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Abstract 
This paper introduces and studies the notion of CLP projection for 
Constraint Handling Rules (CHR). The CLP projection consists 
of a naive translation of CHR programs into Constraint Logic 
Programs (CLP). We show that the CLP projection provides a safe 
operational and declarative approximation for CHR programs. We 
demónstrate moreover that a confluent CHR program has a least 
model, which is precisely equal to the least model of its CLP 
projection (closing henee a ten year-old conjecture by Abdenader 
et al.). Finally, we illustrate how the notion of CLP projection can 
be used in practice to apply CLP analyzers to CHR. In particular, 
we show results from applying AProVE to prove termination, and 
CiaoPP to infer both complexity upper bounds and types for CHR 
programs. 

Keywords CHR, CLP, Declarative Semantics, Static Analysis. 

Categories and Subject Descriptors F.3 [Theory of Computa-
tion]: Logic and Meaning of Programs 

General Terms Theory 

1. Introduction 
Constraint Handling Rules (CHR) [7] is a concurrent, committed-
choice, rule-based programming language introduced in the 1990s 
by Frühwirth. CHR was originally designed for the design and 
implementation of constraint solvers, initially in the context of 
Constraint Logic Programming (CLP) [15], but it has since come 
into use as a general-purpose concurrent programming language. 

It is well-known that CLP can be encoded into CHR (see, for 
instance Section 6.3.1 in Frühwirth's Book [7]). Operationally the 
encoding is sound and complete. From the logical point of view 
the encoding is an under-approximation, since the CHR encoding 
in CLP corresponds to the Clark completion [3], Conversely, CLP 
has been from the beginning an implementation vehicle for CHR 
programs [6, 13, 22], since, as mentioned before, one of the ini-
tial objectives of CHR was precisely to encode constraint solving 
algorithms meant to run within CLP systems. However these trans-
lations are really too low-level code, typically using attributed vari­
ables [12], 

However, and perhaps surprisingly, few attempts can be found 
in the literature to perform a direct translation of CHR into (puré) 

CLP. Such an encoding can be interesting in order to relate the CLP 
and CHR theoretical foundations, and to be able to use the many 
tools available for the semantic analysis of CLP programs in the 
context of CHR. 

With this objective in mind in this paper we introduce the notion 
CLP projection. CLP projection consists of a naive translation of 
CHR programs into (puré) CLP. We show that CLP projection 
provides a safe operational and declarative approximation for CHR 
programs. In particular, we show that: 

• A CHR program is operationally simulated by its CLP projec­
tion. 

• The logical models of a CHR program are under-approximated 
by the least model of its projection. We show moreover that 
the least model of a confluent CHR program is precisely the 
least model of its CLP projection (closing henee a ten year-old 
conjecture by Abdenader et al. [1]). 

• The success set with respect a CHR program can be charater-
ized by the successes of its projection. 

Finally, we also illustrate how the notion of CLP projection can 
be used in practice to apply CLP analyzers to CHR. In particular, 
we show results from applying the AProVE analyzer [8] to prove 
termination, and the Ciao preprocessor (CiaoPP) [11] to infer both 
complexity upper bounds and types for CHR programs. 

To the best of our knowledge the only attempt to transíate CHR 
programs into Prolog is the so-called transformational approach 
of Pilozzi's et al [18, 19], It consists of a Prolog meta-interpreter 
that preserves store accessibility. As the CLP projection, it provides 
an over-approximation of the CHR operational semantics, and has 
been used to prove termination and to infer types for CHR pro­
grams. The meta-level nature of this approach has the main ad-
vantage of making the notion of user-deflned store explicit, but it 
also makes the task for Prolog/CLP analyzers much more complex, 
since it is a well-known fact that high levéis of meta-interpretation 
can result in loss of precisión for analyzes based on approxima-
tions. Furthermore it seems more difflcult to relate the declarative 
semantics using a meta-interpreted approach. 

The rest of the paper is structured as follows: Section 2 re-
calls basic notation, deflnitions, and results for flxpoints, reduction, 
and flrst-order logic. Then, Section 3 presents the syntax and both 
the operational and the declarative semantics for CLP frameworks. 
Section 4 similarly presents the CHR framework. Then, Section 5 
formally introduces the notion of CLP projection. In Section 6, we 
illustrate the relevance of the CLP projection approach for the static 
analysis of CHR programs through different applications ranging 
from termination proofs to type inference through complexity up­
per bounds. Finally, in Section 7 we present our conclusions. 



2. Preliminaries 
In this section, we recall the theoretical framework of CLP. 

2.1 Notations 

We assume as given a denumerable set V of variables (denoted 
by X, Y, Z ...), a denumerable set £ / of function and constant 
symbols, and a set of predicate symbols £ p (denoted by characters 
or words in teletype font, such as c or p). Symbols of both kinds 
are assumed given with their respective arity. The set of flrst order 
terms built from V and £ / will be denoted by T, its elements 
by t,s,.... Sets (resp. sequences) of variables and terms will be 
distinguished by a bar (resp. arrow) above, as, for instance, X and 
i (resp. X and i). Atomic propositions built from T and £ p are 
denoted by a, b, c, d,.... By a slight abuse of notation we will use 
interchangeably conjunction and multiset of atomic propositions, 
forget braces around multisets, and use comma for multiset unión. 
Conjunctions and multisets will be denoted by capital blackboard 
letters such that A or C. 

For an arbitrary formula <j>, we use fv(</>) to denote the set of 
free variables occurring in <j>, and </>[X \í) to represent <j> in which 
the free occurrences of variables X have been replaced by terms 
t (with the usual renaming of bound variables, avoiding variable 
clashes). The notation 3.,p<f> denotes the existential closure of <j> 
with the exception of variables free in the formula ip, which remain 
free. 

In this paper, we assume that the set of predicate symbols £ p is 
partitioned into two: £¡,, the set of (built-in) constraint symbols, £ a 

the set of (user-defined) atom symbols. Naturally, atomic proposi­
tions built from £¡, will be called (built-in) constraints while atomic 
propositions built from £¡, will be called (user-defined) atoms. For 
constraints we assume given a consistent (flrst order) axiomatic the­
ory C describing their meaning. 

