
Dynamic Fault-Tolerant Clock Synchronization

DANNY DOLEV, JOSEPH Y. HALPERN, BARBARA SIMONS, AND

RAY STRONG

IBM Almaden Research Cente~ San Jose, California

Abstract. This paper gives two simple efficient distributed algorithms: one for keeping clocks in a
network synchronized and one for allowing new processors to join the network with their clocks
synchronized. Assuming a fault-tolerant authentication protocol, the algorithms tolerate both link
and processor failures of any type. The algorithm for maintaining synchronization works for
arbitra~ networks (rather than just completely connected networks) and tolerates any number of
processor or communication link faults as long as the correct processors remain connected by
fault-free paths. It thus represents an improvement over other clock synchronization algorithms
such as those of Lamport and Melliar-Smith [1985] and Welch and Lynch [1988], although, unlike
them, it does require an authentication protocol to handle Byzantine faults. Our algorithm for
allowing new processors to join requires that more than half the processors be correct, a
requirement that is provably necessa~.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]: Distributed
Systems—distributed applications; distributed databases; network operating systems; C.4 [Perfor-
mance of Systems]: reliability, availability, and serviceability; D.4. 1 [Operating Systems]: Process
Management—synchronization; D.4.5 [Operating Systems]: Reliability —~ault-tolerance

General Terms: Algorithms, performance, reliability, theory

Additional Key Words and Phrases: Byzantine failures, clock synchronization, fault-tolerance,

time-of-day clock

1. Introduction

In a distributed system, it is often necessary for processors to perform certain

actions at roughly the same time. In such a system, each processor usually

possesses its own independent physical clock or duration timer, which is

assumed to have a bounded rate of drift from real time. However, over time,

This is a revised version of a paper entitled Fault-Tolerant Clock Synchronization, which
appeared in Proceedings of the 3rd AnnualA CM Symposium on Principles of Distributed Computing.
ACM, New York, 1984, pp. 89-102.

D. Dolev is also affiliated with Hebrew University.

Authors’ present addresses: D. Dolev, Department of Computer Science, Hebrew University,
Jerusalem 91904, Israel, dolev@cs.huji.ac. il; J. Halpern, IBM Research Division, Almaden Re-
search Center, 650 Harry Road, San Jose, CA 95120-6099, halpern@almaden.ibm.tom; B. Simons,
IBM Application Development Technology Institute, Santa Teresa Laboratories, 555 Bailey Ave.,
San Jose, CA 95141, simons@vnet.ibm.tom; R. Strong, JBM Research Division, Almaden Re-
search Center, 650 Harry Road, San Jose, CA 95120-6099, strong@ almaden.ibm.com.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
01995 ACM 0004-5411/95/0000-0143 $03.50

Journal of the As$oc,at,on for Computmg Machinery, Vol 42, No, 1, Januaq 1995,pp 143–185

http://crossmark.crossref.org/dialog/?doi=10.1145%2F200836.200870&domain=pdf&date_stamp=1995-01-03

144 D. DOLEV ET AL.

these duration timers tend to drift apart. Thus, the clocks must be “desynchro-

nized” periodically.

More precisely, we assume that each processor has an adjustment register. Its

logical clock time is the sum of the reading of its duration timer (over which it

has no control) and its adjustment register. It is these logical clock times that

are to be kept close together, even in the presence of processor and link

failures. Let the logical clock time of processor i at real time t be represented

by C,(t). We require that there be some constant DMAX (for maximum

de~iation) such that lC,(t) – C,(t)l < DJL4X. As is mentioned in Dolev et al.
[1986], there are trivial algorithms for keeping logical clocks close together. For

example, the logical clock time can always be a constant, say O. Of course, this

is not terribly useful in practice. A useful clock synchronization algorithm must

also guarantee that logical clocks stay within some linear enuelope of the

duration timers (i.e., the time on the logical clock must be bounded above and

below by a linear function of the time on the duration timer), so that logical

clock time is indeed a reasonable approximation to real time. An algorithm

that keeps logical clocks of correct processors close together and within a

linear envelope of the duration timers is said to maintain linear enuelope

synchronization.

A number of recent papers have presented algorithms that maintain linear

envelope synchronization in the presence of faults [Krishna et al. 1985; Lam-

port and Melliar-Smith 1985; Marzullo 1983; Srikanth and Toueg 1987; Lun-

delius et al. 1988]. The algorithms of Lamport and Melliar-Smith [1985],

Marzullo [1983], and Welch and Lynch [1988] are all based on an averaging

process that involves reading the clocks of all the other processors. Because of

averaging, these algorithms require that there be more nonfaulty than faulty

processors. Two of the algorithms presented in Lamport and Melliar-Smith

[1985] and the algorithms of Welch and Lynch [1988] and Krishna et al. [1985]

require 3f + 1 processors to handle f faults; a third algorithm of Lamport and

Melliar-Smith [1985], which assumes the existence of an authentication proto-

col, requires 2f + 1 processors. The algorithm of Srikanth and Toueg [1987]

also requires 3f + 1 processors to handle f faults without an authentication

protocol, and 2f + 1 processors with an authentication protocol, but it main-

tains synchronization within an optimal linear envelope in a precise sense

explained later. The algorithms of Marzullo [1983], for which no worst-case

analysis is provided, deal with ranges of times rather than a single logical clock

time and therefore are not directly comparable. The algorithm of Krishna et al.

[1985], called phase-locking, is very close in spirit to the algorithm presented

here, in that both algorithms have processors sending out synchronization

messages at predetermined times. However, the algorithm of Krishna et al.
[1985] requires that the number of faulty clocks be less than one third of the

number of participants, and also requires certain assumptions about the nature

of the communication medium. For the most recent work on phase-locking and

comparison studies for hardware versus software implementations of clock

synchronization algorithms, see Ramanathan et al. [1990].
In this paper, a synchronization algorithm is presented that does not require

any minimum number of processors to handle f processor faults, so long as the

subnetwork containing the nonfaulty processors remains connected. (Notice

that this does not contradict the lower bound of Dolev et al. [1986], which says

that only n/3 faults can be tolerated, since we are assuming an authentication

Qnamic Fault-Tolerant Clock Synchronization 145

protocol here.) The crucial point is that since we do not use averaging, it is not

necessary that the majority of processors be correct. Moreover, our algorithm

requires the transmission of at most n 2 messages per synchronization (where n

is the total number of processors in the system). The algorithms of Srikanth

and Toueg [1987] and Welch and Lynch [1988], and one of the algorithms of

Lamport and Melliar-Smith [1985] also require only n2 messages; the other two

algorithms of Lamport and Melliar-Smith [1985] might need as many as n‘+ J

messages to tolerate ~ faults. A final advantage of our algorithm is that it can

deal with either processor or link faults in any network, provided the nonfaulty

processors remain connected. The algorithms of Lamport and Melliar-Smith

[1984] and Welch and Lynch [1988] deal with only processor faults in a

completely connected network.

The synchronization algorithm is based on the following simple observation.

