
A Decomposition of Multidimensional Point Sets with

Applications to k-Nearest-Neighbors and n-Body

Potential Fields

PAUL B. CALLAHAN AND S. RAO

Johns Hopkins University, Baltimore, Maiyland

KOSARAJU

Abstract. We define the notion of a well-separated pair decomposition of points in d-dimensional
space. We then develop efficient sequential and parallel algorithms for computing such a
decomposition. We apply the resulting decomposition to the efficient computation of k-nearest
neighbors and n-body potential fields.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—geometrical problems and computations F.1.2 [Compu-
tation by Abstract Devices]: Modes of Computation—parallelism and concurrency

General Terms: Algorithms, Theory

Additional Key Words and phrdses: Afl nearest neighbors, fast multipole method

1. Introduction

We define the notion of a well-separated pair decomposition of a set P of n

points in d dimensions. This consists of a bina~ tree whose leaves are points in

P, with internal nodes corresponding to subsets of P in the natural way, and a

list of pairs of nodes, such that the sets corresponding to each node are

geometrically separated in a manner to be defined, and each distinct pair of
points is “covered” by exactly one of the pairs of nodes.

()
We show that although there are ; pairs of points, we can always find a

well-separated pair decomposition using O(n) pairs of nodes. Additionally, we

show that such a decomposition can be computed in O(n log n) sequential

time, which we prove is optimal, and in 0(log2n) time on a CREW PRAM

using O(n) processors.

Using this decomposition, we show that the k-nearest neighbors of each

point can be computed in O(n) sequential time, and in O(log n) parallel time

on a CREW PRAM with 0(n) processors, for any fixed k. Note that this gives

The work of both authors was supported by the National Science Foundation under grant CCR
91-07293 and by NSF/DARPA under grant CCR 89-08092.

Authors’ address: Computer Science Department, Johns Hopkins University, Baltimore, MD
21218.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
Q 1995 ACM 0004-5411/95/0100-0067 $03.50

Journalof the Associationfor ComputingMachinery,Vol 42,No, 1,Jmuay 1995,pp 67-90,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F200836.200853&domain=pdf&date_stamp=1995-01-03

68 P. B. CALLAHAN AND S. R. KOSARAJU

O(logzn) parallel time for the whole problem, including the construction of the

decomposition. This is the first parallel algorithm for this problem that runs in

deterministic O(logcn) parallel time with O(rz) processors for a c that is not a

function of d.] The composed sequential algorithm has a strong similarity to

that of Vaidya [1986; 1989].

We also apply this decomposition to the efficient computation of n-body

potential fields. Greengard [1988], Greengard and Rokhlin [1987], and Rokhlin

[1985] have developed a very interesting O(n) time sequential algorithm known

as the Fast Multipole Method that, given n charges and their locations,

calculates, for each of the n locations, the potential field due to remaining

n – 1 charges, up to a fixed precision. However, the algorithm in Greengard

[1988] makes assumptions about the geometric distribution of charges, which

might be justifiable on pragmatic grounds, but are not normally made when

treating problems in computational geometry. Also, when the desired output

precision is much less than the input precision, the justification becomes

weaker. Without these assumptions, we cannot even see an obvious variant of

the Fast Multipole Method that runs in O(n polylog (n)) steps. We show that

once the well-separated pair decomposition is computed, we can adapt the Fast

Multipole Method so that the remaining computation takes O(n) sequential

time and O(log n) parallel time on an EREW PRAM with O(n /log n) proces-

sors.

In Sections 3 and 4, we develop sequential algorithms for computing the tree

and the pairs, respectively. The corresponding parallel algorithms are devel-

oped in Sections 6 and 7. In Section 5, we establish a lower bound on the depth

of the tree when the number of pairs is linear. In Section 8, we develop

sequential and parallel algorithms for computing k-nearest-neighbors. Finally,

in Section 9, we develop sequential and parallel algorithms for computing

n-body potential fields.

2. Definitions

Let P be a set of points in 91’, where d is a constant denoting the dimension,

We define the bounding rectangle of P, denoted by R(P), to be the smallest

rectangle that encloses all points in P, where the word “rectangle” denotes any

cartesian product R = [x,, .x1] x [xz, x2] x .“” x [x~, xL] in Ytd. We use the

term, open rectangle, to denote the product of open intervals.

We denote the length of R in the ith dimension by I,(R) = x; – x,. We

denote the maximum and minimum lengths by lmaX(R) and lm,n(R). When all

1,(R) are equal, we say that R is a d-cube, and denote its length by 1(R) =
lmaX(R) = lm,n(l?). We write 1,(P), l~,~(P), and 1~,,(P) as shorthand for

1,(R(P)), l~,~(R(P)), and l~~X(R(P)), respectively. We define a d-ball of radius

r to be the set of all points in d dimensions at a distance less than or equal to r

from some point, referred to as the center of the d-ball.

We say that point sets A and B are well-separated if R(A) and R(B) can

each be contained in d-balls of radius r whose minimum distance is at least sr,

where s is the separation, assumed to be fixed throughout our discussion at a

value strictly greater than O. Although we can define this notion in a somewhat

1See, for example, Bentley [1980], Cole and Goodrich [1988; 1992], Frieze et al. [1992], and Miller
et al. [1970].

Decomposition of Multidimensional Point Sets 69

more natural way without using bounding rectangles, this definition will make

subsequent computation easier.

We will often assume that P has a binary tree T associated with it, where

each leaf of T is labeled by a singleton set containing one of the points in P,

and each internal node is labeled by the union of all sets labeling the leaves of

its subtree. We will refer to each node in T by the name of the set labeling it.

Since leaves are labeled by singleton sets, we may also refer to them by the

names of points.

We define the interaction product, denoted 8, between any two point sets A

and B as follows:

A@ B={{p, p’}lp GA, p’e B,andp #p’}.

Note that P 8 P is the set of all distinct pairs of points in P.

The set {{AI, Bl},..., {A~, B~}} is said to be a realization of A @ B if

(i) A, CAand B,~Bfor alli=l,..., k.

(ii) Ain Bt=Ofor alli=l,..., k.

(iii) (Al 8 B,) n (Al @ B]) = @ for all i,j such that 1< i <j s k.
(iv) A c3B= LJ~=lAl C3B,.

The realization is said to be well-separated if it satisfies the additional property

(v) At and B, are well-separated for all i = 1,..., k.

Let T be a binary tree associated with P. For A, B c P, we say that a

realization of A $3 B uses T if all A, and B, in the realization are nodes in T.

We define a well-separatedpair decomposition of P to be structure consisting of

a binary tree T associated with P, and a well-separated realization of P @ P

that uses T.

Agarwal et al. [1991; 1992] have also used the notion of partitioning the set

of pairs of a point set into pairs of sets satisfying certain geometric criteria. In

their formulation, the sets must lie in cones, each of some small angle a,

whose axes are parallel and which intersect only at the apex. This decomposi-

tion does not guarantee that each pair in P @ P is uniquely represented by a

pair in the decomposition, and does not incorporate the notion of separation of

clusters based on distance. Both of these properties are essential for the

application to the Fast Multipole Method. This is because the influence of

each charge must be taken into account exactly once in computing the

potential at some point, and the convergence of a truncated multipole expan-

sion depends on distance-based separation. These properties appear less criti-

cal with respect to purely geometric problems, but they may prove useful in

future applications.

3. Computing a Fair Split Tree of a Point Set

Given a point set P, we would like to construct a binary tree T, such that there

exists a linear size well-separated realization of P 8 P that uses T. In this

section, we define a type of tree that, we will later show, permits an 0(n) size

well-separated realization. We show how to construct such a tree in 0(n log n)
time sequentially.

We define a split of P to be its partition into two nonempty point sets lying

on either side of a hyperplane (called the splitting hyperplane) perpendicular to

one of the coordinate axes, and not intersecting any points in P.

70 P. B. CALLAHAN AND S. R. KOSARAJU

We define a split tree of P to be a binary tree, constructed recursively as

follows. If IP I = 1, its unique split tree consists of the node P. Otherwise, a

split tree is any tree with root P and two subtrees that are split trees of the

subsets formed by a split of P. For any node A in the tree, we denote its

parent (if it exists) by p(A).

We define the outer rectangle of A, denoted F(A), for each node A top

down as follows:

—For the root P, let A(P) be an open d-cube centered at the center of R(P),

with l(fi(P)) = lmaX(P).

—qor all other A, the splitting hyperplaneA used for the split of p(A) divides

R(p(A)) into two open rectangles. Let R(A) be the one that contains A.

We define a fair split of A to be split of A in which the splitting hyperp~ane

is at a distance of at least l~.X(A)/3 from each of the two boundaries of R(A)

parallel to it. A split formed using only fair splits is called a fair split tree.

We present an algorithm to find a fair split tree for any point set. This

algorithm will run in time 0(n log n), which is optimal, as we will later prove.