2.2 Preliminaries on Fixpoints 

Here, we recall some deflnitions and results about fixpoints in an 
arbitrary complete lattice (£, 3 , n, U, T, _L). We will say that a 
function / : £ —s- £ is monotonic if f(X) D f(y) whenever 
X D y. The upward (ordinal) power of a function / : £ — ) - £ is 
deflned by the transflnite induction: 

• /to = ± 
• /t« = /(/t(a — 1)) if a is a successor ordinal, 

• f-\a = U { / t / 3 | /3 < a} if a is a limit ordinal. 

An element X e C is afixpoint for / : C —y C if f(X) = X. X is 
a least fixpoint for / if it is a flxpoint and y D X whenever y is a 
flxpoint for / . We use pX.f(X) to denote the least flxpoint. 

Theorem 1 (Knaster-Tarski). If f is a monotonic function on C, 
then f has a least fixpoint. Furthermore there exists a limit ordinal 
a such that: 

pX.f(X) = f]{X e C\X = f(X)} = f\a. 

2.3 Preliminaries on Reductions 

A reduction is a binary relation —y deflned over some given set A. 
Let assume some reductions —y, -o deflned over the same set A. 
We shall use the following notations and deflnitions: 

• o is the composition : (—y o -o) = {(a,b) \ 3c e A (a —y 

C A C H > 6 ) } ; 

• -y° = {a - • a | a e A} and -^ n = - • o -*.™"1 for n > 1; 

• —y* = U¿>0—yz is the transitive-reflexive closure of —y, 

• —y is terminating if there is no infinite sequence eo —y e\ —y 

• —y is confluent if for any element a,b,c e A such that a —y* b 
and a —s-* c there exists an element d e A such that b —y* c 
and c —y* d. 

2.4 Preliminaries on First order logic 

In this subsection we recall some basics about model theoretic 
semantics of flrst order logic. 

2.4.1 First order models 

Let Cp be the flrst order language built from the set T of flrst order 
terms and the set of predicate symbols £ p . An interpretation of 
Cp is a tupie I = (D, []}, composed of an interpretation domain 
D together with a semantics function [], which associates to each 
function symbol / e £ / of arity m a function [/] : Dm —y D, and 
to each predicate symbol p e £ p of arity n a function [p] : IT —y 
{T, _L}. For a given interpretation / , an I-valuation is a function 
p : V —y D. An I-instance of a term t (resp. a formula <j>) is the 
tupie tp (resp. <j>p), where p is an I-valuation. 

Let I be an interpretation of £p. The assignment (with respect 
I) of I-instances of terms and atomic propositions in Cp is the 
function []j deflned by structural induction as: 

• [Xp]i=p(X) i f X e V ; 

• {f(t1,...,tn)p]1 = {f]({t1p]1,...,{tnp]1) i f / e £ / ; 

• [ c ( í l , . . . ,tn)p]l = [ c ] ( [ í l / 0 ] j , . . . ,[tnp]l) Í f c e £ p . 

The assignment (with respect I) is extended to logical formulas in 
Cp by applying the truth table of the logical connectors and the 
following rules for the quantiflers: 

• [(yX(j>)p]i = T if and only if for any element d e D, 
[^po[X\d])]I = T; 

• [(3X<f>)p]i = T if and only if there exists an element d e D, 
[(h(po[X\d])]I = T. 

An interpretation I of Cp is a model for a formula <j> e Cp, if for all 
I-valuations p, [<f>p]i = T. Naturally, an interpretation I of Cp is a 
model of a theory T if I is a model of all of its axioms. A formula 
<j> is satisfiable within a theory T (or, more briefly, T-satisfiable) 
if there is a model of T which is a model of 3<f> as well. In the 
following, we use the notation T |= <j> to mean that any model of a 
theory T is as well a model of the formula <j>. 

2.4.2 Model with respect a constraint theory 

In this subsection, we introduce the classical notion of constrained 
atoms. Sets of constrained atoms will be called C-interpretations. 
For a given interpretation limited to constraints, a C-interpretation 
represents an interpretation for the whole set of propositions (in-
cluding both constraints and atoms). C-interpretations have the ad-
vantage with respect classical interpretations as presented in the 
previous section that they are sets of syntactic objects while clas­
sical interpretations are not (for instance the domain of real num-
bers contains elements which cannot be represented syntactically). 
Henee, it appears that in a large number of cases manipulating C-
interpretations is simpler than manipulating the classical ones. 

Definition 2 (C-base). A constrained atom is apair (a|C), where 
a is a user-defined atom and C is a conjunction of built-in con­
straints. The set of constrained atoms is called C-base and is de­
noted by Be-

For the sake of simplicity, we will work always with sets of 
constrained atoms closed by the closure operator f|-c deflned next. 
This operator returns the set of all atoms more constrained than the 
one given as its input. 



Definition 3. The closure operator ff- : 2 c —y 2 c is defined as: 

itc(Z) = {(a\C)eBc\(b\D)eZandC\=C^3.a(a = bAD)} 

In the following, we use the notation ( a i , . . . , a„ |C) for the set of 
constrained atoms { (a i |C) , . . . (an |C)}. 

Example 4. Assume C defines the order < on integers. Let p and q 
be two constrained symbols ofarity 1 and let 2 = ff- (p (X) \ 0<X A 
For instance, we have: 

• (p(l)|T), (p(Y)\l<YAX=YAX<4), and (q(Y)\.L) are in Z. 
• neither (p(5)|T) ñor (p(Y)|Y>5) are in Z. 

We define the C-model of a formula <j>, as a set of constrained 
atoms that valídate <j> without contradicting any model of C. 

Definition 5 (C-model). For a given interpretation I of C, the 
assignment of I-instances associated to a set Z of constrained 
atoms is defined as: 

3. Constraint Logic Programming 
Here we recall basic definitions and results for CLP. 

3.1 Syntax 

In CLP, we distinguish two syntactical categories, the clauses that 
form the programs and the goals that are rewritten by the programs. 

X<4). A (CLP) clause is a logical formula of the form: 

H J M 
[Cp]i if(a\C) e 2 
_L otherwise 

A set Z of constrained atoms is a C-model ofafirst order formula 
4> in JCP, iffor any model I = {D, []} of C, {D, [] U [ü-]/} is a 
model of<j>. 

Obviously, a formula is satisfiable in any interpretation of C if 
and only if it has a C-model. The following technical lemma will 
be useful later to prove that a set of constrained atoms is a model 
of an implication. 

Lemma 6. Let Z be a set of constrained atoms, A and B be 
two conjunctions of user-defined atoms, C and P be two sets of 
built-in constraints, and X a sequence of variables not free in 
(A A C). Iffor any conjunction E of built-in constraints satisfying 
X n fv(E) = 0, (A|C A E ) G 2 implies (B|C A P A E) e 2 
together with C \= (C A E) -> 3X(C A P A E), then Z is a C-
modelfor the implication (A A C) —s- 3X(B A P). 