If there are no faulty processors, one processor can act as a synchronizer and

can broadcast a message with its current time once an hour (or day, or week,

depending on the frequency of synchronization required). Each processor

would then adjust its clock function accordingly, making minor allowances if

necessary for the transmission time of the message.

If there are faults, however, then there are obvious problems with this

approach. A faulty synchronizer might broadcast the same messages (i.e.,

different times) to different processors, or it might broadcast the same message

but at different times, or it might “forget” to broadcast the message to some

processors. Note that it is not necessary to assume “malevolence” on the part

of the synchronizer for such behavior to occur. For example, a synchronizer

might fail (halt) in the middle of broadcasting the message “The time is 9

A.M.”, spontaneously recover 5 minutes later, and continue broadcasting the

same message. Thus, some of the processors would receive the message “The

time is 9 A. M.” at 9 A. M., while the remainder would receive it at 9:05.

Nevertheless, the idea of using a synchronizer can be modified to obtain an

efficient synchronization algorithm that is correct even in the presence of

faults. The role of the synchronizer is distributed: Every (correct) processor

tries to act as a synchronizer at roughly the same time, and at least one

succeeds. To ensure that this happens at “roughly the same time,” we use a

protocol that guarantees that all the correct processors agree on the expected

time for the next synchronization.

In practice, such a periodic resynchronization algorithm must be supple-

mented by a method for initializing the clocks of the original participants so

that they are close together. It must also be possible for new processors to join

the system or for previously faulty processors to rejoin the system with their

clocks synchronized to those of already existing processors. Initializing the

clocks of the original processors turns out to be an easy task. Moreover, our

synchronization algorithms can be extended to allow new processors to join (or

previously faulty processors to rejoin) the network. The join algorithm allows

joining processors to join a short time after they request to do so. Our join

algorithm requires that fewer than half the processors be faulty during the join

process. Again, we can tolerate any number of link failures provided that the
nonfaulty processors remain connected. This requirement is provably neces-

sary.

The remainder of the paper is organized as follows: In the next section, the

problem is formalized, a formal definition of linear envelope synchronization is

146 D. DOLEV ET AL.

given, and the precise assumptions underlying the algorithm are described.
These assumptions include the existence of a bounded rate of drift between the

duration timers of correct processors, a known upper bound on the transmis-

sion time of messages between correct processors, and the ability to authenti-

cate signatures. The resynchronization algorithm is described in Section 3 and

analyzed in Section 4. The worst-case difference between logical clocks that is

guaranteed by our algorithm is almost as small as possible, but a careful

discussion of this property is beyond the scope of this paper (see Dolev et al.

[1986], Halpern et al. [1985], Lundelius and Lynch [1984]). We discuss issues
related to initialization and joining in Section 5. In Section 6, we present a

synchronous update service, which enables all correct processes to agree on

which processes are currently joined; this service plays a key role in our join

algorithm. The join algorithm is presented in Section 7 and analyzed in Section

8. In Section 9, we show how to modify the algorithms presented in Sections 3

and 7 so that the logical clock is a continuous function of real time rather than

a piecewise continuous function. We conclude with some discussion of our

results in Section 10. We recommend that the casual reader skip Sections 4, 5,

and 8. Section 2 contains assumptions and specifications that are important,

but not necessary for a basic understanding of the algorithm. The reader who is

interested only in the algorithms might wish to read only Sections 3, 7, and 9.

2. Assumptions and Specifications

In this section, we discuss the five basic assumptions made in our model,

denoted A1–A5, and the specifications that are met by our synchronization

algorithms. We break these specifications into two parts: P1–P4 are properties

that follow immediately from the structure of the algorithm, while CS1–CS4

are deeper properties that require some effort to prove.

Let us first consider the basic assumptions of the model. We assume the

existence of an external source of “real time, ” not necessarily measurable by

the processors. Just as Lamport and Melliar-Smith [1985], Srikanth and Toueg

[1987], and Welch and Lynch [1988], we distinguish between real time, as

measured on this external clock, and duration time, the time measured on some

processor’s duration timer DT. We also adopt the convention that variables

and constants that range over real time are written in lowercase and variables

and constants that range over the processors’ clock time are written in

uppercase. We define a correct duration timer to be one that drifts from real

time by no more than a bounded amount. More formally,

Al: Each correct duration timer DT is a monotone increasing function of real
time, and there is a known constant p > 0 such that for all real times L,, u,

with v > u:

(1 + P)-’(LJ– u) <DT(U) –lIT(u) < (1 + p)(u – u).

For technical reasons the leftmost term has a factor of (1 + p)- 1 rather than

1 – ~, which has been used in some models; for small p both expressions are

essentially the same. An advantage of Al is that it implies the symmetric

condition

(1 + p)-l(DT(L’)-DT(U)) <11- Lf < (1 + p)(m(u) -Dr(u)).

Dynamic Fault-Tolerant Clock Synchronization 147

The drift between two correct duration timers is strictly less than A = (1 +

P)–(1 +P)-’ =P(2+P)/(1 +P); that is, over a time interval [L~!z’1, the
increase in deviation between correct duration timers is bounded above by

A(u – u). Note that A < 2p.

Remarks

● Our use of p is consistent with that of Welch and Lynch [1988] but cliff ers

from that of Lamport and Melliar-Smith [1985]. The p of Lamport and

Melliar-Smith [1985] essentially corresponds to our A The notation of

Srikanth and Toueg [1987] is based on ours, and thus their p is the same as

ours.

. Although we have viewed DT as a function of real time t,strictly speaking

it should have two arguments, the real time t and the run or execution r of

the algorithm, since a processor’s duration timer could read different times

at the same real time in two different runs of an algorithm. Similarly, the

run r should be a parameter of all the other functions we introduce below.

We omit the r to avoid cluttering the notation, since in our proofs we

always restrict attention to a fixed run r.

An algorithm for clock synchronization is assumed to begin with an initializa-

tion, that is, a processor is first initialized and then runs the algorithm. A

processor is said to be correct at real time t if it is initialized at or before t, if it

follows its algorithmic specification, and if it possesses a correct duration timer

from the time it is initialized through time t.(This definition of correctness will

be modified slightly when we deal with processors joining the system.) A

processor that is not correct is called faulty.

Messages from one processor to another are transmitted over a logical

communication network G. G may be a network of physical links between

processors, for example, or it may be the route graph of Dolev et al. [19871,

where two nodes are joined by an edge if there is a route between them,

according to some predetermined routing. We assume that processors know

their neighbors in this logical communication network, but processors need not

know the entire topology of the network. Processors must communicate to be

synchronized. However, it is not necessary to assume that the network is

completely connected as is done by Lamport and Melliar-Smith [1985] and

Welch and Lynch [1988], that is, it is not necessa~ that there be a link between

every pair of processors. We assume that no message is transmitted instanta-

neously and that there is a known strict upper bound tdel (for transmission

delay) on the real time t required for a “short” message (typically of the form

“The time is T“) to be prepared by a given correct processor, sent to all the

other processors to which it currently has a direct (logical) link, and processed

by all the correct processors that receive it.

