
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dagstuhl seminar on bidirectional transformations (BX)

Citation for published version:
Hu, Z, Schurr, A, Stevens, P & Terwilliger, JF 2011, 'Dagstuhl seminar on bidirectional transformations
(BX)', SIGMOD Rec., vol. 40, no. 1, pp. 35-39. https://doi.org/10.1145/2007206.2007217

Digital Object Identifier (DOI):
10.1145/2007206.2007217

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
SIGMOD Rec.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. May. 2024

https://doi.org/10.1145/2007206.2007217
https://doi.org/10.1145/2007206.2007217
https://www.research.ed.ac.uk/en/publications/37a8ae89-1b8a-409a-93e8-178323ddc1ad


Dagstuhl Seminar on Bidirectional Transformations (BX)

Zhenjiang Hu
National Institute of Informatics, Japan

hu@nii.ac.jp

Andy Sch-urr
Technische Universit -at Darmstadt,
andy.schuerr@es.tu-darmstadt.de

Perdita Stevens
University of Edinburgh
perdita@inf.ed.ac.uk

James F. Terwilliger
Microsoft Corporation

james.terwilliger@microsoft.com

1. OVERVIEW
The Dagstuhl BX seminar, held January 16–21, 2011,

brought together researchers from 13 countries across
disciplines that study bidirectional transformations. It
was a follow-up of the GRACE International Meeting on
Bidirectional Transformations held in December 2008
near Tokyo, Japan [5]. This consisted of short introduc-
tions from each of the participants on their background
and work, followed by presentations and demonstrations
on representative technologies from each field, and some
open discussion time. A major benefit of the GRACE
meeting was the opportunity for the disciplines to get
some initial exposure to each other.
The Dagstuhl seminar intended to go a step further

and begin to identify commonalities between the dis-
ciplines and start to set a cross-disciplinary research
agenda. The first part of the seminar consisted of tu-
torials from each of the four represented disciplines.
The second part consisted of cross-disciplinary working
groups dedicated to investigating specific examples of
commonality between solutions or identifying require-
ments, terminology, or scenarios that may reach across
fields. There were also sessions in which participants
gave position statements on their own work.
Participants at both the Dagstuhl and GRACE semi-

nars came from four disciplines: (1) Programming Lan-
guages, (2) Graph Transformations, (3) Software En-
gineering, and (4) Databases. At Dagstuhl, each of
the first three disciplines made up about 2/7 of the
participants, while databases took the remaining 1/7
out of about 45 participants. Representation from the
database field was, nevertheless, an improvement over
the turnout from the GRACE meeting.

2. TUTORIALS
The seminar opened with in-depth tutorials by repre-

sentatives from each of the four disciplines on the var-
ious solutions to bidirectional transformation problems
offered by that discipline. In this section, we present an
overview of the material presented at those sessions.1

1For a complete list of all presentations and working

Programming Languages (PL)
Recently, many linguistic approaches have been pro-
posed for describing bidirectional transformations in the
programming languages community [6, 3]. An easy but
non-ideal approach is to write a pair of transforma-
tion functions, one in each direction. Although this ap-
proach can use existing languages and works for simple
transformations, scalability and maintenance are diffi-
cult. Other approaches specify both transformations
with a single description. This tutorial surveyed recent
work and presented promising approaches in detail.
First, Nate Foster gave an overview of design choices

in languages for bidirectional transformations and intro-
duced a common vocabulary for comparing different ap-
proaches. Important design choices include state-based
versus operation-based updates, the set of constraints
on the forward and backward transformations to ensure
that they work well together, whether to allow free-
dom to choose a backward transformation for a forward
transformation, and whether the backward transforma-
tion should handle every pair of data sources.
Second, Robert Glück described reversible computing

and reversible languages [18]. Reversible computing is
the study of computing models that exhibit both for-
ward and backward determinism, while reversible lan-
guages are used to describe injective functions that can
be effectively inverted. Reversible languages include ex-
plicit postcondition assertions, the ability to “un-call”
a reversible procedure, and the possibility of clean and
garbage-free computation of injective functions.
Janis Voigtländer described a complement-based ap-

proach to bidirectionalization [17] that automatically
constructs a backward function from a forward function
based on derivation of a constant-complement. Three
methods are introduced: algorithmic generation based
on the syntactic representation of the forward function,
a semantic approach from a polymorphic forward func-
tion using parametricity and free theorems, and an in-
tegration of the previous two.

groups held at the seminar, consult the Dagstuhl site at
http://bit.ly/dagstuhl-bx.