Proofi Let / = (D, []) beamodelof C and []z = ([] U[L2]j).We 
have to show that (D, [ ] z) is a model for (A A C) -> 3X. (B A P), 
that is, for any I-valuation p, if [(A A C)p]z = T then there exists 
a sequence of terms d e D such that [(A A C)(p o [X\d])]z = T. 
Let us assume some I-valuation p satisfying [(A A C)p]z = T. 
We have: 

(A A C)p]z = T 

Ap]z = Tand [Cp]z = T 

A|E) e 2, [Ep]¡ = T, and [Cp]¡ = T for some E 

(CAE)p] , = T 

A|CAE) e2 

B|C A E) e 2 and C N (C A E) -^ 3X(D A E) 

there exist de D s.t. Í(D A E ) ( p o \x\d\ ]1 = T 

[B (p o \x\¿ )] and Í(D A E) (p o \x\<ñ ' 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

T 

SAF1 P' [X\¿] 
(7) 

(8) 

(1) is by definition of []z. (2) is by definition of [2\j. (Without 
lossof generalitywe assume Xnfv(E) = 0.) (3) is by definition of 
[]j. (4) is by definition of [2\j. (5) is by hypothesis. (6) is because 
I is a model of C. (7) is by definition of [2\i. (8) is by definition 
oí[]z. U 

V ( a V -¡ai . V - i c i V . 

where the a and a¿'s are atoms and the c¿'s are constraints. This 
formula is noted in a simpler way as: (a «— A | C), where A is 
the multiset of the a¿'s and C is the conjunction of the c¿'s. Empty 
constraints (Le., T) can be omitted together with the symbol |. A 
CLPprogram is a finite set of clauses. 

A (CLP) goal is a logical formula of the form: 

V(-.ai -ia„ V - i c i V . -iCm) 

where the a¿'s are atoms and the c¿'s are constraints. This formula 
is noted in a simpler way as: (A|C), where A is the multiset of the 
cii's and C is the conjunction of the c¿'s. 

3.2 Operational semantics 

The operational semantics of CLP is given by CSLD resolution, 
that we present briefly in the following. 

For a given program V, the transition relation —» over goals 
is defined as the least relation satisfying the following principie of 
resolution: 

(6 <- B | P) g V6 P is C-satisfiable 

(A,a|C) ^> (A,B|CAa = 6AP) 

where 9 is a renaming with fresh variables. 

We state next a straightforward result about CLP transitions that 
we will use later in the paper: 

Proposition 7. 
Le/(A|C), (A'|C), and(M\B) be CLP goals suchthat fv(A' ,C ' )n 
fv(B,P) Cfv(A,C). 

If (A|C) ^-> (A'|C') ana CAP is C-satisfiable, then 

(A,B|CAP) ^> ( A ' , B | C ' A P ) . 

A success for a CLP program V is a goal that has a consistent 
answer with respect V (i.e., that can be derived by V to a goal of 
the form (0|C) where C is C-satisfiable). 

3.3 Fixpoint semantics 

In this section we recall the fixpoint semantics of CLP. 

Definition 8 (Immediate Consequence Operator). For any CLP 
program V, the immediate consequence operator Tp : 2Bc —s- 2Bc 

Tp(X) = {(a|C A P) e Be | (a <- A | C) e V A (A|P) e ^ } 

Both Tp and f|-c being obviously monotonous, Tarski's theo­
rem ensures the function XX.^c (Tp(X)) has a least and greatest 
fixpoint. 

Theorem 9 (Least C-models [15]). Let {Mi}iei be the set of 
all C-models of a CLP programs V. V has a least model, which 
satisfying: 

iei 

file:///x/d/


4. Constraint Handling Rules 
In this section we introduce the syntax, the equivalence-based op-
erational semantics ue, and the declarative semantics of CHR. 

4.1 Syntax 

We recall first the syntax of the language. 

4.1.1 Programs 

A Constraint Handling Rule (CHR) is a rule of the form: 

r @ K\H <=^ G | A, C 

where K and H are multisets of user-deflned atoms, called kept 
head and removed head respectively, G is a conjunction of built-in 
constraints called guard, C are conjunctions of built-in constraints, 
A are multisets user-deflned atoms, and r is an arbitrary identifler 
assumed unique in the program and called rule ñame. Rules where 
both heads are empty are prohibited. The empty guard T can be 
omitted together with the symbol |. The local variables of the rule 
are the variables occurring in the guard and in the body but not in 
the head (i.e., lv(r) = fv(G, C, B) \ fv(K, H)). 

CHR programs are flnite sets of CHR rules. We use CHRi to 
denote the CHR language limited to single headed rules (i.e., rules 
with a single head atom). 

Example 10. Assume that the constraint a(7, X) represents the 
I'h cell of an array containing arbitrary data X. Now, consider 
Vio to be the foüowing classical CHR program [7] consisting of 
the foüowing single rule: 

a(I, X), a( J, Y) <=^ I>J,X<Y\&(I,Y), a( J, X) 

This rule sorts the array by swapping valúes at positions that are 
in the wrong order. 

4.1.2 States 

A CHR state is a tupie (A; C; X) where A and C are multisets 
of atoms and constraints, respectively, and X is a set of variables, 
called global variables. The global variables represent the variable 
free in the initial goal. 

Following Raiser et al. [21], we will consider CHR states mod­
ulo a structural equivalence. Formally, the CHR state equivalence 
is the least equivalence relation =c over states satisfying the fol­
lowing rules: 

• (A; C; X) = c (A; B>; X) if C N 3 . ( A ^ (C) O 3 . ( A ^ (B>) 

• (A;_L;X)=C (B; _L; X) 

• (Á,c;CAc = d;X) = c (Á,d; C A c = d; X) 

• (A;C;X) = c (A; C; {Y} U X) if Y i fv(A,C). 

will say that a state is consistent if its built-in store C is C-
satisflable, and inconsistent otherwise. 

To give some intuition about this structural equivalence we 
recall some examples by Fraiser et al. 

