k edgel (t1 s tz, t3)

ifF(t) eV
ifF(tQ) = (F(h),l,r(tg,)) cF

where I is extended as I'(root) = r. The other entailment relations
follow the standard definition. We write g F ¢ when g,I' F ¢
holds for the empty environment I'. Note that UnCAL’s seman-
tics is defined up to bisimulation as explained in Section 3. MSO
formulas that distinguish bisimilar graphs are not suitable for de-
scribing properties of UnCAL graphs. We say that a closed MSO
formula ¢ is bisimulation-generic, if ¢ = ¢’ implies g F ¢ iff
g F .

An MSO formula ¢ with one free variable can be regarded as a
graph schema. For a graph ¢ = (V,r, E) and a given formula ¢
with one free variable z, we can say that g conforms to ¢ when
g,z — 1 FE ¢ holds. We define the bisimulation genericity of
schemas in a way similar to closed formulas. We say that an MSO
formula ¢ with one free variable x is bisimulation-generic if g = ¢’
implies g, x — v F @ iff ¢,z — v’ ¢ for any nodes v in g and
v’ in ¢’ where v and v’ are bisimilar. In the rest of the paper, by
schema we mean a bisimulation-generic MSO formula with one
free variable.

Adopting MSO formula as a front-end language of graph
schemas may not be a good choice, however. In particular, it may
be difficult to write correctly MSO formula while making sure
its bisimulation genericity. It would be better to provide a graph
schema language which is inherently bisimulation-generic and
which can be automatically translated into MSO formula. As an
example, the schema language GS in Fig. 4 fulfills the require-
ments. Its concrete semantics and its translation to MSO formula
can be found in [17]. For instance, the graph schema Members
presented in Section 2 is written in GS, and can be systematically

translated into the following bisimulation-generic MSO formula:

3® Xtembers- 3° Xperson. 3° XMailorphone- 3 XMail- 3° Xphone-
root € Xuemvers /\
v u.vert(v) —
¥ € Xyenbers — PMembers (V) A
v € Xperson — Pperson(V) A
¥ € XMail0rPhone — PMailorPhone (V) A
U € Xyail — Prair(v) A
¥ € Xphone — PPhone (U)

where each formula ¢g(v) with a schema name S is defined using
its declaration. For example, the formula @uemers (v) is given by

3°0. e_out(v,0) A
Ve e € OA-vert(e) —
3 2.3y, edge,., (z,6,9) Ay € Xperson

Here, e_out(v, O) is a predicate for checking if O is a set of non-¢
edges reachable from v by traversing only e-edges, which is imple-
mented in a standard technique for representing transitive closures
in MSO.

Note that GS is just an example of a front-end schema language.
The results in the following sections are not specific to GS. It is
applicable to any schemas representable in MSO.

5. CORE UNCAL IN MSO

In our verification method, not only schemas but also transforma-
tions are represented by MSO. Then, we combine the MSO formu-
las for transformations with those for schemas into a single MSO
formula, whose validity is equivalent to the correctness of the trans-
formation with respect to the schemas.

The difficulty here is how to map the structural recursion of Un-
CAL that iteratively walks through graphs to an MSO formula that
declaratively represents a relationship between input and output
graphs. This problem is addressed by exploiting an alternative se-
mantics called bulk semantics of UnCAL [7], which more fits to
logical formulation, and known to be equivalent to the usual recur-
sive semantics.

Another challenge comes from the fact that MSO-definable
transduction intentionally has been restricted its expressiveness
to keep many important properties decidable. Not all Core Un-
CAL expressions can be translated into such a restricted class of
MSO-definable transductions for the reason mentioned later. To
avoid the problem and give a terminating decision procedure, we
ask programmers to add several annotations on UnCAL, which
provides schema information on intermediate result graphs. The
annotations should be put on certain subexpressions.

This section first introduces the formalism to specify transforma-
tions in terms of MSO formula, and then shows how such formulas
can be constructed from Core UnCAL.

5.1 MSO-Definable Graph Transduction

We basically adopt the formalism in [10] called MSO-definable
transduction for specifying graph transformations in MSO. We,
however, slightly generalize the formalism to what we call MSO-
definable transduction system in order to give a simpler translation
from UnCAL and an easier treatment of annotations.

Definition 1. MSO-definable transduction system is a tu-
ple M = (I,S,Dy,D.) where I is a finite set called the
set of copy-ids, S a nonempty subset of I called the input

set, D, a partial mapping that maps each ¢ € I\ S to an
extended-formula vert;(y), and D. a partial mapping that
maps each (1,4, 5, k) € Label. x (I*\ S®) to an extended-formula
edge, ; ; (%, y, 7). Here, extended-formula is an MSO formula
that has vert;(x) and edge, ; ; ,(x,y,2) for 4,5,k € I and
l € Label. as primitives, instead of vert(z) and edge,(z, y, 2).

In MSO-definable transductions, output graphs are considered to
be constructed by first generating |I \ S| copies of the input graph
(hence the name copy-id is given for the set I), and then reorganiz-
ing the edge/vert relations among them according to the formulas
in D, and D.. The essential difference of MSO-definable trans-
duction systems as above from the original definition in [10] is
that each edge, ; ; ,, and vert; can be defined in terms of other
edge;, ;s i/ ;s and vert;. In the original version, they are only
allowed to be defined in terms of the original input. This difference
does not change their expressiveness of graph transductions.