Our clock synchronization algorithms are based on a communication proto-

col called difision [Cristian et al. 1986]. In this protocol, information is sent or

forwarded from one node in the communication network to its neighbors. The

neighbors, in turn, forward the information to their neighbors, until the

information has reached every node in the network. Our algorithms cannot

synchronize the clocks of processors that cannot communicate. Therefore, we

assume that the subnetwork of correct processors remains sufficiently con-

nected that each execution of a diffusion protocol in which a correct processor

148 D. DOLEV ET AL.

participates as a sender successfully reaches all correct processors. Note that

this assumption is slightly weaker than assuming that the network of correct

processors remains connected by fault-free paths at all times. Instead, we

assume that enough processors and links work correctly enough of the time to

allow any diffusion sent by correct processors to reach all correct processors

within a bounded time. This can happen even if there is no time at which all

correct processors are connected by fault-free paths.

In our model, we assume message transmission time is strictly positive.

However, for simplicity, we idealize the execution and assume that no time is

required for processing. We also assume that no two events such as task

executions of our algorithm can take place at the same real time at the same

processor. Thus, if one task of our algorithm executes because a duration timer

has reached a certain value, then another task cannot simultaneously receive a

message. Formally, we need only the weaker assumption that no register can be

updated twice at a processor at the same real time.

We formalize these assumptions in A2 below:

A2: There is a constant d such that for all times t,and all processors p and q,

there is a sequence p = PO, . . . , pk = q of processors such that

(a) there is a link from p, to p,+l, for i = 0,..., k – 1,
(b) k ~tdel < d,

(c) p, is correct throughout the interval [t,t + d], for i = 1,..., k – 1,
(d) any message sent by p, to p,+l, i = O,..., k – 1, at time u =

[t, t + d – tdel] is received by p,+ ~ at some time in the interval

(u, u + tdel).

Moreover, we assume that no register at a processor is changed more than

once at any real time.

When we use A2 in our later algorithm, where new processors can join the

network, we require that the intermediate processors p ~, ..., p~ _ ~ are not only

correct, but are already joined.

Some authors [Lamport and Melliar-Smith 1985; Welch and Lynch 1988]

have investigated a refined version of our model in which the time t required

to transmit a message from one node to its neighbors, including processing

time at each neighbor, is bounded as follows: 8 – ~ < t < 8 + e.Along the

same lines, Schneider [1987] considers a model in which there exists a minimal

bound on the time it takes a message to travel along a link. We have restricted

our analysis to the simpler model based on A2. We leave it to the reader to

verify that our results could also be obtained using the refined versions. As is

shown by Halpern et al. [1985] and Lundelius and Lynch [1984], the tightness

or precision of the synchronization need depend only on the uncertainty of
message transmission and processing time, not on its upper bound. However,

our experience suggests that for many practical environments, the uncertainty

is essentially the upper bound, justifying this simplification in our model.

The next major assumption is that we have an authentication protocol. More

precisely:

A3: Each processor p possess a signature function SP such that

(a) given a message M, only p can compute the string SP(M), and

(b) given M and SP(IV), all processors can check if M = N and can
extract p.

Dynamic Fault-Tolerant Clock Synchronization 149

SP(i14) is called a signature of processor p. A message of the form

M, SJM) ,. ... SPfM) is said to be an authentic message signed by PI, ..., pk.

The nonsignature part of the message M is called the body of the message. We

use assumption A3 when we specify in our algorithms that a processor must

check the number of distinct signatures of processors on messages it receives.

If there are no more than ~ faulty processors, then the receipt of an authentic

message signed by ~ + 1 distinct processors implies that some correct processor

actually signed and sent the message.

One of our algorithms is designed to be run indefinitely, in spite of occa-

sional failures of processors that are subsequently repaired and reinitialized.

Thus, we do not place an upper bound on the total number of processors that

can be faulty throughout the lifetime of the system. Instead, we assume that

correct processors do not keep messages and signatures stored very long and

that faulty processors cannot build up large sets of signatures of processors

that are no longer correct. In other words, we assume that the faulty behavior

of accumulating old signatures is so rare that large sets of such signatures

never exist. This assumption may appear powerful, but it is in fact much

weaker than the assumption that has typically been made, that there are at

most ~ faulty processors throughout the life of the system. For example, our

assumption holds if there is an arbitra~ number of omission failures. We

formalize our assumption in A4 below:

A4: If a processor p has a set of authentic messages at time t with body M,

such that the union of the sets of signatures on the messages contains the

signatures of more than ~ processors, then at least one of the signing

processors was correct at the time it signed.

In our algorithms, processors desynchronize their clocks periodically. Our next

assumption, which related the p of Al with the ~ of A4, is required to

guarantee that the window during which processors are desynchronizing is

small enough so that successive synchronizations do not overlap. This fact is

crucial to the correctness of our algorithm. (In our second algorithm, the

window is somewhat larger, so we later strengthen this assumption appropri-

ately.)

A5: 2p(~ + 1) <1.

This completes the description of the assumptions in our model. Our assump-

tions apply to many computing environments. Some physical clocks are suffi-

ciently precise to guarantee p = 10-6 see/see for Al. In a local area network,

we can typically take the value of tdel to be 0.1 seconds. This value can be

reduced further by giving the clock synchronization process high priority in the

scheduling of the operating system of the processor. The weak implication of

connectedness in A2 can be viewed as stating that our results do not hold for

processors that miss some diffusion of information because of faults that

isolate them. Likewise, assumptions A3 and A4 can be viewed as limiting the

scope of our results to executions in which the assumptions are not violated.
Authentication algorithms satisfying A3 with high probability are well known

(see, e.g., Rivest et al. [1978]) and have been used in distributed agreement

protocols (e.g., in Dolev and Strong [1983]). Taking p = 10-6, A5 is satisfied
for f <499,999.

150 D. DOLEV ET AL.

Assumption Al is standard, and similar assumptions have been made in all

the other clock synchronization papers. Assumption A2 is weaker than what

has been assumed in other clock synchronization papers. (Typically, complete

connectivity of the network is assumed.) Assumption A3 is used in one of the

algorithms of Lamport and Melliar-Smith [1985] and Srikanth and Toueg

[1987], but not in the other algorithms discussed above. It can be eliminated,

provided the number of faults we wish to tolerate is not too large relative to

the number of participants, using techniques of Srikanth and Toueg [1987], for

example. Assumption A4 is weaker than any used in the relevant literature. If

we limit the kind of failures we would like to tolerate to omission failures, so

that processors always follow their algorithm correctly but may occasionally

omit to send a message, then we can eliminate both A3 and A4.

We now define the goal of our clock synchronization algorithms. As we said

in the introduction, each processor p has an adjustment register AP. Let

CP(t) = llTP(t) + AP(t). We remark that in our first algorithm, ~P(f) (and

hence Cp(t)) is defined from the time that processor p is initialized. In the

later join algorithm, it is possible for p to be correct without AP(f) being

defined. In particular, this is the case before p is joined. Although we do not

say this explicitly, all the conditions stated below are required to hold only

when all the variables mentioned in them are defined.