Example 11 ([21]). Let C be an arbitrary constraint theory and p 
a unary user-deflned atom symbol. We have: 

(p(X);T;0)= c (p(Y);T;0> 

<p(X);X = 0;{X}}= c (p(0) ;X = 0;{X}} 

(0;X < OAX > 0 A Y = 0;{X}) = c (0 ; X = 0; {X}} 

(p(O);T;{X})= c(p(O);T;0) 

<p(X);T;{X})^ c<p(Y);T;{Y}> 

We recall a useful result on structural equivalence. 

Theorem 12 ([21]). Let R = (A; C; X) and S = (B; D; Y) be 
CHR states, such that (fv(A, C) n fv(B, B>)) C (X n Y). 

Í C M - x ( C ) o 3 . p ( » ) , 
R=c S ifandonly if i C \= C -> 3 . ? (A = B), and 

[C | = B - > ] . x ( A = l ) . 

4.2 Operational semantics 

Once state equivalence has been stated, the equivalence-based op­
erational semantics ue of Raiser et al. [21] can be deflned by a 
single inference rule. The resulting operational semantics is very 
similar to the very abstract semantics ua [7], the most general oper­
ational semantics of CHR. The equivalence-based style is preferred 
here, because the use of a notion of equivalence will simplify many 
formulations. 

The CHR transition •?->• is the least relation satisfying the two 
following rules 

(r @ K\H <̂ =>- G|B, C) eVO (G A B>) is C-satisflable 

(H, K, A; G A D; X) A (B, K, A; G A C A D; X) 

where 9 is a renaming with fresh variables. 
We will say a state is data-sufficient if it has a computation 

ending with a state of the form (0;C;X). Similarly to CLP, a 
success for a CHR program V is a state that has a consistent answer 
with respect V (i.e., that can be derived by V to a goal of the form 
(0; C; X) where C is C-satisflable). 

The following straightforward technical lemma about CHR 
transitions will be used later in the paper. 

Lemma 13. 
3-x(C). 

If(A;C;X) ;Y) thenC N 3.y(D) 

Proof By induction on the length of (A; C; X) 
D 

4.3 Declarative semantics 

We state now the declarative semantics of CHR. The logical read-
ing of a rule: 

(K\H-^=>-G |B,C) 
is the following guarded equivalence: 

V((KAG) - • ( l « 3 . ( I i i ) ( G A B A C ) ) ) 

or, equivalently, the conjunction of implications: 

V( (KAHAG) - 4 3 . W ) ( G A B A C ) ) A 

V ( (K A G A B A C ) - • H) 

The logical reading of a program V within a constraint theory C 
is the theory C extended with the logical readings of the rules of V. 
The logical reading of a state (A; C; X) is the first order formula: 
3_x(AAC). 

Example 14. The logical reading of the program Vio given in 
Example 10 is equivalent to the conjunction of the two following 
implications: 

V(I>J AX>Y A&(I,X),&(J,Y)) - • (a ( I ,Y) ,a (J ,X)) 

V ( 7 > J A X > Y A a ( / , Y ) , a ( J , X ) ) - • (a(J ,X), a(J, Y)) 

The theorem we give next summarizes basic results about 
soundness and completeness of data-sufficient states with respect 
the declarative meaning of a program. 

Theorem 15. Let V be a CHR program with a consistent logical 
reading, and (A; C; X) ^-s- (0; D; Y) be a valid CHR derivation. 
(A A C) is satisfiable with respect the logical reading ofV if and 
only ifV, C N 3 _x (A A C) o 3 _x (D). 



Proof. Direct by the Soundness and Stronger Completeness of 
failed computations Theorems (refer to Theorems 3.21 and 3.25 
in Frühwirth's book [7]). D 

5. CLP Projection 
In this section, we introduce and formally study the CLP projection 
for CHR programs. In the next section, we will see some direct 
applications. 

5.1 Definition 

As explained in Section 4.3, the logical reading of a simpliflcation 
rule is an equivalence. The basis of the CLP projection is to ignore 
the right-to-left implication part of the equivalence and consider 
only the left-to-right part. Indeed, one can consider the implication 
ci A • • • A c„ —̂ 3Z(K A G A B) as the conjunction of the n 
implications (ci <- 3Z(KA GAB)) , . . . , (cn ^ 3 Z ( G A D M A 
K)). Formally the CLP projection can be deflned as follows: 

Definition 16 (CLP Projection). The (CLP) projection of a CHR 
program V is the set TT(V) ofCLP clames defined as: 

K(V) = { ( a ^ K , B I GAC) I 

( K \ H < ^ G | B,C) e Vandae (H,K)} 

The (CLP) projection ofa CHR state is defined in a straightforward 
way, Le.: 

T T ( ( A ; C ; X ) ) = (A|C) 

We illustrate now the result of a CLP projection. 

Example 17. Consider the program Vio given in Example 10. The 
CLP projection of Vio consists of the following CLP clauses: 

&(I,X) < - a ( I , Y ) , a ( J , X ) | I>JAX<Y 

a(J,Y) < - a ( I , Y ) , a ( J , X ) | I>JAX<Y 

5.2 Approximating CHR operational semantics 

In this section, we relate the operational behavior of a CHR pro­
gram and its CLP projection. To state the result of the section, we 
flrst introduce two relations of state subsumption. 

Definition 18 (State subsumption relations). The relations Qc and 
Ce are defined as the least transitive relations containing =c and 
satisfying respectively 

(A;CAD;X) C c (A; C; X) 

( A ; C A l ) ; l u y ) C c (A,B;C;X) 

where B standsfor an arbitrary multiset ofatoms, B> standsfor an 
arbitrary conjunction of constraints, and Y stand for a arbitrary 
set of variables. 

Note that both relations mean that the C-interpretation of the 
left-hand side state is more constrained than that of the right-
hand side state. Qc differs from C c in that Qc preserves precise 
information about the multiplicity of user-deflned atoms while C c 

does not. 

The theorem we give next states that the operational semantics 
of a CHR program can be simulated by its projection. We will 
use this theorem, which establishes that the termination of ir(V) 
implies the termination of V, in Section 6.1. 

Theorem 19. For any CHR program V, we have: 

For all states R, R', S if R ^-s- R' and R Cc S, then 
7rCP) 

there exists a state S such that TT(S) > TT(S ) and R Cc S . 
The theorem is graphically represented by the diagram of 

Figure 1. Following standard diagrammatic notation, solid edges 

v 
R >R' 

in un 
a i a 

s s' 
TV . 7V 

^ TT(-P) 

TV(S) -----> TV(S') 

Figure 1. Simulation diagram for a CHR program V. 

stand for universally-quantifled relations (i.e., the premise), and the 
dashed edges stand for existentially-quantifled relations (i.e., the 
conclusions). CHR states are nodes in the upper side and CLP goals 
are nodes in the lower side. 

