
CLP Projection for Constraint Handling Rules

Rémy Haemmerlé Pedro Lopez-Garcia Manuel V. Hermenegildo
Technical University of Madrid IMDEA Software Institute and IMDEA Software Institute and

Spanish National Research Council Technical University of Madrid

Abstract
This paper introduces and studies the notion of CLP projection for
Constraint Handling Rules (CHR). The CLP projection consists
of a naive translation of CHR programs into Constraint Logic
Programs (CLP). We show that the CLP projection provides a safe
operational and declarative approximation for CHR programs. We
demónstrate moreover that a confluent CHR program has a least
model, which is precisely equal to the least model of its CLP
projection (closing henee a ten year-old conjecture by Abdenader
et al.). Finally, we illustrate how the notion of CLP projection can
be used in practice to apply CLP analyzers to CHR. In particular,
we show results from applying AProVE to prove termination, and
CiaoPP to infer both complexity upper bounds and types for CHR
programs.

Keywords CHR, CLP, Declarative Semantics, Static Analysis.

Categories and Subject Descriptors F.3 [Theory of Computa-
tion]: Logic and Meaning of Programs

General Terms Theory

1. Introduction
Constraint Handling Rules (CHR) [7] is a concurrent, committed-
choice, rule-based programming language introduced in the 1990s
by Frühwirth. CHR was originally designed for the design and
implementation of constraint solvers, initially in the context of
Constraint Logic Programming (CLP) [15], but it has since come
into use as a general-purpose concurrent programming language.

It is well-known that CLP can be encoded into CHR (see, for
instance Section 6.3.1 in Frühwirth's Book [7]). Operationally the
encoding is sound and complete. From the logical point of view
the encoding is an under-approximation, since the CHR encoding
in CLP corresponds to the Clark completion [3], Conversely, CLP
has been from the beginning an implementation vehicle for CHR
programs [6, 13, 22], since, as mentioned before, one of the ini-
tial objectives of CHR was precisely to encode constraint solving
algorithms meant to run within CLP systems. However these trans-
lations are really too low-level code, typically using attributed vari­
ables [12],

However, and perhaps surprisingly, few attempts can be found
in the literature to perform a direct translation of CHR into (puré)

CLP. Such an encoding can be interesting in order to relate the CLP
and CHR theoretical foundations, and to be able to use the many
tools available for the semantic analysis of CLP programs in the
context of CHR.

With this objective in mind in this paper we introduce the notion
CLP projection. CLP projection consists of a naive translation of
CHR programs into (puré) CLP. We show that CLP projection
provides a safe operational and declarative approximation for CHR
programs. In particular, we show that:

• A CHR program is operationally simulated by its CLP projec­
tion.

• The logical models of a CHR program are under-approximated
by the least model of its projection. We show moreover that
the least model of a confluent CHR program is precisely the
least model of its CLP projection (closing henee a ten year-old
conjecture by Abdenader et al. [1]).

• The success set with respect a CHR program can be charater-
ized by the successes of its projection.

Finally, we also illustrate how the notion of CLP projection can
be used in practice to apply CLP analyzers to CHR. In particular,
we show results from applying the AProVE analyzer [8] to prove
termination, and the Ciao preprocessor (CiaoPP) [11] to infer both
complexity upper bounds and types for CHR programs.

To the best of our knowledge the only attempt to transíate CHR
programs into Prolog is the so-called transformational approach
of Pilozzi's et al [18, 19], It consists of a Prolog meta-interpreter
that preserves store accessibility. As the CLP projection, it provides
an over-approximation of the CHR operational semantics, and has
been used to prove termination and to infer types for CHR pro­
grams. The meta-level nature of this approach has the main ad-
vantage of making the notion of user-deflned store explicit, but it
also makes the task for Prolog/CLP analyzers much more complex,
since it is a well-known fact that high levéis of meta-interpretation
can result in loss of precisión for analyzes based on approxima-
tions. Furthermore it seems more difflcult to relate the declarative
semantics using a meta-interpreted approach.

The rest of the paper is structured as follows: Section 2 re-
calls basic notation, deflnitions, and results for flxpoints, reduction,
and flrst-order logic. Then, Section 3 presents the syntax and both
the operational and the declarative semantics for CLP frameworks.
Section 4 similarly presents the CHR framework. Then, Section 5
formally introduces the notion of CLP projection. In Section 6, we
illustrate the relevance of the CLP projection approach for the static
analysis of CHR programs through different applications ranging
from termination proofs to type inference through complexity up­
per bounds. Finally, in Section 7 we present our conclusions.

2. Preliminaries
In this section, we recall the theoretical framework of CLP.

2.1 Notations

We assume as given a denumerable set V of variables (denoted
by X, Y, Z ...), a denumerable set £ / of function and constant
symbols, and a set of predicate symbols £ p (denoted by characters
or words in teletype font, such as c or p). Symbols of both kinds
are assumed given with their respective arity. The set of flrst order
terms built from V and £ / will be denoted by T, its elements
by t,s,.... Sets (resp. sequences) of variables and terms will be
distinguished by a bar (resp. arrow) above, as, for instance, X and
i (resp. X and i). Atomic propositions built from T and £ p are
denoted by a, b, c, d,.... By a slight abuse of notation we will use
interchangeably conjunction and multiset of atomic propositions,
forget braces around multisets, and use comma for multiset unión.
Conjunctions and multisets will be denoted by capital blackboard
letters such that A or C.

For an arbitrary formula <j>, we use fv(</>) to denote the set of
free variables occurring in <j>, and </>[X \í) to represent <j> in which
the free occurrences of variables X have been replaced by terms
t (with the usual renaming of bound variables, avoiding variable
clashes). The notation 3.,p<f> denotes the existential closure of <j>
with the exception of variables free in the formula ip, which remain
free.

In this paper, we assume that the set of predicate symbols £ p is
partitioned into two: £¡,, the set of (built-in) constraint symbols, £ a

the set of (user-defined) atom symbols. Naturally, atomic proposi­
tions built from £¡, will be called (built-in) constraints while atomic
propositions built from £¡, will be called (user-defined) atoms. For
constraints we assume given a consistent (flrst order) axiomatic the­
ory C describing their meaning.

2.2 Preliminaries on Fixpoints

Here, we recall some deflnitions and results about fixpoints in an
arbitrary complete lattice (£, 3 , n, U, T, _L). We will say that a
function / : £ —s- £ is monotonic if f(X) D f(y) whenever
X D y. The upward (ordinal) power of a function / : £ —) - £ is
deflned by the transflnite induction:

• /to = ±
• /t« = /(/t(a — 1)) if a is a successor ordinal,

• f-\a = U { / t / 3 | /3 < a} if a is a limit ordinal.