1

uhiroeh
Typewritten Text
Hu, Z., Schurr, A., Stevens, P., & Terwilliger, J. F. (2011). Dagstuhl seminar on bidirectional transformations (BX). SIGMOD Rec., 40(1), 35-39doi: 10.1145/2007206.2007217



Next, Benjamin Pierce described lens combinators
[3], the use of type systems to establish well-behavedness,
and the issues surrounding the handling of ordered data.
The fundamental concepts of bidirectional programming
were explored in the simplest imaginable setting, where
data are strings, types are regular expressions, and com-
putation is finite state transduction. Their design em-
phasizes both robustness and ease of use, guaranteeing
totality as well as strong well-behavedness conditions
formulated as round-tripping laws.
Finally, Zhenjiang Hu introduced trace-based bidirec-

tionalization, which is used for bidirectionalizing graph
transformations [10]. This talk explained the basic idea
of trace-based bidirectionalization, and showed how to
compute traces effectively and how to propagate the
view updates to the original database safely.

Databases (DB)
The query-defined view is a widely studied way to ex-
press a relationship between two models. Using queries
to define model relationships has several benefits, in-
cluding well-understood formal properties of query lan-
guages, the availability of robust and mature implemen-
tations, and the convenience of using the same language
to specify both queries and mappings.
Despite copious research (e.g., [2]), practical support

for updatable views in commercial systems falls well
short of what research offers. Usability is among the
reasons for this. Many developers prefer to specify the
reverse mapping to a view manually as triggers. Also, it
is difficult to provide constructive feedback as to why a
given query is not reversible and how to fix the problem.
The database tutorial, presented by Jean-Luc Hain-

aut, Anthony Clève, and James Terwilliger, focused on
alternatives for constructing updatable or bidirectional
mappings. For instance, an Object-Relational Mapping
(ORM) constructs an updatable object-oriented view
of relational data. ORM tools are limited to transfor-
mations that are updatable (e.g., horizontal and ver-
tical partitioning) and useful for bridging the object-
relational impedance mismatch (e.g., inheritance map-
ping strategies like Table-per-Hierarchy) [12].
Data Exchange mappings are expressed using queries

in a subset of first-order predicate calculus [1]. Re-
search on inverting such mappings has expanded to in-
clude definitions of invertibility beyond those covered
by classical updatable views. A mapping M may have
an inverse M−1 where M−1 ◦ M is not the identity,
but M◦M−1 ◦M ≡ M. At least three such notions
of inverse have now been studied, and each has relative
advantages and disadvantages.
One characteristic that query-defined views, ORMs,

and data exchange mappings all have in common is a
top-down, holistic specification. The alternative ap-
proach to specifying a bidirectional mapping declar-

atively is to construct a mapping out of incremental
components. Each component has proven bidirectional
properties (not unlike a lens [4]), as well as other proper-
ties that make the component well-suited to the partic-
ular domain. For instance, in the channels framework,
each component is capable of transforming schema evo-
lution primitives and constraint declarations as well as
queries and updates against its view schema [16].
A prime example of a component-based solution is

DB-MAIN, an approach for managing multiple model
artifacts even across levels of abstraction [8]. It can
establish a relationship between a conceptual model,
its corresponding logical model, and that model’s cor-
responding physical model. Components in the DB-
MAIN model describe how to translate constructs in
one level of abstraction into another, and can thus han-
dle most of the operations typically handled by ORMs.

Graph Transformations (GT)
Graph grammars were invented in the 1970s as a gen-
eralization of Chomsky Grammars. Graph transforma-
tion tools are often used for the formal specification of
in-place model transformations or unidirectional trans-
formations between different modeling and graph lan-
guages. Triple Graph Grammars (TGGs) have been
developed for declarative and rule-based description of
bidirectional transformations between related graph lan-
guages [15]. Formally, a TGG describes a language of
graph triples with the first components being elements
from the source language, the second components being
instances of traceability relationships between source
and target language elements, and the third compo-
nents being elements from the target language.
The first part of the GT tutorial, given by Andy

Schürr, introduced the basic ideas of, and motivations
for, the TGG formalism. It allows for the high-level de-
scription of functional and non-functional relationships
between pairs of graphs. A family of graph transfor-
mations is derived from such a TGG specification that
supports batch transformation and incremental change
propagation scenarios in both directions as well as check-
ing the consistency of given pairs of graphs. Traceability
relationships between elements of related pairs of graphs
are created and updated as a side effect [11]. The first
part of the tutorial thereby prepared the ground for
the second part presented by Frank Herrmann. This
part sketched the formal background of TGGs based
on category theory and related techniques for the ver-
ification of important properties of TGGs and derived
graph translators. It also introduced a number of anal-
ysis techniques for the formal verification of desirable
properties of TGGs including:

• Correctness which guarantees that graph tuples
resulting from generated graph translators are in-
stances of the relevant TGG language

2



• Completeness which guarantees that the generated
graph translators can always translate updates of
schema-compliant source graphs into updates of
schema-compliant target graphs (and vice-versa)

Related techniques are also used for detection and res-
olution of conflicts between different translation rules
and for improving the efficiency of generated engineer-
ing tool integrators [9].

