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Abstract. Network throughput can be increased by allowing multipath, adaptive routing. Adaptive
routing allows more freedom in the paths taken by messages, spreading load over physical
channels more evenly. ‘The flexibility of adaptive routing introduces new possibilities of deadlock.
Previous deadlock avoidance schemes in k-ary n-cubes require an exponential number of virtual
channels [Linder and l+arden, 1991]. We describe a family of deadlock-free routing algorithms,
called planar-adaptwe routing algorithms, that require only a constant number of virtual channels,
independent of networks size and dimension. Planar-adaptive routing algorithms reduce the
complexity of deadlock prevention by reducing the number of choices at each routing step. In the
fault-free case, planar-adaptive networks are guaranteed to be deadlock-free. In the presence of
network faults, the planar-adaptive router can be extended with misrouting to produce a working
network which remains provably deadlock free and is provably livelock free. In addition,
planar-adaptive networks can simultaneously support both in-order and adaptive, out-of-order
packet delivery.

Planar-adaptive routing is of practical significance. It provides the simplest known support for
deadlock-free adaptive routing in k-a~ n-cubes of more than two dimensions (with k > 2).
Restricting adaptivity reduces the hardware complexity, improving router speed or allowing
additional performance-enhancing network features. The structure of planar-adaptive routers is
amenable to efficient implementation.

Simulation studies slhow that planar-adaptive routers can increase the robustness of network
throughput for nonuniform communication patterns. Planar-adaptive routers outperform deter-
ministic routers with equal hardware resources. Further, adding virtual lanes to planar-adaptive
routers increases this advantage. Comparisons with fully adaptive routers show that pianar-adap-
tive routers, limited aclaptive routers, can give superior performance. These results indicate the
best way to allocate router resources to combine adaptivity and virtual lanes.

Planar-adaptive routers are a special case of limited adaptivity routers. We define a class of
adaptive routers with ~ degrees of routing freedom. This class, termed f-fiat adaptit)e routers,

allows a direct cost-performance tradeoff between implementation cost (speed and silicon area)
and routing freedom (channel utilization). For a network of a particular dimension, the cost of
adaptivity grows linearly with the routing freedom. However, the rate of growth is a much larger
constant for high-dimensional networks. Afl of the properties proven for planar-adaptive routers,
such as deadlock and livelock freedom, also apply to f-flat adaptive routers.
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1. Introduction

In concurrent computers, interconnection networks are used by the processing

nodes to exchange data and synchronize with each other. Network performance

is often critical, as the performance of large-scale parallel machines is sensitive

to network latency and throughput. While multicomputers have been touted as

scalable parallel architectures, their scalability is limited by the performance of

their interconnection networks.

An interconnection network is defined by its topology, routing, and flow

control. The topology is the pattern of network node interconnection via

physical communication channels. The routing algorithm specifies how packets

choose paths through the network. Flow control deals with the allocation of

channel and buffer resources to packets as they proceed through the network.

This paper focuses on the issue of routing. In particular, we describe a class of

adaptive routing algorithms which require only local information and modest

hardware support. While our discussion is in the context of k-ary n-cube

networks, the same ideas can be applied to other networks with regular

topologies. Likewise, though we present the ideas in the context of worrnhole

routing [Dally 1987] the ideas apply to virtual cut through [Kermani and

Kleinrock 1979] and store-and-forward networks as well.

2. The Problem

Most existing multicomputer routing networks use deterministic routing [Dally

et al. 1989. Lillevik 1990; Seitz 1985; Seitz et al. 1988]. Although there are

numerous paths between any source and destination, in order to avoid dead-

lock, deterministic routing defines a single path from source to destination.

Fixed, single-path routing prevents effective use of the network’s density of

physical interconnection because the physical channels are allocated inflexibly.

For any choice of fixed paths, some traffic patterns will produce performance

which is much poorer than should be possible, given the physical interconnec-

tion. Deterministic routing prevents the use of productive network resources to

complete the communication. An example of this situation is portrayed in Figure
1. In the figure, the circles represent nodes that are connected in a two-dimen-

sional mesh. Four nodes are sending packets to the destinations indicated. In

this case, the deterministic routing algorithm used to avoid deadlock requires

routing horizontally, then vertically. Despite the presence of many other

possible paths all four packets are forced to traverse the overloaded channel.
The result is poor performance.

Adaptiue routing allows packet routing to take advantage of the density of

network interconnection. Typically, in adaptive schemes, packets can take one

of a number of paths. This situation is depicted in Figure 2. In the figure, the

same four packets are routed using an adaptive algorithm. Packet routes are
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FIG.1. Four packets andtheir routing paths under deterministic, dimension-order routing,

FIG.2. Thesame four packets andpotential routing paths under amoreflefible routing scheme.

adapted based on whether channels are busy when a packet header arrives. If

the desired physical channel is busy, another channel leading toward the

destination may be chosen. In this case, the result is that none of the packets

need to share physical channels. The key observation is that the best choice of

paths depends on current network loading. To achieve good performance on all

traffic loads, routing algorithms must be adaptive, for example, choose paths

based on network conditions. The additional flexibility in adaptive routers can

improve performance under both uniform and nonuniform loading. In general,

in adaptively routed systems, path choices can be made on the basis of any

local information. This is because the rapid fluctuations and traffic and

intrinsic delay in obtaining remote information make it difficult to obtain

accurate information. The distinction we make between deterministic and

adaptive routing is sometimes termed oblivious versus non-oblivious routing

[Borodin and Hopcroft 1985].

2.1. OVERVIEW. In the paper, we begin by briefly discussing some of the

most relevant work in adaptive routers for k-ary n-cubes in Section 3. In

particular, we highlight the cost of deadlock-avoidance in these systems. In

Section 4, we introduce the planar-adaptie routing algorithm that allows

adaptive routing at much lower hardware cost than previous techniques.
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Planar-adaptive routing is proven to be deadlock-free in k-ary n-cubes with no

wraparound with only three virtual channels. Following that, we show how to

extend the router to support fault-tolerance by adding disciplined misrouting.

The resulting routing algorithm is termed a fault-tolerant, planar-adaptive

router (PAR). Misrouting may result in nonminimal packet routes, but the

routing algorithm remains deadlock-free. In addition, we prove that the fault-

tolerant, planar-adaptive routing algorithm is livelock-free.

In Section 5, we consider the issue of message delivery order. The planar-

adaptive routing algorithm can also simultaneously support both in-order and

adaptive, out-of-order packet transmission. We demonstrate how this can be

done. Section 6 discusses implementation issues for planar-adaptive routers

with a focus on hardware complexity and speed. In Section 7, we evaluate a

variety of PAR configurations, using several distinct traffic patterns. These

results show that adaptive routing can improve performance, and the resources

freed by using partially adaptive routing can be profitably applied in other

ways. In Section 8, we show how planar-adaptive routing can be generalized to

support f-degree adaptive routing in n-dimensional networks (~s n.). The

generalization defines a class of adaptive routers, f-flat adaptive routers, which

provides deadlock-free routing algorithms for a full range of routing flexibility.

Finally, Section 9 concludes the paper with a discussion of the ramifications of

this work and some future directions.

3. Background

All adaptive routers choose from several paths based on channel loading,

channel failure, or other dynamic information. The paths from which the

router may select define a basic distinction among adaptive routers. This

distinction separates adaptive routers which choose from a set of minimal

paths (wasting no work) and nonminimal paths (potentially wasting routing

work in exchange for increased routing freedom). These two types of adaptive

routing algorithms are described below:

Minimal or productive adaptive routing. Packets are routed along paths of

minimal distance to their destination. Packets never move away from their

destination.

Nonminimal or misrouting-based adaptive routing. Packets may temporarily

move away from their destination (misrouting), but eventually arrive at their

destination. Due to misrouting, the distance a packet travels may not be

minimal, The network may do some unnecessary work.

Significant work has explored nonminimal approaches [Blumenthal 1992;

Konstantinidou and Snyder 1991; Ngai and Seitz 1989]. Although such efforts

have produced interesting routers that can outperform minimal adaptive routers

in some cases, the use of misrouting makes prevention of livelock a difficult

problem. Complex schemes for packet priority and aging have been proposed,

but they complicate the router logic required for routing and arbitration

decisions. One interesting nondeterministic approach to livelock prevention is

the Chaos router [Konstantinidou and Snyder 1991], but its efficiency and cost

are still under evaluation. The use of misrouting in nonminimal adaptive

routing also makes it difficult to preserve packet transmission order. Order-
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preserving packet delivery can significantly reduce the number of packets

required to implement serialization protocols [Lanolin et al. 1991].