An algorithm M is said to mainfain Linear Enl’elope Synchronization (LES) in

a network G if there exist parameters A, a(a > O), ~, y, and 8, such that for

all runs r of ~, all intervals of real time [u. ~J], and for all processors p and q

in G that are correct in [u, u], we have:

(1) Ic (~t) – c~(u)l < A (logical clocks of correct processors stay close togeth-

!;

(2) :(DTP(U) – DTP(U)) + p < c,(u) – c,(u) < y(DTp(LJ) – q(u)) + 8

(logical clocks stay within a linear envelope of the duration timers).

Condition (2) of LES differs slightly from that given in Dolev et al. [1986]. In

Dolev et al. [1986], only the case that u = O is considered, and it is assumed

that CP(0) = llTP(0) = O. In this case, condition (2) becomes a ~T”(t) + /3 <

C’P(t) < y llTP(t) + 8, which is precisely the condition of Dolev et al. [1986].

Our first algorithm (presented in the next section) is a periodic resynchro-

nization algorithm. Roughly, we choose a constant PER such that synchroniza-

tion messages are sent by all the correct processors every PER clock time units.

As a result of this synchronization process, some clocks maybe adjusted ahead

by a small amount. Thus, the adjustment register AP of processor p is a

monotonic nondecreasing step function of real time. When it is necessary to
refer to the value of such a function g at a time t where it changes value, we

use g(t) to represent the value before the change and g(t+) to represent the

value after the change. Our assumption A2 implies that the value of a register

can be changed at most once at a given real time t, so that g(f +) is always

uniquely defined. If AP(f) # AP(f ‘), then p is said to make an adjustment at t

and f is said to be an adjusfrnent time for p. In Section 9, we present a

resynchronization algorithm where the adjustment register, and hence the

clock time, are continuous.

The periodic synchronization protocol involves the sending of messages

consisting of a time value and a sequence of signatures. As with the algorithm

Dynamic Fault-Tolerant Clock Synchronization 151

of Welch and Lynch [1988], the time values are all chosen from the positive

integer multiples of PER. Moreover, when the protocol is invoked, all correct

processors will already have agreed in advance on the particular time value to

be sent. This is a major distinguishing feature between clock synchronization

and the related problem of Byzantine agreement [Dolev and Strong 1983;

Pease et al. 1980]. Whereas in Byzantine agreement the problem is to agree on

a value, in clock synchronization, it is possible to agree on the values before-

hand. The problem is to agree on when the values are sent. In fact, the timing

of the message that contains the synchronization value will provide the means

of synchronization.

In each of our algorithms, this expected synchronization value is stored in a

register called ET. We take ETP(t) to be the value of processor p’s register ET

at time t.In the sequel, we omit the subscript p from functions like DT, C,

and ET when it is clear from context.

We summarize here a set of properties maintained by both algorithms in this

paper. As mentioned above, these properties are split into two sets, P1-P4 and

CS1-CS4. As we shall see, Pl, P2, CS1, CS2, and CS3 together imply LES. The

remaining properties are needed in our proofs. The first set of properties,

P1–P4, presented below, are immediate from the description of our algorithms.

The properties hold only for correct processors (since these are the only

processors that are guaranteed to follow the algorithm), and are required to

hold in all runs of the algorithm.

Pl: Registers ETP and AP are monotone nondecreasing functions of real time

in the intervals where they are defined. ETP(t) is defined iff AP(t) is

defined, and Ap(t+) # Ap(t) only if ETP(t+) # ETP(t). If ETP(t) is de-

fined, then there are only finitely many adjustments made by p to ETP and

AP in any interval ending with t; in particular, if there are any adjust-

ments, there is a first and last adjustment. Finally, there is a first time

u < t such that ETP(u+) = ETP(t) and AP(u+) = Ap(t),and at this time u

we have CP(U+) = ETP(u+) – PER.

Since Al guarantees that DTP is a monotone increasing function, and since

Cp(t) = DTP(t) + AP(t), it follows that CP is a monotone increasing function of

real time. We frequently make use of this observation below. We remind the

reader that all the conditions below are required to hold only if cP(t) and

EP(t) are defined.

P2: ETP(t), the time values sent in synchronization messages, and the time to

which a clock is set after an adjustment, are all positive integer multiples

of the constant PER.

P3: CP(t) is in the interval (ETP(t) – PER, ETP(t)].

We say that t is a critical time for processor p if CP is adjusted at t, CP is

first defined at t,or a synchronization value is sent out at t by p. Let %’_(r) be

the set of time values sent by correct processors in run r of one of our

algorithms. (Again, in the sequel we omit the parameter r since it will be clear
from context or not relevant to the discussion.)

P4: If t is a critical time for p, then CP(t+) = ETP(t+) – PER, CP(t+) G 77,

and CP(t+) = ETP(t).

152 D. DOLEV ET AL.

Properties CS1-CS4, presented below, are broken down to CSl(i)-CS4(i.),

where i = O, 1, 2, The key property, CS3, is in fact proved by induction on i.

To state these properties, we need to refine the definition of 7“.

Let W= {~ : i. > 1) be ordered by time value. For each value ~ G 2’, there

must be a processor p and a real time t such that p is correct at t and p sends

a synchronization message at t with the time value ~. By P2, the set {~} is a

subset of the set of positive integer multiples of PER. In fact, in our first

algorithm, ~ is i . PER, so that the set {~} consists of all positive multiples of

PER. In our later join algorithm, we may, however, end up with a strict subset

of the multiples of PER. For notational convenience we write VO for O

although O is not a time value sent by correct processors. Also, if in some run

there are only finitely many synchronization values and ~ is the last, then we

let y be positive infinity for j > i. We take t,to be the first real time t such

that CP(t +) = ~ for some correct processor p. Note that if ~ represents

positive infinity, then so does t,.

We will show that there exist constants PER (for period), ll&OLX (for

maximum deviation), All] (for adjustment), E, and e, with PER > ADI and

E > D&lAX, such that our algorithms maintain the following properties

CSl(i)–CS4(i) for all i >0. (Compare our CS1 and CS2 to S1 and S2 of

Lamport and Melliar-Smith [1985].) As we mentioned above, the constant PER

is an estimate on the time between successive synchronizations. All] is a

bound on the maximum adjustment that a processor makes to its clock. The

constant e defines the real-time interval within which all correct clocks are

synchronized; in fact, the ith synchronization occurs during the interval

[t,, t, + e]. DMXX is the bound on how tightly processors synchronize. We do
not assume that processors can actually compute DA4XX, since it depends on

tdel, which they may not know. We do assume that they can compute some

upper bound E for Dik&LY (using an upper bound on tdel), which they can use

in other computations.

Again, all the conditions below are required to hold only for correct

processors that have ET and C defined.

CSl(i): If ~ < ETP(t) < ETq(t) < ~+,, then lCP(t) – c~(t)l < DW.