Software Engineering (SE)
Model transformations are a key ingredient of model-
driven development[13], a paradigm in which most de-
sign decisions are embodied in (graphical) models rather
than in (textual) code. Several different models may be
used in conjunction, each in a notation chosen to suit
a particular task. Models, and code, may be partly or
completely generated from other models using transfor-
mations. In the simplest case, a transformation may be
just a kind of compilation: for example, code may be
generated from a model by a transformation, and if the
model changes, the code can be generated afresh.
As Krzysztof Czarnecki explained, the question of

whether an individual model is valid is already quite
complex; a model must meet both local structural re-
quirements and constraints which may be global. One
of the challenges for a model transformation language,
even in the relatively simple unidirectional case, is that
the transformation must not modify a model in such a
way as to make it cease to conform to its metamodel.
The central challenge for this Dagstuhl meeting, how-

ever, was bidirectionality. There will typically be hu-
man input into both models, and each model will em-
body information that is not representable in the other.
That is, this typical situation is symmetric. The job
of the transformation is now to maintain consistency,
bidirectionally. An important subproblem is to be able
to check consistency – bearing in mind that the con-
sistency relation may be non-bijective – and for this
reason bijective model transformation formalisms tend
to be relational in the sense that the consistency rela-
tion is more clearly apparent from the notation than
the procedures for restoring consistency.
Relations in such a formalism (e.g., QVT-R [14]) are

superficially similar to rules in graph transformations.
There is a notion of matching a pattern in a model, that
is, identifying a part of a model which is relevant to a
particular relation; each match provokes some check of,
or modification to, the other model. Beyond this opin-
ions and formalisms differ widely. There may or may
not be a well-defined corresponding part of the other
model, which may or may not be recorded in some kind
of linking structure. A linking structure may be for-
mally defined as part of the definition of the transfor-
mation language, may be left implicit, or may have to
be constructed by a human with heuristic tool support.

A related issue is the use, or not, of a record of the
changes made to a model. Such a record can ease con-
sistency maintenance at some pragmatic cost. As one
point in the space of design possibilities, Stephan Hilde-
brandt introduced the language MoTE [7], which uses
a combination of explicit link information and change
notification to manage consistency.

3. WORKING GROUPS
What follows is a sampling of the seven working groups

that met, and some key conclusions from them.

Taxonomy and Scenarios
Two groups focused on documenting commonality across
disciplines by examining common terminology and sce-
narios. Despite working towards similar and sometimes
identical research goals, the words used to describe con-
cepts in those disciplines were vastly different. For in-
stance, the word “model” in one discipline corresponds
to “meta-model” in another discipline, and to “instance”
in yet another discipline. Also, for a given scenario —
say, object-relational mappings — different disciplines
had different pivot points of research; GT focuses on
managing model relationships via grammar rules ex-
pressed at the meta-model level, while DB focuses on
managing instances via formal properties expressed at
the model level. The documentation of these groups
will hopefully serve as fodder in future workshops on
establishing a bidirectional transformation benchmark.

Mathematical Foundations of Lenses
The group on mathematical foundations of lenses served
as a tutorial to most of the group on the connections
between lenses and mathematical formalism. Michael
Johnson demonstrated how lenses can be represented
mathematically either as monads or as co-monads. Us-
ing these mathematical formalisms, one can prove why
(and when) certain properties of lenses are important.
One can also leverage monads to prove or discover prop-
erties of lenses that might not be immediately apparent.
One unfinished line of thought surrounded a potential

link between lenses and data exchange. Database liter-
ature formalizes a data exchange mapping using pred-
icate calculus, but practitioners outside the database
field sometimes formalize similar mappings as a pair of
adjacent lenses with opposing polarity. A mathematical
link between lenses and data exchange may be intrin-
sically interesting, and might yield new results when
considered within monadic formalism as well.

Reversible Programming and Graph Transformations
This group started with a broader discussion and clas-
sification of concepts for specifying and implementing a
bidirectional programming language. Janus was, among
other things, used as a running example for this pur-

3



pose. The focus later turned towards a comparison of
the pros and cons of BX programming languages like
Janus on one hand and TGGs on the other hand. The
conclusion was drawn that languages like Janus are well-
suited for handling projections and arithmetic opera-
tion, but have problems handling complex data struc-
tures. TGGs are exactly the opposite, so the combina-
tion of these two lines of research seems promising.