Before formally proving the theorem, we illustrate the theorem 
on our running example. 

Example 20. Consider the program Vio given in Example 10. 
Applying the rule sort, we infer the possible transition: 

fí=(a(O,7),a(l,5);T;0) - ^ (a(0, 5), a( l , 7); T; 0) = fí' 

It is straightforward to verify that using the projection of Vio (given 
explicitly in Example 17) that the following derivation is valid with 
respect TT (Vio): 

(a(0,7),a(l ,5) |T) ^ ^ 

(a(J, 7), a(0, X), a( l , 5)| J>0 A X<7) 

Note that it holds that R' is included (with respect Cc) in the state: 

(a(J, 7), a(0, X), a(l , 5); 7>0 A X<7; 0) 

Proof. Assume that r is of the form 

K\H-^=>-G|B,C 

Without loss of generality we can assume that the states R, R' and 
S satisfy: 

fí=c(K',H',c,A;GADAD';Xuy) 

S '= c (K , ,H , , c ,A ,A , ;D , ;X) 

R' =c(B, K, A; C A G A D A W; X U Y) 

with(K,H) = (K',H',c). 
Let 9 be a renaming with fresh variables. Henee, we have: 

•K(S) ^ \ (Ké»,Bé»,K',H,,A,A,|D' A c=(c0) A G0 A C0) 

To conclude it is sufflcient to notice that: 

R' CC (Ké»,Bé»,K',H,,A,A,;D' A c=(c0) A G0 A C0; X) 

D 

In fact, one can prove a more precise correspondence in the case 
of single headed simplifleations. 

Theorem 21. For any CHRi program V, we have: 

For all states R, R', S if R ^-s- R' and R Qc S, then 

there exists a state S such that TT(S) > TT(S ) and R \Cc S . 

This second theorem is graphically represented by the diagram 
of Figure 2. 

Proof. Assume r is of the form: 

C<^^.G|B,C 



V 
R >R' 

in un 
a i a 

s s' 
TV . 7V 

^ TT(-P) 

ir(5) -----> TV(S') 

Figure 2. Strong simulation diagram for a CHRi program V. 

Without loss of generality we can assume that the states R, R' and 
S satisfy: 

R =c (c, A; G A B> A ©'; X U Y) 

S , = c (c ,A,A ' ;D ' ;X) 

fí' = c ( B , A ; C A G A D A D ' ; X U Y ) 

Let é* be a renaming with fresh variables. Henee, we have: 

ir(S) ^ \ (K0,B0,K',H',A,A' |D' Ac=(cé>) A Gé> A Cé>) 

To conclude it is sufflcient to notice that: 

R' Qc (Ké»,Bé»,K',H,,A,A,;D' A c=(c0) A Gé» A C0; X) 

D 

In general the theorems do not hold in the reverse direction. 
Indeed as shown through the following counter-example that a 
program does not simúlate is projection. 

Example 22. Consider the program Vio given in Example 10 and 
its projection TT(VIO) given explicitly at Example 17. The CLP 
transition: 

(a(0, 5)|T) *(Vl0\ ( a ( / ; 5), a(0, X),|J>0 A X<5) 

is valid with résped the CLP projection of Vio- Nevertheless 
(a(0, 5); T; 0} cannot be derived by Vio. The reasonfor this di-
chotomy is that Vio is a terminating program while TT(VIO) is not 
- infact, TT(VIO) has no terminating derivations. 

5.3 Approximating CHR declarative semantics 

In this section, we relate the model of a CHR program with that 
of its projection. Indeed, the following proposition states that the 
logical model of a CHR program is bounded by the least model of 
its projections in the lattice of C-interpretations. 

Proposition 23. Let V be a CHR program. For any C-model M of 
V, we have: 

Proof If V has no C-model, then the result is direct. Otherwise, let 
M be a C-model of V. Obviously ir(V) is a logical consequence 
ofP(i.e., C \=V -+TT(V)), henee .M isa C-model for TT(V). The 
conclusión is then direct using Theorem 9. D 

As shown by the following examples this approximation is in 
general quite imprecise. 

Example 24. Consider the program VIA comprising the following 
rules: 

c •<=>• T c •<=>• d e •<=>• e 

The projection ofVi& consists of the following clauses: 

c-í—T c •<— d e •<— e 

The least C-model of''K{V2A) is f|" ((c|T)), but the least C-model 
0fV2AÍSÍ\C{{c,d[T)). 

We show now that in the case that V is confluent, the least 
flxpoint of T^iVs provides a logical model for V. 

Theorem 25. Let V be a confluent program. /-iX.^0 (TS™ (X)) 
is the least C-model ofV. 

The proof of the proposition relies on two main lemmas. 
The flrst one states that if a state R can be derived to a con-
sistent state S which has a projection included in a flxpoint of 
XX.f|-c (T^VJX)), then there is a consistent state R' more con-
strained than R which is the same flxpoint. 

Lemma 26. Let V be a program, y a set of constrained atoms, and 
(A; C; X) ^-s- (B; D; X) a valid derivation such that fv(A, C) C 
X. Ify is a flxpoint of XX.ft0 (T¡;(V)(X)) and (B|D) C y, then 
(A|C A D ) c y . 

Proof. We prove only the case of the one-step derivation, the gen­
eral case will follow directly by reflexivity and transitivity of the 
inclusión. Let r@(K\H <̂ =>- G|F, E) be the rule of V used for the 
transition. We have for some A', C', and X': 

(A;C;X) = c (H ,K,A ' ;GAC' ;X) (1) 

( F , K , A ' ; E A G A C ' ; X ) = c (B;D;Y) (2) 

= ^ ( F , A ' , K | E A G A C ' ) C 2 (3) 

=> (H|E A G A C') C T^(v) (Z) (4) 

= ^ ( i , K , A ' | E A G A C ' ) C 2 (5) 

(1) and (2) are by the deflnition of •?->. (3) is by Theorem 12 and 
idempotence of a closure operator. (4) is by the deflnition of TS™. 
(5) combines (4) with (3) and uses the fact that Z is a flxpoint of 
XX4C(T^(V)(X)). 