An element X e C is afixpoint for / : C —y C if f(X) = X. X is
a least fixpoint for / if it is a flxpoint and y D X whenever y is a
flxpoint for / . We use pX.f(X) to denote the least flxpoint.

Theorem 1 (Knaster-Tarski). If f is a monotonic function on C,
then f has a least fixpoint. Furthermore there exists a limit ordinal
a such that:

pX.f(X) = f]{X e C\X = f(X)} = f\a.

2.3 Preliminaries on Reductions

A reduction is a binary relation —y deflned over some given set A.
Let assume some reductions —y, -o deflned over the same set A.
We shall use the following notations and deflnitions:

• o is the composition : (—y o -o) = {(a,b) \ 3c e A (a —y

C A C H > 6) } ;

• -y° = {a - • a | a e A} and -^ n = - • o -*.™"1 for n > 1;

• —y* = U¿>0—yz is the transitive-reflexive closure of —y,

• —y is terminating if there is no infinite sequence eo —y e\ —y

• —y is confluent if for any element a,b,c e A such that a —y* b
and a —s-* c there exists an element d e A such that b —y* c
and c —y* d.

2.4 Preliminaries on First order logic

In this subsection we recall some basics about model theoretic
semantics of flrst order logic.

2.4.1 First order models

Let Cp be the flrst order language built from the set T of flrst order
terms and the set of predicate symbols £ p . An interpretation of
Cp is a tupie I = (D, []}, composed of an interpretation domain
D together with a semantics function [], which associates to each
function symbol / e £ / of arity m a function [/] : Dm —y D, and
to each predicate symbol p e £ p of arity n a function [p] : IT —y
{T, _L}. For a given interpretation / , an I-valuation is a function
p : V —y D. An I-instance of a term t (resp. a formula <j>) is the
tupie tp (resp. <j>p), where p is an I-valuation.

Let I be an interpretation of £p. The assignment (with respect
I) of I-instances of terms and atomic propositions in Cp is the
function []j deflned by structural induction as:

• [Xp]i=p(X) i f X e V ;

• {f(t1,...,tn)p]1 = {f]({t1p]1,...,{tnp]1) i f / e £ / ;

• [c (í l , . . . ,tn)p]l = [c] ([í l / 0] j , . . . ,[tnp]l) Í f c e £ p .

The assignment (with respect I) is extended to logical formulas in
Cp by applying the truth table of the logical connectors and the
following rules for the quantiflers:

• [(yX(j>)p]i = T if and only if for any element d e D,
[^po[X\d])]I = T;

• [(3X<f>)p]i = T if and only if there exists an element d e D,
[(h(po[X\d])]I = T.

An interpretation I of Cp is a model for a formula <j> e Cp, if for all
I-valuations p, [<f>p]i = T. Naturally, an interpretation I of Cp is a
model of a theory T if I is a model of all of its axioms. A formula
<j> is satisfiable within a theory T (or, more briefly, T-satisfiable)
if there is a model of T which is a model of 3<f> as well. In the
following, we use the notation T |= <j> to mean that any model of a
theory T is as well a model of the formula <j>.

2.4.2 Model with respect a constraint theory

In this subsection, we introduce the classical notion of constrained
atoms. Sets of constrained atoms will be called C-interpretations.
For a given interpretation limited to constraints, a C-interpretation
represents an interpretation for the whole set of propositions (in-
cluding both constraints and atoms). C-interpretations have the ad-
vantage with respect classical interpretations as presented in the
previous section that they are sets of syntactic objects while clas­
sical interpretations are not (for instance the domain of real num-
bers contains elements which cannot be represented syntactically).
Henee, it appears that in a large number of cases manipulating C-
interpretations is simpler than manipulating the classical ones.

Definition 2 (C-base). A constrained atom is apair (a|C), where
a is a user-defined atom and C is a conjunction of built-in con­
straints. The set of constrained atoms is called C-base and is de­
noted by Be-

For the sake of simplicity, we will work always with sets of
constrained atoms closed by the closure operator f|-c deflned next.
This operator returns the set of all atoms more constrained than the
one given as its input.

Definition 3. The closure operator ff- : 2 c —y 2 c is defined as:

itc(Z) = {(a\C)eBc\(b\D)eZandC\=C^3.a(a = bAD)}

In the following, we use the notation (a i , . . . , a„ |C) for the set of
constrained atoms { (a i |C) , . . . (an |C)}.

Example 4. Assume C defines the order < on integers. Let p and q
be two constrained symbols ofarity 1 and let 2 = ff- (p (X) \ 0<X A
For instance, we have:

• (p(l)|T), (p(Y)\l<YAX=YAX<4), and (q(Y)\.L) are in Z.
• neither (p(5)|T) ñor (p(Y)|Y>5) are in Z.

We define the C-model of a formula <j>, as a set of constrained
atoms that valídate <j> without contradicting any model of C.

Definition 5 (C-model). For a given interpretation I of C, the
assignment of I-instances associated to a set Z of constrained
atoms is defined as:

3. Constraint Logic Programming
Here we recall basic definitions and results for CLP.

3.1 Syntax

In CLP, we distinguish two syntactical categories, the clauses that
form the programs and the goals that are rewritten by the programs.

X<4). A (CLP) clause is a logical formula of the form:

H J M
[Cp]i if(a\C) e 2
_L otherwise

A set Z of constrained atoms is a C-model ofafirst order formula
4> in JCP, iffor any model I = {D, []} of C, {D, [] U [ü-]/} is a
model of<j>.

Obviously, a formula is satisfiable in any interpretation of C if
and only if it has a C-model. The following technical lemma will
be useful later to prove that a set of constrained atoms is a model
of an implication.

Lemma 6. Let Z be a set of constrained atoms, A and B be
two conjunctions of user-defined atoms, C and P be two sets of
built-in constraints, and X a sequence of variables not free in
(A A C). Iffor any conjunction E of built-in constraints satisfying
X n fv(E) = 0, (A|C A E) G 2 implies (B|C A P A E) e 2
together with C \= (C A E) -> 3X(C A P A E), then Z is a C-
modelfor the implication (A A C) —s- 3X(B A P).