We first present a high-level description of the algorithm, and then show

how to implement it efficiently. Let P be the given point set. If IPI = 1, return

a tree consisting of a single node labeled P. Otherwise, consider a hyperplane

perpendicular to the longest dimension of R(P) that divides it into two

geometrically equal halves.z Clearly, this defines a fair split of P into two

nonempty sets P, and P2. Find fair split trees for these, and return a tree with

root P, having two subtrees that are the split trees of Pl and P2.

Note that the splits defined above are at a distance l~,X(A)/2 from the

nearest parallel boundaries of R(A), and therefore satisfy a stronger condition

than we require. The relaxed condition will become important when we present

our parallel algorithm, so we will use it in all our analysis. However, the

constants in the size of the realization can be improved by assuming the

stronger condition.

Unfortunately, each split can result in all but one point going to one side, so

a naive implementation could result in quadratic complexity. However, in

linear time we can construct a partial fair split tree in which each leaf

corresponds to a point set of size no greater than n/2. The splitting phase is as

follows:

Assume that we have presorted the points by each of the coordinates. For

each coordinate, we maintain a doubly linked list of points in increasing order,

with cross-references so that, given any point, we may easily retrieve its place
in each of the lists. We will be modifying these lists in the course of our
splitting, so we make copies for later reference.

Note that a fair split divides one of the sorted lists into two contiguous

pieces. We determine the split location in this list using a linear search that

alternates between both ends of the list, heading towards the middle. The

search time will be proportional to the size of the smaller piece.

We now delete all of the points in the smaller piece from all of the lists.

Since we will need to consider these points later, we initialize empty linked-lists

zWe make the nondegeneracy assumption that no points lie on this hyperplane. It is easy to adapt
the algorithm to eliminate the need for this assumption.

Decomposition of Multidimensional Point Sets 71

for each coordinate; these will eventually contain all of the deleted points in

sorted order. As we delete each point, we mark it with a pointer back to each

list, but we do not insert it yet. This phase also requires time proportional to

the size of the smaller piece.

We repeat the above splitting process on the remaining collection of lists

until the resulting set of points is no more than half the size of the original. As

we do this, we can construct a partial split tree consisting of a linear chain

starting with the whole set and ending with the set of points left in the final

step. Each node in this chain has an additional subtree consisting of the split

tree (to be computed later) of the set of points deleted at that step. Note that

the amount of work is proportional to the number of points deleted, and hence

is linear.

The set of points deleted at a step is never more than half the size of the

original set. Hence, if we can construct sorted lists for all of these point sets in

linear time, we can continue the process recursively and obtain O(n log n) time

by a divide-and-conquer approach. To construct all the lists for all the deleted

points sorted by some coordinate, we return to the original list of points sorted

by that coordinate (which we copied prior to the deletions), and traverse it in

increasing order. Each time we find a point, we append it to the end of the

appropriate list, given by the pointer that was set at the time of deletion. There

are a constant number of coordinates, so this phase takes linear time.

The remainder of the algorithm is a straightforward application of divide-

and-conquer (but with more than a constant number of subproblems). The

time complexity, including presorting, is clearly O(n log n). This gives us the

following theorem:

THEOREM 3.1. Given a set P of n points in S‘, a fair split tree of P can be

constructed in O(n log n) time.

Note that as we generate each node A in the split tree T we can compute

R(A) in O(d) steps, using the sorted lists we maintain. This property will hold

for the parallel algorithm as well, so we assume that any solution of this

problem includes a copy of R(A) at each node A in T. For this reason, we will

assume in subsequent sections that in 0(1) time, we can construct the smallest

d-ball containing R(A) for any A in T. This will allow us to test whether two

nodes are well separated in constant time.

4. Computing Well-Separated Pairs for a Point Set

Suppose we have already computed a fair split tree T for the point set

P={pI,.. ., p.}. We present an algorithm to compute a well-separated realiza-
tion of P @ P, denoted by {{AI, Bl},..., {A~, B~}}, that uses T. We will show

that the resulting realization has linear size. Note that (;) is a trivial upper

bound on k, since P @ P has the well-separated realization {{{pi}, {pj}}ll s i <
j < n}.

For the analysis of the algorithm, we require the following geometric result.
We say that two rectangles of equal dimension overlap if the intersection of

the corresponding open rectangles is nonempty. Let T be a fair split tree

associated with P. Let C be a d-cube, and let S = {A ~, A2, At} be a set of

nodes in T such that Al n Aj = 0 for all i #j, and l~~X(p(A,)) z l(C)/c and

72 P. B. CALLAHAN AND S. R. KOSARAJU

R(A,) overlaps C, for all i = 1,..., 1. Define K(c, d) to be the maximum

possible value for IS I, independent of P and T.

LEMMA 4.1. K(c, d) < (3C + 2)d.

PROOF. For any node A in T, the following inequality holds:

lmax(p(A))
lm,n(ml)) 2 s . (1)

By the fair split condition, this is true when P(A) = <. Now, for p(AA) + P,

consider the fair split of p(A) that formed A. If l~,,(R(A)) = l~,,(R(P(A)))

then the in~quality is pr~served, because 1~,.(P(AA)) S ~~.,(p(p(A))). Other-
wise, 1~,,(R(A)) < 1~,,(R(p(A))). In this case, I?(p(A)) must have a unique

minimum-length dimension, because only one dimension can be split at a time.

In other words, there is a unique coordinate axis i such that l,(R(P(A))) =

l~,.(fi(p(A))). This axis must haveAbeen perpendicular to the split, so the fair
split condition guarantees that 1,(R(A)) > l~,X(p(A)) /3.

Now, consider a d-cube C. Suppose we have a set of disjoint d-cubes of

length 1’ that all overlap C’. We can bound the size of this set by a packing

argument. It is not hard to see that (l(C) /l’ + 2)~ is an upper bound, since the

cubes in this set must all be contained in a d-cube of length 1(C) + 21’,

centered at the center of C.

Note that the outer rectangles of disjoint A are disjoint. By (l), each R(A)

overlapping C contains a d-cube of length 1ma.(P(A)~/3 that also overlaps C.
Hence, our packing result applies to the number of R(A) that overlap C. This

is at least as large as the number of R(A) that overlap C. We assumed that

l~~X(p(A)) > l(C)\c, so our bound is (3c + 2)d, as stated. ❑

LEMMA 4.2. Let P = {PI, . . . , p.) be a point set with an associated fair split
tree T. Then P @ P has a well-separated realization of size O(n) that uses T.

PROOF. We present a simple algorithm for constructing such a realization,

given T. Since our algorithm is recursive, we call the initial point set PO to

distinguish it from those treated in recursive calls.

First, note that every internal node of T has exactly two children, which

we call A and B. For each node, construct a well-separated realization

{{AI, B,}, {Al, Bl}} of A B B. We can easily prove that the union of all
such realizations is a well-separated realization of PO 8 P.. We use the

following procedure to construct the realizations in a way that ensures the size

bound.
Let P and P’ be point sets (initially P = A and P’ = B). If P and P’ are

well separated, we return {{P, P’}}. Otherwise, we swap P and P’ if necessary

to ensure that l~,X(P) z l~,X(P’). It must be the case that IPI > 1; if not,

lmaX(P) = lmaX(P’) = O, and P and P’ are well separated. Hence, node P has

two children, which we call PI and Pz. We observe that the subtrees rooted at

these nodes are fair split trees of PI and P2 and we associate them with the

sets. We recursively construct well-separated realizations of P1 B P’, and
Pz @ P’, and return the union as our result.

It is easy to see that this procedure terminates and gives a well-separated

realization of A Q B. We can unravel the above procedure into a computation

tree with {A, B} as the root. We establish necessary geometric criteria for a

Decomposition of Multidimensional Point Sets 73

pair {P, P’} to be an internal node in a computation tree. By using Lemma 4.1

to count the number of nodes satisfying this criteria, we obtain an O(n) bound

on the number of leaves summed over all computation trees. This bounds the

number of pairs output by the procedure.

Let d(P, P’) denote the minimum distance between R(P) and R(P’), Note

that R(P) and R(P’) can each be contained in d-balls of radius (fi/2)l~~X(P).

The minimum distance between these d-balls is at least d(P, P’) – (~)l~.X(P),

since d(P, P’) is at most the distance between their centers. Hence, P and P’

are well separated as long as d(P, P’) – (@)l~,X(P) z s(@/2)l~,X(P), where

s is the separation. Equivalently, we may write this condition as:

d(P, P’) z (s(&2) + ti)lJP). (2)

We also have the following inequality:

lmax(p(P’)) 2 lmax(P). (3)

First note that this is obvious in the special case where P = A and P’ = B,

since they are both children of p(P’). Otherwise, consider the point in our

procedure at which we split p(P’). It must have been true that l~,X(p(P’)) z

l~~X(P”), where P denotes the point set paired with p(P’) at this point.