On the other hand we have: 

C N B - > C a n d C N D - > 3 . z ( E A G A C ' ) (6) 

C N D ^ C a n d (H,K,A'|D) CZ (7) 

C N D - • C and (A|D) C Z (8) 

(A|C AD) CZ (9) 

The left hand side of (6) is by Lemma 13, the right hand side is 
inferred form (2) by Theorem 12. (7) is inferred from (5) because 
Z is closed by f|-c. Finally, 8 combines the left and right hand sides 
in a straightforward way. D 

The second lemma says that any state derived from a con­
sistent state which has a CLP projection in a flxpoint of 
XX.f|-c (T^,VJX)), has a CLP projection in the same flxpoint. 
Contrary to the previous lemma, the core of the proof relies on the 
confluence of the considered CHR program. 

Lemma 27. Let V be a confluent program. For any ordinal 
a, if (Á;C;X) A * (A';C';X), fv(A) C X, and (A|C) C 
XX.itc(T^(v)(X)) t o , then (A' |C) C ¡J,X.Í\C(T^(V){X)) and 

Proof. Let F denote the function XX.^\C (T¡;(v) (X)). The proof is 
by transflnite induction on a: 

• The base case, a = 0 is trivial. 



• For a successor ordinal, we nave: 

(A|C) C f f (a+1) = f (T%(V)(F t a) 

=>• A is of the form { a i , . . . , a„ } with for i e 1 

7-¿@(K¿\a¿,II¿<í=^G¿ | B¿,C¿) e ^ ( P ) , 

(K¿,B¿|C¿) C F f a , and 

C h C ^ 3 . c ¿ ( G ¿ AB¡AD¡) 

(1) is by deflnition of upward power. (2) to (4) are by deflnition 

(1) 

(2) 

(3) 

(4) 

ofT (V) and-fr 
Assuming A is an abbreviation for any sequence of constraints 

of theformAi, . . . ,A„ and Y = X Ufv(K,í íV wehave: 

(A,H,K;CACAG;Y)-

( A , H , K ; C A C A G ; Y ) -

thereis(B';D';Y)s.t.: 

(A',H,K;C'ACAG;Y) 

(B,K;CACAGA§;Y) -

>*(A',H,K;C'ACAG;Y) 

> * ( B , K ; C A C A G A E 

A * (B';D';Y)and 

V (B';D';Y) 

(B'|D') C y,X.F(X) with 

C | = ( C A C A G A D ) -

( A ' | C A C A G A Í ) C 

-4-3-yD' 

y,X.F(X) 

);Y> 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(5) is by monotonicity of CHR derivation (Lemma 4.2 in [7]). 
(6) is by applying the r¿ rules. (7) and (8) are by confluence of 
^r. (9) is inferred from (3), (8), induction hypothesis, and the 
fact that F t a is closed by f|-c. (10) is by Lemma 26. 

On the other hand we have: 

^C\=D' ^3.YC (11) 

C | = C ^ 3 . P ( C A C A G A § ) (12) 

=>-C | = C ^ 3 . ? C ' (13) 

Thanks to Lemma 13, (11) is inferred from (8). (12) is straight-
forward from (4). Finally (13) is obtained from (11), (12) and 
(9) using transitivity of the implication. 

• For a limit ordinal, we have T^v) -\ a = U/3<a F \ ¡3. 
Using monotonicity of XX.(y U T¡;(V)(X)) and the fact that 
D is flnite, there exists obviously an ordinal ¡3 < a such that 
Dp e XX.(y U T¡¡(V)(X)) t P- The conclusión is then direct 
using induction hypothesis. 

D 

ofTheorem 25. Assume that the following rule is in V: 

r @ K \ H < ^ G |B ,C 

Let 0 be a renaming of fv(G, B, C) \ fv(K, H) with fresh variables 
(in particular (K,H)0 = (K,H)) and let Y = fv(G0,B0, C0). 
The logical reading of r is logically equivalent to the two following 
implications: 

V((KAHAG) ^ 3 . P ( G 0 A B 0 A C 0 ) ) 

V( (KAGABA C) - • H) 

Thanks to Lemma 6, in order to prove Z = /-iX.^0 ( iS™ (X)) is 
a model for V, we know it is sufflcient to show that: 

(i) For any conjunction of constraints E such that fv(E) n Y = 0, 
(K,H|CAE) e ^implies (K,B|G0 A B0 A C0) e Z and 
C N ( C A E ) - > 3Y(G0 A C0 A E) 

(ii) For any conjunction of constraints E, (K, B|G A C A E) e Z 

implies(H|GACAE) e 2 

Since we have obviously 

(K ,H;GAE;X) A (K,B0; G A E A G0 A C0; X) 
(i) follows by Lemma 26 and (ii) by Lemma 27 to-
gether with Knaster-Tarski Theorem. Henee, we know that 
¡JLX.f|-c(T^m(X)) is a model of V, its minimality being guar-
anteed by Proposition 23. D 

As a direct corollary, we get that a confluent program is consis-
tent. We cióse henee a conjecture of Abdenader et al. about con-
sisteney of general confluent CHR program [1], the original proof 
being limited to range restricted programs (i.e., programs without 
local variables). Note furthermore that our theorem does not as-
sume that the constraint theory is ground complete. Consequently, 
it is possible to strengthen existing results about CHR declarative 
semantics, especially the completeness of operational semantics 
with respect failure where both conditions of range restriction and 
ground completeness of the constraint system can be dropped (refer 
to Corollary 5.19 in Früwirth's book). This improvement is impor-
tant, since we identifled in a recent publication a class of confluent 
programs (the so-called coinductive solvers) which by construction 
are not range restricted [10]. 

The following example illustrates that a confluent CHR program 
may not have an unique greatest C-model. This comes from the 
non-compositionality of the declarative semantics of CHR (i.e., if 
the logical readings of two states are independently consistent, then 
one cannot ensure that so is their conjunction). 

Example 28. Let T-̂ s be the program consisting of the following 
rules: 

p,q<=>- -1 
1Í ({f>|T}) and f|- ({q|T}) are two greatest incomparable C-
modelsfor T-̂ s-

An interesting consequence is that the logical semantics of both 
formalisms coincide on data-sufflcient state. 

Theorem 29. A data-sufficient state is a success for a confluent 
CHR program V if and only ifit is a success for TT(V). 