Minimal routers have a variety of attractive features. They do not waste any

effort since packets are never transmitted away from their destination, so it is

possible to utilize the full wire capacity 1 of the network productively. In

addition, as we will show, minimal adaptive routers can support order-preserv-

ing routing efficiently. Finally, and perhaps most important, minimal routers

allow message traffic to be confined to a subnetwork, providing advantages for

both protection and performance predictability. For these reasons, we focus on

minimal routers.

Planar-adaptive routing is a minimal, adaptive routing algorithm that is

provably deadlock-free. Under appropriate reconfiguration algorithms, planar-

adaptive networks are also fault-tolerant. In addition, planar-adaptive routing

can be extended to support in-order packet delivery and adaptive, unordered

packet delivery simultaneously. The designated in-order traffic is delivered in

sequence, the other packets arrive in unspecified order. In all cases, the

planar-adaptive networks are both deadlock and livelock free. The extension of

planar-adaptive routing to higher degrees of routing freedom preserves these

desirable properties.

3.1. THE COST OF I)EADLOCK AVOIDANCE. Adaptive routing algorithms

increase routing flexibility, multiplying the possibilities for deadlock. In multi-

processor networlks, routing decisions must be made within a few cycles, and

thus cannot incorporate complex distributed deadlock prevention and detec-

tion algorithms. Consequently, we focus on deadlock prevention schemes based

on restricting the routing algorithm [Dally and Seitz 1989]. Because the

physical network has cycles, naive routing schemes can produce deadlock, so

we virtualize the network by introducing virtual channels (really only extra

buffers) and define routing functions on the virtual networks. The new routing

functions are from virtual channel to virtual channel and define a network with

no cycles. This technique is useful in both deterministic and adaptive routing

systems and is based on ideas from data networks found in Gelernter [1981]

and Gunther [1981].

We focus particularly on two families of networks, k-ary n-cubes and

multidimensional meshes (k-ary n-cubes without wraparound) and assume

wormhole routing [Dally 1987]. Dally and Seitz [1987] use virtual channels and

restrict routing to implement dealock-free routing in k-ary and n-cubes.

However, their scheme assumes a deterministic routing algorithm, dimension-

order routing. A minimal adaptive routing scheme described by Linder and

Harden [1991] extends the techniques of Dally and Seitz to allow adaptive

routing while preventing deadlock. However, the hardware cost of their ap-

proach is significant, requiring a large number of virtual channels per physical

channel. Such hardware complexity typically reduces attainable network speed.
Dally and Aoki [1993] have described an adaptive routing algorithm based on

the notion of “dimension-reversals.” Each dimension-reversal is a departure

from dimension-order routing. In their static scheme, one additional virtual
channel is required for each allowed dimension-reversal in order to prevent

deadlock. Consequently, that scheme supports only a fixed number of dimen-

LWe define network capacity as the bandwidth of all network wires being used simultaneously,
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FIG. 3. Virtual channel requirements for deadlock-free routing algorithms for k-ary n-cubes.
The virtual channel requirements for Dally and Aoki’s scheme is omitted as they depend on the

number of dimensions reversals permitted.

sion reversals. Their dynamic scheme can support an arbitrary number of

dimension-reversals by tagging each message a dimension-reversal count and

terminating adaptive routing if blocked by a packet with a lower number of

reversals. Updating reversal counts and making routing decisions on that basis

may increase router complexity significantly. Recently, Ni and Glass [1993]

have described a deadlock-free adaptive router based on prohibiting turns that

cause cycles. Direct comparison is difficult since descriptions of their approach

leave open many design choices that may affect both performance and imple-

mentation complexity critically. For example, routing can be minimal or non-

minimal.

Minimal adaptive routing algorithms developed by Duato [1991] and Berman

[1992] require only a few virtual channels (2) per physical channel, but require

that routing decisions be made based on accurate buffer status information.

These routing algorithms are dynamically deadlock-free as the routing deci-

sions ensure that no cycles can form. In contrast, the Linder–Harden [1991]

approach, planar-adaptive routing, and the turn model are all statically dead-

lock-free, allowing flow control and routing to be decoupled. Statically dead-

lock-free routers can use arbitrary buffer sizes, selection policies, and simpler

router decision logic. For the remainder of this paper, we focus on statically

deadlock-free routers. We also do not consider adaptive schemes which are

applicable only to binary hypercubes [Konstantinidou 1990] or those applicable

only to meshes [Felperin et al. 1991] and not other types of k-ary n-cubes.

A table comparing the virtual channel hardware requirements of existing

techniques and planar-adaptive routing is given in Figure 3. We include only

those techniques that are deadlock-free over a variety of k-ary n-cubes,

particularly those with larger radices (k > 2).

As can be seen in the figure, deterministic routing requires only one virtual

channel to prevent deadlock for networks of all dimensions. All of the adaptive

routing algorithms greater numbers of virtual channels. The Linder–Harden
algorithm that permits fully adaptive routing requires a number of virtual

channels exponential in n.2 Practically speaking, the number is large even for

a three- or four-dimensional network. In contrast, the planar-adaptive rout-

ing algorithm requires at most three virtual channels to prevent deadlock for

networks of any dimension.

The cost advantage of planar-adaptive routing can be dramatic for higher-

dimensional networks. Such networks are of increasing interest. Large-scale

machines increase the effect of node latency, favoring networks with greater

2Auy productive channel toward the destination may be used, and two 2“ - L virtual channels are
required in the first dimension, 2 n z in remaining dimensions.



Planar-Adaptwe Routing 97

connectivity. Looser constraints on wiring bisection and pin-bounds also make

higher-dimensional networks more attractive. Furthermore, recent results indi-

cate that higher-dimensional networks may exhibit more robust performance

over a range of communication locality [Agarwal 1991].

3.1.1. Cost Metrics. In routing networks, the most expensive part is the

wires for the physical channels. Following that, the second most expensive

elements are the buffers and switching hardware (crossbar or other). Only if

routing algorithms become very complex is routing logic a significant contribu-

tor. Since we will compare different routing schemes with respect to a fixed

topology, the physical channel cost is constant. The issue is how to get the best

performance out of the wires. Since the networks we consider are wormhole-

routed, the main contribution to the buffering is the number of “virtual

channels” which is the same as the minimum number of buffers. The number

of switch ports in a cross bar affects both its cost and setup latency. Switch cost

is superlinear in the number of ports, so partitionable switches will be cheaper

and faster. We return to this issue when we discuss implementation issues in

Section 6. Meanwhile, we focus on virtual channel requirements as a cost

metric. Hardware cost savings are significant as they not only save chip area;

they may also allow the router to run at higher speeds.

4. Planar-Adaptwe Routing

Fully adaptive, minimal routing allows the use of any channels that move a

packet toward its destination. As shown in Figure 4, packets are routed in the

n-dimensional subcube of the network defined by the source and destination. It

is possible to redluce the cost of deadlock avoidance by restricting routing

flexibility (adaptivity). The motivation for this approach is the following obser-

vation about Linder and Harden’s deadlock prevention scheme.

Observation. The requirement of a large number of virtual channels to

prevent deadlock arises from the freedom to route in the n dimensions in

arbitrary order.

By constraining the routing freedom to a few dimensions at a time, the

hardware requirements for deadlock avoidance can be greatly reduced. Com-

pared to fully adaptive routing, the planar-adaptive approach sacrifices some

routing freedom to drastically reduce the possibilities of deadlock. Planar-

adaptive routing limits routing freedom to two dimensions at a time. The

reduced freedom makes it possible to prevent deadlock with only a fixed

number of virtual channels, independent of the number of network dimensions.

Though there is less routing freedom than with fully adaptive routing,

planar-adaptive routing still allows choice from a large number of paths from

source to destination. Routing proceeds on a series of adaptive planes (two-di-

mensional surfaces). The routing freedom available in planar-adaptive routing

is pictured in Figure 5. Within each adaptive plane, packets may use any
channels leading toward their destination. Restricting the adaptivity in this

fashion reduces the coupling between network dimensions, reducing the possi-

bilities for interdimensional resource cycles. Consequently, fewer resources are

needed to avoid deadlock.
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FIG. 4. A fully adaptive, minimal router allows
a packet to be routed in the n-dimensional Source
subcube defined by the source and destination.
This subcube is shown for the case of a three-di-

mensional network.

@

Destination

‘“””fikt‘“”9”
(a) (b)

FIG. 5. Planar, adaptive routing allows the packet to be routes on a series of two-dimensional
surfaces, adaptive planes. Planar-adaptive routing for three dimensions (a) and four dimensions

(b) is illustrated. In the 4D case, the third adaptive plane is orthogonal to the first two.