Clearly, l~,X(P”) >1 ~,X(P), so (3) follows by transitivity.
Now, consider the pairs {P, P’} of point sets that appear in a call to our

procedure and result in further recursive calls. Let SP be the set of all P’

paired with P in some procedure call in which P is the set to be split. By (2),

all P’ ● Sp must overlap a d-cube centered at the center of R(P) and with

length (sti + 2fi + l)l~aX(P). Moreover, all P’ c Sp are disjoint. To see

this, suppose otherwise. Then some P’ e Sp would have an ancestor P“ G Sp.

Our algorithm insures that if P“ is paired with P, then no descendant of it will

be, because P will be split for the next recursive call. Combining these facts

with (3), we see that ISp I is bounded by K(sti + 2a + 1, d), which by

Lemma 4.1 is no more than (3(sti + 2ti + 1) + 2)~.

Now, consider a pair {Al, Bi} that is a leaf in one of our computation trees.

This was produced by an invocation of our procedure on an internal node in

the computation tree. We first consider the case in which the pair came from a

trivial invocation in which A and B were themselves well separated. Clearly,

there are only n – 1 such pairs.

Otherwise, {Ai, Bi} has some parent in the computation tree of the proce-

dure in which the point set pair is {P, P’}. We have bounded the number of P’

for any P, and we know that any {P, P’} pair has at most two children in the

computation tree. Each P must be an internal node of T, so there are n – 1 of

them. Hence, the number of {Ai, B,} pairs in this case is at most 2(rz –

l)(3(,sti + 2a + 1) + 2)d, which is O(n). ❑

We observe that the preceding proof is constructive, and provides a sequen-

tial algorithm whose time is linear in its output size. By our lemma, this is

O(n), which gives us the following theorem:

THEOREM 4.3. Given a set P of n points in % d and a fair split tree of P, a

well-separated pair decomposition of P can be constructed in 0(n) time.

5. Minimum Depth for Linear-Size Realizations

It is easy to see that the depth of fair split trees can be linear in the worst case.

One is tempted to modify the definition of a fair split tree to ensure that its

74 P. B. CALLAHAN AND S. R. KOSARAJU

depth is bounded by a polylog function, since this would greatly simplify

parallel algorithms that used it. In this section, we will show that there exist

point sets P, such that any tree permitting a linear size well-separated

realization of P 8 P must have depth Q(n ‘), for some e > 0.

We show that the lower bound holds even for d = 1, by constructing a class

of one-dimensional sets for which the bound is a~tained. Let a = 2/s + 1,

where s is the separation. For all n > 1, define Pn to be the set of points

{a(’,..., al}onth ereallinene.

We show that if the depth of any binary tree associated with ~. is d(n), then

the number of pairs in a well-separated realization is at least crz log n\log d(n)

for some constant c >0. The proof involves a reduction to a simple coding

problem. (See Abramson [1963] for a discussion of coding theory.) Conse-

quently, if the total number of pairs is no more than en for some constant e,

then d(n) is-no less than n’/’.

Assume P. h~s anxassociated binary tree T, and consider a well-separated

realization of Pn @ Pn, denoted {{AI, Bl}, ..., {A~, 11~}], that uses T. For all

j= l,.. ., k, A, and BJ are well separated, so one of them lies entirely to the

right of the other. Assume without loss of generality that it is B,. We note the

following property.

LEMMA 5.1. Forallj = 1,...,k, B] ={a’}forsome isuch that 1 <i<n –1.

PROOF. First note that B] cannot contain cr0 since there is nonempty set

A, to its left. Now, suppose there were a set B, containing two points a‘, a”

with i < i’. Let r denote the radius of the smallest d-ball containing R(B,).

Clearly, r > (a” – a’)\2. Because a“ > a’+l, we have rz a’(a – 1)/2 =

a ‘/s, or a‘ s sr. Since A, is nonempty and to the left of B,, itcontains at least

one point in the interval (O, a 1). But all points in this interval are at a dist ante

less than a‘ from B,. Hence, A, and B, are not well separated, giving us a

contradiction. ❑

Foralli= l,..., n – 1, let S, denote the set of all j, 1 < j s k, such that

Bj = {a’}. For all i’,..., i – 1, there must exist a unique j ● S,, such that

a” = A,. Hence, it is clear from Lemma 5.1 that

uA, ={aO,...,al}l} (4)
J=L$t

and k = E;I: 1s,1.

Since we are proving a lower bound, we place no restrictions on the tree

associated with a point set P, except to assume without loss of generality that it
is binary. We will refer to this tree as the subser rree of P.

LEMMA 5.2. There exists a constant c ~ O such that for all n, there is a point

set P, with IPI = n, such that for all subset trees of P with depth at most d(n), the

size of the smallest well-separated realization of P @ P that uses the subset tree of P

is at least cn log n/log d(n).

PROOF. Consider a subset tree of ~n, for some n > 1, with depth at most
d(n). For every node in the subset tree, find the maximum i such that a‘ is in

the set at that node. We observe that the maximum of every internal node A is

the same as that of one of its children, which we call A ~, and greater than that

Decomposition of Multidimensional Point Sets 75

of its other child, which we call Az. For every A, we assign 1 to the edge

{A, Al} and O to the edge {A, A,}, resulting in a {O, 1} assignment for all the

edges of T.

Using (4), we can easily show that for every i, \S, I is at least as large as the

number of 1’s on the path from the root to the leaf a‘. Since k = ~~~~ ISi 1,we

can find a lower bound for k by seeking a tree with n leaves, having depth no

more than d(n), with an assignment of O’s and 1’s to its edges such that the

edges out of each node are labelled distinctly, and the sum of the number of 1‘s

on each root-to-leaf path is minimized. This is equivalent to finding an

assignment of {O, 1} strings to n numbers such that no two numbers are

assigned the same strings, no string is longer than d(n), and the total number

of 1’s is minimized.

Note that the number of strings we can represent using at most 1 1’s is

bounded above by Z!= ~(’(1”)). Using the crude upper bound of (1 + l)(d(n))l,

we argue that there is a constant c > 0 such that if 1 s 2C log n/log d(n), then

we can represent at most n/2 strings. It follows that at least n/2 strings

contain more than 2C log n/log d(n) l’s, and this establishes the lemma. ❑

As a consequence, we have the following theorem.

THEOREM 5.3. For any n and d, there exists a set P of n points in % d such that

any subset tree of P that results in O(n) well-separated pairs must be of depth

fl(ne), for some e >0.

PROOF. If en is a bound on the number of pairs, then choose ● = c/e, and

apply Lemma 5.2. ❑

Note that we can always construct an O(log n)-depth tree that permits an

O(n logzn) realization. We form such a tree from a fair split tree T as follows:

Assume that the leaves of T are numbered in inorder. Then any node in T

contains all the leaves whose numbers fall within some interval. Let T’ be

[loglnl depth tree whose leaves have the same inorder numbering. Clearly, any

node in T can be ~epresented by the union of O(log n) nodes in T’. It follows

that any well-separated pair in a decomposition that uses T can be represented

by 0(log2n) well-separated pairs in a decomposition that uses T’, resulting in a

realization of size 0(n log2 n). Note that the nodes of T’ are no longer defined

by splitting hyperplanes.

Rather than bounding the number of pairs of the form {A, B}, one may

sometimes be interested in bounding the sum of IA I +]B I taken over all pairs.

Unfortunately, this can be @(n2) in the worst case, as can be seen from the

construction used in the preceding lower bound. This follows from the fact that

every well-separated pair in the decomposition of P. must contain a singleton

element. Because the realization is an exact covering of the set of unique pairs,

the sum of IA IIB I taken over all pairs is exactly (;). Hence, the sum of

IAl + IBI taken over all pairs is exactly (~] + k, where k is the number of pairs

in the realization.

6. Finding a Fair Split Tree in Parallel

To parallelize the algorithm for constructing a fair split tree, it is sufficient to

parallelize the splitting stage. Because each stage decomposes a set into sets

76 P. B. CALLAHAN AND S. R. KOSARAJU

that are no more than half of its size, the number of stages is O(log n),

allowing the algorithm to be performed efficiently in parallel.

The split obtained by the parallel algorithm might not be the same as that of

the sequential algorithm, since it is hard to guarantee that each rectangle will

be split exactly in half perpendicular to its longest dimension. However, we can

guarantee that it will be a fair split as defined earlier, so that the previous

results will hold.

Our method will depend on the following lemma:

LEMMA 6.1. Let R be a d-dim ensiorml rectangle containing a set of n points.

Let S be the set of rectangles that are similar to R and share a comer with it.

Assume that no two points ever touch the bounday of a rectangle in S. Then there

exists a rectangle R’ = S, such that 1~,, (R’) s ~l~.X(R) and R’ contains ln\2d]
points in the set.