We only consider acyclic systems. That is, there must be a
total order on I such that in the definition of formulas vert; and
edge, ; ;. all the occurrences of elements of I must be strictly
smaller than ¢ and j. We often write edge, ; ; (%, ¥y, 2) 1= p to
mean D¢ (1,1, j, k) = ¢, and write similarly of vert;.

Let us explain the idea by the following example with
I ={0,1,2} and S = {0}:

edgebuz,2,2,2(m7y7 = edgebar,l,l,l(x7y7 2)

z):
Edgebar,l,l,l(x7 Y,2) = edgefco,0,0,0(m’ Y, 2)
y) :

verts (y) := verty(y)

verti (y) := verto(y)

The input set S denotes the set of copy-ids for input graphs of
the transformation defined by this system. Thus, the formula
edge;,, o.0.0(2,y,2) is read as “in the input graph, z, y, and
z form an edge labeled foo”. Intuitively speaking, in an MSO-
definable transduction system, output graphs are thought to be
created by copy-and-edit from the input graphs. In the above
example, |I \ S| = 2 copies of the input nodes and edges are
created by the system, and are reorganized to form the output
graph, guided by the supplied formulas. For instance, the 1st
copies of x, y, and z form a bar edge if and only if they are a foo
edge in the input. The 2nd copies of them form a buz edge if their
Ist copies form a bar edge, which happens only when they form
a foo edge in the original input. In other cases, no edge is drawn.
After all, if we regard {2} C I as the output graph of this system,
the transformation defined by the system is what renames all the
edges foo to buz and eliminates all the other edges. If we regard
{1} as the output, it defines the transformation renaming foo to
bar and eliminating others.

In general, S may not be a singleton. In such a case, the system
represents a transformation taking multiple inputs g1, g2, - - -, g||-
Even in the case, we can regard them as a single-input transforma-
tion, by assuming a virtual input graph ¢ = {elem : g1,next :
{elem : g2,next : ---}} and considering each g; as one of the
output graphs from the transduction system (each g; can be ex-
tracted by a simple subgraph extraction, and it can easily be written
in a set of MSO-formulas). Hence, in the following discussion in
this subsection we assume a single input S = {s}.

Formally, for a nonempty set J C I, copy-id p € J, and graph
g = (V,r, E), the transduction system defines an output graph
gJ,p = (V,7rlE/) by

o V' ={(v,i) € (VUE) xJ|g,{y— v} F verti(y)},

o E'={((v,1), (w,7),(u,m)) € (VUE) x J)* | g, {z —
v,y — w,z— ulF edgeg,mﬂn(m7 y,2)}, and

q = T
T u= {l:7,...,0l:7}
| ifbthenTelser
| &
| rec(A($1,89). &1 pi=T,..., &0t 0:=T7)(T)
| Sgue
Figure 5: Type Annotated Core UnCAL
o ' =(rp)

where vert’(y) is the formula obtained by recursively replacing
vert;(y) with Dy (i) (if Dy () is not defined, it is replaced
with vert(y) when ¢ = s and otherwise with false) and
edge, ; ; (7, y,2) with De(l,4,5,k) (f De(l,i,5,k) is not
defined, it is replaced with edge,(x,y,z) wheni = j = k = s
and otherwise with false).

The following lemma is important in MSO-definable transduc-
tion systems. The inverse image of an MSO-definable set of graphs
under an MSO-definable transduction system is MSO-definable.

LEMMA 1 ([10], PROP. 3.2). Let M = (I,{s}, Dy, D.)
be an MSO-definable transduction system, J C I, p € J,
and a closed MSO formula . Then there exists an MSO for-
mula inv(M, J, p, o) such that, for any graph g, we have
g F inv(M, J, p,) ifand only if g5, F .

The lemma enables us to convert MSO formulas on output
graphs into that on input graphs. Using this conversion, the ver-
ification problem that tests the assertion “for any input graph
g, if it conforms to the input schema (i.e, g F (), then
91,0 E @our” can be restated as the validity of a single formula
“ony — inv(M, J, p, pour)” on input graphs.

One limitation of MSO-definable transduction systems is that by
definition it can represent only linear-size increase transformations;
the size | g, | of the nodes in the output graphs is linearly bounded
by the input size |J||g|. In UnCAL, superlinear growth is caused
only by using nested-recursions. This is exactly the reason why our
verifier, as explained later, requires annotation for such a case.

5.2 Adding Annotations to Core UnCAL

Annotations are supposed to be supplied by programmers in the
syntax shown in Figure 5, which we call the type annotated Core
UnCAL. The nonterminal g represents the whole program. Here
the programmer can specify the schema for the output database
(i.e., the result of the evaluation of the whole UnCAL expression
7). In the rec expression, the occurrence of variables $¢g and the
body expressions of the recursion accept the schema annotation. In
conventional programming languages, this means that every func-
tion is having type annotation on its parameters and return values.

Intuitively, the annotation $g :: ¢ on parameters works for the
verifier in two ways. (1) The graph pointed by the node bound to
$¢ must conform to the schema ¢: the verifier is obliged to ver-
ify the conformance. (2) In the body of the rec expression, the use
of graph $g can be assumed to be bound to a node pointing to an
arbitrary graph satisfying (: the verifier can use this assumption.
The annotations &; :: ¢ := 7 on the markers also have two roles.
One is to tell that the verifier must make sure that the result of eval-
uating this expression must conform to the schema ¢. Another is
to tell the verifier that the result of evaluating the whole rec(...)
expression can be approximated as an arbitrary graph that is con-
structed as the union of the graphs conforming to ¢1, where ¢ is
the supplied schema annotation to the first body expression & .