4.1. NOTATION AND TERMINOLOGY. We adopt notation similar to that in

Dally [1990] and Linder and Harden [1991]. We presume for the purposes of

discussion, a physical topology of a k-ary n-cube with no wraparound paths.

k = # of nodes along a dimension

n = # of dimensions, 2* n = # of physical channels per node

d,,, = dimension i, virtual channel j

d,,, + = dimension i, virtual channel j, in the increasing direction

d,,, – = dimension i, virtual channel j, in the decreasing direction

As a k-ary n-cube, the network has k“ nodes. d,,, specifies a set of virtual

channels, j, in dimension i of the network. It specifies two for each node, one

in the positive direction, one in the negative direction in the i dimension. We

denote the positive direction channels as d,,, + and the negative direction

channels as d, ~ – . Throughout this paper, we use the terms message and

packet synonymously to indicate a unit of routing in the network.

4.2. PLANAR-ADAPTIVE ROUTING. The basic idea in planar-adaptive routing

is to provide adaptivity in two dimensions at all times. Thus, a packet is routed

adaptively in a series of two-dimensional planes. As the packet progresses

toward its destination the routing dimensions change. Eventually, the packet
is routed in all dimensions and delivered to its destination. By limiting the

adaptivity to two dimensions and structuring the passage from one adaptive

plane to the next, we reduce network cost while maintaining deadlock-freedom.

In a k-ary n-cube with no wraparound paths, planar-adaptive routing re-

quires three virtual channels for each physical channel. We claim and will show
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that these three channels are sufficient to assure deadlock and livelock

freedom.3

Define n – 1 adaptive planes, AO to A,, _ ~, as the combination of several

sets of virtual channels.

Ai=diz+d, +lO+dl+ll

Each adaptive plane involves only two dimensions.4 Three virtual channels in

each dimension are needed to support the n – 1 adaptive planes. More

precisely, the first dimension needs only one virtual channel, but the maximum

number of virtual channels for any dimension is three.

Planar-Adaptive Routing Algorithm
High-level (between adaptive planes)

l. Fori=O, i<(rz-l)do
Route adaptively in A,, see Low-level routing.
end

2. After exiting the loop, it can only be necessary to correct the address in d,, _ ~. If
necessary, route in d._ ~,~ to the destination.

Low-leuel (within adaptive plane A,)

Adaptive plane A, contains virtual channels di, *, d,+,, ~, and d,+ 1 j. Within the plane,
route adaptively with respect to dimensions d, and d,+ ~ by choosing any channel that
leads closer to the destination. In order to prevent deadlock, the traffic is divided into two
classes: packets which need to increase (increasing) and decrease (decreasing) their d,
address. The virtual channels in A, are divided into increasing and decreasing virtual
networks which are completely disjoint (see Figure 6).

Increasing Network: d,, z + , d,+ 1,0

Decreasing Network: d,, z – , d,+ 1,1

1. Separate traffic into the appropriate subnetworks. Increasing traffic is routed in the
increasing network. Decreasing traffic is routed in the decreasing network.

2. Within each, route packets adaptively toward their destination, using any of the
productive channels.

3. When the d, address is correct, routing is completed in plane A,, so proceed to the
next high-level step.

In high-level routing, the basic idea is to route successively in each adaptive

plane. Routing in adaptive plane Al reduces the distance in di to zero. After

routing in all of the adaptive planes, the packet has reached its destination. For

d._ ~, there cannot be any adaptivity left for a minimal router, so the packet is

routed directly to its destination.

In low-level routing, the scheme is adaptive, as multiple paths can be chosen

within each adaptive plane. In each adaptive plane, the packet completes its

routing in at least one dimension. If in plane Ai, the d,+ ~ distance is reduced

to zero first, routing continues in d, exclusively, until the d, distance is reduced

to zero. The adaptive routing system is low cost as the overlapping adaptive

3It has been observed that this channel requirement can be reduced to two by substituting the
d ,+ ~,~ channel in adaptive plane A, for d,+ ~,~ in adaptive phase Ai + 1. Though it appears that
this substitution preserves many of the properties of planar-adaptive routing, the change compli-
cates the proofs significantly, making exact preservation unclear. In addition, the change may
significantly complicate the routing algorithm as it requires the router to remember each
message’scurrent adaptive plane.
‘The order of dimensions is arbitrary.
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(b)

D
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i+ 1

D
i

FIG. 6. The channels for an adaptive plane A,. The increasing (a) and decreasing (b) networks

are logically decoupled as they contain disjoint sets of virtual channels.

planes require only three virtual channels per physical channel for an rz-dimen-

sional network.

4.3. DEADLOCK FREEDOM. Planar-adaptive routing is deadlock-free. Our

proof decomposes the network into the adaptive planes, shows that routing in

each plane in deadlock-free, and then shows that cycles cannot form between

planes. Consequently, the planar-adaptive routing algorithm is free from dead-

locks.

THEOREM 4.3.1. Planar-adaptwe routing is deadlock free with only three

virtual channels.

LEMMA 4.3.2. Routing within each adaptive plane, A,, is deadlock free.

PROOF OF LEMMA 4.3.2. Recall that each adaptive plane is divided into two

networks which are completely separate.

Increasing Network: d,, z + , d,+ 1,0

Decreasing Network: d,, ~ – , d,+ 1,1

The packets in d, + can only depend on d, + and d,, ~,~ channels. The

packets d, – can only depend only on d, – and d,+ ~,~. Without loss of

generality, we consider only the increasing network. Suppose a cycle forms

within the increasing network. Because our grid is rectangular, the cycle must

have a d, – edge. Packets in the increasing network cannot use a d, – edge,

therefore no cycle can form. A symmetric argument applies for the decreasing

network. ❑

LEMMA 4.3.3. Routing between adaptive planes is deadlock-free. No cycles that

cross between adaptive planes are possible.

PROOF OF LEMMA 4.3.3. Each adaptive plane A, routes traffic into A,+ ~.

Assume a cycle of size m occurs:

Cycle =AC1, AC2, . . .. Acre.

For each link in the cycle, the high-level algorithm assures that the adaptive

planes are traversed in numerical order. This means that in our cycle, we must

have C, < C(i + 1).But the < operator is transitive, this means by walking

around the cycle, we can derive the constraint that Ci < Ci which is a
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contradiction. Therefore, no cycles can form and routing between adaptive

planes is deadlock-free. ❑

PROOF OF THEOREM. By Lemma 4.3.2, routing within each adaptive plane is

deadlock-free. By Lemma 4.3.3, routing between adaptive planes is deadlock-

free. There are no other dependence within the network; therefore, planar-

adaptive routing is deadlock-free. ❑

Planar-adaptive routing allows some flexibility in routing at very low hard-

ware cost. A primary concern in adaptive networks is the cost of deadlock

prevention. To ensure deadlock-free routing, the planar-adaptive scheme re-

quires only three virtual channels for k-ary n-cubes without wraparound

channels. This is a dramatic improvement over previously published schemes

[Dally and Aoki 1993; Ngai 1989]. As shown in Figure 3, the Linder-Harden

deadlock prevention scheme requires 2“ -1 virtual channels, a significant

hardware overhead. Equally important, deadlock and livelock5 are avoided

without any complex reversal counting [Dally and Aoki 1993] or aging schemes

[Ngai 1989]. This means that planar-adaptive routers will be very simple and

can make routing decisions very rapidly. As a result, they may run faster than

adaptive routers requiring complex techniques for deadlock and livelock pre-

vention. While speed is important, planar-adaptive routers have other features

which enhance their attractiveness. Planar-adaptive routers can be extended to

support fault-tolerance and in-order message transmission.

4.4. FAULT TOLERANCE. Planar-adaptive networks can be augmented with

misrouting to support fault-tolerance. The resulting networks can tolerate large

numbers of faults, yet still deliver all packets to their destinations. The

networks remain provably deadlock-free, and we give a proof of deadlock-free-

dom below. Circumventing faulty regions with only local information requires

packet misrouting. Allowing misrouting also introduces the possibility of live-

Iock, so we show that the resulting networks are livelock-free by proving that

all packets make progress toward their destinations.

Planar-adaptive networks tolerate faults by routing around them. The basic

idea is to use the flexibility of the adaptive routing algorithm to circumvent any

faulty channels. We assume that all channel and node faults are detected.

Then, all faulty regions are augmented until they are convex by running the

deactivation algorithm given below. If faulty regions are not naturally convex,

good nodes and channels are marked as faulty until the regions become

convex. After the deactivation algorithm has been run, the convexity of faulty

regions is ensured and packet routing can begin. Subject to the convexity

constraint, planar-adaptive will route packets to all parts of the machine which

remain connected. Our approach is the complement of that taken by Ngai

[1989] where the working nodes form a convex region. Requiring the faulty

regions to be convex allows a larger fraction of the nodes to remain in service

for a given pattern of faults.