PROOF. Suppose we split R into 2~ similar rectangles by dividing it in half

along each of its dimensions. Clearly, one of these rectangles $ontains at least

[n/2d] points in the set. Choose such a ~ectangle and call it R. Now, considqr

all the similar rectangles contained in R sharing the same corner of R as R,

and that have a point touching their boundazy. Since no two points touch the

boundazy of the same rectangle, one of these rectangles contains exactly

in/2d j points inside (including the point on the boundary). Call this rectangle

R’. Note that lmax(l?) s ~lmax(l?). ❑

The assumption that no two points touch the boundary of a rectangle is

included for simplicity. It is easy to generalize the algorithm when this

assumption is omitted.

Our algorithm is a: follows: We are given a set P containing n points, and

its outer rectangle R(P), inherited from the preceding stage if P is not the

root. Let R be a rectangle containing P and contained within R(P), that

satisfies l~,n(R) > 2 l~,X(R)/3. Our splitting algorithm will guarantee that such

an R always exists. We find a rectangle R’ fulfilling the properties of Lemma

6.1.

We wish to decompose the set of m points not in R’ into a collection of sets

formed by a sequence of fair splits. Assume the points in R are sorted by

increasing order of the size of the similar rectangle sharing the same corner as

R’, and with the point touching its boundary.

Our algorithm proceeds by divide-and-conquer. At each step, if we have not
reached a terminal case, we can either split the problem with m points into two
problems containing [m/2] and [nz/2] points, or else we can split it into a

terminal case and one containing no more than [m/21 points. The number of

steps is thus O(log m).

At each step in the algorithm, we are given R and R’, and we assume the

following inequalities hold:

(5)

(6)

Decomposition of Multidimensional Point Sets 77

It is clear that these conditions are satisfied by our initial choice of R and R’.

There are two terminal cases:

Terminal case 1. Suppose m s 1. Then there is at most one point outside

R’, and it can be separated from R’ using a single fair split.

Terminal case 2. Suppose l~~X(R’) s l~,X(R)/3. Then we decompose R by

a succession of at most d fair splits. To do this, we consider each dimension of

R in decreasing order of length. At each point, we can either perform a split

with a hyperplane that contains the corresponding face of R’, or else the region

on the other side of this hyperplane is empty, and we do not need to perform a

split. Conditions (5) and (6) guarantee that such splits are fair. When we finish,

the final set will contain exactly those points in R’. The result is a split tree

that includes R’ along with at most d other enclosing rectangles that partition

the set of points outside R’.

Note that the terminal cases can result in point sets that violate l~,,(~(A))
>2 l~,X(A)/3. However, they will always satisfy l~i~(l?(A)) > lm,X(A)/3. In

0(1) steps, we can split any such point set into one that satisfies the first

inequality by a recursive process of splitting the bounding rectangle exactly in

half along each dimension i in decreasing order of length until the inequality is

satisfied. The split will never be repeated along the same dimension, so the

result will be a tree of fair splits with depth at most d.

If neither of the terminal cases is true, we can find a rectangle R“ that

satisfies one of the following cases:

(a) 31~,X(R’)/2 < l~,X(R”) < 2i~,X(R)/3, and R“ contains [m/2] points not
contained in R’ (hence, R contains [m/21 points not contained in R“).

(b) l~.X(R”) = 21~,X(R)/3 and R“ contains no more than \m/2] points not in
DI

(c) ;l~aX(R’)/2 = lmaX(R”) and R contains no more than [m/21 points not in

R“.

It is easy to verify that, if cases (b) and (c) do not hold, then (a) must hold.

Hence, all possibilities are covered. We recurse on rectangle pairs R’, R and

R“, R. Note that these pairs satisfy (6). The split trees obtained for these can be

combined to form a split tree of R’, R. In all cases in which the number of

points has not been cut in half, the corresponding rectangle pair is covered by

the second terminal case. Hence, the depth of recursion is O(log n). We can

obtain parallel time of O(log n) if each step can be done in constant time.

To perform each step in constant time, we need some preprocessing. For

every corner of R, we construct an array of the points sorted in the order

determined by the similar rectangles of R that share that corner. There are a

constant number of corners, so we can construct the sorted arrays in O(log n)

time with O(n) processors. From these arrays, we can easily find R’ and the

associated corner.

Now, assume that we have a list of similar rectangles Rl, ..., R., sorted in

order of increasing size, all sharing a corner, and each having a point in the set

on their boundary. For each rectangle Ri, find the smallest rectangle next(Ri)
such that l~,X(next(R,)) > 31~,X(Rl)/2, and the largest rectangle prev(ll,) such

that l~,X(prev(R,)) s 21~,X(R,)/3.

Given the above preprocessing, we can perform each nonterminal step as

follows: We are given R and R’, represented by the locations in the sorted

78 P. B. CALLAHAN AND S. R. KOSARAJU

array containing the smallest rectangles greater than or equal to each in size.

Computing the midpoint of these locations can be done in constant time, and

gives us an R“ fulfilling the properties of case (a) except, possibly, the

condition 31~~X(R’)/2 < l~~X(R”) < 21m,X(R)/3. In this case, either a rectangle

containing the points in prev(R) satisfies case (b), or a rectangle containing the

points in next(R’) satisfies case (c).

Thus, the splitting phase, including preprocessing, takes at most O(log n)

time with n processors. The final result is a partial split tree in which all nodes

A have size at most

[2’-1 1

and satisfy l~,,(l?(A)) > 21~1X(A)/3.

Each point set A returned by this phase contains no more than

II
Zd–1

2d n

points, and its outer rectangle satisfies l~i,(~(A)) > 21~~X(A)\3.

Now, we need only rec~rse on the point sets determined by the splitting

phase. The condition on R(A) allows us to choose a suitable R for each point

set in the next iteration. The depth of recursion will be at most O(log n), so the

total parallel time will be O(logzn) using O(n) processors. This gives us the

following theorem:

THEOREM 6.2. Giuen a set P of n points in %‘, a fair split tree can be

constructed in 0(log2 n) time using 0(n) processors.

7. Finding the Well-Separated Realization in Parallel

Given a fair split tree of P, we would like to find a linear size well-separated

realization of P @ P with the properties stated in Lemma 4.2. We will assume

that for any node A we can obtain R(A) in constant time, since it can clearly

be stored at each node when the split tree is being computed. Unlike the

algorithm of the preceding section, this parallel algorithm will produce precisely

the same output as the sequential algorithm.

As a step towards a parallel algorithm, we consider a modification of our

sequential procedure that bounds the depth of recursion to O(log n). This

modification results in a phase that we can perform in parallel, and which we

need only perform O(log n) times for the entire algorithm.

Suppose we are computing the realization of P 8 P’ using the procedure
given earlier. We use IPIIP’ I as a measure of the size of the current problem.

Note that at each recursive step, we split the problem into two subproblems

whose combined size is equal to the size of the original.

Consider an iterative procedure in which we store the smaller subproblem on

a list, breaking ties arbitrarily, and continue to split the larger subproblem until

we reach a terminal case. We add the final pair to our list of well-separated

pairs. By applying this algorithm recursively to each problem in the list, we will
constru~t the same set of well-separated pairs as in the original procedure.

Let P and @ be the pair befo~e the iteration. Then, for every P, P’ on our
list of subproblems, IP IIP’ I < IPII~’1/2. Clearly, IP/l P’ I = 1 is a sufficient,

Decomposition of Multidimensional Point Sets 79

though not necessary, condition to terminate with a well-separated pair. This

condition will be satisfied after at most log IP IIP’ I recursive calls. Since IPl, IP’ I

s n, we have logllllp’1 < 210g n = O(log n).

We now consider the problem of constructing the list of subproblems in

O(log n) time using O(m) processors, where m is size of the list. First, we need

to develop a characterization of the list that does not depend on a sequential

algorithm.

For each internal node P in the split tree, we denote its children by c1

and c,~,ll(P), where Ic
a,,.(p)

,arge(P)l > lc,maJP)l. We break ties arbitrarily to guaran-

tee that these names are uniquely defined.

Let AO and B“ be the initial point sets. Consider the lists LA = xl”,..., Am’

such that AZ = c 1~~1~~(Ai-l) for all i = 1,..., m~, and LB = BO,..., ?nB such
that B] = cl,,~, (Bj--’) for all j = 1,..., m~. Let L =PO,..., P~ be an inter-

leaving of LA and LB that obeys the inequality 1~.,(p’) < l~,X(P’-l) for all
lsi sm.

We require that m~ and rn~ be chosen so that Am’ and B~B are well

separated, but either An” and B“’”- 1, or An”- 1 and B~B are not well

separated. Also, if P m = Am’, then l~,X(Cla,~e(l?~B)) s l~,X(P~), and if Prn =

B~E, then lm,X(c l~,~,(A”z’)) s l~,X(P~). Note that the term A~’-l, B~’-l,
Cl,,,.(xln”), and c ,.,~.(l?~’) are not always defined. In such cases, the corre-

sponding requirement is omitted.