That is, when processors have ET between the same pair of synchronization

values, their clocks are close together.

CS2(i): If processor p makes an adjustment at time t and ~ < ETP(t) s ~+ ~,

then O s CP(t+) – CP(t) < ADJ.

That is, clocks are set forward by less than ADJ.

CS3(i): (a) if t < t,,then ETP(t) < ~,

(b) if t = t,, then ETP(t) = ~ and CP(t) > ~ – AD.1,

(c) If t is in [t,, t, + e], then ETP(t) is either ~ or ~ + PER, and
~ – ADJ < CP(t) < L(+ (1 + p)e,

(d) if t = t, + e, then ET,(t) = ~ + PER,

(e) if t > t, + e, then ETP(t) > ~ + PER.

CS4(i): If processor p is correct at time t,~ < ETP(t) < ~+ ~, and t > t, + e,

then ETP is defined throughout the interval [t, + e, t) and p has no

critical times in that interval.

@namic Fault-Tolerant Clock Synchronization 153

We now show that conditions PI, P2, and CS1–CS3 are enough to guarantee

LES.

THEOREM 2.1. If an algorithm M satisfies PI, P2, and CSl(i)-CS3(i) for all

i >0 in a run r, then M maintains LES with parameters A = max{DMXX, ADJ

+ (1 + p)e}, a = 1, ~ = O, y = PER\(PER – ADJ), and 8 = ADJ.

PROOF. Assume p and q are correct, and ETP and ETq are both defined in

interval [u, L)] in a run r of M. To prove that condition (1) of LES holds,

observe that if ICP(u) – C~(u)\ < DJL4X, then (1) holds trivially. Suppose

ICP(U) – C~(U)l > DM4X. By CS1, this can happen only if there is some j such

that E~P(.v) < ~ < ET~(u) or ET~(u) s If < ETP(u). Assume, without 10SS of

generahty, that ETP(u) < ~ < ET~(u). Since q is correct and ET’’(L) > ~, by

part (a) of CS3(j) we must have v > tj.Since p is correct and ETP(u) < ~, by

part (e) of CS3(j) we must have u s tj + e. Thus, t~ < u s tj + e. By part (c)of

CS3(j), it now follows that ICP(U) – C~(U)\ < ADJ – (1 + p)e. Thus, in gen-

eral, \CP(u) – C~(u)l < max{DkL4X, ADJ + (1 + p)e}.

For part (2), observe that P1 and the definition of C immediately give us that

DTP(u) – DTP(u) s CP(V) – CP(U). We next show that if y = PER/(PER –

ADJ), then

CP(U) – CP(U) < y(DTP(u) – D~p(z~)) + ADJ.

If p makes no adjustments in [u, u], then CP(~I) – CP(U) = llTP(~’) – DT’(u),

by the definition of C. Suppose p makes at least one adjustment in [u,L’1. By

Pl, there is a first and last adjustment in the interval. Let w be the time of the

first adjustment and let z be the time of the last. By P1 and P2, since ETP is

always a multiple of PER, and at adjustments CP is equal to some ETP, we

have CP(Z+) – CP(W’) = (k – I)PER, where k is at least the number of

adjustments made in the interval [u, u]. Moreover, by CS2, each adjustment

changes the clock by at most ADJ. Therefore, CP(Z+) – CP(w +) < DTP(z) –

DTP(w) + (k – l)A~J. Thus, DTP(z) – DTP(w) > (k – l)(PER – ADJ) and

y(DTP(z) – DTP(w)) > (k – I)PER. It follows that

Cp(z+) - C,(w+) < @TP(z) – DTP(w)).

Now

CP(U) – CP(Z+) = DTP(u) – DTP(z) < y(DTP(L’) – DT’(z)),

because there are no adjustments in (z, u]. Since the only adjustment in [u, w 1

is at w, we also have, by CS2, that

CP(w+) – CP(U) < DTP(w) – ~~P(U) +ADJ < y(DTP(w) – DTP(u)) +ADJ.

Summing these inequalities, we conclude that

C,(L) – CP(U) < y(~TP(u) – DTP(u)) +ADJ.

Thus, we get the second condition of LES, with a = 1, ~ = O, Y =

PER/ (PER – ADJ), and S = ADJ, as desired. ❑

3. The Basic Resynchronization Algorithm

The basic algorithm uses two parameters: PER and E. Roughly speaking, PER

(for “period”) is the time between synchronizations (and thus corresponds to

154 D. DOLEV ET AL.

the R of Lamport and Melliar-Smith [1985] and the P of Welch and Lynch

[1988]), while ~ (for estimated maximum deviation) is an upper bound on the

difference between correct clocks. In the next section, we discuss how these

parameters should be chosen.

For processor p, let ETP (the expected time of the next synchronization), A.P

(the adjustment register), and CP (logical clock time) be local variables. DTP 1s
a continuously updated variable representing the duration timer (hardware

clock) of processor p. When processor p starts running the algorithm, ETP =

PER and AP = –DTP. Recall that CP is defined as DTP + AP. Thus, initially,

CP is O. (More precisely, if p is initialized at time LL, then we take CP(U) to be

undefined and CP(U +) = O.) In this section we assume that all processors in the

network start running the algorithm during a real time interval of length less

than d. In Section 5, we show how to accomplish this synchronous start for

processors initially in the network.

We use the following abbreviations in the description of the two tasks that

comprise the algorithm:

SIGN means “compute a signature and append it to the message.”

SEND means “send out to all neighbors.”

The algorithm consists of two tasks that run continuously on each correct

processor. The first task, TM (for Time Monitor), deals with the case in which

a processor’s clock reads ET before that processor has received any authentic

synchronization messages (as in assumption A3) from the other processors. If

CP(t) = ETP(t), then processor p signs and sends a message to all processors

saying “The time is ET” and ET is incremented by PER.

Task TM

if C = ET then begin

SIGN AND SEND “The time is ET”;
ET G ET + pER;

end

The second task, MSG (for Message Manager), deals with the case in which

a processor receives a message before its clock reads ET. Suppose processor p

receives an authentic message with s distinct signatures saying “The time is T.”

If this message is timei’y, that is, if it comes at a time when T = ET and

ET – s . E < C, then processor p updates both ET and A and signs and sends

out the message. Otherwise, the message is ignored.

Task MSG

if {(an authentic message M with s distinct signatures saying “The time is T“ is
received) A (T = ET) A (ET – s “ E < C)} then begin

SIGN AND SEND “M”;
AGET–DT;

ET & ET + PER;

end

This completes the description of the algorithm.

Intuitively, the effect of these two tasks is to have correct processors running

at the rate of the fastest “reasonable” processor, that is, one whose messages

pass the timeliness tests. As an example of how the algorithm operates,

L$namic Fault-Tolerant Clock Synchronization 155

suppose PER = 1 hour, and the next synchronization is expected at 11:00 (i.e.,

ET = 11). If processor p has not received a timely message (one that passes the

tests of MSG) by 11:00 on its clock, then it executes task TM. If processor p

does receive a timely message before 11:00, then it executes the body of Task

MSG. Once one of these tasks is executed, p updates its local variable ET to

read 12:00. Note that this means that p will then ignore any further messages

it receives saying “The time is 11:00,” since they will not pass the tests of Task

MSG. In general, exactly one of the tasks TM and MSG will run to completion

in a synchronization interval, and it will be run to completion only once. (In

particular, many messages saying “The time is T“ may be received by task

MSG, but only one of them will be considered timely in each synchronization

period.)