Proof. Let S = (A; C; X) be a data-sufflcient state with respect 
P. By Theorem 15, S is a success of V, C if and only if V, C h 
3(A A C) —y 3D for some C-satisflable conjunction D. Since V 
and V', C have the same least model S is a success of V, C if and 
only ifV,C h 3(A A C) -> 3_x(D) for some C-satisflable con­
junction D. Then, by soundness and completeness of the CSCLD 
resolution [15] S is a success of V, C if and only if ir(S) is a suc­
cess for K(V). D 

Note that this result does not contradict Di Giusto et al.'s re­
sults [9] about the greater expressiveness of multi-headed pro­
grams with respect single-headed programs. Indeed, even though 
any multi-headed program has the same CLP projection as some 
single-headed program, the two CHR programs do not have the 
same set of data-sufflcient states. 

6. Applications 
6.1 Termination proofs of CHRi programs 

Theorem 19 ensures that if the CLP projection of a CHR program 
V terminates (with respect the CLP operational semantics), then V 
terminates (with respect the CHR operational semantics). Henee, 
in order to prove the termination of a CHR program, it is sufflcient 
to prove the termination of its projection. 



benchmark 
ackerman 
average 
binlog 
booland 
convert 
diff 
factorial 

trans. 
-
+ 
+ 
+ 
-

+ 
+ 

proj. 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

benchmark 
modulo 
oddeven 
power 
revlist 
toyama 
weight 

trans. 

+ 
+ 
+ 
+ 
+ 
-

proj. 

+ 
+ 
+ 
+ 
+ 
+ 

Table 1. CHRi termination comparison. 

Nonetheless, as pointed out by Example 22 there exist termi-
nating CHR programs that have non-terminating projection. The 
reason for this dichotomy resides in two possible weaknesses of 
the projection: 

• Information about multiplicity of linear atoms is lost. 

• The guard conditions are ignored. 

Consequen tly, the CLP projection cannot be used to pro ve termi­
nation of programs when they rely on the multiplicity of atoms in 
the store (as illustrated by Example 22) or on the non-entailment of 
guard conditions (as illustrated by the following example). 

Example 30. Consider the program Vio consisting of the single 
rule: 

f (0) ^ í(Y) 
Its projection, TT(V3O), is made up of the following rule: 

f (0) <- f (Y) 

It is straightforward to verify that any CHR state has only afinite 
derivation with résped Vzo. For instance, the following derivation 
cannot be extended: 

< f ( O ) ; T ; 0 } ^ ( f ( X o ) ; T ; 0 } ^ 

but unconstrained CLP goals (f (Xo)|T) have an infinite deriva­
tion with respect the projection ofVio: 

<f(*o)|T>- (f(X¿)|Xo=OA---AX¿.i = 0)-

In spite of its weaknesses in treating guarded multi-headed pro­
grams - indeed the termination of most of multi-headed programs 
relies on the multiplicity of atoms in the constraints store - the CLP 
projection is a powerful notion for tackling the termination analy-
sis of single-headed programs. For instance, Table 1 compares the 
termination of single-headed programs as inferred by the AProVE 
system [8] using Pilozzi et al.'s transformation [18] (column trans.) 
and using the CLP projection (column proj.). In the table, ' + ' indi-
cates a positive termination inference, while '—' stands for a nega-
tive one. All the results in the trans. column are reported as given 
by Pilozzi et al. [18]. Out of a list of 24 programs [18], the CLP 
projection-based approach was able to prove termination of all 13 
CHRi programs1. 

In fact, transforming CHR rules into Prolog clauses has the ad-
vantage with respect the meta-interpreter approach of Pilozzi et al. 
that user-deflned atoms are converted to predicate ñames, and thus 
become control points. This allows using techniques that reduce the 
problem of global termination to several local termination prob-
lems [4] for which it is simpler to synthesize a ranking function. 
For instance, it is not clear what is the global ranking function for 
the Ackerman program, while the termination of the Prolog pro­
gram can be proven easily by systems such as AProVE or Termin-
Web [4], 

1 These favorable results suggest that widely-used benchmarks tend not to 
include programs as the one of Example 30 whose termination relies on 
non-entailment of guard conditions. 

It goes without saying there exist today ad-hoc CHR analyzers 
that provide better results than Pilozzi et al.'s transformation-based 
approach. For instance, Pilozzi's CHRisTA system [17] can prove 
the termination of convert and weight. Nevertheless, to the best of 
our knowledge, the CLP projection together with AProVE pro vides 
the flrst automatic termination proof for the CHR implementation 
of ackerman. 

6.2 Type analysis of CHR programs 

In Section 5.3, we have shown that the success set of a confluent 
program V can be characterized by the success of the projection of 
V. Consequen tly, any safe approximation of properties about the 
success set of a Prolog program inferred via static analysis is also 
a safe approximation of the projection of a confluent program. 

As an illustration, we analyze the CLP projection of some con­
fluent programs using CiaoPP [11]. Since the CLP projection has 
been implemented as a Ciao package [2], it is possible to transpar-
ently analyze CHR programs using CiaoPP. 

CiaoPP can infer properties on the (valúes of) variables in the 
computation of predicates, i.e., state properties, as well as global 
properties of such computations (such as, e.g., the number of exe-
cution steps, determinacy, or the usage of some other resource). In 
CiaoPP state properties can be expressed by predicates. A particu­
lar case of state properties are regular types [5], Regular types can 
be deflned in librarles, deflned by the user, or automatically inferred 
by the system. 

For instance, consider the following module implementing the 
oddeven program: 

: - module(oddeven, [oddeven/2], [ c lp_pro jec t ion] ) . 

oddeven(0,B) <=> B=even. 
oddeven(l.B) <=> B=odd. 
oddeven(A.B) <=> A > 2 I 

App i s A - 2, oddeven(App,B). 

The [clp .projec t ion] argument in the module declaration states 
that the clp_projection package should be used. This package 
applies the CLP projection transformation so that if the CHR pro­
gram above is fed to CiaoPP, CiaoPP sees the CLP projection of 
the program above. The result of applying CiaoPP's type analysis 
is then expressed by using assertions [20] as follows: 

: - t rue success oddeven(A,B) 
=> ( a r i thexpress ion(A) , rt5(B) ) . 

: - regtype r t 5 / l . 
r t 5 (even) . 
r t 5 (odd) . 

The flrst assertion expresses that on success, the flrst argument of 
oddeven/2 is an arithmetic expression, while the second one is of 
type r t 5 / l (i.e., is either even or odd). The preflx t rue in this 
assertion expresses that it is a safe approximation automatically 
inferred by the analysis. In fact, it over-approximates the success 
set of predicate oddeven/2. 