Proofi Let / = (D, []) beamodelof C and []z = ([] U[L2]j).We
have to show that (D, [] z) is a model for (A A C) -> 3X. (B A P),
that is, for any I-valuation p, if [(A A C)p]z = T then there exists
a sequence of terms d e D such that [(A A C)(p o [X\d])]z = T.
Let us assume some I-valuation p satisfying [(A A C)p]z = T.
We have:

(A A C)p]z = T

Ap]z = Tand [Cp]z = T

A|E) e 2, [Ep]¡ = T, and [Cp]¡ = T for some E

(CAE)p] , = T

A|CAE) e2

B|C A E) e 2 and C N (C A E) -^ 3X(D A E)

there exist de D s.t. Í(D A E) (p o \x\d\]1 = T

[B (p o \x\¿)] and Í(D A E) (p o \x\<ñ '

(1)

(2)

(3)

(4)

(5)

(6)

T

SAF1 P' [X\¿]
(7)

(8)

(1) is by definition of []z. (2) is by definition of [2\j. (Without
lossof generalitywe assume Xnfv(E) = 0.) (3) is by definition of
[]j. (4) is by definition of [2\j. (5) is by hypothesis. (6) is because
I is a model of C. (7) is by definition of [2\i. (8) is by definition
oí[]z. U

V (a V -¡ai . V - i c i V .

where the a and a¿'s are atoms and the c¿'s are constraints. This
formula is noted in a simpler way as: (a «— A | C), where A is
the multiset of the a¿'s and C is the conjunction of the c¿'s. Empty
constraints (Le., T) can be omitted together with the symbol |. A
CLPprogram is a finite set of clauses.

A (CLP) goal is a logical formula of the form:

V(-.ai -ia„ V - i c i V . -iCm)

where the a¿'s are atoms and the c¿'s are constraints. This formula
is noted in a simpler way as: (A|C), where A is the multiset of the
cii's and C is the conjunction of the c¿'s.

3.2 Operational semantics

The operational semantics of CLP is given by CSLD resolution,
that we present briefly in the following.

For a given program V, the transition relation —» over goals
is defined as the least relation satisfying the following principie of
resolution:

(6 <- B | P) g V6 P is C-satisfiable

(A,a|C) ^> (A,B|CAa = 6AP)

where 9 is a renaming with fresh variables.

We state next a straightforward result about CLP transitions that
we will use later in the paper:

Proposition 7.
Le/(A|C), (A'|C), and(M\B) be CLP goals suchthat fv(A' ,C ')n
fv(B,P) Cfv(A,C).

If (A|C) ^-> (A'|C') ana CAP is C-satisfiable, then

(A,B|CAP) ^> (A ' , B | C ' A P) .

A success for a CLP program V is a goal that has a consistent
answer with respect V (i.e., that can be derived by V to a goal of
the form (0|C) where C is C-satisfiable).

3.3 Fixpoint semantics

In this section we recall the fixpoint semantics of CLP.

Definition 8 (Immediate Consequence Operator). For any CLP
program V, the immediate consequence operator Tp : 2Bc —s- 2Bc

Tp(X) = {(a|C A P) e Be | (a <- A | C) e V A (A|P) e ^ }

Both Tp and f|-c being obviously monotonous, Tarski's theo­
rem ensures the function XX.^c (Tp(X)) has a least and greatest
fixpoint.

Theorem 9 (Least C-models [15]). Let {Mi}iei be the set of
all C-models of a CLP programs V. V has a least model, which
satisfying:

iei

file:///x/d/

4. Constraint Handling Rules
In this section we introduce the syntax, the equivalence-based op-
erational semantics ue, and the declarative semantics of CHR.

4.1 Syntax

We recall first the syntax of the language.

4.1.1 Programs

A Constraint Handling Rule (CHR) is a rule of the form:

r @ K\H <=^ G | A, C

where K and H are multisets of user-deflned atoms, called kept
head and removed head respectively, G is a conjunction of built-in
constraints called guard, C are conjunctions of built-in constraints,
A are multisets user-deflned atoms, and r is an arbitrary identifler
assumed unique in the program and called rule ñame. Rules where
both heads are empty are prohibited. The empty guard T can be
omitted together with the symbol |. The local variables of the rule
are the variables occurring in the guard and in the body but not in
the head (i.e., lv(r) = fv(G, C, B) \ fv(K, H)).

CHR programs are flnite sets of CHR rules. We use CHRi to
denote the CHR language limited to single headed rules (i.e., rules
with a single head atom).

Example 10. Assume that the constraint a(7, X) represents the
I'h cell of an array containing arbitrary data X. Now, consider
Vio to be the foüowing classical CHR program [7] consisting of
the foüowing single rule:

a(I, X), a(J, Y) <=^ I>J,X<Y\&(I,Y), a(J, X)

This rule sorts the array by swapping valúes at positions that are
in the wrong order.

4.1.2 States

A CHR state is a tupie (A; C; X) where A and C are multisets
of atoms and constraints, respectively, and X is a set of variables,
called global variables. The global variables represent the variable
free in the initial goal.

Following Raiser et al. [21], we will consider CHR states mod­
ulo a structural equivalence. Formally, the CHR state equivalence
is the least equivalence relation =c over states satisfying the fol­
lowing rules:

• (A; C; X) = c (A; B>; X) if C N 3 . (A ^ (C) O 3 . (A ^ (B>)

• (A;_L;X)=C (B; _L; X)

• (Á,c;CAc = d;X) = c (Á,d; C A c = d; X)

• (A;C;X) = c (A; C; {Y} U X) if Y i fv(A,C).

will say that a state is consistent if its built-in store C is C-
satisflable, and inconsistent otherwise.

To give some intuition about this structural equivalence we
recall some examples by Fraiser et al.

Example 11 ([21]). Let C be an arbitrary constraint theory and p
a unary user-deflned atom symbol. We have:

(p(X);T;0)= c (p(Y);T;0>

<p(X);X = 0;{X}}= c (p(0) ;X = 0;{X}}

(0;X < OAX > 0 A Y = 0;{X}) = c (0 ; X = 0; {X}}

(p(O);T;{X})= c(p(O);T;0)

<p(X);T;{X})^ c<p(Y);T;{Y}>

We recall a useful result on structural equivalence.

Theorem 12 ([21]). Let R = (A; C; X) and S = (B; D; Y) be
CHR states, such that (fv(A, C) n fv(B, B>)) C (X n Y).

Í C M - x (C) o 3 . p (») ,
R=c S ifandonly if i C \= C -> 3 . ? (A = B), and

[C | = B - >] . x (A = l) .

4.2 Operational semantics

Once state equivalence has been stated, the equivalence-based op­
erational semantics ue of Raiser et al. [21] can be deflned by a
single inference rule. The resulting operational semantics is very
similar to the very abstract semantics ua [7], the most general oper­
ational semantics of CHR. The equivalence-based style is preferred
here, because the use of a notion of equivalence will simplify many
formulations.

The CHR transition •?->• is the least relation satisfying the two
following rules

(r @ K\H <̂ =>- G|B, C) eVO (G A B>) is C-satisflable

(H, K, A; G A D; X) A (B, K, A; G A C A D; X)

where 9 is a renaming with fresh variables.
We will say a state is data-sufficient if it has a computation

ending with a state of the form (0;C;X). Similarly to CLP, a
success for a CHR program V is a state that has a consistent answer
with respect V (i.e., that can be derived by V to a goal of the form
(0; C; X) where C is C-satisflable).