5.3 Type Annotated Core UnCAL to MSO

From now on, we consider a fixed annotated Core UnCAL pro-
gram ¢ and explain how to translate it to MSO. For the finite copy-
id set [in the definition of MSO-definable transduction system, we
use the set C'id of elements generated by the following BNF

Cid ::= CodePos | {Cid, CodePos,N)

where CodePos is a set of unique identifiers assigned to each
subexpression of ¢, and N is the set of natural numbers. The angle
brackets () just denote tupling. Although the set Cid is infinite,
in the following construction we only use finite portion of them.
More specifically, the nesting depth of ()s are at most the nesting
depth of recursions in the given UnCAL transformation, and the
natural numbers N used is at most max(2, 2n,2m) where n is
the number of markers and m the maximum number of outgoing
edges of the node-construction expression in the transformation.

We inductively define a procedure ft2mso that converts a type
annotated Core UnCAL expression to a set of MSO formulas. It
has the following form:

ft2mso(c, I,) (7F) = (M, J, p, O, A).

It takes four parameters (three of them are to hold contextual in-
formation used during the conversion, and the last one is the Un-
CAL expression) and returns a tuple consisting of five components.
The fourth parameter 77, which is separately parenthesized for em-
phasizing its special position, denotes the UnCAL expression to
be converted. The superscript ” denotes the code-position of the
subexpression. The first parameter c is a triple (cv, ce, cu) of copy-
ids denoting the ids of the current edge. The meaning of this param-
eter should become clear when we reach to the formal definition of
ft2mso that deals with rec expressions. The second parameter I"
is the mapping from variable names to the copy-id of the graph de-
noted by the variable. The third parameter ¢ is an MSO formula
representing the condition for the current subexpression to be ex-
ecuted; in other words, it is a conjunction of the condition of if
expressions enclosing the current expression.

Then it computes five components simultaneously. The first
component M is an MSO-definable transduction system that
represents the UnCAL transformation 7. The second J and the
third p components are to denote the copy-ids of the output graph
obtained by evaluating 7. The fourth O and the fifth A components
are sets of MSO formulas, which represent the conditions that are
Obligations to satisfy and that can be Assumed, respectively. They
correspond to the two roles of annotations as explained before.
They are stored in the form of triple (J, p,) meaning that the
output graph g ; , must (or can be assumed to) satisfy .

Let us show a very simple example of the translation. Consider
the type-annotated UnCAL expression {foo : $db :: ¢1} :: o that
simply prepends an edge labeled a to the input graph $db. Let the
code positions of each subexpression p, ¢, and r, i.e.,

({foo : (8db :: 1) "} i o).
Translation of the expression will yield the following MSO-
definable transduction system
M= (I ={{c,q,0),{c,q,1),{c,r,0),{c,m 1)1},
S ={r},
D, = { vert. q.0y(y) := (y = root)
vert (. ,0)(y) := (y = root) },
De = { edge;o, (c.q,0),(c.q,1), (c,r,0) (T Y5 2) =
edge. (. ,.0) (1), (T:Y:2) =P })

where ¢ = Fveu.(t=eAy=e A z=e A e=root) (which
is equivalent to x = y = z = root) and ¢ = (p,p,1). The
system involves five copy-ids, and one of them, r, represents its
input graph. In addition to the original input graphs, it adds to
nodes (c, ¢, 0)-th and (c, r, 0)-th copies of the root node, and two
edges labeled foo and ¢ (addition of e-edge is a technical subtlety
which is not important).

In addition to the system, the translation gathers the obligation
and assumption formulas as follows:

0 ={{(¢4,0),(¢,q,1), (¢, 7, 0), {¢; 7, 1),7}, {¢, 4, 0), po[root]) }.

A={({r},r erfroot]) }.

That is, the verifier must make sure that the output graph conforms
to the schema o, under the assumption that the input graph satis-
fies ¢1. Hence, the correctness of the transformation with respect
to annotations are equivalent to the validity of the following MSO
formula.

inv(M, {r},r, ¢1[root]) — inv(M, I, {c, q,0), po[root])

Testing procedure of this kind of MSO formula is discussed in
Section 6.

Whole Program.

The whole program of type annotated UnCAL consists of an ex-
pression 7 and a schema annotation :: (. It is translated as fol-
lows; it first translates the body expression into the corresponding
transduction system, and adds an obligation formula stating that the
output graph must conform to ¢.

ft2mso(_, _, _)((7 :: ¢)") = (M, J,p,00 U O, A)
where(M, J, p, 0, A) = ft2mso(c, {$db — p}, e=root)(T)
Oo = {(J, p, ¢lroot])}
¢ = ((p;p,0), (p,p, 1), (P, P, 2))

The first argument c to the recursive call of ft2mso is meant to be a
three unique copy-ids that will not conflict with copy-ids used in the
other place during translation (conflict avoidance is the reason why
we include the code-position of the current expression in copy-ids).
The second argument assigns a copy-id to the designated variable
$db denoting the input graph. The third argument is a formula
containing possibly three free variables v, e, and u that encodes the
condition that the UnCAL expression is executed. In this case, we
specify e= root to mean we start evaluation from the root node.

THEOREM 1. Let ¢ = 7 :: ¢ be a type annotated UnCAL pro-
gramand (M, _, _, 0, A) = ft2mso(q), then A\, , inv(M,a) —
Nsco inv(M, o) is valid if and only if q never violates the schema
annotation. In particular, if the formula is valid, then for any input
graph, the output graph conforms to .