The assertion ": - regtype r t 5 / l " indicates that the r t 5 / l 
predicate is a regular type. The regular type a r i thexpress ion /1 
is deflned in a system library and expresses that its argument is an 
ISO Prolog arithmetic expression [14]. However, the deflnition of 
the regular type r t 5 / l has been inferred by CiaoPP's eterms type 
(shape) analyzer, which is based on abstract interpretation and a 
regular type abstraction with widening [23]. 

As another example, consider the weight module: 

: - module(weight, [weight /2] , [c lp_project ion]) 

weight ([A, B|C] , E) <=> 
sumlist([A,B|C] ,S) , weight ( [S IC] ,E) . 



weight([C], D) <=> D i s C. 
sumlist([A|C] , S) <=> 

sumlist(C, T), S i s A + T. 
s u m l i s t ( [ ] , S) <=> S i s 0. 

Similarly to the present example, the CiaoPP system infers the 
following assertions: 

:- true success weight(X,Y) 
=> ( rtl(X), num(Y) ). 

:- true success sumlist(_1,S) 
=> ( list(_l,arithexpression), num(S) ). 

:- regtype rtl/1. 
rtl([A|B]) :-

arithexpression(A), 
list(B.arithexpression). 

Here l i s t / 1 refers to the regular type for standard lists (deflned 
in the system libraries), and num refers to the ISO numbers (Le., 
floating point or integer numbers). 

CiaoPP is also able to analyze confluent multi-head programs. 
For instance, consider the following rules, forming part of an are 
consistent flnite domain (see section 8.2.3 in Früwirth's book [7]). 

inconsisteney Q X in A:B <=> A > B I f a l s e . 
i n t e r s e c t i o n 0 X in A:B, X in C:D <=> 

X in max(A, C):min(B, D). 
i n s t a n t i a t i o n Q X in A:A <=> X i s A. 

CiaoPP inferred the expected assertions: 

: - t rue pred X in _2 
=> ( number(X), r t0(_2) ) . 

:- regtype rtO/1. 
rtO(A:B) :-

arithexpression(A), 
arithexpression(B). 

Note that the type analyses we can perform on CLP projections 
are complementary to the ones we could perform on the Pilozzi et 
al.'s transformation. Indeed, while the CLP projection preserves the 
success set, Pilozzi et al's transformation preserves the cali set but 
not the set of successes [18]. 

6.3 Upper bound complexity analysis for CHRi 

Theorem 19 ensures that the least upper bound complexity for 
a CLP projection provides a safe upper bound for the projected 
CHR program. Theorem 21 goes further guaranteeing that this 
upper bound is aecurate as far as states that are data-sufflcient 
with respect single-head programs are concerned. Consequently, 
we can infer precise complexity upper-bound for CHRi program 
from its projection. Although this approach is limited to single-
head programs, it provides the flrst automatic tool for obtaining 
complexity upper bounds for CHR. 

Once again, we can use the CiaoPP system, which is able to 
infer such bounds for CLP programs [16]. For example, consider 
the oddeven module given in the previous section. To infer proper 
bounds, the system needs an entry declaration specifying the way 
in which the external calis to an atom will oceur, i.e., how the 
atoms will be called form outside. For instance, the following 
declaration states that oddeven will be called with a number as the 
flrst argument and a variable as the second one: 

: - entry oddeven(X,Y) 
: ( num(X), var(B) ) . 

Once such information has been added to the original program file, 
the system infers the following assertion: 

: - t rue pred oddeven(X,Y) 
: ( num(X), var(B) ) 

=> ( num(X), r t5 (Y) , 
s ize_ub(X, int (X)) , size_ub(Y,1.0) ) 

+ s teps_ub(0.25*exp(-1.0 , int(X))+0.5*int(X)+0.75) . 

This assertion includes a lot of information: the second line after the 
colon (:) contains the preconditions, and states that the condition 
specifled by the entry declaration (num(X), var(B)) also holds 
for the recursive calis to oddeven/2'. The third and fourth lines, 
after the double arrow (=>), show the posteonditions including the 
type of the arguments as inferred in previous subsection together 
with a size upper bound for the arguments on success (int(X) 
stands for the integer valué of X). Finally, the fleld in the flfth line 
(after the +) shows the inferred complexity upper bound (in number 
of CSLD steps). Thanks to Theorem 21 we know that this upper 
bound provides a safe upper bound for the longest derivation with 
respect the original, which is as precise as it is for the projection. 

Similarly, we can analyze the weight module and obtain: 

:- true pred weight(A,B) 
: ( list(A.arithexpression), var(B) ) 

=> ( rt5(A), num(B), 
size_ub(A,length(A)), size_ub(B,bot) ) 

+ steps_ub(0.5*exp(length(A),2)+2.5*length(A)-2.0). 
:- true pred sumlist(_1,S) 
: ( list(_l,arithexpression), var(S) ) 

=> ( list(_l,arithexpression), num(S), 
size_ub(_l,length(_l)), size_ub(S,bot) ) 

+ steps_ub(length(_l) + l) . 

where length(A) stands for the length of the list A. 
Note that this result underlines once again the advantage of the 

direct translation of CHRi programs into CLP with respect the 
meta-interpreter approach of Pilozzi. Indeed, we were able to infer 
a bound for the weight program from the CLP projection, while 
Figure 1 illustrates it is already difflcult to prove its termination 
using Pilozzi's translation. 

7. Conclusions 
We have introduced and studied the notion of CLP projection for 
Constraint Handling Rules (CHR). We have shown that the CLP 
projection provides a safe operational and declarative approxima-
tion for CHR programs. We have also shown that the least flxpoint 
of a confluent program is the same as that of its projection (and in 
doing so we have made some contributions to the logical founda-
tionsofCHR). 

We have hopefully demonstrated that the CLP projection is a 
promising theoretical (and also practical) tool for the study and 
analysis of CHR programs. The CLP projection provides a good 
semantic approximation that is complementary to previous work. 
In particular, existing analyzers are good for the analysis of termi­
nation properties when the latter rely on multiplicity of atoms in 
the store. On the other hand the use of the CLP projection for ter­
mination proofs appears advantageous when termination does not 
relies on multiplicity of atoms in the store. Furthermore, our ap­
proach provides the flrst method (to the best of our knowledge) for 
providing cost bounds for CHR programs. 

As future work it seems interesting to explore, within the CLP 
projection approach, the possibility of adding information about the 
multiplicity of atoms in store to be able to prove termination of 
multi-headed programs. 
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