The following straightforward technical lemma about CHR
transitions will be used later in the paper.

Lemma 13.
3-x(C).

If(A;C;X) ;Y) thenC N 3.y(D)

Proof By induction on the length of (A; C; X)
D

4.3 Declarative semantics

We state now the declarative semantics of CHR. The logical read-
ing of a rule:

(K\H-^=>-G |B,C)
is the following guarded equivalence:

V((KAG) - • (l « 3 . (I i i) (G A B A C)))

or, equivalently, the conjunction of implications:

V((KAHAG) - 4 3 . W) (G A B A C)) A

V ((K A G A B A C) - • H)

The logical reading of a program V within a constraint theory C
is the theory C extended with the logical readings of the rules of V.
The logical reading of a state (A; C; X) is the first order formula:
3_x(AAC).

Example 14. The logical reading of the program Vio given in
Example 10 is equivalent to the conjunction of the two following
implications:

V(I>J AX>Y A&(I,X),&(J,Y)) - • (a (I ,Y) ,a (J ,X))

V (7 > J A X > Y A a (/ , Y) , a (J , X)) - • (a(J ,X), a(J, Y))

The theorem we give next summarizes basic results about
soundness and completeness of data-sufficient states with respect
the declarative meaning of a program.

Theorem 15. Let V be a CHR program with a consistent logical
reading, and (A; C; X) ^-s- (0; D; Y) be a valid CHR derivation.
(A A C) is satisfiable with respect the logical reading ofV if and
only ifV, C N 3 _x (A A C) o 3 _x (D).

Proof. Direct by the Soundness and Stronger Completeness of
failed computations Theorems (refer to Theorems 3.21 and 3.25
in Frühwirth's book [7]). D

5. CLP Projection
In this section, we introduce and formally study the CLP projection
for CHR programs. In the next section, we will see some direct
applications.

5.1 Definition

As explained in Section 4.3, the logical reading of a simpliflcation
rule is an equivalence. The basis of the CLP projection is to ignore
the right-to-left implication part of the equivalence and consider
only the left-to-right part. Indeed, one can consider the implication
ci A • • • A c„ —̂ 3Z(K A G A B) as the conjunction of the n
implications (ci <- 3Z(KA GAB)) , . . . , (cn ^ 3 Z (G A D M A
K)). Formally the CLP projection can be deflned as follows:

Definition 16 (CLP Projection). The (CLP) projection of a CHR
program V is the set TT(V) ofCLP clames defined as:

K(V) = { (a ^ K , B I GAC) I

(K \ H < ^ G | B,C) e Vandae (H,K)}

The (CLP) projection ofa CHR state is defined in a straightforward
way, Le.:

T T ((A ; C ; X)) = (A|C)

We illustrate now the result of a CLP projection.

Example 17. Consider the program Vio given in Example 10. The
CLP projection of Vio consists of the following CLP clauses:

&(I,X) < - a (I , Y) , a (J , X) | I>JAX<Y

a(J,Y) < - a (I , Y) , a (J , X) | I>JAX<Y

5.2 Approximating CHR operational semantics

In this section, we relate the operational behavior of a CHR pro­
gram and its CLP projection. To state the result of the section, we
flrst introduce two relations of state subsumption.

Definition 18 (State subsumption relations). The relations Qc and
Ce are defined as the least transitive relations containing =c and
satisfying respectively

(A;CAD;X) C c (A; C; X)

(A ; C A l) ; l u y) C c (A,B;C;X)

where B standsfor an arbitrary multiset ofatoms, B> standsfor an
arbitrary conjunction of constraints, and Y stand for a arbitrary
set of variables.

Note that both relations mean that the C-interpretation of the
left-hand side state is more constrained than that of the right-
hand side state. Qc differs from C c in that Qc preserves precise
information about the multiplicity of user-deflned atoms while C c

does not.

The theorem we give next states that the operational semantics
of a CHR program can be simulated by its projection. We will
use this theorem, which establishes that the termination of ir(V)
implies the termination of V, in Section 6.1.

Theorem 19. For any CHR program V, we have:

For all states R, R', S if R ^-s- R' and R Cc S, then
7rCP)

there exists a state S such that TT(S) > TT(S) and R Cc S .
The theorem is graphically represented by the diagram of

Figure 1. Following standard diagrammatic notation, solid edges

v
R >R'

in un
a i a

s s'
TV . 7V

^ TT(-P)

TV(S) -----> TV(S')

Figure 1. Simulation diagram for a CHR program V.

stand for universally-quantifled relations (i.e., the premise), and the
dashed edges stand for existentially-quantifled relations (i.e., the
conclusions). CHR states are nodes in the upper side and CLP goals
are nodes in the lower side.

Before formally proving the theorem, we illustrate the theorem
on our running example.

Example 20. Consider the program Vio given in Example 10.
Applying the rule sort, we infer the possible transition:

fí=(a(O,7),a(l,5);T;0) - ^ (a(0, 5), a(l , 7); T; 0) = fí'

It is straightforward to verify that using the projection of Vio (given
explicitly in Example 17) that the following derivation is valid with
respect TT (Vio):

(a(0,7),a(l ,5) |T) ^ ^

(a(J, 7), a(0, X), a(l , 5)| J>0 A X<7)

Note that it holds that R' is included (with respect Cc) in the state:

(a(J, 7), a(0, X), a(l , 5); 7>0 A X<7; 0)

Proof. Assume that r is of the form

K\H-^=>-G|B,C

Without loss of generality we can assume that the states R, R' and
S satisfy:

fí=c(K',H',c,A;GADAD';Xuy)

S '= c (K , ,H , , c ,A ,A , ;D , ;X)

R' =c(B, K, A; C A G A D A W; X U Y)

with(K,H) = (K',H',c).
Let 9 be a renaming with fresh variables. Henee, we have:

•K(S) ^ \ (Ké»,Bé»,K',H,,A,A,|D' A c=(c0) A G0 A C0)

To conclude it is sufflcient to notice that:

R' CC (Ké»,Bé»,K',H,,A,A,;D' A c=(c0) A G0 A C0; X)

D

In fact, one can prove a more precise correspondence in the case
of single headed simplifleations.

Theorem 21. For any CHRi program V, we have:

For all states R, R', S if R ^-s- R' and R Qc S, then

there exists a state S such that TT(S) > TT(S) and R \Cc S .

This second theorem is graphically represented by the diagram
of Figure 2.

Proof. Assume r is of the form:

C<^^.G|B,C

V
R >R'

in un
a i a

s s'
TV . 7V

^ TT(-P)

ir(5) -----> TV(S')

Figure 2. Strong simulation diagram for a CHRi program V.