Fault-Tolerant, Planar-Adaptive Routing
High-level. First, define a new adaptive plane with the previously unused channels

below.

‘Planar-adaptive routing without fault tolerance is trivially livelock free as only minimal routes
are employed.
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FIG. 7. A packet can be routed around convex faulty regions. A packet might get trapped by
concave faulty regions.

A n—1 =d + dO,O + dO,l.X— 1,2

For adaptive planes AO–An_l, route between adaptive planes using the low-level

routing algorithm given below.
Low-level. For each adaptive plane, A,, route the packet as follows (when L + 1 = n,

use O, i.e., compute i + 1 modulo n).

1. If not blocked by fault, route as in fault-free case.
2. If blocked by a fault in dimension d,+ ~, route in d,.

3. If blocked by a fault in d,, route in d,+ ~.
4. If blocked by a fault in d, and the d,+ ~ distance has already been reduced to zero, it

is necessa~ to misroute. If we were routing in d,+ 1, continue to route in the same
direction. If we were routing in d,, the pick an arbitrary d,+ I direction and begin
misrouting. At the first opportunity, route in d, toward the destination, reverting to
step 1.

5. Note that we cannot be blocked in d,+ ~ and have reduced the d, distance to zero. If

this were the case, we would have proceeded to the next adaptive plane.

Steps 2 and 3 make use of the adaptivity in routing to circumvent faults. Step

4 deals with the case where misrouting is necessary. Packets are routed around

convex faulty regions in adaptive plane A, by moving along d,+ ~ until reaching

the corner of the faulty region. After reaching the corner, the packet follows

the profile of the faulty region around until it has corrected its d,+ 1 address.

An example is shown in Figure 7. Though step 4 may appear somewhat

complicated, correct implementation is simple. Packets being misrouted are

moving away from their destination. At first opportunity, such packets resume

minimal routing toward their destination, resuming step 1.

4.4.1. Node Deactivation Algorithm. To ensure that the faulty regions are

convex, despite arbitra~ channel failures, nodes deactivate themselves and

mark channels according to the following algorithm for two-dimensional net-

works:

Mark-Faulty-Nodes( )
1. Initially, mark all edge links as faulty.
2. Each channel or node detected as faulty is marked as such. A faulty node marks all

of its channels as faulty.
3. Perform the Convexi&-Corner( ) function for the four corner nodes, Convexify( )

function for the rest.
4. If some corner nodes were marked faulty, move those corner nodes in away from the

edges, otherwise DONE.
New corner nodes are chosen by moving the boundary with the most “faulty” corner
nodes toward the center. Of course, both corner nodes that are on this edge should
be moved.

5. Goto Step 3.
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FIG. 8. A faulty region which abuts the boundary of a k-ary n-cube with no wraparound forms a
concave feature. The additional nodes indicates will be deactivated by our convexity-ensuring

algorithm.

Convexi&( ). If a node has two or more channels in different dimensions marked fauhy, then
it should mark itself and all of its channels as faulty.
C!onvexi&Corner( ). If a node has more than 2 channels marked faulty, then it should mark
itself as faulty. The states of its channels are not changed.

The high-level algorithm, Mark-Faulty-Nodes( ) gradually moves the corner

nodes in until a straight boundary in each dimension can be straight. This

makes the external boundary of the working region of nodes convex (no

intrusions of faulty nodes). Figure 8 illustrates initial and final corner nodes.

The Convexify( ) algorithm makes all internal faulty regions convex. Infor-

mally, it ensures convexity because any concave feature in a faulty region must

have a boundary node (just outside it) that has at least two channels in

different dimensions that are faulty. This boundary node sits at the concave

feature. By our algorithm, no such node can exist, as it would have added itself

to the faulty region, removing the concave feature.

However, there is a problem at the boundary with this simple deactivation

algorithm. It marks all the nodes as faulty. The reason for this is that the

corner nodes will see two faulty channels (n for higher-dimensional networks)

at the edges and deactivate themselves. If we did not distinguish the corners,

they would move toward the center until all nodes have been marked faulty.

We prevent this occurrence by using a different marking rule for the corner

nodes, Convexify-Corner( ). This means that the hardware must have some

mechanism for designating nodes as corners. From the actual hardware corners

of the machine, the algorithm iterates, moving the corners inward and eventu-

ally finding corners that allow the external boundary of the region of working

nodes to be convex.

Some convex and nonconvex faulty regions are shown in Figure 9. The ideas

behind our two-dimensional algorithm can be extended to higher-dimensional
networks by marking boundary edges to handle higher-dimensional networks.

Our marking scheme will reduce the number of nodes available, however, this

may be a reasonable compromise for a minimal increase in router complexity

to support fault tolerance. Devising a routing scheme that maintains maximal

connectivity and deadlock-freedom requires nonlocal information and perhaps
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FIG. 9. The deactivation removes any concave features and makes them convex.

J. H. KIM

The picture
illustrates the cases of a single faulty channel, a pair of faulty channels in the same dimension, a
pair of faulty channels in different dimensions, and a faulty node on the boundary. (a) Before

convexity enforcement. (b) After faulty regions have been made convex.

programmable routing tables. The incorporation of such features is likely to

significantly reduce router speed.

4.4.2. Misrouting and Deadlock Freedom.

THEOREM 4.4.1. Fault-tolerant, planar-adaptwe routing is deadlock-free.

LEMMA 4.4.2. Fault tolerant, planar-a daptwe routing is deadlock-free within

an adaptive plane.

PROOF OF LEMMA 4.4.2. Consider adaptive plane Al. Misrouting only

occurs when a message is forced to “overshoot” its destination in d,+ 1.

Overshoot in dimension d, does not occur if the d, distance ever reaches zero

because then the packet would pass into plane A,+ ~. Consider the two adaptive

networks in the plane:

Increasing: d[, z + , d,+ ~,0

Decreasing: d,, z – , di+ 1,1

Without loss of generality, assume we are in the increasing network and we

overshoot increasing d,+ ~. Overshooting in d,+ ~ adds no additional depen-

dence between virtual channels, as routing continues in the d,, ~ + , d,+ ~,” + .

When we reach the end of the d,+ ~ edge of the faulty region, we resume

routing in d, + toward the destination. Upon reaching the other side of the

faulty region, we resume minimal routing toward the destination. All of this

routing occurs in the increasing network (virtual channels di, z + , di + 1,O). If

the d, distance is reduced to zero before circumventing the faulty region, we go

to the next plane, where routing continues normally. No new dependence have

been added that did not exist in the network with no faults. Therefore, no

deadlocks can have been introduced. By symmetry, this argument applies to
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both the increasing and decreasing networks. Thus, fault-tolerant, planar-adap-

tive routing is deadlock free within an adaptive plane. ❑

PROOF OF THEOREM 4.4.1. By Lemma 4.4.2, fault-tolerant, planar-adaptive

routing is deadlock-free within each adaptive plane. As in the fault-free case,

packets only pass from lower-numbered adaptive planes to higher ones. There-

fore, fault-tolerant, planar-adaptive routing is deadlock-free. ❑

THEOREM 4.4.3. Fault-tolerant, planar-adaptwe routing will route packets to

all nonfaulty nodes in the presence of convex faulty re~”ons.

LEMMA 4.4.4. In the presence of convex faulty regions, within each adaptive

plane, A,, planar-adaptwe routing eventually reduces the distance to the destina-
tion in di to zero. This ensures that packets eventually make progress to the next

adaptive plane.

PROOF OF LEMMA 4.4.4. If there are no faults, the proof follows from the

monotonic reduction in di or d,+ ~ distance with each routing step. Eventually,

the di distance is reduced to zero.

If there are faults, misrouting may cause the d,+ ~ distance to increase

temporarily. However, the di distance is monotonic nonincreasing. This can be

seen from the routing algorithm within an adaptive plane. For each misrouting

to circumvent a faulty region, the di distance decreases by at least one. Each

misrouting requires at most k – 1 steps (the maximum distance in one dimen-

sion). We cannot hit the bounda~, as such would be a concave feature (see

Figure 8). Faulty regions are convex, so they must have a corner. When the

corner is reached, turning and routing in d, reduces the d, distance by at least

one. Thus, the d, distance must be reduced by at least one for each k routing

steps. A packet can only experience k misroutings in one plane, so that

maximum number routing steps in one adaptive plane is k‘. The lemma is

proved. ❑

PROOF OF THEOREM 4.4.3. Assume there exists a nonfaulty node p that the

fault-tolerant, planar-adaptive routing cannot reach. That means at some stage

we are blocked from making progress toward the destination. By Lemma 4.4.4

routing in each adaptive plane A, must complete successfully within k 2 routing

steps. Successful completion implies that the distance in dimension d, is

reduced to zero, and it never again increases. The one exception to this rule is

do, which we reuse in the final adaptive plane A._ ~. This case is considered

below. Thus, at the end of (n – 1)* kz steps, are guaranteed to have routed
successfully in all dimensions except d._ ~.