A message with s signatures saying “The time is T“ might arrive as much as

s . E “early” (before ET) and still be considered timely according to the test in

MSG. Nonetheless, as we show in the next section, at the completion of a

synchronization the correct processors are synchronized to within (1 + p)d,

which is less than E.

The following example illustrates why the test in Task MSG must allow the

interval during which a message is considered acceptable to have size s “E.

Suppose DMXX (the actual maximum deviation between correct clocks) is 0.1

second and in the algorithm we take E = DMAX = 0.1. If processor i receives

a message with three signatures saying “The time is 11:00,” and the message

arrives 0.29 seconds before processor i’s clock reads 11:00, processor i will

think that the message is timely according to Task MSG. Suppose, however,

that processor j is also correct and is running 0.099 seconds slower than

processor i (which is possible since DJL4X = 0.1). If processor j receives

processor i’s message almost instantaneously, then j will receive the message

roughly 0.39 seconds before 11:00 on its clock. Since the message now has four

signatures, processor j will also consider it timely. However, if the test in Task

MSG did not allow the interval of “timeliness” to grow as a function of the

number of signatures, the message might not have been considered timely.

Indeed it is straightforward to convert this example to a scenario in which any

bound on the size of the interval in which a message is considered timely that is

independent of the number of signatures on the message results in an incorrect

algorithm.

In the next section, we prove that, if assumptions A1–A5 are satisfied, then

every run of the algorithm given above satisfies P 1–P4 and CS l(i)–CS4(i) for

all i >0. As a consequence, our algorithm maintains LES.

4. Ana@is of the Algorithin

4.1. INITIALIZATION ASSUMPTIONS AND PARAMETER DEFINITIONS. Let M be

the algorithm described in Section 3, with parameters E and PER chosen to

satisfy the conditions presented below. Assume that there are n processors and

that they are all initialized with C = O and ET = PER during a real-time

interval of duration less than d. Since we take tO to be the first time some
correct processor’s clock reads VO = O, it follows that all correct processors are

initialized in the interval [t.,to+ d).If a processor p is initialized at time u, we

take ~TP(u) and AP(u) to be undefined, while ETP(u+) = PER and AP(u’) =

–DTP(u), so that CP(U+) = O.

156 D. DOLEV ET AL.

We choose the parameters of conditions CS1–CS4 so that they satisfy the

following conditions:

~e>d;

● DMAX=(l +p)e+2p. PER;

. ADJ = (f+ l)E;

o E > DLL4X (Drift Inequality);
o PER > ADJ (Separation Inequality).

It is easy to see that this can be done: First, fix e > d. Then choose E such

that E > (1 + p)e + 2 p(f + l)E, which is possible by A5. Then, set ADJ to

(~+ l)E. Next, choose PER > ADJ so that E > (1 + p)e + 2 pPER. Finally,

set DMXX = (1 + p)e + 2pPER.

4.2. CORRECTNESS PROOF

THEOREM 4.2.1. Under assumption A 1–A 5, elle~ mn of algorithm M sotisjies

PI–P4 and CS1(i)–CS4(i) for all i >0. Moreoler, the correct processors send

fewer than nz synchronization messages for each synchronization lalue.

From Theorem 4.2.1 and Theorem 2.1 we get the following corollaqv

COROLLARY 4.2.2. Under assumptions A 1–A5, algorithm M maintains LES.

The intuition behind the correctness of algorithm .@ is quite straightforward.

The algorithm guarantees that all correct clocks are synchronized within a

real-time interval of length e. At the end of the ith interval, at time t, + e, all

logical clocks of correct processors are within (1 + p)e of each other and all

correct processors have the same value of ET, namely ~ + PER (which in this

algorithm is ~+ ~). The next synchronization occurs in the interval [t, + ~, t, + ~ + e].

We show that t, ~ ~ – ti is roughly PER. We also show that during the interval

PER clocks drift apart by at most an extra 2p” PER. This gives us the

expression for D&lXX, which is the right-hand side of the Drift Inequality. In

practice, the interval during which clocks are desynchronized, which has dura-

tion at most e, is quite short, while the interval between resynchronizations,

which has duration roughly PER, is quite long. After the proof we consider

some typical values for the parameters.

Although the intuition behind the correctness of the algorithm is quite

straightforward, a formal proof requires some care. We prove the result by

induction, which is why CS 1–CS4 are paramet erized by i. The proof of

Theorem 4.2.1 proceeds through a sequence of lemmas, where we prove the

relevant properties one by one (and some added necessary properties). In the

proof of these lemmas, we assume that properties A1-A4 hold.

LEMMA 4.2.3. Evey run of ti satisfies Pl, P2, P3, and P4.

PROOF. We first prove most of PI. It is easy to see by inspection of tasks

TM and MSG that AP and ETP are both defined for the same values of t if p

is a correct processor and that AP changes value only when ETP changes value.

ETP is first defined as PER and when it is changed, it increases by PER, so

that it is a monotone nondecreasing step function. AP is also a step function,

since it changes only when ETP changes. We prove at the end of the lemma

that AP is nondecreasing. Suppose ETP(t) is defined. Since it must be a

multiple of PER, suppose ETP = k “ PER. Since ETP increases by PER each

@namic Fault-Tolerant Clock Synchronization 157

time it is changed and starts out at PER, itfollows that ETP can have been

adjusted no more than k – 1 times in any interval ending with t.Moreover,

since ETP is a step function which assumes only finitely many values in any

interval ending with t,there must be an interval of the form (u, t]such that

ETP is constant in this interval, and either ETP(v) is undefined or ETP(u’) #

ETP(~’). We clearly must have L’ < t. If ETP is first defined at L), our initializa-

tion assumption guarantees that CP(v +) = ETP(L)+) – PER. Otherwise, this

fact is guaranteed by the code of tasks MSG and TM. A similar argument

works in the case of AP.

For P2 observe that processors are initialized with A = –DT and ET =

PER. Since ET is changed only by adding PER, ET can take on only values

that are positive integer multiples of PER. An inspection of tasks TM and

MSG also shows that the synchronization values sent are always equal to the

current value of ET, and after an adjustment, a logical clock is set to the

current value of ET.

P4 follows from inspection of tasks TM and MSG and our assumption that if

p is initialized at time u, then ETP(u’) = PER and CP(U’) = O.