Without loss of generality we can assume that the states R, R' and
S satisfy:

R =c (c, A; G A B> A ©'; X U Y)

S , = c (c ,A,A ' ;D ' ;X)

fí' = c (B , A ; C A G A D A D ' ; X U Y)

Let é* be a renaming with fresh variables. Henee, we have:

ir(S) ^ \ (K0,B0,K',H',A,A' |D' Ac=(cé>) A Gé> A Cé>)

To conclude it is sufflcient to notice that:

R' Qc (Ké»,Bé»,K',H,,A,A,;D' A c=(c0) A Gé» A C0; X)

D

In general the theorems do not hold in the reverse direction.
Indeed as shown through the following counter-example that a
program does not simúlate is projection.

Example 22. Consider the program Vio given in Example 10 and
its projection TT(VIO) given explicitly at Example 17. The CLP
transition:

(a(0, 5)|T) *(Vl0\ (a (/ ; 5), a(0, X),|J>0 A X<5)

is valid with résped the CLP projection of Vio- Nevertheless
(a(0, 5); T; 0} cannot be derived by Vio. The reasonfor this di-
chotomy is that Vio is a terminating program while TT(VIO) is not
- infact, TT(VIO) has no terminating derivations.

5.3 Approximating CHR declarative semantics

In this section, we relate the model of a CHR program with that
of its projection. Indeed, the following proposition states that the
logical model of a CHR program is bounded by the least model of
its projections in the lattice of C-interpretations.

Proposition 23. Let V be a CHR program. For any C-model M of
V, we have:

Proof If V has no C-model, then the result is direct. Otherwise, let
M be a C-model of V. Obviously ir(V) is a logical consequence
ofP(i.e., C \=V -+TT(V)), henee .M isa C-model for TT(V). The
conclusión is then direct using Theorem 9. D

As shown by the following examples this approximation is in
general quite imprecise.

Example 24. Consider the program VIA comprising the following
rules:

c •<=>• T c •<=>• d e •<=>• e

The projection ofVi& consists of the following clauses:

c-í—T c •<— d e •<— e

The least C-model of''K{V2A) is f|" ((c|T)), but the least C-model
0fV2AÍSÍ\C{{c,d[T)).

We show now that in the case that V is confluent, the least
flxpoint of T^iVs provides a logical model for V.

Theorem 25. Let V be a confluent program. /-iX.^0 (TS™ (X))
is the least C-model ofV.

The proof of the proposition relies on two main lemmas.
The flrst one states that if a state R can be derived to a con-
sistent state S which has a projection included in a flxpoint of
XX.f|-c (T^VJX)), then there is a consistent state R' more con-
strained than R which is the same flxpoint.

Lemma 26. Let V be a program, y a set of constrained atoms, and
(A; C; X) ^-s- (B; D; X) a valid derivation such that fv(A, C) C
X. Ify is a flxpoint of XX.ft0 (T¡;(V)(X)) and (B|D) C y, then
(A|C A D) c y .

Proof. We prove only the case of the one-step derivation, the gen­
eral case will follow directly by reflexivity and transitivity of the
inclusión. Let r@(K\H <̂ =>- G|F, E) be the rule of V used for the
transition. We have for some A', C', and X':

(A;C;X) = c (H ,K,A ' ;GAC' ;X) (1)

(F , K , A ' ; E A G A C ' ; X) = c (B;D;Y) (2)

= ^ (F , A ' , K | E A G A C ') C 2 (3)

=> (H|E A G A C') C T^(v) (Z) (4)

= ^ (i , K , A ' | E A G A C ') C 2 (5)

(1) and (2) are by the deflnition of •?->. (3) is by Theorem 12 and
idempotence of a closure operator. (4) is by the deflnition of TS™.
(5) combines (4) with (3) and uses the fact that Z is a flxpoint of
XX4C(T^(V)(X)).

On the other hand we have:

C N B - > C a n d C N D - > 3 . z (E A G A C ') (6)

C N D ^ C a n d (H,K,A'|D) CZ (7)

C N D - • C and (A|D) C Z (8)

(A|C AD) CZ (9)

The left hand side of (6) is by Lemma 13, the right hand side is
inferred form (2) by Theorem 12. (7) is inferred from (5) because
Z is closed by f|-c. Finally, 8 combines the left and right hand sides
in a straightforward way. D

The second lemma says that any state derived from a con­
sistent state which has a CLP projection in a flxpoint of
XX.f|-c (T^,VJX)), has a CLP projection in the same flxpoint.
Contrary to the previous lemma, the core of the proof relies on the
confluence of the considered CHR program.

Lemma 27. Let V be a confluent program. For any ordinal
a, if (Á;C;X) A * (A';C';X), fv(A) C X, and (A|C) C
XX.itc(T^(v)(X)) t o , then (A' |C) C ¡J,X.Í\C(T^(V){X)) and

Proof. Let F denote the function XX.^\C (T¡;(v) (X)). The proof is
by transflnite induction on a:

• The base case, a = 0 is trivial.

• For a successor ordinal, we nave:

(A|C) C f f (a+1) = f (T%(V)(F t a)

=>• A is of the form { a i , . . . , a„ } with for i e 1

7-¿@(K¿\a¿,II¿<í=^G¿ | B¿,C¿) e ^ (P) ,

(K¿,B¿|C¿) C F f a , and

C h C ^ 3 . c ¿ (G ¿ AB¡AD¡)

(1) is by deflnition of upward power. (2) to (4) are by deflnition

(1)

(2)

(3)

(4)

ofT (V) and-fr
Assuming A is an abbreviation for any sequence of constraints

of theformAi, . . . ,A„ and Y = X Ufv(K,í íV wehave:

(A,H,K;CACAG;Y)-

(A , H , K ; C A C A G ; Y) -

thereis(B';D';Y)s.t.:

(A',H,K;C'ACAG;Y)

(B,K;CACAGA§;Y) -

>*(A',H,K;C'ACAG;Y)

> * (B , K ; C A C A G A E

A * (B';D';Y)and

V (B';D';Y)

(B'|D') C y,X.F(X) with

C | = (C A C A G A D) -

(A ' | C A C A G A Í) C

-4-3-yD'

y,X.F(X)

);Y>

(5)

(6)

(7)

(8)

(9)

(10)

(5) is by monotonicity of CHR derivation (Lemma 4.2 in [7]).
(6) is by applying the r¿ rules. (7) and (8) are by confluence of
^r. (9) is inferred from (3), (8), induction hypothesis, and the
fact that F t a is closed by f|-c. (10) is by Lemma 26.

On the other hand we have:

^C\=D' ^3.YC (11)

C | = C ^ 3 . P (C A C A G A §) (12)

=>-C | = C ^ 3 . ? C ' (13)

Thanks to Lemma 13, (11) is inferred from (8). (12) is straight-
forward from (4). Finally (13) is obtained from (11), (12) and
(9) using transitivity of the implication.