In the remaining subsections, we give the inductive construction of
the translation ft2mso in detail for each kind of UnCAL expres-
sion. Although the proof is omitted for brevity, the correctness of
the construction can be shown by straightforward induction on the
structure of expression, showing that it exactly represents the bulk
semantics of UnCAL [7].

Node Construction.

Let us examine the rules for subexpressions one by one. The first
case is the node-construction. As an exercise, let us first explain the
case of node creation {1 : 71} with only one outgoing edge.

ft2mso(c, T o) ({l1 : 1 }P) =

(Ma[(l1, {ce, 0, 0) €, {ce, p, 1) €, p1 €) = 0],
J1 U {{ce,p,0),(ce,p, 1)}, {ce,p,0),
O1, A)
where (M1, Ji, p1,01, A1) = ft2mso(c, T, p) (1)

Since this node construction expression itself does not have any
schema annotation, it does not add any obligation or assumption.
Hence, the O; and A; components are the same as those of the
subexpression 7.

The first three components describe edges and nodes generated
by the current expression. The notation M[(l,i o, j 3,k v) — ¢]
for a, 8,7 € {v,e,u,root} is a short hand for defining a new
MSO-definable transduction system (I’ J, D, D.) from M =
(I,J,Dy, Do) by I' = TU{i,5}, D}, = D, U{i— Fxz4p, k —
I zz4p}, and D, = DU{l,14, j, k — 3} where o is 3 v,e,u.(z=
a ANy=p N z=v A ¢). It should be read as “i-th copy of «, j-th
copy of (3, and k-th copy of «y forms an edge in the output graph of
this expression when ¢ holds” as the picture below:

(cep,1)4h copy of em——> p-th copy of e

(<c€7p7 O>_th copy Ofe)

For example, in the example in Section 2, an edge labeled
pair will be drawn for each edge labeled friend in the in-
put graph. The expression {pair : ...} generating the pair
edge is translated by the ft2mso procedure with the parameter
© = edge;ieng . .co.cy (Us €). Then the transduction system
has a definition of an edge as follows:

edgepair, (c.,p,0),(ce,ps1) .01 (5 Y, 2) 1=

J'v,e,u.(z=e A y=e A z=e A edge; i cy oy (V65 1))-

That is, “an edge (which is the (ce, p, 1)-th copy of e) of label pair
is drawn from the (ce, p, 0)-th copy of e to the p1-th copy of e, only
when c-th copy of e is an edge labeled friend”.

The actual definition of ft2mso is generalized for the case of n
outgoing edges, by simply taking the union of the above construc-
tion:

ft2mso(c, Ty o) ({l1 : 1, -y ln : T }P) =
(U Ml[(lh <Ce7p, 0> €, <Ce7p, Z> €, Pi 6) = @]7

1<i<n

U (Jiu{(ce,p,0), (ce,p,)}), (e, 0),

1<i<n
Uo. Ua)
1<i<n 1<i<n

where (M, J;, pi, O;, A;) = ft2mso(c, T, @) (1)
foreach1 <1 <mn.
Here, the union of transduction systems (I,S, D, De) U
(I',S', Dy, DY) is defined as (I U I',S U S',i — Dy(i) V
D(/(Z)7 (177;7.7'7 k) = De(l7i7j7 k) \/ D(/e(l7i7j7 k))

If Expression.

In fact, if expression is quite similar to usual node construction
{ly : 71}; it just draws an e-edge pointing to the then branch or
else branch, depending on whether the condition holds or not.

ft2mso(c, T,) ((if b then 11 else m)F) =
(Mu[(e, {ce,p, 0) €, (e, p, 1) €, p1 €) = © A 1]
U Mal(e, {Ce, P, 0) €, (Ce, P, 2) €, p2 €) > 0 A —pp],
J1 U J2 U{{ce,p,0), (ce,p, 1), (ce,p,2)}, (ce,p,0),

01U0;, A1UAy)
where (M1, Ji, p1,01, A1) = ft2mso(c, T'y o A vp) (11)
(Ma, J2, p2, 02, As) = ft2mso(c, T, o A =) (72)
b = b2mso(b)

The procedure b2mso is to convert boolean condition to MSO for-
mula in a straightforward manner. E.g., the condition $/ = a is
converted to edge, .. . (v,e,u). Only one complexity is in
the isEmpty predicate of Core UnCAL, but it can be dealt with
by the standard technique to represent transitive closure in MSO.)
One thing that must be noted here is that we assume all label vari-
ables 31 are always the innermost-scope variable. This assumption
is satisfied by a simple program transformation; since we are now
considering the case where the set Label. of labels is finite, we can
eliminate nested-occurrence of $1’s by first inserting an exhaustive
branching if $/ = a--- else if §/ = b else --- to the scope
where the variable $! is introduced and then instantiate $/ to the
concrete label constant in each body of the branching. In fact, this
transformation eliminates expressions of the form {$/ : 7} (which
we did not consider in the definition of ft2mso above), too.

Marker.

In type annotated UnCAL, markers are always annotated with
schema in the top-level of rec expression. So, we assign copy-ids
for markers during processing rec expression, and store it to the
environment I'. At the occurrence site of a marker as an expression
our MSO-encoding simply generates an e-edge and connect to the
root node of the graph whose copy-id is stored in I'. The reason we
add e-edge here is a technical and non-essential reason; we want to
make every output nodes/edges copies of input edges e (not root),
which make implementation and definition slightly simpler.

ft2mso(c, I, @) (&) =
(Myl(e, (ce,p, 0) €, {ce; p, 1) €, T (s4) root) =],
{<Ce,p, O>, <Ce7p7 1>u P(&i)}v <Cevpa 0>7 {}7 {})

The transduction system M, = ({p}, {p}, D, D) is the empty sys-
tem with the copy-id of input graphs being p.