In the final adaptive plane (A. _ ~), by Lemma 4.4.4, routing will successfully

reduce the d._ ~ distance to zero. However, if after doing so, we cannot reach

p, it must be that we are blocked by faults in dO. When we entered A._ ~, the

dO distance was zero. Because our faulty regions are convex, we know that any

errors introduced in do are immediately correctable on the other side of the
faulty region. Thus, the only time that we route successfully in d._ ~, yet cannot

correct dO is if the destination node lies within a faulty region. This means that

node p must be faulty. This contradicts our assumption. Therefore, fault-

tolerant planar adaptive routing will route packets to all nonfaulty nodes in the

presence of convex faulty regions. ❑
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4.4.2. Licelock Freedom. Supporting fault tolerance requires the introduc-

tion of misrouting. If packets can move away from their destinations, there is a

possibility of livelock.

THEOREM 4.4.5. Planar-adaptwe routing is liuelock-free.

PROOF OF THEOREM 4.4.5. Each packet makes progress toward its destina-

tion. The maximum length of any misrouting is k, the extent of the network in

any one dimension. For each k misrouting steps in di+ 1, the packet makes at

least one step toward its destination in dimension in d,. Since all packets are

guaranteed to make progress toward their destination, there can be no livelock.
❑

As the scale and application domain of parallel machines continue to

increase, fault-tolerance is of growing importance. Planar-adaptive routing

supports the implementation of fault-tolerance with several desirable char-

acteristics. First, there is virtually no overhead when systems are operating

fault-free. Second, the routing scheme in the presence of faults remains simple,

so good performance is possible. Finally, the reconfiguration algorithm for

nodes and their channels is simple and uses simple, local operations to ensure

that all faulty regions in the network are convex.

5. Order-Presenting Packet Transmission

For some classes of traffic, preserving packet transmission order is important.

Landin and Haridi showed that in-order packet delivery, “race-free” networks,

can significantly reduce the number of packets required to implement serializa-

tion protocols for coherent shared memory [Lanolin et al. 1991]. Not only does

the lesser packet requirement reduce network loading, it also may improve a

critical performance feature, memory operation latency, by eliminating waits

for acknowledgments in the protocol. In a number of other shared-memory

protocols, preserving message-transmission order may also simplify the proto-

col and/or improve its performance [Chaiken et al. 1990; Dubois et al. 19881.

Our minimal, adaptive routing algorithms support both in-order packet

delive~ and adaptive, unordered packet delivery simultaneously. All traffic

must be specified as ordered or unordered. Planar-adaptive routing guarantees

in-order packet delivery for the ordered traffic both in the fault-free case, and

in the presence of static faults .6 For simplicity, we assume only one “virtual

lane” [Dally 1992] per virtual channel, so packets routed along a single path

cannot pass each other. In a multilane virtual channel system, passing can be

prevented by limiting the ordered traffic for each source-destination pair to a

single lane.

In any network that uses multipath routing, preserving packet transmission

order is difficult. Selecting paths dynamically, as in adaptive routing systems,

only worsens the situation. Data networks such as the Arpanet use packet

sequence numbers and reordering (message reassembly). Such schemes are
impractical in multiprocessor routing networks as maintaining sequence num-

bers for hundreds or thousands of nodes, both incoming and outgoing, is

‘The set of faulty channels is assumed not to be changing during the packet routing.
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expensive. Further, the reassembly control and buffer space impose a signifi-

cant hardware overhead.

Order Preserving, Planar-adaptive routing
This algorithm applies for networks with no faulty channels. Route as in planar-adap-

tive routing algorithm, with the following change to the low-level algorithm:
1. In adaptive plane A,, preferentially route in d,. No steps in d,+ ~ will be taken in Al.

This change reduces the planar-adaptive scheme to dimension-order routing.

It is more restrictive than the planar-adaptive algorithm, so it is guaranteed to

be deadlock free, even in the presence of unordered, adaptive traffic. Infor-

mally, since dimension-order routing uses only one path between each source

and destination, packets traveling along the same path cannot pass each other,

so transmission order is preserved. Actually, the algorithm is overly restrictive;

any consistent choice for all packets heading for a particular destination is

sufficient. For example, one way to spread traffic more evenly is to use bits

from a different dimension in the address (such as that for dimension i + 3

in adaptive plane At) to bias routing in the adaptive plane, ordering the mess-

ages with different d,+ ~ destination addresses on different paths. Biasing

the adaptive choices has no affect on the deadlock-freedom of the routing

algorithm.

Order Preserving, Fault-tolerant, Planar-adaptive routing
This algorithm applies to networks with a static set of faulty channels, guaranteed to be

in convex regions as described above.

High-[euel. Route as in Fault-tolerant, planar-adaptive routing, with the following
modified low-level routing algorithm. The only change is shown in bold. Note also that in
step 4, return to step 1 now refers to our modified step 1.

Low-level. For each adaptive plane, AL, route the packet as follows.

Route as in the fault-tolerant, planar-adaptive algorithm with the following change to
steps 1 and 4, the other steps remain the same. The choice of which particular d,+ ~
direction does not matter, so long as it is the same for all messages between a particular
source-destination pair.

1. If not blocked by fault, route in d,.
4. If blocked by a fault in d, and the d,+ ~ distance has already been reduced to zero, it

is necessary to misroute, If we were routing in d,+ ~, continue to route in the same
direction. If we were routing in d,, then pick a particular d,+ ~ direction and begin
misrouting. At the first opportunity, route in d, toward the destination. Continue to
route in d, only until it is possible to correct d,+ ~. At that point, route in d,+ ~ to

distance zero in this dimension, then revert to step 1.

Since we have only modified the algorithm to bias our “adaptive” choices,

the network is still deadlock-free and guaranteed to deliver all messages. It

does not matter what method is used to choose the di+ ~ misrouting direction

so long as it is deterministic for all packets between a source and destination

pair.

THEOREM 5.1. The order-preserving, fault-tolerant, planar adaptiue routing

algorithm preserves message transmission order. (In the proof, we refer to it as

simply the “routing algorithm”).

PROOF OF THEOREM 5.1. The routing algorithm specifies a unique path

through the network for each source-destination pair. At each step of the

routing algorithm, there is no choice in which channel the packet will be routed

7This must be possible, as faulty regions are convex.
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in next. Since there is a single path, and packets on the same path may not pass

each other, in-order packet delivery is assured. ❑

The planar-adaptive routing scheme can be generalized to support both

in-order and out-of-order packet delivery traffic simultaneously. Under such

conditions, deadlock and livelock freedom is still assured. The motivation for

this is simple. In many cases, implicit synchronization may render the preserva-

tion of packet transmission order unnecessary. Such traffic should profit from

the full advantage of adaptive routing. In other cases, as we have discussed, the

preservation of transmission order makes an important difference in algorithm

and communication efficiency. A particularly important case is implementing

memory coherence protocols.

6. Implementation Issues

Planar-adaptive routing is of practical significance. Restricting the adaptivity

reduces the hardware cost of adaptive routing by reducing the number of

virtual channels required to prevent deadlock. Fewer virtual channels may

allow the construction of faster routers (fewer buffer loads to drive), or the

additional hardware available may be used to incorporate other performance

enhancing features such as more “virtual lanes” [Dally 1992].

Planar-adaptive routing is relatively low cost. Compared to Linder and

Harden’s scheme, planar-adaptive routing requires significantly fewer virtual

channels. Planar adaptive rout ing requires only three buffers per physical

channel, allowing the construction of very small, fast routers. In addition, the

overall hardware resources consumed by the router will be smaller, broadening

the applicability of the routers.

Planar-adaptive routers allow significantly lower switching complexity. The

planar-adaptive algorithm allows an internal router organization without large

crossbars. Even without considering the overhead for deadlock-prevention, a

fully adaptive router must be able to connect each input to n + 1 outputs. This

is necessary to allow routing in arbitrary dimensions with equal speed. Support-

ing the symmetric adaptivity with high performance usually implies a number

of /Z X n crossbars—one for each virtual network (see Figure 10). As shown in

Figure 11, the switching hardware in a planar-adaptive routing can be parti-

tioned into smaller crossbars of size 4 x 4. This significantly reduces the

amount of hardware required and should reduce the time to set up and drive

data across the switches. Low connectivity requirements also make it possible

to use organizations which allow the router performance to be further opti-

mized for high-speed, low-latency performance [Dally et al. 1989; Dally and

Song 1987].