• For a limit ordinal, we have T^v) -\ a = U/3<a F \ ¡3.
Using monotonicity of XX.(y U T¡;(V)(X)) and the fact that
D is flnite, there exists obviously an ordinal ¡3 < a such that
Dp e XX.(y U T¡¡(V)(X)) t P- The conclusión is then direct
using induction hypothesis.

D

ofTheorem 25. Assume that the following rule is in V:

r @ K \ H < ^ G |B ,C

Let 0 be a renaming of fv(G, B, C) \ fv(K, H) with fresh variables
(in particular (K,H)0 = (K,H)) and let Y = fv(G0,B0, C0).
The logical reading of r is logically equivalent to the two following
implications:

V((KAHAG) ^ 3 . P (G 0 A B 0 A C 0))

V((KAGABA C) - • H)

Thanks to Lemma 6, in order to prove Z = /-iX.^0 (iS™ (X)) is
a model for V, we know it is sufflcient to show that:

(i) For any conjunction of constraints E such that fv(E) n Y = 0,
(K,H|CAE) e ^implies (K,B|G0 A B0 A C0) e Z and
C N (C A E) - > 3Y(G0 A C0 A E)

(ii) For any conjunction of constraints E, (K, B|G A C A E) e Z

implies(H|GACAE) e 2

Since we have obviously

(K ,H;GAE;X) A (K,B0; G A E A G0 A C0; X)
(i) follows by Lemma 26 and (ii) by Lemma 27 to-
gether with Knaster-Tarski Theorem. Henee, we know that
¡JLX.f|-c(T^m(X)) is a model of V, its minimality being guar-
anteed by Proposition 23. D

As a direct corollary, we get that a confluent program is consis-
tent. We cióse henee a conjecture of Abdenader et al. about con-
sisteney of general confluent CHR program [1], the original proof
being limited to range restricted programs (i.e., programs without
local variables). Note furthermore that our theorem does not as-
sume that the constraint theory is ground complete. Consequently,
it is possible to strengthen existing results about CHR declarative
semantics, especially the completeness of operational semantics
with respect failure where both conditions of range restriction and
ground completeness of the constraint system can be dropped (refer
to Corollary 5.19 in Früwirth's book). This improvement is impor-
tant, since we identifled in a recent publication a class of confluent
programs (the so-called coinductive solvers) which by construction
are not range restricted [10].

The following example illustrates that a confluent CHR program
may not have an unique greatest C-model. This comes from the
non-compositionality of the declarative semantics of CHR (i.e., if
the logical readings of two states are independently consistent, then
one cannot ensure that so is their conjunction).

Example 28. Let T-̂ s be the program consisting of the following
rules:

p,q<=>- -1
1Í ({f>|T}) and f|- ({q|T}) are two greatest incomparable C-
modelsfor T-̂ s-

An interesting consequence is that the logical semantics of both
formalisms coincide on data-sufflcient state.

Theorem 29. A data-sufficient state is a success for a confluent
CHR program V if and only ifit is a success for TT(V).

Proof. Let S = (A; C; X) be a data-sufflcient state with respect
P. By Theorem 15, S is a success of V, C if and only if V, C h
3(A A C) —y 3D for some C-satisflable conjunction D. Since V
and V', C have the same least model S is a success of V, C if and
only ifV,C h 3(A A C) -> 3_x(D) for some C-satisflable con­
junction D. Then, by soundness and completeness of the CSCLD
resolution [15] S is a success of V, C if and only if ir(S) is a suc­
cess for K(V). D

Note that this result does not contradict Di Giusto et al.'s re­
sults [9] about the greater expressiveness of multi-headed pro­
grams with respect single-headed programs. Indeed, even though
any multi-headed program has the same CLP projection as some
single-headed program, the two CHR programs do not have the
same set of data-sufflcient states.

6. Applications
6.1 Termination proofs of CHRi programs

Theorem 19 ensures that if the CLP projection of a CHR program
V terminates (with respect the CLP operational semantics), then V
terminates (with respect the CHR operational semantics). Henee,
in order to prove the termination of a CHR program, it is sufflcient
to prove the termination of its projection.

benchmark
ackerman
average
binlog
booland
convert
diff
factorial

trans.
-
+
+
+
-

+
+

proj.

+
+
+
+
+
+
+

benchmark
modulo
oddeven
power
revlist
toyama
weight

trans.

+
+
+
+
+
-

proj.

+
+
+
+
+
+

Table 1. CHRi termination comparison.

Nonetheless, as pointed out by Example 22 there exist termi-
nating CHR programs that have non-terminating projection. The
reason for this dichotomy resides in two possible weaknesses of
the projection:

• Information about multiplicity of linear atoms is lost.

• The guard conditions are ignored.

Consequen tly, the CLP projection cannot be used to pro ve termi­
nation of programs when they rely on the multiplicity of atoms in
the store (as illustrated by Example 22) or on the non-entailment of
guard conditions (as illustrated by the following example).

Example 30. Consider the program Vio consisting of the single
rule:

f (0) ^ í(Y)
Its projection, TT(V3O), is made up of the following rule:

f (0) <- f (Y)

It is straightforward to verify that any CHR state has only afinite
derivation with résped Vzo. For instance, the following derivation
cannot be extended:

< f (O) ; T ; 0 } ^ (f (X o) ; T ; 0 } ^

but unconstrained CLP goals (f (Xo)|T) have an infinite deriva­
tion with respect the projection ofVio:

<f(*o)|T>- (f(X¿)|Xo=OA---AX¿.i = 0)-

In spite of its weaknesses in treating guarded multi-headed pro­
grams - indeed the termination of most of multi-headed programs
relies on the multiplicity of atoms in the constraints store - the CLP
projection is a powerful notion for tackling the termination analy-
sis of single-headed programs. For instance, Table 1 compares the
termination of single-headed programs as inferred by the AProVE
system [8] using Pilozzi et al.'s transformation [18] (column trans.)
and using the CLP projection (column proj.). In the table, ' + ' indi-
cates a positive termination inference, while '—' stands for a nega-
tive one. All the results in the trans. column are reported as given
by Pilozzi et al. [18]. Out of a list of 24 programs [18], the CLP
projection-based approach was able to prove termination of all 13
CHRi programs1.

In fact, transforming CHR rules into Prolog clauses has the ad-
vantage with respect the meta-interpreter approach of Pilozzi et al.
that user-deflned atoms are converted to predicate ñames, and thus
become control points. This allows using techniques that reduce the
problem of global termination to several local termination prob-
lems [4] for which it is simpler to synthesize a ranking function.
For instance, it is not clear what is the global ranking function for
the Ackerman program, while the termination of the Prolog pro­
gram can be proven easily by systems such as AProVE or Termin-
Web [4],

1 These favorable results suggest that widely-used benchmarks tend not to
include programs as the one of Example 30 whose termination relies on
non-entailment of guard conditions.