Variable Reference (Outer Scope).

There are two types of occurrences of variables in expression.
One is the innermost-scope variable, which is the variable that
is bound in the innermost enclosing rec expressions, like $g
in rec(\(81,89).61 := $g). Another case is the outer-scope
variables, which are bound in the outer rec recursion, like $¢; in
rec(A(301,891).51 := rec(A($k, $g2).&1 := $g1)). The latter
case (and the designated input variable $db) is treated similarly
as markers. That is, we simply draw an e-edge to the root of the
graph.

ft2mso(c, T, @) (89 :: ¢P) =
(Mpl(e, (ce,p,0) e, (ce, p, 1) €, T(8g) root) =],
{(ce;p,0), (ce;p, 1), T(89)}, (ce, p, 0),
{ {{T(89)},T(8g),¥lroot]) })

We also add assumption formula here. Obligation formulas are
generated in outside of this expression.

Variable Reference (Innermost Scope).

Difference of variables and markers is that the type of
variable can be context-dependent. Consider the expression
if $/ = contact then $g:: ¢Y1 else {$I : $g::1¢2}. To

generate obligations for the annotation :: 1, it must take into
account that the expression is under the branching by if. In this
case, $¢g must have conform to %; only when $/ = contact.
To incorporate the information, we use the third parameter ¢ of
ft2mso containing the conditions of translated if branches.

ft2mso(c, T,) ($g :: ¢P) =
(My[(, {ce, p, 0) e, (ce, p, 1) €, T'(8g) root) — ¢,
{(ce;p, 0), (ce,p, 1), T'(89)}, (e, p,0),
{ (Jo, cu, V', e,u. (0 — ¥u])) },
{ ({T(89)},T(89), ¥[root]) })

where Jj is the set of copy-ids of the argument graph of the rec
expression introduced the variable $¢, which is computed while
ft2mso processes the rec expression.

Structural Recursion.

The rule for recursion is the most complicated one. The diffi-
culty here is how to map the structural recursion of UnCAL that
iteratively walk through graphs to an MSO formula that declara-
tively represents a relationship between input and output graphs.
This problem is addressed by exploiting an alternative semantics
called bulk semantics [7] of UnCAL, which more fits to logical
formulation, and known to be equivalent to the usual recursive se-
mantics.

In bulk semantics, the structural recursion rec(A\($7, $g). &1 :=
Tiy...,&n:=Tn)(70) is evaluated as follows: first evaluate 7o and
obtain the argument graph, and then, for every non-¢ edge (v, I, u)
of it, evaluate each 7; separately under the environment {$! —
l,$g — u}. After that, the output marker expression &; (if any) in
T; is connected to the root nodes of the result graphs of the evalua-
tion of 7; at the edges having u as their source node. Formally, the
expression rec(A($,$g). &1:=71,..., & :=7n)(70) is evaluated
as follows. First, evaluate 7o and obtain a graph go = (V,r, E).
Then, generate n new nodes from b to ™ for each node v € V,
each corresponding to the marker &;. Then for each edge p =
(v, 1, u) starting from v, we evaluate each body expression 7; to ob-
tain a graph g, ;. If | = &, we let gp; = ({*%, u}, v, {("v,&,) }),
i.e., e-edges are always kept unchanged. If | # ¢, evaluate 7; under
the environment {$! — 1,$g — u, &1 +— u,..., &, — "u} and
get g, = (V',r',E’). Then we let g, ; = (Vp,i,Tp,is Ep,i) =
(V' U {},, E' U{("v,e,7")}), making “ the new root node’.
The result graph g of the evaluation of the whole expression is the
simple aggregation g = (U, ; Vp.i Iy, U,.; £p.i) of all the graphs
Jp,i» making the &; output at the root node in the input graph as the
root node of the output.

The behavior is illustrated in Fig. 6. Recall the structural recur-
sion a2d_xc defined in Sec. 3.2. Applying it to the input graph in
Fig. 6(a) yields the graph in Fig. 6(b). The body of the recursion is
applied to each of the three edges in the input graph and we obtain
three graphs illustrated in the boxes. Then, new root nodes v are
added. Although depicted separately, the two % nodes for each 4
denotes the same node and hence glued together. If we eliminate
all e-edges, we obtain a standard graph in Fig. 6(c).

Compared to the recursive interpretation, this bulk semantics
rather naturally translates to our logic-based formulation as fol-
lows. For each edge (represented by ¢’ € Jo x Jo x Jo), we
evaluate bodies e’ and glue them together by simply taking union.

ft2mso(c, T, p)(

3This e-edge introduction will be implicit in the example and de-
picted as if we unified " and v

@

X 1 Q)
a @) bl |d
@

c e, d
(a) An Input @ (c) After Removing
Graph (b) Before Removing e- £-edges
edges

Figure 6: Bulk Semantics of Structural Recursion in UnCAL

s &n 1 pn 1= Tn)(70)")
(MpuMoUJM, o} »,
osu |J og,uoulJor,
1<i<n ie!
A,udoul Al)
where(Mo, Jo, po, Oo, Ao) = ft2mso(c, T,) (10)
(M7 6, OF AT) = fe2mso(
I'[$g — (ce,p,0), &1 — {(Ce,p, 1),
v &n — {Ce,py)], true)(m;)
foreach1 <i<m,c € Jy x Jo x Jo

rec(A($1,89 :: wo).81 :: 1 : =T, ..