In planar-adaptive routers, the routing function prevents deadlock, com-

pletely independent of the flow control. No routing decisions depend on the

presence or absence of fiits in particular network buflers. This allows routing and

flow-control decisions to be made separately, decoupling the hardware control

structures and potentially increasing performance. Of course, buffer occupancy

information may be used to bias routing choices. But, such use differs in that it

is purely optional and need not affect critical timing paths.

The extensions to planar-adaptive routing for fault tolerance and packet

ordering add only slightly to the router complexity. Fault tolerance requires

only slightly more complex routing logic. Message that require in-order trans-
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FIG. 10. The minimal connectivity requirements for a fully adaptive router in a k-ary n-cube
requires at least n x n connectivity. This is shown here as a crossbar.
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FIG. 11. One crossbar of the two required for a planar-adaptive router module, A,. The crossbar

is only 4 X 4, permitting high-speed connections. A planar-adaptive router can be built by
composing such modules.

mission are tagged with a single bit. This tag serves as an input to the routing

logic, biasing the adaptive choices to a preferred dimension and reducing the

routing to single path, thereby producing order-preserving routing.

One pragmatic concern in adaptive routing techniques concerns the encod-

ing of destination information into packet headers. For packet routers to have

single-cycle node latency, they must receive all routing inputs as soon as the

message begins to arrive. In addition, they must make routing decisions in a

few cycles. In fully adaptive routers, the routing inputs may include the entire

destination address, not just a few dimensions. Fitting the entire address into

a single-cycle channel transfer (many networks have one or two byte-wide

channels) is difficult. Planar-adaptive routing limits the routing inputs to only

two dimensions at a time. Fitting two dimensions of information into a single

cycle channel transfer is much easier. As a packet is routed in successive

adaptive planes, different information comes to the front of the message

header as routing information becomes unnecessary and is stripped off,

7. Pe~ormance

We explore the performance of planar-adaptive routers, comparing their

performance to both dimension-order and fully adaptive routers. Evaluation of
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a network’s performance can be achieved through analytical modeling or

simulation. Unfortunately, in networks supporting wormhole routing, nodes

cannot be analyzed separately since their queues have strong interactions and

coupled event transitions. Moreover, adaptive routers have complex behavior

which depends on network status. Due to the difficulty of accurate analytic

modeling, router performance is evaluated via simulation.

For all simulations, the packet size is 24 flits, flow-control units. Each flit can

be transferred across a channel in a single cycle. If flits are 8 bits each, this

short packet size is comparable to a cache line or a procedure invocation

record. All of the loads are normalized with respect to the network’s maximum

achievable performance, which is determined by the network’s bisection band-

width. Our networks have two separate unidirectional channels between adja-

cent nodes.

Our studies focus on answering one question: How does the performance of

planar-adaptive routing compare to deterministic and fully adaptive routing

with similar resources? First we compare planar-adaptive routing to dimension-

order routing under a variety of traffic patterns. Second, we compare planar-

adaptive routers to fully adaptive routers, compensating for the greater virtual

channel requirements of fully adaptive routers by using planar-adaptive routers

with virtual lanes. Our simulations show, not only can planar-adaptive routers

outperform the deterministic routers, they can also outperform fully adaptive

routers. With equal resources, the planar-adaptive router provides superior

performance to both the fully adaptive router and the deterministic router.

7.1. TRAFFIC PATTERNS. Throughout the performance evaluation, we use

three different traffic loads which are described below.

Random (uniform). Each node sends with equal probability to all other

nodes in the system.

Dimension -?’eoei’sul. Each node sends messages to a node with address of

reversed dimension index. In two-dimensional networks, node (x, y) communi-

cates with node (y, x). This gives the same traffic as a matrix transpose. For
three-dimensional networks, we use an analogous traffic pattern, in which node

(x, y, Z) sends messages to node (y, x, 3~ – z). In four-dimensional networks,
node (x, y, z, w) communicates with node (y, x, w, z).

Bit-reuersal. A node with address abcdz sends messages to a node dcbaz.

The Random traffic load has been used to evaluate both deterministic and

adaptive routers in many previous simulation studies and provides an impor-

tant point of reference. The other two nonuniform loads, Dimension-reversal

and Bit-reversal, have been used to demonstrate the effectiveness of adaptive

routing to dissipate congestion, as they both create significant congestion

under dimension-order routing. Both nonuniform loads are extended to three-

and four-dimensional traffic patterns that induce similar kinds of congestion.

Although these traffic patterns are by no means exhaustive, they represent

some interesting extrema of the space of possible patterns. Because of the

relative immaturity of software on parallel machines, characteristics traces of

communication patterns are not available.
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A planar-adaptive router can be characterized by the number of virtual lanes

in each adaptive plane. Each plane consists of three virtual channels: one

major channel (d,, ~ along dimension i in plane A,) and two minor channels

(di+ 1,0 and dt + 1,: along dirnemim i + 1 in plane Al). We denote capacity of
the planar-adaptnm router with the number of virtual lanes in each of these

three classes, (major, minor, minor). For example, virtual channel numbers

(2, 1,1) means two virtual lanes for the major virtual channel, and a single lane
for each minor virtual channel.

7.2. PLANAR-ADAPTIVE ROUTING vs. DIMENSION-ORDER ROUTING. While

allowing more freedom in path selection, the flexibility of adaptive routing

introduces new possibilities of deadlock. Routing flexibility implies an in-

creased cost in hardware resources. To evaluate the merits of an adaptive

routing algorithm, we must measure the performance gain and weigh that

against the cost of increased hardware resources. In this section, we evaluate

the benefits of adaptive routing by comparing the performance of a PAR and a

dimension-order router with equal resources. We allot equal numbers of

virtual channels to both routers. Since the dimension-order router does not

need any virtual channels for deadlock prevention, all of the extra channels are

used as virtual lanes. For the PAR, extra channels not required for deadlock

prevention are also used as virtual lanes. Router configurations simulated are

summarized in Figure 12(a) and (b). A PAR for a two-dimensional network

requires only one virtual channel for the x-dimension and two virtual channels

for the y-dimension. Thus, a (2,1,1) PAR for a two-dimensional network has

the same number of virtual channels as a dimension-order router with two

virtual channels per physical channel.

As before, we compare the performance of both routers on two-, three-, and

four-dimensional mesh networks. The effect of virtual lanes on network perfor-

mance depends on traffic patterns. To observe the dependence, we repeat the

comparative study under previous traffic patterns: uniform random, dimension-

reversal, and bit-reversal. For each network and traffic pattern, two kinds of

router configurations were simulated:

1. With the minimum number of additional lanes, we match the number of

virtual channels for the dimension order and planar-adaptive routers.

2. Configurations with approximately equal numbers of virtual channels, but

twice the number in a minimum configuration.

7.2.1. Unifoirn Traflic. Figure 13 compares the performance of PARs and

dimension-order routers under uniform random traffic. Dashed lines show the
results for a minimum number of virtual channels, and solid lines show the

results for a doubled number of virtual channels. For all of the networks

studied, two-, three-, or four-dimensional mesh, PARs gave slightly worse

performance then dimension-order routers under uniform traffic. Not surpris-

ingly, the figure shows that PARs deliver messages a little faster, but saturate

the networks earlier than dimension-order routers.
However, the figure shows a noticeable result: As the number of virtual

lanes increases, the performance of PARs catches up to that of dimension-order

routers even under uniform traffic loads. In two-dimensional networks, as

shown in Figure 13(a), the PAR (2, 1, 1) is outperformed by the dimension-order
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Dimension Dimension-order router PAR

Configuration Totaf VC per node Configuration Total VC per node

2 2 vi/link 8 (2,1,1) 8

3 2 vlflink 12 (1,1,1) 12

4 2 vi/link 16 (1,1,1) 18

(a)

Dimension Dimension-order router PAR
Configuration Tota,l VC per node Configuration Total VC per node

2 4 vljlink 16 (4,2,2) 16
3 4 vlllink 24 (2,2,2) 24
4 4 vljlink 32 (2,2,2) 36

(b)

FIG. 12. Virtual channel allocations. (a) Equalized with the minimum number of virtual chan-
nels. (b) Equalized with double the minimum number of virtual channels.

router with two virtual lanes. However, the PAR (4, 2, 2) shows a nearly

identical performance to that of the dimension-order router with an equal

quantity of resources. In higher-dimensional networks, the catch-up effect is

even more pronounced. In three- and four- dimensional networks, PARs

(2, 2,2) are even better than dimension-order routers, giving identical peak
throughput and lower latency.

Previous published results [Dally 1992; Kim and Chien, 1992] show that

virtual lanes can increase network throughput, but the incremental benefit of

each virtual lane decreases with each additional lane. For the given quantity of

resources, PARs partition them statically between deadlock prevention and

virtual lanes. Thus, compared to the dimension-order router, the PAR has

relatively fewer virtual lanes for an equal number of virtual channels. Conse-

quently, the incremental benefit of adding virtual lanes to the PAR is larger,

allowing the PAR’s performance to catch up to that of the dimension-order

router.