4. FUTURE WORK
We went to Dagstuhl knowing that longer-term ideas

like a common research agenda or benchmark would
take more than a single week. The participants decided
on several follow-up actions to keep work progressing:

• A follow-up meeting in the same style as GRACE
and Dagstuhl to continue collaborating on a cross-
disciplinary research agenda

• Workshops at conferences associated with each dis-
cipline to work toward specific, targeted goals (a
first one has already been scheduled associated
with GTTSE 2011, and will focus on developing
a benchmark2; a second follow-up event has just
been accepted as a satellite workshop for ETAPS)

• Tutorials and other education-minded events at
conferences to continue bringing awareness of bidi-
rectional solutions from other disciplines, as well
as awareness of the general BX effort

• Smaller-scale research cooperations that combine
techniques from different fields like merging con-
cepts from bidirectional programming languages
and triple graph grammars as envisaged in one of
the seminar’s working groups.

In particular, a goal of the upcoming seminars and
workshops is to increase database community partici-
pation. The bidirectional transformation problem has
origins deep in the database community [2], but has
grown so that solutions are being driven from many di-
rections in different fields across computer science. The
plan is to hold some of the tutorials or workshops at
database venues to help solicit ideas and opportunities
for collaboration; details will be made available once
they are scheduled.

5. REFERENCES
[1] M. Arenas, P. Barceló, L. Libkin, F. Murlak.

Relational and XML Data Exchange. Synthesis
Lectures on Data Management.

[2] F. Bancilhon, N. Spyratos. Update Semantics of
Relational Views. ACM Transactions on Database
Systems, December 1981, 6(4).

[3] A. Bohannon, J. N. Foster, B. C. Pierce, A.
Pilkiewicz, A. Schmitt. Boomerang: resourceful
lenses for string data. POPL 2008.

2http://www.di.univaq.it/CSXW2011/

[4] A. Bohannon, B. C. Pierce, J. A. Vaughan.
Relational lenses: a language for updatable views.
PODS 2006.

[5] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel,
Andy Schürr, J. F. Terwilliger. Bidirectional
Transformations: A Cross-Discipline Perspective.
ICMT 2009.

[6] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, A. Schmitt. Combinators for bi-directional
tree transformations: a linguistic approach to the
view update problem. POPL 2005.

[7] H. Giese, S. Neumann, S. Hildebrandt. Model
Synchronization at Work: Keeping SysML and
AUTOSAR Models Consistent. Graph
Transformations and Model Driven Enginering —
Essays Dedicated to Manfred Nagl on the
Occasion of his 65th Birthday, LNCS 5765.

[8] J.-L. Hainaut. The Transformational Approach to
Database Engineering. GTTSE 2006.

[9] F. Hermann, H. Ehrig, F. Orejas, U. Golas.
Formal Analysis of Functional Behaviour of
Model Transformations Based on Triple Graph
Grammars. Proc. Int. Conf. in Graph
Transformation ICGT 2010.

[10] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda,
K. Nakano. Bidirectionalizing graph
transformation. ICFP 2010.

[11] F. Klar, M. Lauder, A. Königs, A. Schürr.
Extended Triple Graph Grammars with Efficient
and Compatible Graph Translators. Graph
Transformations and Model Driven Enginering —
Essays Dedicated to Manfred Nagl on the
Occasion of his 65th Birthday, LNCS 5765.

[12] S. Melnik, A. Adya, P. A. Bernstein. Compiling
mappings to bridge applications and databases.
ACM Trans. Database Syst., 33(4).

[13] Object Management Group. MDA Guide V1.0.1.
omg/03-06-01

[14] Object Management Group. Queries, Views and
Transformations. formal/2011-01-01

[15] Specification of Graph Translators with Triple
Graph Grammars. Proc. Int. Workshop on
Graph-Theoretic Concepts in Computer Science
(WG 1994 ).

[16] J. F. Terwilliger, L. M. L. Delcambre, D. Maier,
J. Steinhauer, S. Britell. Updatable and Evolvable
Transforms for Virtual Databases. PVLDB 3(1).

[17] J. Voigtländer, Z. Hu, K. Matsuda, M. Wang.
Combining syntactic and semantic
bidirectionalization. ICFP 2010.

[18] T. Yokoyama, H.B. Axelsen, R. Glück. Reversible
flowchart languages and the structured reversible
program theorem. ICALP 2008.

4