Os = { (Jo, cu, Vv, e,u. (¢ — @olu])) | $¢" :: 1 occurs

. . . !
in some 7; for the current innermost scope variable $¢° }

Os, = { (J¢, p¢', pilroot]) }
Ay = { ({p},p, ¢i[root]) }

Still, quite a few things must be taken into account. First, we need
to generate obligation formulas for the current innermost scope
variable, if it is used inside the body of this recursion. Second,
we need to generate obligation formulas for markers. Thirdly, we
need to add an assumption formula that the result of the recur-
sion conforms to the schema (7; where (7] representing a set of
graphs consisting of unions of graphs satisfying . To be concrete,
itis /\aebabel6 eredgea(a;, €, y)7 352(557 €Y, root € Z) A ¢Z)
where 17 is a restriction of second-order quantification into Z.

5.4 Relaxing the Annotation Burden

In the previous section, we have treated variables $¢, markers
&i, and rec expressions as something opaque. That is, they are as-
signed new copy-ids and treated as an arbitrary graph that satisfies
the annotated schema.

This can be made transparent in many situations. For instance
inrec(A(81,$g :: ¥).{foo : $g}), the destination node of the foo
edge is not an arbitrary graph of type), but it is the destination
of the currently processed edge, whose copy-id is determined dur-
ing the translation by ft2mso. In such cases, no annotation is re-
quired because our verifier can automatically connect the appropri-
ate nodes and complete the structure information of such variables.

In the following three cases, annotations can be removed: (1)
annotation $g :: ¢ to the innermost scope variables can always be
omitted (2) annotation &; :: ¢ for markers with ¢ > 2 can always
be omitted (3) annotation &; :: ¢ for the 1st marker of the recursion

can be omitted if no other annotations are used inside the structural
recursion. In particular, if the transformation never uses nested
used of recursion variables, no annotation for intermediate graphs is
required to verify the correctness. Programmers just need to specify
the intended schema for the input graph $db and the output graph
(i.e., result of the whole expression), our verifier can convert the
UnCAL expression into MSO formula fully automatically.

Here is the excerpt of the no-annotation version of ft2mso for
the case of structural recursion.

ft2mso_na(c, T, o) (
rec(A($1,8¢9).&1 :=11,. ..

(Mou M

i,c’

 &n 1= Tn)(10)") =

(57 <C<,,p, 21 — 1>U7 <c</7p7 21 — 2)”7/)5/@) — 90]7
JoUJ I U{{ew,p.x) | 2 < 20}, (evp,0))

i/
where(Mo, Jo, po) = ft2mso_na(c, T, ¢)(70)
(./\/lf/7 Jf/, pf/) = ft2mso_na(c’,
L[8g > ci, 61 = (ci,p, 1)),
v {Cy, p, 20 — 1], true) ()
foreach1 <i <n,c € Jy x Jo x Jo

The difference is, for instance, in the translation of subformulas 7;,
$g is now bound to cy, which is exactly the copy-id of the desti-
nation node of the focused edge ¢’ and is not the newly generated
fresh id (ce, p, 0) as in the type-annotated version. Or, &; is bound
to (c}y,p,2i — 1), the (23 — 1)-th copy of the destination node,
which, in the definition (¢}, p, 2i — 1)v, (¢}, p, 2i — 2)v, p§ €) of
the output transduction system, is declared to be connected to the
root node pf/ of the transformation result of the destination node.

6. DECISION PROCEDURE

The verification problem of annotated Core UnCAL is now re-
duced to the problem of validity of a closed MSO formula. This,
however, is not a trivial task. Even for the first-order logic, valid-
ity of a formula is well-known to be undecidable on general graph
structures [27]. Even worse, expressing schemas in logic usually
requires involved features like transitive-closures (e.g., to ignore
e-edges) that go beyond first-order logic.

Nevertheless, we can avoid the undecidability thanks to the nice
property of UnCAL, namely, the bisimulation-genericity. We prove
that the MSO formula obtained by the previous section is not valid
on some graph if and only if it is not satisfied on some (possibly
infinite) tree, on which decidability is known in the literature. Fur-
thermore, a vast range of UnCAL transformations falls into a cate-
gory called compact transformations [7]. For this class of transfor-
mations, we can show that there must be a finite-tree counterexam-
ple if there are any counterexamples. The property is important for
efficient implementation.

6.1 Reduced to Infinite Tree Model

To decide the validity of a bisimulation-generic formula, we only
need to consider some representatives of bisimilar graphs. For-
mally speaking, the following lemma holds.

LEMMA 2. Let b be a function from graphs to graphs such that
g = b(g) forany g. Let @ be a bisimulation-generic formula. Then,
the claim “g E @ for any graph g” holds if and only if “g E ¢ for
any graph g in range of b”.

PROOF. The ‘only if” direction is trivial. For the ‘if” direction,
g F v equals b(g) F ¢ by the bisimulation-genericity of ¢ and the
latter holds because b(g) is surely in the range of b. [

By taking the representative function b as the infinite unfolding
function, we can focus the range of g on infinite trees rather than
arbitrary graphs. Fortunately, there is an effective procedure to
check the satisfiability or validity of MSO on infinite trees [22].

THEOREM 2. Verification problem is decidable.

The proof of the decidability resorts to the decidability of emptiness
of automata. Since the emptiness test procedure easily exhibits a
way to produce a counterexample in a nonempty case, our approach
can generate a counterexample to the UnCAL verification problem
in the case of failure.