The list L represents the order in which the point sets are split by the

sequential algorithm, taking into account the manner in which ties were

broken. Consider any two integers i < j satisfying one of the following condi-

tions for some i’, j’:

(i) Pi = A“, Pj = B]’, and Vj” > i, P1’(# B]’-l

(ii) P’ = B“, PJ = A]’, and Vf’ > i, P]” # A~-l

Now, let P = P’ and let P’ be the sibling of PJ in the split tree. We claim

that the set of P, P’ defined in this way is the same as the set of subproblems

constructed by the sequential algorithm. To see this, note that P, P’ will be

added to the list of subproblems at the point when p(P’) or p(P1) is split. This

will have to occur at some point before PI is split, because it is smaller

(geometrically) than P’. If we can construct L, then we can easily retrieve all

P, P’ pairs.

To permit the rapid construction of L, we need to preprocess the split tree.

This will be done once, before our algorithm begins, and will take O(log n)

time. For every node P in the split tree we find a pointer to c1,,~e(P). We can

do this in constant time with n processors, assuming we have computed the

size of the set at every node. This partitions the nodes of the tree into a

number of linked-lists. We use standard list-ranking techniques to construct

arrays containing these lists in order. For each node of the split tree, we find a

pointer to the array containing it, and its position in the array. It is well known

that this can be done in O(log n) time using O(n/log n) processors.

Given AO and B“, ou~ preprocessing allows us to easily retrieve two lists,
~~ = AO ,..., Aand L~=BO, O,..., Brn’, which contain LA and LB as pre-

fixes. Hence, to determine LA and LB, we need only compute ‘.4 and m~

satisfying the trite ria given earlier. We can compute these in O(log n) time

with a single processor, using a form of binary search.

80 P. B. CALLAHAN AND S. R. KOSARAJU

Let sep(i, j) be a predicate that is true iff A’ and B] are well separated.

Note that sep(i, j) implies sep(i’, j’) for all i’ z i, j’ z j. In other words,

sep(i, j) is monotone in i and j. Consider the matrix formed by taking i as the

row, and j as the column. Note that (nz,q, m~) must lie on the boundary

between the region where sep(i, j) is false and the region where it is true. We

can characterize these regions, not including the boundary, by:

(1) {(i, j)l-sep(i, j)}

(2) {i, j)lsep(i -1, j) A sep(i, j - 1)}

Now consider the two regions defined as follows:

(I) {(i, j)ll~,X(A’+]) > lm.X(Bj)}

(11) {(i, j)llmaX(BJ+’) > lmaX(A[)}

Note that the condition for (1) is monotone in – i and j, and the condition for

(II) is monotone in i and –j. It is easy to verify that our condition for m~ and
m~ is equivalent to stating that the matrix element at (m~, nz~) does not lie in

any of the above regions. Using the monotonicity properties, we can verify the

correctness of the following table:

(i, j) in

(1)

neither

(2)

(I)

mA>i

mB<~

+

neither (II)

m~>i

mB>j

mp, >j

Since ~~ and LB are stored in arrays, we can calculate the position of the

middle element of-either list in constant time. Using the prec~ding table, we

can perform a binary search that eliminates half of at least one of the lists at

each step. Hence, we can find m ~ and m~ in O(log n) time using a single

processor.

Since L is the merge of LA and L. with respect to an easily computed total
ordering, we can readily compute L in parallel in O(log n) time with O(q)

proce~sors. It might seem as if we are better off doing the merg~ directly on LA

and LB, allowing us to simplify the binary search. However, ILA I + ILB I could

be much larger than m, and the resulting algorithm might not maintain a

linear processor bound when many merges are being done simultaneously.
To complete the algorithm, we simply perform the above phase until all

well-separated pairs have been found. Since each phase reduces the size of

each subproblem by at least a factor of two, the number of phases will be

O(logn). Each phase can be performed in O(log n) time, so the total parallel

time bound is 0(log2n).

Decomposition of Multidimensional Point Sets 81

To see that the processor bound is O(n), note that the total number of

processors assigned to all merges being done at any parallel step is linear in the

number of new subproblems created. Each subproblem generates at least one

new well-separated pair, so by Lemma 4.2, the number of new subproblems is

O(n). Therefore, the processor bound is also O(n).

THEOREM 7.1. G’iuen a set P of n points in % d and a fair split tree of P, a

well-separated pair decomposition of P can be constructed in O(log 2n) time with

0(n) processors.

8. Computing k-Nearest-Neighbors

One useful application of the well-separated pair decomposition is an optimal

sequential algorithm for computing the k-nearest-neighbors of each point in a

set. (See Preparata and Shames [1985] for a discussion of this and other

problems in computational geomet~.) In this section, we present such an

algorithm. The complete method, including the computation of the split tree

and realization, is reminiscent of Vaidya’s algorithm [1986; 1989]. However, the

way in which we have split our algorithm into phases makes it easier to

parallelize efficiently. Our algorithm for the special case of all-nearest-neigh-

bors (corresponding to k = 1,when interpoint distances are unique) is some-

what simpler, and can be found in Callahan and Kosaraju [1992].

As in the preceding section, we will assume that for every node A in T,

R(A) was stored at that node when the split tree was being computed. This will

be necessary for constant-time tests involving the distance from a point to the

smallest d-ball containing R(A).

Given a well-separated pair decomposition of P, we can compute the

k-nearest-neighbors of P with only O(kn) additional steps. Note that this is

optimal and improves on the O(n log n + kn log k) complexity of Vaidya’s

algorithm. The output of the k-nearest-neighbors algorithm is a list of all pairs

(a, b), such that b is one of the k-nearest-neighbors of a. We refer to (a, b) as
a k-nearest-neighbor pair.

LEMMA 8.1. Let P be a point set, and let {A, B} be a pair in a well-separated

realization of P @ P, with a separation s ~ 2. Suppose that there is a k-nearest

neighborpair (a, b) such that a = A and b e B. Then IAI < k.

PROOF. Suppose IA I > k. Let A’ = A – {a}. Then because A and B are

well separated, d(a, a’) < d(a, b) for all a’ = A’, b = B. Since IA’ I z k, B can-

not contain a k-nearest-neighbor of a. ❑

Note that as a consequence of this lemma (taking k = 1), if {a, b} is the
closest pair, then {{a}, {b}} is a pair in the realization of P @ P. Hence, given

the realization, we can find the closest pair in P in O(n) time. This provides a

very simple proof that our sequential algorithms are optimal, since Q(n log n)

is a lower bound for the closest pair problem.

For the following, we use xy to denote the line segment between points x

and y.

Let B be a point set, and let 0~ be the center of the smallest d-ball

containing Z?(B). ILet {a} and {a’} be singleton point sets, each well separated

82 P. B. CALLAHAN AND S. R. KOSARAJU

from B, such that d(a, 0~) > d(a’, 0~), and let a represent the angle between

aO~ and a’0~, given in radians.

LEMMA 8.2. If a < s/(,s + 1), then d(a, a’) < d(a, b) for all b G B.

PROOF. Note that we can scale each dimension equally without affecting

our claim. To simplify the analysis, we scale the points so that the smallest

d-ball containing R(B) has radius 1. Now we confine our attention to the plane

containing aO~ and a’0~.

For convenience, let r and r’ denote d(a, 0~) and d(a’, 0~), respectively.

We observe the following bound:

d(a, a’) <r– (1 – a)r’. (7)

The right-hand side of this inequality is the length of the path obtained by

going from a’ along an arc segment of length ar’ to the point on aO~ at

distance r’ from 0~, and going from this point to a along a line segment of

length r – r’. Clearly, this is an upper bound on d(a, a’).

Because {a} and {a’} are well separated from B, both are at distance at least

s + 1 from 0~. Hence, inequality (7) is preserved when we substitute s + 1 for

r’. We can also substitute s\(s + 1) for a since we are assuming this is a strict

upper bound. With these substitutions, (7) becomes a strict inequality, and

simplifying, we obtain d(a, a’) < r – 1. We observe that d(a, b) z r – 1 for all

b G B, so d(a, a’) < d(a, b) for all b ● B. ❑

Consider a convex cone C whose apex lies at 0~, and let 8 denote the angle

of C, defined as the maximum possible angle between 0~ x and 0~ y for any x

and y in C. Let A be a set of points that all lie in C.

LEMMA 8.3. Let P be a point set containing A U B as a subset, and let a be a

point in A. If 0< s/(s + 1) and I{a’ = A – {a}: d(O~, a’) < d(O~, a)}l 2 k,

then no b G B can be a k-nearest-neighbor of a in P.