7.2.2. Nonuniform Trajj5c. Under nonuniform traffic loads, dimension-order

routers provide poor performance. As under uniform traffic, it is an interesting

question to ask if adding virtual lanes improves network performance under

nonuniform traffic loads.

Figure 14 shows the simulation results under dimension-reversal traffic

loads. With an equal quantity of resources, PARs give a much better perfor-

mance than dimension-order routers. Even under nonuniform traffic, the

addition of virtual lanes significantly improves the performance of PARs.

However, adding virtual lanes to dimension-order routing does not improve

and can even reduce network performance under the dimension-reversal traffic

loads. Consequently, the performance difference between PARs and dimension

order routers with virtual lanes is significant.

Figure 15 shows the results of simulations under bit-reversal traffic loads. As

with dimension-reversal traffic, adding virtual lanes does not improve the

performance of dimension-order routers at all. On the other hand, it signifi-
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cantly improves the PAR’s performance, magnifying the performance differ-

ence between PARs and dimension-order routers.

The comparative study of the effects of virtual lanes shows several facts: (1)

Virtual lanes increase the peak throughput of planar-adaptive routing for all of
the traffic loads considered. (2) In contrast, virtual lanes improve performance

of dimension-order routing only under uniform traffic loads; there is no benefit

for nonuniform traffic. (3) Thus, under nonuniform traffic loads, the pAR

significantly outperforms the dimension-order router with equal hardware
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resources. (4) Even under uniform traffic loads, the PAR provides identical

performance to the dimension-order router.

7.3. PLANAR-ADAPTIVE ROUTING vs. FULLY ADAPTIVE ROUTING. Having
shown that PARs can outperform dimension-order routers, we compare PARs

with fully adaptive routers to answer the question “How much adaptivity



Planar-Adaptue Routing 115

a
* -

n-uniform Traffic

no -

m -

W -
x—x otm.c4der(4Wt km.s)

w - x---x Dlm-chd0r(2wt. Iand8)
%0 PAR(VCS+2,2)
0-.-0 PAR(voa4,1,1)

vi J, L :. A L u :7 M A
I

badia#

(a)

512 Nodas
3 Dimension mesh 8x8x8
Meaaaga Length= 24 flits

Non-uniform Traffic
bit-revered

FIG. 15. Latency of dimension-
order routing and planar-adaptive
routing with bit-reversal traffic on

X—X DlnK)ti4r(4* IM08) (a)16X162D, (b)8x8X83D,
x---x ohn-Mer(2wt. IM08) and(c) 4x4 X4x44D mesh
*O PAR(vaa2~) networks.
0-.-0 PAR(vos_l,1,1)

(b)

25I3Nodes
4 Dimension maah 4x4x4x4
M- Let@ =24 flite

Non-uniform Traffkx
bit-revered

x—x Dlm43rder(4 M. Ium8)

x---x Dim4Mor(2 vlrt IMOS)

-0 PAR(vca-222)

0 -.-0 PAR(voI-1,1,1)

produces optimal performance?” Planar-adaptive routing reduces the hardware

resources required for deadlock prevention, so to give a fair comparison we

augment the PAR with virtual lanes until it has a comparable number of

virtual channel resources. In all cases, the fully adaptive router is compared
with a PAR with equal or fewer hardware resources.

The fully adaptive router is Linder and Harden’s fully adaptive routing

algorithm which allows all possible minimal paths [Linder and Harden 1991]. In

n-dimensional mesh networks, their model requires 2”-1 virtual channels in
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Dimension PAR Fully adaptive Router
Configuration Total VC Configuration Total VC

3 (2,2,2) 24 4 vcllink 24

4 (2,2,2) 36 8 vc/link 64

FIG 16. Virtual channel allocations for comparing planar-adaptive and fully adaptive routers.

the last dimension, 2”-2 in all other dimensions. To model a symmetric router

design, we simply allot 2*-1 of virtual channels to all dimensions. The addi-

tional channels other are simply used as virtual lanes.

The router configurations studied are summarized in Figure 16. For two-

dimensional networks, a planar-adaptive router is fully adaptive, so our

experiments consider only three and four dimensional networks. For three-

dimensional networks, equal numbers of virtual channels are provided to each

router, but for four-dimensional networks, the fully adaptive router requires a

large number of virtual channels (64) for deadlock prevention, so instead, we

compare to a PAR with only half as many resources.

7.3.1. Uniform Traffic. The PAR outperforms the fully adaptive router

under uniform traffic in both three and four dimensional networks (see Figure

17). In three-dimensional networks, the planar-adaptive router shows lower

latency over a wide range of load rates and much higher throughput. In

four-dimensional networks, with only half as many resources, the PAR outper-

forms the fully adaptive router, providing slightly lower latencies and higher

peak throughput. The PAR’s superior performance arises from the uneven

channel utilization of mesh networks; for all minimal adaptive routers, most

alternative paths in a mesh lead through the center, worsening the load

imbalance and causing saturation at lower loads. In fully adaptive routers,

routing freedom in all dimensions causes high congestion at the center of the

network. Planar-adaptive routing reduces this congestion by confining traffic to

two-dimensional planes. keeping the utilization of channels between planes

balanced. This shows that under uniform traffic loads, lower adaptivity is

preferable as it preserves the even distribution of traffic over the network. Too

much adaptivity may degrade network performance under uniform traffic on

k-ary n-cube networks.

7.3.2. Nonuniform Traffic. The simulation results for nonuniform traffic

loads show that the performance of both adaptive routing algorithms depends

on the specific traffic pattern (see Figures 18 and 19). Under dimension-rever-

sal traffic, the fully adaptive router’s performance is much worse than that of

the PAR (see Figure 18). In the three-dimensional network, the peak through-

put under PAR is much higher. In the four-dimensional network, while the

throughput of PAR is only a little higher, remember the PAR has only one half

the resources of the fully adaptive router. As with uniform traffic, the poor

performance of the fully adaptive router under dimension-reversal traffic is

due to uneven channel utilization caused by too much adaptivity.

Under bit-reversal traffic, the fully adaptive router outperforms the planar-

adaptive router (see Figure 19). The relatively poor performance of the PAR

arises from the unique traffic distribution of bit-reversal traffic. In the 8 x 8 x
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8 three-dimensional network, half of the total traffic is confined to four

XZ-planes. For such messages, planar-adaptive routing is reduced to dimen-

sion-order routing since there is no adaptivity in the y-dimension. Although

changing the order of dimensions would eliminate the effect for this traffic

pattern, the same poor performance would occur for a different permutation.

This is a traffic pattern where performance suffers from limited adaptivity.

Despite that fact, performance is only slightly worse for PARs.

In summary, we have shown that planar-adaptive routing is more economical

for high-performance networks by comparing the performances of the PAR

and the fully adaptive router. Under uniform traffic, the PAR showed much

better performance than the fully adaptive router with equal numbers of

virtual channels. Under nonuniform traffic loads, the PAR provided compara-

ble performance to the fully adaptive router, much better performance under

dimension-reversal but slightly poorer performance under bit-reversal traffic.

7.4. DISCUSSION. Our experiments show that the performance of both

adaptive routing schemes depends critically on the traffic patterns. Under
uniform traffic, the PAR outperformed the fully adaptive router. Under

dimension-reversal traffic, the PAR significantly outperformed the fully adap-

tive router, but under bit-reversal traffic, PAR gave poorer performance. Thus,

a more comprehensive conclusion requires experimental with a wider range of
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traffic patterns, or perhaps using traffic loads taken from existing multicom-

puter systems.

8. Higher Degrees of Adaptivip

Planar-adaptive routing represents a restricted form of adaptive routing, allow-

ing only two degrees of routing freedom. We have focused on planar-adaptive

routing to this point, because it implies the least hardware complexity and

because it is not clear how much adaptivity is beneficial. In this section, we

consider a generalized family of f-flat adaptive routers (f degrees of routing

freedom) for k-ary n-cubes. First, we outline their cost and describe how the

properties proven for PARs can be extended to f-flat adaptive routers. We use
the term f-flat adaptive router, because an f-flat is an f-dimensional subspace

of an n-dimensional space.

Planar-adaptive routing can be extended to f-flat adaptive routing by gener-

alizing the notion of an adaptive plane to an adaptive f-dimensional space.

Planar-adaptive routers allow routing in two dimensions at a time. In adaptive

plane Ai, routing is allowed in dimensions i and i + 1.In and f-flat adaptive

router, a packet passes through a series of adaptive flats, F,, each an f-dimen-

sional space. While PARs choose from only two possibilities, two degrees of

routing freedom, f-flat adaptive routers choose from f choices, providing f

degrees of routing freedom.