For P3, suppose that a processor p is correct and CP is defined at some time

t,which is not a critical time. We first prove that Cp(t)s ETP(t). As has been

shown, there is a first time u < t such that AP(L’+) = AP(t). Since L’ must be a

critical time for p, we have by P4 that CP(L‘) = ETP(L‘) – PER. Since AP is

constant in the interval (L), t], C’p is a continuous and increasing function in this

interval. Suppose that CP(LL) > ETP(u) for some u G (L), t]. Let w = inf{u ~

(u, t]:C,(u) > ETP(24)}. By continuity, w > u and C’,(w) = ETP(w). Thus, by
inspection of tasks TM and MSG, we have ETP(w’) = ETP(w) + PER. The

continuity of CP then guarantees that there is some x > w such that CP is

strictly less than ETP throughout the interval (w, x). But this contradicts the

definition of w because each neighborhood of w must contain some u with

CP(U) > ETP(u). Itfollows that CP s ETP throughout the interval (u, t]and, in

particular, that C,(t) s ETp(t).

We now prove that Cp(t)> ETP(t) – PER. Let L) and t be defined as in the

previous paragraph. Since CP(V+) = ETP(v’) – PER, and CP is increasing

while ETP is a step function, there must be some u’ > L such that CP > ETP –

PER throughout the interval (L, L)’]. Let w = sup{u = (L, t]: CP > ETP – PER

throughout (L), u]}. We claim that CP(W) > ETP(w) – PER. To see this, observe

that since only finitely many changes to ET take place in (L], t], there must be

an xl = (v, w) such that ETP is constant throughout (xl, w). In addition, if

w < t, there must be an Xz = (w, t) such that ETP is constant throughout

(w, Xz). By construction, CP(X1) > ETP(xI) – PER. Since CP is increasing and
continuous from the left at w, while ETP is constant in (xl, w), we have

CP(W) > ETP(w) – PER, as desired. If w = t, we are now done. If w < t,then

we clearly must have ETP(w +) > ETP(w). By inspection of tasks TM and MSG,

we have CP(WJ+) = ETP(w +) – PER. Since ETP is constant in (w, Xz), it follows

that CP > ETP – PER throughout [w, Xz). But this contradicts the definition of

w. Thus CP(t) > ETP(t) – PER, and this completes the proof of P3.
All that remains is to complete the proof of PI by showing that AP is

nondecreasing. Observe that the only task that changes AP is task MSG. If

task MSG changes AP at time t,then it follows from P3 that AP(t’) > ETP(t)

– DTP(t) > CP(t) – DTP(t) = AP(t). Thus, AP is also a monotone nondecreas-

ing step function of real time. This completes the proof of PI. ❑

158 D. DOLEV ET AL.

LEMMA 4.2.4. Let t be a critical time forp. Then either (a) CP(t) is undefined

and CP(t+) = O, (b) CP(t) is defined and CP(t) > CP(t+) – f “E, or (c) p

receiLes a synchronization message with synchronization value CP(t +) at time t

signed by some other con-ect processor.

PROOF. The only way that t can be a critical time for p is if (1) p is

initialized at t, (2) CP(t) = ETP(t) (according to task TM), or (3) Cp(t) is

defined and p receives a timely message in task MSG. If (1) holds, then Cp(t)

is undefined and Cp(t +) = O, while if (2) holds, then Cp(t) = Cp(t’). Thus,

suppose (3) holds, and p receives a timely message with synchromzation value

T and s signatures. The timeliness test guarantees that CP(t) = T > CP(t’) –

s . E. If s < f, then we are done. Otherwise, by A4, one of the signatures on the

message must be that of a correct processor, so again we are done. ❑

LEMMA 4.2.5. If i >0 and t, is finite, then (1) t,< t,+~ and (2) there is a

processor that is correct at t, such that CP(t,) > ~ – fs E and ETP(tl) = ~.

PROOF. Let Zj = min{u : exists a processor p that is correct at time u and

CP(U +) = j “ PER}. If for no time u is it the case that there is a processor

correct at u with CP(14+) = j “ PER, then we take z] = ~. By P2 and the fact

that VI > 0, {t, : i >0, t, finite} is a subset of {z, : j >0, z, finite}. Let p be a

processor correct at time z] such that CP(Z,+) = j “ PER. We want to show that

CP(ZI) = j . PER. CP(ZJ) and ETP(z,) are defined because CP(z~) >0. If z, is a

critical time for p, then ETP(z,) = CP(ZJ+) by P4. If z] is not a critical time for

P, then Cp(Zj) = Cp(Z~). In this case, CP(ZJ) = ETP(z1) since they are both
integer multiples of PER and ETP(z,) – PER < CP(ZJ) s ETP(z,) by P3. Thus,

in either case, ETP(z,) = j “ PER as desired. Since ETP(z]) = j . PER, it follows
from P1 that for j >1 there exists a y < z, such that ETP(y+) = j “ PER and

CP(y+) = ETP(y+) – PER = (j – 1) “ PER. Therefore, z,_ ~ < z,. Since the t,’s

are a subset of the ZJ’S, and since the finite ZJ’s are totally ordered, it follows

that the finite t,’s are also totally ordered. This proves part (1) of the lemma.

For part (2), by definition of t, there is a processor p correct at t,with

Cp(t~) = ~. We have ~ = j “ PER for some j with t, = z]. We argued above

that in this case, both Cp(tl) and ETP(tl) were defined and ETP(t,) = j . PER =

~. If t, is not a critical time for p, then Cp(t,) = Cp(t~) = ~, so (2) holds. If t,

is a critical time for p, then by Lemma 4.2.4, one of the following three cases

holds:

(a) Cp(t~) = O,

(b) Cp(t,) is defined, and Cp(tz) > Cp(t~) -f” E,
(c) a synchronization message with synchronization value Cp(t~) is received

from another correct processor.

Since i >0 by assumption, case (a) does not hold. Case (c) also does not hold

for otherwise (by A2) there would be a correct processor whose clock read ~ at

a time prior to t,.Thus, case (b) must hold and Cp(t,) > Cp(t,+) – f” E = ~ –

f. E. Hence, whether or not t,is a critical time for p, we have C,(t,) > L(-f. E

and ETP(t,) = ~. ❑

The next lemma shows that the (i + l)st synchronization message sent out in

a run is sent out more than e time units later than the i th synchronization

message.

L&tamic Fault-Tolerant Clock Synchronization 159

LEMMA 4.2.6. In eve~ run of@ and for all i >0, ifpart (a) of CS3(i) holds

and ti is finite, then t,+ ~ > ti + e.

PROOF. Suppose that ti & finite. If t,+~ is infinite, then the lemma clearly

holds. Otherwise, by the previous lemma, there is some processor, say p, that is

correct at time tl+~ such that Cp(tL + ~) > ~+ ~ –f. E and ETP(t,+l) = V+l. BY

PI, there is a u < tl+l that is the earliest time such that ETP(L~’) = ETP(tl + ~).