PROOF. By Lemma 8.2, every a’ = A – {a} such that cl(O~, a’) < d(O~, a)

satisfies d(a, a’) < d(a, b) for all b G B. Hence, if \{a’ e A – {a}: d(O~, a’) s

d(O~, a)}l 2 k, then a has k neighbors in A nearer to it than any b c B.
Therefore, no b E B can be a k-nearest neighbor of a in P. ❑

Yao [1982] defines a frame to be a partition of d-dimensional space into

cones whose apexes all lie at the origin. The angle of a frame is defined to be

the maximum angle over all its cones. Yao has shown that for any d and any

~ >0 one can construct a finite frame with angle less than ~. Note that the
size of the frame depends on d and ~.

To apply the above results to the k-nearest-neighbor problem, we assume we

have a well-separated pair decomposition of our point set P with s >2 (say

s = 2.1).

For every node B in T, let f(B) be the set of all a such that for some

ancestor B’ of B, {A, B’} (IA I < k) is in the realization and a G A. Lemma 8.1

guarantees that if (a, b) is a k-nearest-neighbor pair and b G B, then a e f(B).

For node B, we compute N(B), some subset of f(B) that includes all a = A

such that {A, B} is a pair in the realization, and (a, b) is a k-nearest-neighbor

pair for some b G B.

Decomposition of Multidimensional Point Sets 83

Using Lemma 8.3, we can find an N(B) of size O(k) for every B in T. Note

that the constant in the O-notation depends on d. The computation is done top

down, starting at the root and ending at the leaves. The set for the root P is

the empty set, since every point is in P. The initial set for any node B is the

union of N(p(B)) and the set of a such that {A, B}(IA I < k) is a pair in the

realization and a ~=A.

In time proportional to the size of this set we can compute N(B), as follows:

Construct a frame of angle less than s/(s + 1), and translate it so that 0~ is

the origin. Now, partition the initial set into a constant number of subsets of

points lying in each cone of the frame. For each of these subsets, select the k

that are nearest to 0~. Note that we can perform this operation in linear time

for each subset by selecting the kth nearest point (or maximum if the set has

less than k elements) and then retrieving all points nearer to 0~ than this

element (and possibly some with the same distance). We let N(B) consist of

the set of all the points thus selected.

By Lemma 8.3, the points that we have not selected can be eliminated from

N(B). The overall top down computation takes O(kn) steps, since the size of

the set passed from any node to its children is O(k).

Suppose b is a k-nearest-neighbor of a. Using the preceding arguments, we

can establish that a will be in N({ b}). Now, for each a, we compute the set of

all b such that a e N({b}), and select the k nearest b in each set, giving us the

k-nearest-neighbors of a. There are at most O(kn) total elements over which

we perform selection, so the complexity of this step is O(kn).

THEOREM 8.4. Given a set P of n points in % d and a well-separated pair

decomposition of P, the k-nearest neighbors of all points in P can be computed in

O(kn) steps.

8.1. COMPUTING K-NEAREST-NEIGHBORS IN PARALLEL. It is well known that

given an arithmetic expression tree whose leaves are constants and whose

internal nodes are labelled by + and x operators obeying certain algebraic

properties, one can evaluate all nodes of this tree in O(log n) time with

O(n/log n) processors on an EREW PRAM, where n is the size of the tree. A

standard approach to this problem is to apply the technique of rake-and-com-

press [Abrahamson et al. 1989; Gazit et al. 1988; Kosaraju and Delcher 19881,

which is suitable for a wide variety of tree-structured computation problems.

In Callahan and Kosaraju [1992], we sketched a parallel algorithm for the

all-nearest-neighbors problem using rake-and-compress [Abrahamson et al.

1989; Gazit et al. 1988; Kosaraju and Delcher 1988]. We can adapt this

algorithm to the k-nearest-neighbors problem as follows.

At any stage of forward raking, let B’ be the parent of B. At this stage, node

B will store the set N(B’, B) defined below.

Let f(B’, B) be the set of all a = A such that {A, B“} ([AI < k) is a

well-separated pair for some node B on the path from B to B’, B inclusive, in

the original tree. ‘Then MB’, B) is the subset of f(B’, B) that includes the k

nearest points to 10~, in each cone in the frame around B’.

This algorithm can be made to run in O(log n log k) steps with O(nk/log n)
processors on an EREW PRAM. If we wish to reduce the time to O(log n)

steps independent of k, we run into some difficulty, since it appears that we

need to apply k selection at each of O(log n) phases of the algorithm. We can

eliminate this using several further geometric observations.

84 P. B. CALLAHAN AND S. R. KOSARAJU

Roughly speaking, the well-separated pairs corresponding to a given node

tend to represent decreasing distances as the depth of the node increases.

Hence, rather than applying k selection in a top down fashion, we can use the

structure of the fair split tree directly to obtain a set of O(kn) pairs that

contains all k-nearest-neighbor pairs.

In our sequential algorithm, we partitioned the space around each node in T

into narrow cones, and selected the k nearest points within each cone. There

was nothing to prevent points from changing cones during this process. If we

are careful, however, we can choose our cones so that a point remains in the

same cone as it is pushed down to the leaves of T.

For our purposes, it will be convenient to define each cone by an axis vector

u. Let a denote the angle and b denote the apex of such a cone. Then, the

cone of u consists of all points x lying above the hyperplane passing through b

with normal u such that ~ makes an angle of at most a/2 with u. We can

choose a set U of vectors with IUI dependent only on s and d, such that for any

well-separated pair {{a}, B}, there is a u E U such that for all b = R(B), a lies

in the cone of u with apex b and angle a = 0(s - I). This follows easily from

the geometry of well-separated sets.

For our parallel algorithm, we first need to construct a well-separated pair

decomposition with s >2 sufficiently large to insure that some a < s/(s + 1)

satisfies the above claim. The set of cones defined by the vectors in U covers

the space around the origin in a manner similar to a frame, but the cones may

overlap.

For every node B, we retrieve the set of a such that {A, l?} ([AI s k) is a

pair in the realization and a = xl. Now, we associate every pair {B, {a}} with

some u such that a lies in the cone of u with apex at 0~. This can be done in

constant time with 0(kn) processors by assigning a processor to each pair.

We perform a single pass of k selection to obtain for each B and u, the k

nearest a within the cone of u. This can be done in O(log n) time with O(k/z)

processors. We use F(B) to denote the set of all a thus paired with B. By

Lemmas 8.1 and 8.3, we know that for any k-nearest-neighbor pair (a, b) there

is an ancestor B of b such that a c F(B).

Having guaranteed that every point is assigned to the same cone throughout

the top down procedure, we can simplify our description of the set of points to

compute at the leaves of T. Specifically, for every point b in P, we wish to

compute, for each [4 = U, the k nearest points a such that {B, {a}} is a pair

associated with u for some ancestor B of b.

To solve this new version of the problem, we exploit the fact that smaller

distances tend to occur deeper in the tree. The ordering is not exact, so we will

not try to obtain the k nearest points immediately. Instead, we will obtain, for
each leaf in T and vector u, a set of size 0(k) that contains as a subset the k

nearest points within the cone of Z4 that have not already been eliminated by

Lemma 8.1. We require several geometric results.

Suppose {A,, B,} is a pair in a realization constructed by the algorithm in

Section 4, and let d(A,, B,) denote the minimum distance between I?(A,) and

R(B1). Then, for some d-dependent constant c,

SZ~dX(Al) < d(Ai> B,) < C~lmaX(P(A1)). (8)

Clearly d(xl,, B,) > sl~~X(Al), since otherwise the pair would not be well

separated. To prove the other half of (8), we need to consider several cases. A

Decomposition of Multidimensional Point Sets 85

trivial case occurs when p(A,) = p(B,). Otherwise, there are two ways in which

our algorithm could have formed the pair {Ai, Bi}. If {Ai, l?,} was formed by

splitting P(A i), then p(A,) and Bi are not well separated, so the inequality

holds. Otherwise, {Ai, l?i} was formed by splitting P(Bi)) so d(Ai> Bi) s

csl~,X(p(BL)). In this case, p(zil) was split at some earlier point. Hence,
l~,X(p(A,)) z l~.,(p(lli)), and the inequality holds here as well.

We now consider an additional property of fair split trees. Let A be a node

in some fair split tree T, and let pj(A) denote the ancestor of A that is j

levels above it in the tree, if such an ancestor exists. Then, we have the

following inequality.

(9)

To see this, note that after a fair split is performed 3 times perpendicular to

dimension i, then 1, can be no more than 2/3 its original value. That is, if the

first two splits did not reduce li sufficiently, then they must have each been

close to opposite boundaries of R(A) in the ith dimension. At this point, the

third split must divide this length into two pieces whose size is no more than

2/3 the original in order to ensure the fair split condition. Moreover, once 1,

has been reduced to 4/9 its original size, a fair split cannot occur in the ith

dimension until l.l,X has been reduced to 2/3 its original size. Hence, after 6d

splits, l~.X is no more than 2/3 its original value. In practice, this is almost

certainly an overestimate.