It goes without saying there exist today ad-hoc CHR analyzers
that provide better results than Pilozzi et al.'s transformation-based
approach. For instance, Pilozzi's CHRisTA system [17] can prove
the termination of convert and weight. Nevertheless, to the best of
our knowledge, the CLP projection together with AProVE pro vides
the flrst automatic termination proof for the CHR implementation
of ackerman.

6.2 Type analysis of CHR programs

In Section 5.3, we have shown that the success set of a confluent
program V can be characterized by the success of the projection of
V. Consequen tly, any safe approximation of properties about the
success set of a Prolog program inferred via static analysis is also
a safe approximation of the projection of a confluent program.

As an illustration, we analyze the CLP projection of some con­
fluent programs using CiaoPP [11]. Since the CLP projection has
been implemented as a Ciao package [2], it is possible to transpar-
ently analyze CHR programs using CiaoPP.

CiaoPP can infer properties on the (valúes of) variables in the
computation of predicates, i.e., state properties, as well as global
properties of such computations (such as, e.g., the number of exe-
cution steps, determinacy, or the usage of some other resource). In
CiaoPP state properties can be expressed by predicates. A particu­
lar case of state properties are regular types [5], Regular types can
be deflned in librarles, deflned by the user, or automatically inferred
by the system.

For instance, consider the following module implementing the
oddeven program:

: - module(oddeven, [oddeven/2], [c lp_pro jec t ion]) .

oddeven(0,B) <=> B=even.
oddeven(l.B) <=> B=odd.
oddeven(A.B) <=> A > 2 I

App i s A - 2, oddeven(App,B).

The [clp .projec t ion] argument in the module declaration states
that the clp_projection package should be used. This package
applies the CLP projection transformation so that if the CHR pro­
gram above is fed to CiaoPP, CiaoPP sees the CLP projection of
the program above. The result of applying CiaoPP's type analysis
is then expressed by using assertions [20] as follows:

: - t rue success oddeven(A,B)
=> (a r i thexpress ion(A) , rt5(B)) .

: - regtype r t 5 / l .
r t 5 (even) .
r t 5 (odd) .

The flrst assertion expresses that on success, the flrst argument of
oddeven/2 is an arithmetic expression, while the second one is of
type r t 5 / l (i.e., is either even or odd). The preflx t rue in this
assertion expresses that it is a safe approximation automatically
inferred by the analysis. In fact, it over-approximates the success
set of predicate oddeven/2.

The assertion ": - regtype r t 5 / l " indicates that the r t 5 / l
predicate is a regular type. The regular type a r i thexpress ion /1
is deflned in a system library and expresses that its argument is an
ISO Prolog arithmetic expression [14]. However, the deflnition of
the regular type r t 5 / l has been inferred by CiaoPP's eterms type
(shape) analyzer, which is based on abstract interpretation and a
regular type abstraction with widening [23].

As another example, consider the weight module:

: - module(weight, [weight /2] , [c lp_project ion])

weight ([A, B|C] , E) <=>
sumlist([A,B|C] ,S) , weight ([S IC] ,E) .

weight([C], D) <=> D i s C.
sumlist([A|C] , S) <=>

sumlist(C, T), S i s A + T.
s u m l i s t ([] , S) <=> S i s 0.

Similarly to the present example, the CiaoPP system infers the
following assertions:

:- true success weight(X,Y)
=> (rtl(X), num(Y)).

:- true success sumlist(_1,S)
=> (list(_l,arithexpression), num(S)).

:- regtype rtl/1.
rtl([A|B]) :-

arithexpression(A),
list(B.arithexpression).

Here l i s t / 1 refers to the regular type for standard lists (deflned
in the system libraries), and num refers to the ISO numbers (Le.,
floating point or integer numbers).

CiaoPP is also able to analyze confluent multi-head programs.
For instance, consider the following rules, forming part of an are
consistent flnite domain (see section 8.2.3 in Früwirth's book [7]).

inconsisteney Q X in A:B <=> A > B I f a l s e .
i n t e r s e c t i o n 0 X in A:B, X in C:D <=>

X in max(A, C):min(B, D).
i n s t a n t i a t i o n Q X in A:A <=> X i s A.

CiaoPP inferred the expected assertions:

: - t rue pred X in _2
=> (number(X), r t0(_2)) .

:- regtype rtO/1.
rtO(A:B) :-

arithexpression(A),
arithexpression(B).

Note that the type analyses we can perform on CLP projections
are complementary to the ones we could perform on the Pilozzi et
al.'s transformation. Indeed, while the CLP projection preserves the
success set, Pilozzi et al's transformation preserves the cali set but
not the set of successes [18].

6.3 Upper bound complexity analysis for CHRi

Theorem 19 ensures that the least upper bound complexity for
a CLP projection provides a safe upper bound for the projected
CHR program. Theorem 21 goes further guaranteeing that this
upper bound is aecurate as far as states that are data-sufflcient
with respect single-head programs are concerned. Consequently,
we can infer precise complexity upper-bound for CHRi program
from its projection. Although this approach is limited to single-
head programs, it provides the flrst automatic tool for obtaining
complexity upper bounds for CHR.

Once again, we can use the CiaoPP system, which is able to
infer such bounds for CLP programs [16]. For example, consider
the oddeven module given in the previous section. To infer proper
bounds, the system needs an entry declaration specifying the way
in which the external calis to an atom will oceur, i.e., how the
atoms will be called form outside. For instance, the following
declaration states that oddeven will be called with a number as the
flrst argument and a variable as the second one:

: - entry oddeven(X,Y)
: (num(X), var(B)) .

Once such information has been added to the original program file,
the system infers the following assertion:

: - t rue pred oddeven(X,Y)
: (num(X), var(B))

=> (num(X), r t5 (Y) ,
s ize_ub(X, int (X)) , size_ub(Y,1.0))

+ s teps_ub(0.25*exp(-1.0 , int(X))+0.5*int(X)+0.75) .

This assertion includes a lot of information: the second line after the
colon (:) contains the preconditions, and states that the condition
specifled by the entry declaration (num(X), var(B)) also holds
for the recursive calis to oddeven/2'. The third and fourth lines,
after the double arrow (=>), show the posteonditions including the
type of the arguments as inferred in previous subsection together
with a size upper bound for the arguments on success (int(X)
stands for the integer valué of X). Finally, the fleld in the flfth line
(after the +) shows the inferred complexity upper bound (in number
of CSLD steps). Thanks to Theorem 21 we know that this upper
bound provides a safe upper bound for the longest derivation with
respect the original, which is as precise as it is for the projection.