6.2 Reduced to Finite Tree Model

Graph transformations are called positive if they do not use
isEmpty expression that checks whether or not a node has any
outgoing edge. Many useful transformations fall into this category.
In the appendix of [7], a positive transformation is shown to have a
property called compactness, by which we can reduce the problem
on infinite trees to finite trees.

To formalize the notion of compactness, let us first introduce the
operation cut. For trees 71 = (Vi,71, E1) and T = (Va, 12, E2),
we define the prefix relation 71 <75 to hold when there is a one-to-
one mapping e from V; to Va such that e(r1) =72 and (v1,l,u1) €
E, iff (e(v1),l,e(u1)) € Ea. For a possibly infinite tree 7", the
set of its finite-cuts is cut(T) = {t | t < T,tis finite}. For

instance, the finite-cuts of an infinite tree cut(o->e->e->e ..)

are infinitely many finite trees {0, o->e, o->e->e, .. }.

A set C'is said to cover T if it is a subset of cut(T) and for any
t € cut(T) there exists t. € C such that ¢ < t.. Intuitively, t < ¢’
means that ¢’ contains more information on the original tree T than
t. When C covers T, it roughly means that C' has enough infor-
mation to recover T'. The following property of positive UnCAL is
called compactness. It means that instead of transforming an infi-
nite tree 7', we only need to transform each finite-cut for obtaining
enough information to construct f (7).

LEMMA 3 ([7], PROPOSITION 8). Let T' be a possibly in-

finite tree and f be a positive UnCAL transformation. Then,
{unfold(f(t)) | t € cut(T)} covers unfold(f(T)).

We can extend the notion of compactness to schemas. A schema
(is called compact if for any tree 7: (1) T' = ¢ implies ¢ = ¢ for
all t € cut(T), and (2) if there exists a set C C {t | t £ ¢} that
covers 1', we have T = ¢. When both schemas and transformation
are compact, validity on infinite trees can be checked by testing
only on finite trees.

THEOREM 3. If the schemas are compact and the transforma-
tion is positive, the verification problem is reducible to the validity
of MSO on finite trees.

For the detail of the proof of Theorem 3, refer to our technical
report [17].
Decidability of MSO on finite trees* is proved in [24] by much

*Here we mean by MSO on finite trees what is called weak MSO
(WSKkS) in the literature. Precisely speaking, it is MSO on the
infinite k-ary tree domain with no node/edge-labels, whose second-
order variables can range over finite sets only. Since the finiteness
restriction prohibits us to encode infinitely many labeled-edges, we
call it MSO on finite trees. Similarly, we mention MSO on the
infinite k-ary tree with no restriction (SkS) as MSO on infinite
trees.

simpler manner than the infinite case. Indeed, this simplicity is im-
portant for having more efficient implementation of the verifier. For
MSO on finite trees, there exists a good practical implementation
MONA [14], whose efficiency is verified in many applications. Our
current prototype is implemented using MONA, leaving the infinite
case as future work.

7. RELATED WORK

In the original paper [7], the logical characterization of UnCAL
is given using first-order logic with transitive closures (FO+TC) by
showing the logic captures the full expressive power of UnCAL.
The problem is that the validity of FO+TC formula is undecid-
able [25] even on finite trees. Hence, naively reducing the problem
to FO+TC can only derive either unsound, incomplete, or possi-
bly non-terminating verification algorithms. Rather, our approach
is to start from a decidable logic (namely, MSO on trees) capturing
some clearly defined fragment of UnCAL, and provide sound and
terminating verification algorithm for the fragment, which we hope
to be a solid basis towards the complete verification of full UnCAL.

Concerning the choice of logic, in [18], it has been shown that the
bisimulation-generic subset of MSO is equivalent in expressiveness
to the modal p-calculus. This suggests that we can use p-calculus
in place of MSO. The problem is, however, there is no established
method to represent transformations in u-calculus, Different from
predicate logics, there is no way to denote each node or edge indi-
vidually in p-calculus, which makes it hard to describe a transla-
tion in terms of things like edge predicates as in MSO-definable
transduction. Nonetheless, if we could overcome the problem, the
worst-case EXPTIME complexity of validity of pu-calculus is an
attractive candidate regarding the non-elementary complexity up-
perbound of MSO.

Another group of related work on verification of transformations
can be found in the area of XML processing, under the name
exact typechecking [26, 21, 20, 12]. The main tool there to rep-
resent transformations is what is called a tree transducer, a kind
of functional programming language. Our approach to construct
the inverse image f~'(ypour) Of the output-schema follows the
same way as those researches on XML typechecking. Advantage
of MSO-definable transduction over tree transducers is, (1) it is
straightforward to generalize the notion from trees to graphs, and
(2) composition (in UnCAL terminology, rec expression inside
the argument of another rec expression) of transformations can be
relatively easily handled. In tree transducers, the number A of com-
position makes the complexity of typechecking very high, namely,
h-exponential (and hence recent work [20, 12] targets a single,
non-compositional transducers). While in MSO, it stays single
exponential. Note, however, some variants of tree transducers have
higher expressiveness that allows to represent nested-recursion
without annotations. It is our future work to combine those
two approaches and seek a balancing point of complexity and
expressiveness.

Unno et al. [28] proposes a verification method for tree process-
ing programs using higher-order macro tree transducers utilizing
annotations. Since their method can be applied to infinite-trees, it
can also handle bisimulation-generic graph transformations. Com-
pared to our method, the places for required annotations are dif-
ferent. Theirs does not require annotation for nested occurrence of
variables (which is needed in our approach), while it requires for
compositions (or generally, re-consumption of a temporarily cre-
ated trees), which is not needed in ours.