We say that a is paired with B when a G F(B). Let S(B, u, b) denote the set

of all a in the cone of u paired with b or one of its ancestors up to and

including B. Also, let B(u, b) denote the nearest ancestor of b such that

Is(B(u, b), U, b)l > k.

LEMMA 8.1.1. There exists a constant c’ dependent only on d such that for any

leaf b in T and u G U, S(pc’(B(u, b)), u, b) contains the k nearest a to b in the

cone of u paired with some ancestor of b.

PROOF. Let a“ denote the kth nearest neighbor of b in the cone of u

paired with some ancestor of b. For at least one a“ = S(B(U, b), u, b), d(a”, b)

z d(a’, b), because S(B(U, b), u, b) has at least k elements. It follows from the

well-separated set condition that d(a”, B) z s/(s + 2) d(a’, b), where B is the

node paired with a“. Combining (8) and (9), we can determine some constant c’

such that for all a = S(T, u, b) – S(pc’(B), u, b), d(a, b) z d(a’, b). Hence,

S(pc’(B), u, b) contains the k nearest a to b in the cone of u paired with some

ancestor of b. B is either B(u, b) or one of its descendants, so the original

claim follows. C’

We now need to retrieve N(u, b) = S(PC’(B(U, b)), U, b) for each u and b.

This is similar tcj the problem of retrieving, for every leaf in a tree, its k

nearest ancestors. In fact, it can be reduced to a weighted version of the latter

problem by constructing a separate tree for each vector u, and compressing out

all nodes B not paired with any a in the cone of u, This is no longer a
geometric problem, and can be done O(log n) time with O(kn) processors

using standard parallel techniques.

Finally, for each leaf a in T, we know by previous arguments that its k

nearest neighbors are among those b such that a ~ Al U, b) for some u G U.

86 P. B. CALLAHAN AND S, R. KOSARAJU

We can easily retrieve the k-nearest-neighbors among these points in O(log n)

time with O(kn) processors, thus completing our parallel algorithm.

THEOREM 8.1.2. Given a set P of n points in % d and a well-separated pair

decomposition of P, the k-nearest neighbors of all points in P can be computed in

O(log n) time with O(kn) processors.

9. Applications to n-Body Potential Fields

Particle simulation is a fundamental technique of scientific computing (see, for

example, Aarseth et al. [1979], Appel [1985], Barnes and Hut [1986], Greengard

and Gropp [1990], Miller and Prendergast [1968], Miller et al. [1970]). An

essential step in such simulation is to compute the potential field of a set of

particles with Coulombic or gravitational forces. For any particle at position a,

we define a potential function +.(x) that associates a real number with every

point x in the space around it, and depends only on the distance from a.
For example, in three dimensions, +.(x) = q~/d(a, x), where qc is the

strength of the charge at a. This value is related to electrostatic charge in the

Coulombic case and mass in the gravitational case. The potential field of a set

of particles is the sum of the potential fields of each particle in the set.

We represent a collection of n distinct particles with potential fields as a set

of points {zl, ..., z.} and charge strengths associated with each point (we refer

to a point as Zi in this instance to avoid confusion with the parameter p that

we will later define). We would like to compute, for each point z, = 1, ..., n,

the potential due to the remaining points. The potential computation can

clearly be performed in 0(n2) time using the direct sum E, ~, ~ZJ z,) to find the

potential at each z,.

Greengard and Rokhlin [1987], Greengard [1988], and Rokhlin [1985] have

developed a method of approximating this potential using truncated multipole

expansions. This algorithm, known as the Fast Multipole Method, has received a

great deal of attention in the scientific computing community.3 Although we

consider this an important (indeed, motivating) application for our data struc-

ture, we do not intend this section as an introduction to the Fast Multipole

Method. Instead, we will only summarize the method here, and show how our

decomposition fits into the general scheme. The interested reader is referred

to Greengard’s excellent exposition [Greengard 1988] for further details.

The multipole expansion of a collection of particles P is an infinite series

that converges outside the sphere containing these particles and is equal to

their potential field in this region. The truncated multipole expansion is an

approximation of the multipole expansion containing only those terms of
degree p or less. The size of this expansion depends only on p, and not on IPI.

For every point that is well-separated from P, the truncated multipole

expansion approximates the potential field of P to a precision that depends

only on p and s, the separation. In general, the precision increases monotoni-

cally with p and s, the relative error being 0(.s ‘P). When high precision is

required, there is clearly more to be gained in the long run by increasing p, but

the issue is not as clear when lower precision is tolerable. This may be the case,

3See, for example, Hafner and Kuster [1991], Katzenelson [1989], Schmidt and Lee [1991], and
Zhao and Johnsson [1991].

Decomposition of Multidimensional Point Sets 87

for example, when the charges themselves are not known to a high degree of

precision. Because of the variety of ways of implementing the Fast Multipole

Method, the most suitable trade-off between s and p will depend on many

factors, and is best left as a final “tuning” step. We consider the flexible choice

of s to be an advantage of our decomposition over Greengard’s formulation,

since his choice of s is fixed by the geometry of squares or cubes in a regular

grid.

Using the truncated multipole expansion, we may approximate the potential

due to arbitrarily large sets, provided we are sufficiently far away, by an

arithmetic function with O(1) terms. Each expansion is centered at a point x,

and expansions centered at the same point are added by taking the pairwise

sum of their coefficients. In addition to the multipole expansion, which

describes the potential field outside a given sphere, Greengard defines the

local expansion, which describes the potential field within a given sphere.

Given an arbitrary sphere that is well separated from P, and a truncated

multipole expansion of P, we may construct, in O(1) time, a local expansion of

the field due to P within this sphere, whose error bound is similar to that of

the truncated multipole expansion. Local expansions may also be added,

provided they are centered at the same point. Greengard shows that the

centers of both types of expansions may be shifted in 0(1) time, allowing them

to be added.

We now sketch how the above operations may be used for potential field

computation given a split tree T of the set P and a well-separated realization

of P @ P that uses T. It should be emphasized that the sequential algorithm is

an adaptation of the Fast Multipole Method when the split tree can have up to

O(n) depth.

9.1. SEQUENTIAL. ALGORITHM. In the first phase, we compute the truncated

multipole expansicm for all nodes in T, proceeding bottom up from the leaves.

We can compute the multipole expansion for all leaves in constant time, since

each corresponds to a single particle. The expansion for an internal node is

obtained by shifting the center of one of its children to that of the other, and

adding the expansions. This also takes constant time. The total time for this

phase is linear.

In the second phase, we compute, for each node, the local expansion of the

potential field due to the nodes with which it is paired in the realization of

P 8 P. To do this, we convert the multipole expansions of the preceding phase

to local expansions centered at the center of the bounding rectangle of this

node, and take their sum. This requires time proportional to the total number

of pairs in the realization, which is linear.

In the third phase, we proceed top down and compute a local expansion for

each node in T, valid within the bounding rectangle of the set at this node,

representing the field due to sets paired with this node or one of its ancestors

in the realization. To compute this, we pass the local expansion of a node to its

children, shift its center, and add it to the local expansion computed in the

second phase.
Finally, to compute the potential at any point, we simply evaluate the local

expansion of each leaf at the point in the set at this leaf. Our definition of a

realization guarantees that this is the correct potential value. The total work

required is clearly 0(n), giving us the following theorem.

88 P. B. CALLAHAN AND S. R. KOSARAJU

THEOREM 9.1.1. Gillen a set P of n points with associated charge strengths, and

a well-separated pair decomposition of P, we can compute the potential at all

points in P in O(n) time.

This corresponds to the main result of Greengard [1988] and Greengard and

Rokhlin [1987] but we eliminate the need for assumptions about input distribu-

tion by insisting that a well-separated pair decomposition be provided in the

input.

9.2. PARALLEL ALGORITHM. In this subsection, we sketch how the rake-

and-compress technique can be applied to the parallel implementation of the

Fast Multipole Method.

First, note that the operation of adding two multipole or local expansions is

both commutative and associative (though we will not make use of commutativ-

ity). This follows from the fact that it is merely the exact addition of two

functions. The translation operation necessary for addition only changes the

representation of the function, not the function itself. Hence, there is sufficient

algebraic structure to apply rake-and-compress.

Let the multipole expansion at node A be denoted M(A). For the first

phase, we use the fair split tree to construct an expression tree in which each

leaf {z,} is labeled by the function A4({z,}) (computed for all leaves simultane-

ously in O(1) steps), and each internal node is labeled by a + operator

denoting the addition of two multipole expansions. The computation of M(A)

for all internal nodes A reduces to the problem of evaluating all nodes in this

expression tree.