Similarly, we can analyze the weight module and obtain:

:- true pred weight(A,B)
: (list(A.arithexpression), var(B))

=> (rt5(A), num(B),
size_ub(A,length(A)), size_ub(B,bot))

+ steps_ub(0.5*exp(length(A),2)+2.5*length(A)-2.0).
:- true pred sumlist(_1,S)
: (list(_l,arithexpression), var(S))

=> (list(_l,arithexpression), num(S),
size_ub(_l,length(_l)), size_ub(S,bot))

+ steps_ub(length(_l) + l) .

where length(A) stands for the length of the list A.
Note that this result underlines once again the advantage of the

direct translation of CHRi programs into CLP with respect the
meta-interpreter approach of Pilozzi. Indeed, we were able to infer
a bound for the weight program from the CLP projection, while
Figure 1 illustrates it is already difflcult to prove its termination
using Pilozzi's translation.

7. Conclusions
We have introduced and studied the notion of CLP projection for
Constraint Handling Rules (CHR). We have shown that the CLP
projection provides a safe operational and declarative approxima-
tion for CHR programs. We have also shown that the least flxpoint
of a confluent program is the same as that of its projection (and in
doing so we have made some contributions to the logical founda-
tionsofCHR).

We have hopefully demonstrated that the CLP projection is a
promising theoretical (and also practical) tool for the study and
analysis of CHR programs. The CLP projection provides a good
semantic approximation that is complementary to previous work.
In particular, existing analyzers are good for the analysis of termi­
nation properties when the latter rely on multiplicity of atoms in
the store. On the other hand the use of the CLP projection for ter­
mination proofs appears advantageous when termination does not
relies on multiplicity of atoms in the store. Furthermore, our ap­
proach provides the flrst method (to the best of our knowledge) for
providing cost bounds for CHR programs.

As future work it seems interesting to explore, within the CLP
projection approach, the possibility of adding information about the
multiplicity of atoms in store to be able to prove termination of
multi-headed programs.

References
[1] S. Abdennadher, T. Frühwirth, and H. Meuss. Confluence and

semantics of constraint simpliflcation rules. Constraints, 4(2):
133-165, 1999.

[2] D. Cabeza and M. Hermenegildo. A new module system for
Prolog. In International Conference on Computational Logic,
number 1861 in Lecture Notes in Artificial Intelligence, pages
131-148. Springer, 2000.

[3] K. L. Clark. Negation as failure. In Logic and Data Bases.
Plenum, 1978.

[4] M. Codish and C. Taboch. A semantic basis for the termi-
nation analysis of logic programs. J. Log. Program., 41(1):
103-123, 1999.

[5] P. Dart and J. Zobel. A regular type language for logic
programs. In Types in Logic Programming, pages 157-187.
MIT Press, 1992.

[6] G. J. Duck. Compilation of Constraint Handling Rules. PhD
thesis, University of Melburne, 2005.

[7] T. Frühwirth. Constraint Handling Rules. Cambridge Univer­
sity Press, 2009.

[8] J. Giesl, P. Schneider-Kamp, and R. Thiemann. Aprove 1.2:
Automatic termination proofs in the dependency pair frame-
work. In IJCAR, volume 4130 of Lecture Notes in Computer
Science, pages 281-286. Springer, 2006.

[9] C. D. Giusto, M. Gabbrielli, and M. Meo. On the expressive
power of múltiple heads in CHR. To appear in ACM Transac-
tions on Computational Logic.

[10] R. Haemmerlé. (Co)-inductive semantics of Constraint Han­
dling Rules. To appear in Theory and Practice of Logic Pro­
gramming, (ICLP'll Special Issue), 2011.

[11] M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García.
Integrated Program Debugging, Verification, and Optimiza-
tion Using Abstract Interpretation (and The Ciao System Pre-
processor). Science of Computer Programming, 58(1-2),
2005.

[12] C. Holzbaur. Metastructures vs. Attributed Variables in the
Context of Extensible Unification. In International Sympo-
sium on Programming Language Implementation and Logic
Programming (PLIP), volume 631 oí Lecture Notes in Com­
puter Science, pages 260-268. Springer, August 1992.

[13] C. Holzbaur and T. W. Frühwirth. Compiling constraint han­
dling rules into prolog with attributed variables. In Interna­
tional ACM SIGPLAN Conference on Principies and Practice
of Declarative Programming (PPDP), volume 1702 of Lec­
ture Notes in Computer Science, pages 117-133. Springer,
1999.

[14] Information technology - Programming languages - Prolog
- Pan 1: General core. International Organization for Stan-
dardiztion, 1995. ISO/IEC 13211-1.

[15] J. Jaffar and J.-L. Lassez. Constraint logic programming. In
ACM Symposium on Principies of Programming Languages
(POPL), pages 111-119. ACM, 1987.

[16] J. Navas, E. Mera, P. López-García, and M. Hermenegildo.
User-definable resource bounds analysis for logic programs.
In International Conference on Logc-Programming (ICLP),
volume 4670 oí Lecture Notes in Computer Science. Springer,
2007.

[17] P. Pilozzi and D. D. Schreye. Proving termination by in-
variance relations. In International Conference on Logc-
Programming (ICLP), volume 5649 oí Lecture Notes in Com­
puter Science, pages 499-503. Springer, 2009.

[18] P. Pilozzi, T. Schrijvers, and D. De Schreye. Proving termi­
nation of CHR in Prolog: A transformational approach. In
International Workshop on Termination (WST), June 2007.

[19] P. Pilozzi, T. Schrijvers, and M. Bruynooghe. A transforma­
tional approach for proving properties of the chr constraint
store. In International Symposium on Logic Program Synthe-
sis and Transformation (LOPSTR), volume 3037 of Lecture
Notes in Computer Science, pages 22-36. Springer, 2009.

[20] G. Puebla, F. Bueno, and M. Hermenegildo. An assertion lan­
guage for constraint logic programs. In Analysis and Visu-
alization Toolsfor Constraint Programming, number 1870 in
Lecture Notes in Computer Science, pages 23-61. Springer,
2000.

[21] F. Raiser, H. Betz, and T. Frühwirth. Equivalence of CHR
states revisited. In Workshop on Constraint Handling Rules,
Report CW 555:34-48. Kath. Univ. Leuven, 2009.

[22] T. Schrijvers and B. Demoen. The k.u.leuven chr system:
Implementation and application. In Workshop on Constraint
Handling Rules, pages 1-5, 2004.

[23] C. Vaucheret and F. Bueno. More precise yet efflcient type
inference for logic programs. In International Static Analy­
sis Symposium, volume 2477 of Lecture Notes in Computer
Science, pages 102-116. Springer, September 2002.