Finally, the simulation-based schema [5] compared with MSO
in Introduction still has some advantage over our MSO-based ap-
proach. Although it is weak for representing structural properties

of graphs, it is easily adopted to express properties on data values,
because its schema can have unary predicates putting constraints on
data edges (like, “it must match some regular expression’), which
is left as future work for our approach.

8. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new approach to verifying
graph transformations written in the Core UnCAL against the spec-
ified input/output graph schemas in MSO. We show that the Core
UnCAL can be represented as an MSO-definable graph transduc-
tion, where not only schemas but also transformations are described
by MSO formula, and efficiently implemented with MONA [14].
Our verifier can deal with any graph transformation in the type-
annotated Core UnCAL, and more advanced structural properties
like “either-or” compared to existing simulation-based checking al-
gorithm. Furthermore, when the transformation failed against the
verification, our verifier can produce a understandable counterex-
ample with respect to the input rather than the output.

Future plan is to support data values and to broaden the verifi-
able transformations. Firstly, unary predicates on data values such
as a test of the range of integer values or the length of string data
can be rather easily incorporated into our framework, by basically
regarding them as a normal label, but conformance to a schema is
tested by logical subsumption. As long as the conditions are writ-
ten in decidable logic, the conformance can be decided. Then, for
binary or more complex predicates such as asserting that two data
values must always be equal, we plan to extend our approach by
using a nondeterministic MSO-definable transduction and approx-
imate complex branches by a nondeterministic choice. This tech-
nique is already used in verification of XML-transformations (see,
e.g., [21]).

9. REFERENCES

[1] S. Abiteboul, D. Quass, J. Mchugh, J. Widom, and J. Wiener.
The lorel query language for semistructured data.
International Journal on Digital Libraries, 1:68-88, 1997.

[2] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Comput. Surv., 40:1:1-1:39, February 2008.

[3] ATLAS group. KM3 manual.
http://www.eclipse.org/gmt/atl/doc/.

[4] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Adding structure to unstructured data. Technical Report
MS-CIS-96-21, Univ. of Pennsylvania, 1996.

[5] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Adding structure to unstructured data. In /CDT, pages
336-350, 1997.

[6] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A
query language and optimization techniques for unstructured
data. In Proceedings of ACM SIGMOD international
conference on Management of Data, pages 505-516. ACM,
1996.

[7]1 P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query
language and algebra for semistructured data based on
structural recursion. VLDB Journal, 9(1):76-110, 2000.

[8] J. Clark and M. Murata. RELAX NG specification.
http://www.relaxng.org/, 2001.

[9] M. P. Consens and A. O. Mendelzon. Graphlog: a visual
formalism for real life recursion. In Proceedings of the ninth
ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, PODS °90, pages 404-416, New York,
NY, USA, 1990. ACM.

[10] B. Courcelle. Monadic second-order definable graph
transductions: A survey. Theoretical Computer Science,
126(1):53-75, 1994.

[11] DTD: Document Type Definition. http://www.w3.
org/XML/1998/06/xmlspec—report.htm.

[12] A. Frisch and H. Hosoya. Towards practical typechecking for
macro tree transducers. In DBPL, pages 246-260, 2007.

[13] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing XPath queries. ACM Trans. Database Syst.,
30:444-491, 2005.

[14] J. G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund,

R. Paige, T. Rauhe, and A. Sandholm. Mona: Monadic
second-order logic in practice. In TACAS, pages 89-110,
1995.

[15] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and
K. Nakano. Bidirectionalizing graph transformations. In
ICFP, 2010.

[16] S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Towards a
compositional approach to model transformation for
software development. In SAC, pages 468—475, 2009.

[17] K. Inaba, S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Sound
and complete validation of graph transformations. Technical
Report GRACE-TR-2010-04, GRACE Center, NII, 2010.

[18] D. Janin and I. Walukiewicz. On the expressive completeness
of the propositional mu-calculus with respect to monadic
second order logic. In CONCUR, pages 263-277, 1996.

[19] F. Jouault and J. Bézivin. KM3: A DSL for metamodel
specification. In Formal Methods for Open Object-Based
Distributed Systems, pages 171-185. LNCS 4037, Springer,
2006.

[20] S. Maneth, T. Perst, and H. Seidl. Exact XML type checking
in polynomial time. In ICDT, pages 254-268, 2007.

[21] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML
transformers. J. Comp. Syst. Sci., 66:66-97, 2003.

[22] M. O. Rabin. Decidability of second-order theories and
automata on infinite trees. Transactions of American
Mathematical Society, 141:1-35, 1969.

[23] G. Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1:
Foundations. World Scientific, 1997.

[24] J. W. Thatcher and J. B. Wright. Generalized finite automata
theory with an application to a decision problem of
second-order logic. Mathematical Systems Theory, 2:57-81,
1968.

[25] H.-J. Tiede and S. Kepser. Monadic second-order logic and
transitive closure logics over trees. In WoLLIC, pages
189-199, 2006.

[26] A. Tozawa. Towards static type checking for XSLT. In
DocEng, pages 18-27, 2001.

[27] B. A. Trakhtenbrot. Impossibility of an algorithm for the
decision problem for finite classes. Doklady Akademiia Nauk
SSSR, 70:569-572, 1950.

[28] H. Unno, N. Tabuchi, and N. Kobayashi. Verification of
tree-processing program via higher-order model checking. In
Asian Symposium on Programming Languages and Systems
(APLAS), 2010.

[29] W3C XML Schema WG. W3C XML Schema.
http://www.w3c.org/XML/Schema.