Now let L(A) denote the local expansion at node A representing the

contribution to potential due to all nodes with which A is paired in the

realization. For the second phase, we first convert all multipole expansions to

local expansions about the nodes with which they are paired. This can be done

in O(1) steps by assigning a processor to every pair in the realization. To

evaluate L(A) for any A, we must compute a sum of m~ terms, where m~

denotes the number of pairs of the form {A, B}. The sum of m~ over all A in

T is exactly twice the number of pairs, which is linear, so this phase can be

performed in O(log n) time with O(rz\log /z) processors on an EREW PRAM.
Finally, let O(A) denote the sum of all L(A) on a path from the root of T

to A. For the third phase, we evaluate this using rake-and-compress as follows:

At any step in forward raking, let A be a node with parent B in the

compressed tree. Node A will contain the function OB(A), denoting the sum of

all local expansions on the path from B to A, not including I,(B). We can

maintain these values using a constant amount of work each time we compress

a leaf. During backward raking, we use these functions to find O(A) for each
node A as it emerges in the process of decompression. Finally, we obtain

@({z,}) for all leaves, which is the local expansion about any point in P.

All of the preceding phases can be performed in O(log n) time with O(rz/

log n) processors, giving us the following theorem.

THEOREM 9.2.1. Given a set P of n points with associated charge strengths, and

a well-separated pair decomposition of P, we can compute the potential at all

points in P in O(log n) time with O(n/log n) processors.

In our potential computation algorithm, we have been treating p, the degree

of the multipole expansion, as a constant. However, the dependency on p can

Decomposition of Multidimensional Point Sets 89

be important in practice. While preparing the conference version of this paper,

a result of Pan et al. [1992] and Reif and Tate [1992] was brought to our

attention, which significantly reduces this dependency in both two and three

dimensions from that given in Greengard [1988] and Greengard and Rokhlin

[1987]. It is easy to adapt their method to our framework. In this way, we

remove the dependency on input precision from the time complexity of

constructing the tree T. In both cases, there is no dependency on bit precision

after the tree has been constructed.

10. Conclusions

It is interesting to note that our initial formulation of the well-separated pair

decomposition came about in an attempt to adapt the Fast Multipole Method

to guarantee a running time independent of the bit representation of the input.

The term, well-separated, is used by Greengard, and his formulation implicitly

makes use of a structure similar to the well-separated pair decomposition, but

whose size can be a function of the bit representation of the input. We were

somewhat surprised to discover that this decomposition could also be applied

in a natural manner to the k-nearest-neighbors problem, and we believe that it

will have other uses as well.

REFERENCES

AARSETH, S. J., Gem, J. R., III, AND TURNER, E. L. 1979. N-body simulations of galaxy
clustering. I. Initial conditions and gala~ collapse times. Astrophys. J. 228, 664–683.

ABRAHAMSON, K., DADOUN, N., KIRKPATRICK, D. A., AND PRZYTCHKA, T. 1989. A simple parallel
tree contraction algorithm. J. Algotithrns 10, 2, 287–302.

ARRAMSON, N. 1963. Information Theory and Coding. McGraw-Hill, New York.
AGARWAL, P. K., EDEMBRU~NE& H., SCHWARTZKOPF, O., AND WELZL, E. 1991. Euclidean

minimum spanning trees and dichromatic closest pairs. Disc. Computat. Geom. 6, 407–422.
AGARWAL, P. K., AND MATOU3EK, J. 1992. Relative neighborhood graphs in three dimensions. In

Proceedings of the 3rd Annual Symposmm on Discrete Algorithms. ACM-SIAM, New York and
Philadelphia, pp. 58--65.

APPEL,A. W. 1985. An efficient program for many-body simulation. NAM J. Sci. Stat. Comput.

6, 85-103.

BARNES, J., AND HUT, P. 1986. A hierarchical O(N log N) force-calculation algorithm. Nature

324,4,446-449.

BENTLEY, J. L. 1980. Multidimensional divide-and-conquer. Commun. ACM 23,4 (Apr), 214-229.
CALLAHAN, P. B., AND KOSARAJU, S. R. 1992. A decomposition of multi-dimensional point-sets

with applications to k-nearest-neighbors and n-body potential fields. In Proceedings of the 24th
Annual Symposium on the Theo~ of Computing (Victoria, B. C., Canada, May 4-6). ACM, New
York, pp. 546–556.

COLE, R., AND GOODIUCH,M. T. 1988. Optimal parallel algorithms for polygon and point-set
problems. In Proceedings of the 4th ACM Symposium on Computational Geomeby (Urbana-
Champaign, Ill., June 6-8). ACM, New York, pp. 201-210.

COLE, R., AND GOODRICH,M. T. 1992. Optimal parallel algorithms for point-set and polygon
problems. Algorithmic 7, 3-23.

FRIEZE, A. M., MILLER, G. L., AND TENG, S.-H. 1992. Separator based parallel divide and

conquer in computational geometry. In Proceedings of the 4th An?u[ai Symposium Parallel on

Algotithnzs and Archriectures (San Diego, Calif., June 29-July 1). ACM, New York, pp. 420-429.
GAZIT, H., MILLER, G. L., ANDTENG,S.-H. 1988. Optimal tree contraction in the EREW model.

In Concurrent Computations, S. K. Tewsburg, B. W. Dickinson, and S. C. Schwartz, eds. Plenum
Publishing, New York, pp. 139-155.

GREENGARD,L. F. 1988. The Rapid Evaluation of Potential FLelds in Particle Systems. The MIT
Press, Cambridge, Mass.

90 P. B. CALLAHAN AND S. R. KOSARAJU

GREENGARD, L., AND GROPP, W. D. 1990. A parallel version of the fast multipole method.
Computers Math. Applic. 20, 7, 63-71.

GREENGARD, L., AND ROKHLJN, V. 1987. A fast algorithm for particle simulations, J. C’omput.
Physics 73, 325-348.

HAFNER, C., AND KUSTER, N. 1991. Computations of electromagnetic fields by the multiple

multipole method (generalized multipole technique). Radio ,Sci. 26, 1,291–297.
KATZENELSON,J. 1989. Computational structure of the N-body problem. S’ZAM J. Sci. Stat.

Comput. 10, 4 (July), 787-815.

KOSARAJU, S. R., AND DELCHER, A. L. 1988. Optimal parallel evaluation of tree-structured

computations by raking. In VLSI Algorithms and Architectures: Proceedings of the 3rd Aegean
Workshop on Computing, J. Reif, ed, Springer-Verlag, New York, pp. 101-110.

MJLLER, G. L., TENG, S.-H. AND VAVASJS,S. A. 1991. A unified geometric approach to graph
separators. In Proceedings of the 32nd Annual Symposiut?z on Foundations Computer Science.
IEEE, New York, pp. 538-547.

MILLER, R. H., AND PRENDERGAST, K. H. 1968. Stellar dynamics in a discrete phase space.
Astrophys. J. 151, 699-709.

MJLLER, R. H., PRENDERGAST, K. H. AND QUIRK, W. J. 1970. Numerical experiments on spiral

structure. Astrophys. J. 161, 903–916.
PAN, V. Y., REIF, J. H., AND TATE, S. R. 1992. The power of combining the techniques of

algebraic and numerical computing: Improved approximate multipoint polynomial evaluation

and improved multipole algorithms. In Proceedings of the 32nd Annual Symposium of Fozmda-
tto?zsof Computer Science. IEEE New York, pp. 703–713.

PREPARATA,F. P., AND SHAMOS, M. I. 1985. Computational Geomety. An Introduction. Springer-

Verlag, New York.
REIF, J. H., AND TATE, S. R. 1992. N-body simulation I: Potential field evaluation. Technical

report, Comput. Sci. Dept., Duke Univ.
ROKHLIN, V. 1985. Rapid solution of integral equations of classical potential theory. J. Compu-

tat. Phys. 60, 187–207.

SCHMIDT, K. E., AND LEE, M. A. 1991. Implementing the fast multipole method in three
dimensions. J. Stat. Phys. 635-6 (June), 1223-1235.

VAIDYA, P. M. 1986. An optimal algorithm for the all-nearest-neighbors problem. In Proceedings
of the 27th Annua[Sympo.wum Foundations of Cor?zputer Science. IEEE, New York, pp. 117–122.

VAIDYA, P. M. 1989. An O(n log n) algorithm for the all-nearest-neighbors problem. Disc.
Computat. Geom. 4, 101-115.

YAO, A. C. 1982. On constructing minimum spanning trees in k-dimensional space and related
problems. SL4M J. Comput. 11, 721-736.

ZHAO, F., AND JOHNSSON, S. L. 1991. The parallel multipole method on the Connection
Machine. SIAM J. Scl. Stat. Comput. 12, 6, 1420-1437.

RECEIVED DECEMBER 1992; REVISED JULY 1993; ACCEPTED DECEMBER 1993

Journalof the As.maatmnfor Cmnput,ngMach,ne~, Vd 42,No. 1,Jmuar~ 1995