Planar-A daptwe Routing 119

1’
800

m

m

[ l“!
512 Nodea

- 3Dimeneion maah 8x8x8
hleaeage Length =24 flits

Non-uniform Treffic/
bit-reversal

w

[J
6...

,.,”

la d“”’ *O PAR(w-222)
....

❑ ......0 Fulty-A(k#t.
.....

u ..

(a)

.=

1//
256 Nodea

1/
4 Dimension mesh 4x4x4x4
Meaaage Length =24 flite

*
Non-uniform Traffic

* bit-reversal

FIG. 19. Comparison of planar-

adaptive routing and fully adaptive
routing under bit-reversal traffic.

(a)8x8x 83Dand(b)4 x4x4
x 4 4D mesh networks. The 4D

PAR has many fewer virtual chan-

nels than the 4D fully adaptive
router.

M8

v’
i...’

100 -O PAR(w-Z?,2)

.d: ❑ .-n Ful~A&T@.
....“

m

/ 1 1 I 1 I 1 I I t I%.9 UWWW tsasa79.80.8 u
bdmb

(b)

Using ~-flat routers allows the designer to increase routing freedom indepen-

dent of the network dimension. For example, it is possible to use a 2-flat

(planar), 3-flat, 4-flat, or even 5-flat adaptive router in a k-ary 5-cube. The

5-flat adaptive router is fully adaptive. However, the increased routing freedom

is not without cost. Increasing f will dramatically increase the router complex-

ity and hardware resources required to prevent deadlock. If the f-flats are

composed as in the planar-adaptive router (route dimension i to completion in
E then pass to Fi+ ~), then there is substantial overlap in dimensions between

successive f-flats.s Using the Linder–Harden algorithm for deadlock-free rout-

ing within each f-flat, the virtual channel requirements are approximately the

number of virtual channels per f-flat times the number of overlapping f-flats.

More specifically, for a k-ary n-cubes without wraparound the virtual

channel requirements can be written as follows:

VC(rnesh) = 2~-1 + 2f-z *min(f – l,n –f).

This is the maximum number of virtual channels used in any dimension and

the last f – 1 dimension are routed in the last f-flat. Where the two terms

arise from the 2“ -1 virtual channels for the first dimensions and the 2“ -2

virtual channels in each successive dimension required by the Linder–Harden

‘The ~-flats could also be composed with decreasing degrees of overlap ranging from ~ – 1
dimensions, as we have described, all the way to O.However, reducing overlap is a less effective
way of reducing router cost by decreasing routing freedom. Reducing f is much more effective.
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wcubes with no wraparound. Surprisingly, each additional degree of routing freedom costs a

linear increase in resources.

scheme. The min function arises from the number of overlapping ~-flats which

depends on the relative size off and n/2. If f is smaller, the overlap is f – 1.

If ~ is larger, the number of overlapping f-flats is determined by n – f. The

number of virtual channels required for a variety of f-flat adaptive routers is

presented in Figure 20.

Although the number of virtual channels required appears to increase

exponentially with routing freedom, for a network of given dimension, the

increase is effectively linear. This is due to a compensating decrease in the

amount of overlap between successive adaptive f-spaces as f approaches n.

However, as is clearly shown in Figure 20, the cost of deadlock-free routing

increases much more rapidly for higher-dimensioned networks. At the two

extremes, no-adaptivity and full adaptivity. the cost of the f-flat routers

matches that of dimension order routing and the Linder–Harden fully adaptive

scheme, respectively. In terms of practicality, only those routers with moderate

virtual channel requirements can be implemented without significant speed

penalty.

Increasing the adaptivity has a direct impact on the crossbar switch sizes

required. Larger crossbars may reduce the achievable router speed, so the
benefits of adaptivity must be weighed against their implementation cost. The

precise size of crossbar required depends on how the crossbars can be parti-

tioned, but in general at least an (f+ 1) X (f + 1) crossbar will be required

for an f-flat adaptive router.

Extending the properties proven for PARs is straightforward. For each

property, we briefly describe how to extend the proofs.

—Deadlock Freedom. Routing within each f-flat is deadlock-free based on
Linder and Harden [1991]. Cycles cannot form between f-flats as packets

always proceed through the ~-flats in increasing order. Therefore routing is

free from deadlocks.
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—Fault Tolerance. In general, the planar-adaptive faulty channel and node-

marking algorithm works fine for f-flat routing freedom. The f-flat adaptive

router has a variety of choices for fault-tolerance, since misrouting can be

done in any of f – 1 dimensions. Any dimension can be used to circumvent

the conuex faulty regions. This only increases the possibilities for circum-

venting a faulty region, so fault-tolerance remains possible. Exploiting the

increased opportunity for fault-tolerance may require larger crossbars. For

example, the Linder–Harden scheme partitions the crossbars so that only

the last dimension could be used for circumvention. If faulty regions are

asymmetric in various dimensions, choosing a misrouting dimension adap-

tively or even randomly may improve performance.

—LiL’clock Freedom. The fault-tolerant f-flat adaptive router is also livelock-

free, based on essentially the same proof as for the planar-adaptive case.

Each message will make steady progress toward the destination in the maj-

or (lowest) dimension of routing in each adaptive f-flat. Therefore, f-flat

adaptive routers are livelock-free.

—Order Preservation. As with planar adaptive routing, restricting traffic to

single-path can be used to preserve message transmission order. F degrees

of routing freedom provide additional choices provided which can be used to

spread the ordered traffic over a larger number of virtual channels.

The family of f-flat adaptive routers makes it possible for network designers

to choose an appropriate level of adaptivity in routing. The degree of routing

freedom can be chosen on the basis of effectiveness in increasing channel

utilization (network throughput) and the cost in terms of hardware complexity

and network clock speed. Thus, with families of adaptive routers that give the

choice over a range of adaptivity, network designers can make cost-perfor-

mance trade-offs.

9. Conclusions

We have presented a simple class of adaptive routers for k-ary n-cubes, called

planar-adaptwe routers. These routers are provably deadlock-free and simple

enough for high-performance implementation. Specifically, their virtual chan-

nel requirements are fixed and do not grow as the dimension of the network is

increased. Planar-adaptive routing can be used to build adaptive networks for

meshes of arbitra~ dimension with only three virtual channels. This is less

than the exponential number of virtual channels required by the Linder–

Harden scheme even for three-dimensional networks. If higher-dimensional

networks are considered, planar adaptive routers are much simpler. In addi-

tion, restricting the adaptivity in routing also allows the router switches to be

partitioned. Not only does this reduce their cost, but it also makes it possible to

tune them for low latency and high speed.

We have also described several simple extensions to the basic planar adap-

tive router. These extensions support fault-tolerant and order-preserving packet

transmission. Both extensions require minimal hardware support, no additional

virtual channels, and are provably deadlock and livelock-free. If two degrees of
routing freedom are not sufficient, planar-adaptive routing can be generalized

to produce a class of routers with a range of routing freedom. These f-flat

adaptive routers are deadlock free and retain the desirable properties of planar

adaptive routers (save simplicity). F-flat adaptive routers quantify the cost
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of routing freedom, allowing network designers to make a direct cost-perfor-

mance trade-off.

We have also evaluated the effectiveness of planar-adaptive routing using

simulation on a variety of traffic loads. Our studies show that planar-adaptive

routers provide more robust performance than deterministic routers. Perhaps

more significant, our simulations show that adaptivity and virtual lanes are

complementary techniques. Virtual lanes increase peak throughput of planar-

adaptive routing for all the traffic loads considered. These results suggest that

the best way to spend network resources is on the combination of adaptivity

and virtual lanes. Because of their limited adaptivity, planar-adaptive routers

require less resources for deadlock prevention. Using adaptiui~ and virtual

lanes together allows planar-adaptive routers with less hardware resources to

deliver comparable or even superior performance to fully adaptive routers.

We are currently pursuing construction of hardware prototypes to evaluate

the cost of adaptive routers. Based on these designs, we are pursuing a careful

characterization of the cost of a variety of router extensions with great interest

[Aoyama and Chien 1994; Chien 1993].

Fundamental to the evaluation of limited adaptivity routers lies a deeper

question. How much adaptivity do routing networks need? This question will

only be answered as application programs and software systems for massively

parallel machine mature.

An unanswered question is how to best make use of the flexibility and

control offered by limited-adaptivity routers. One current problem in mesh-

based multicomputers is the sharing of communication resources among

multiprogrammed jobs. The sharing such resources can lead to unpredictable

performance. The ideas in planar-adaptive routing provide a way of allowing

flexible use of network resources, yet restricting their use.
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