From part (a) of CS3(i) and PI, it follows that u > t,. By Pl, we have that

:,(u+) = ETP(u+) – PER = ~+1 – PER. Moreover, CP is continuous in the

Interval (u, t,+ ,), since, by Pl, A, changes only when ET, changes. Thus, by
Al, we have that CP(tz+l) s ~+1 – PER + (1 + p)(t,+l– u) s ~+1 – PER

+ (1 + p)(ti+~ – t,).Combining this with the earlier inequality CP(tL + ~) z

~+1 – f” E, we get that (1 + p)(ti+,– t,)> PER – f. E. The Drift and Sepa-

ration Inequalities together imply that PER – f” E > (1 + p)e, so we get that

t,+ ~ > t, + e, as desired. ❑

LEMMA 4.2.7. If CS3(i) and CS4(i) hold in a run of d, then so does CSl(i).

PROOF. Suppose r is a run where CS3(i) and CS4(i) hold, and let p and q

be two processors that are correct at time t in run r such that ~ < ETP(t) <

F(+l and ~ < ET~(t) s ~+l. By part (a) of CS3(i), we must have that t > t,.

Since both ETP(t) and ET~(t) are greater than ~, and these values must all be

multiples of PER by P2, we must have that ETP(t) > ~ + PER and ETq(t) >

~ + PER. By P3, it follows that CP(t) > ~ and C~(t) > ~. By part (c) of

CS3(i), if t is in the interval [ti, ti + e], then CP(t) < ~ + (1 + p)e, and

C~(t) < ~ + (1 + p)e. Thus, both CP(t) and Cg(t) are in the interval (~, ~ +

(1 + p)e), so that lCP(t) – C,(t)/ < (1 + p)e, which is less than DMAX.

Now suppose t > t, + e. By CS4(i), we have that AP and Aq are constant in

the interval [ti + e, t). Thus, CP and Cg are continuous functions in this

interval. Suppose without loss of generality that CP(t) > C~(t). We claim that

there can be no point t’in the interval such that Cp(t’) is of the form k. PER.

For if there were, then by P3 we would have Cp(t’) = ETP(t’). Then by task TM

a synchronization value would be sent at t‘,contradicting CS4(i). By parts (c)

and (d) of CS3(i) together with P3, we know that C~(ti + e) > ~ and CP(tl +

e) < ~ + (1 + p)e. Since ~. is a multiple of PER, and CP(t) cannot be a

multiple of PER in the interval [t, + e, t), we know that CP(t) s ~ + PER. It

is easy to see that we overestimate the maximum separation between CP and

C~ at time t by assuming (1) CP(ti + e) = ~ + (1 + p)e, (2) C~(tl + e) = ~,

(3) C, runs at the maximum possible rate (1 + p) in the interval [t, + e, t],

(4) C~ runs at the minimum possible rate (1 + p)- 1 in this interval, and

(5) CP(t) = ~ + PER (so that the interval is as long as possible). Making these
assumptions, we see that t = ti + e + (1 + p)-l(PER – e), CP(t) = ~ + PER,

and C~(t) = ~ + (1 + p)-2(PER – e). Thus, Cp(t) – Cq(t) < (1 – (1 +

p)-z)PER + (1 + p)-ze. Since straightforward algebra shows that (1 + p)-2

>1 – 2p, this expression too is bounded by D&lAX. ❑

LEMMA 4.2.8. If CS3(i + 1) holds in a run of.&, then so does CS2(i).

PROOF. Suppose p is correct and makes an adjustment at a time t such that

~ < ETP(t) s ~+l. By P4 (which holds by Lemma 4.2.3), ETP(t) = z+ 1,

160 D. DOLEV ET AL.

ETP(t+) = ~+1 + PER, and CP(t+) = ~+1, so t > t,+l.By parts (d) and (e) of

CS3(i + 1), t must be in the interval [tl+l, fl+l + e). Since Cp(t+) = ~+1, it

follows from part (c) of CS3(i + 1) that Cp(t’) – Cp(t)< MY. ❑

LEMMA 4.2.9. If CS3(i) holds in a run of d, then so does CS4(i).

PROOF. Suppose p is correct at time t,~ < ET’(t) s ~+,, and t > t, + e.

Since by assumption all correct processors are initialized in the interval

[tO, tO + d), and since once ETP is defined it stays defined until processor p

becomes faulty, it follows that ETP is defined in the interval [tO + d, t], and

hence (since d s e and t,z to)in [t, + e, t]. Suppose there were a critical time

u for p in the interval [t, + e, t). Since u > t, + e, by CS3(i) and PI, it follows

that ETP(u) > T(. By P4, ETP(u) = ~ for some j > i. Thus, ETP(u) > ~+ ~. By

P4, we have ETP(u+) = ~ + PER. Thus, by Pl, we have ETP(t) > ~+1,

contradicting our assumption. Hence, there is no critical time for p in the

interval. CS4(i) now follows. El

LEMMA 4.2.10. CS3(i) holds for all i >0 in ezleq run of M.

PROOF. We proceed by induction on i. For the case i = O, recall that tO = O

and VO = O by definition, and we assumed that all processors are initialized at

some time in the interval [0, e). Since we have also assumed that if a processor

p is initialized at time u we have ET’’(u) undefined, it is easy to see that parts

(a) and (b) of CS3(0) hold vacuously. Clearly if a correct processor’s logical

clock is not adjusted before time tO + e, then by Al it reads a value in the
range [0, (1 + p)e) wherever it is defined in the interval [to, to + e], while its

value of ET is PER. On the other hand, if some correct processor’s clock is

adjusted in this interval, then tl < tO + e. By Lemma 4.2.5 and the fact that

VI > PER, for some correct processor p we have CP(tl) > VI – f. E > PER –

f” E. Since p cannot have adjusted its clock prior to tl, we must have

(1 + p)e > CP(tl) > PER – f” E, contradicting the Separation Inequality.
Thus, no correct processor adjusts its clock before to + e. This proves part (c)

as well as part (d). Part (e) follows from PI and P2.

Now assume CS3(i) holds; we show that CS3(i + 1)holds. If t,+ ~ is infinite,

then so is ~+ ~, by definition, so CS3(i + 1) is vacuous. So suppose that t,+, is

finite. For part (a) observe that by P2, it follows that ~+ ~ > ~ + PER. Lemma

4.2.6 implies that t,+ ~ > t, + e. Suppose p is correct and for some t < t,+ ~, we

have ETP(t) > ~+l. By P2, it follows that ETP(f) > ~+ ~ + PER. By parts

(a)-(d) of CS3(i), it is easy to see that we must have t > t, + e. We next show
that CP must be continuous in [t, + e, t). If not, then there is some adjustment

in [t, + e, t).Let u be the time of the first adjustment (such a u exists by Pi).

By P4, CP(U+) = E~P(u) = ~ for some j. By parts (d) and (e) of CS3(i),

ETP(u) > ~, so j > L + 1. If ETP(u) = ~+1, then the fact that ZL < t,+, con-

tradicts the definition of t,+~.If ETP(t4) > ~+,, then by P3, CP(U) > ETP(u) –

PER > ~+,. Since CP is continuous in the interval [ti + e, u), itfollows that

CP(u) = ~+ ~ for some u in the interval and hence, again by continuity, that

CP(L’+) = ~+l. But this contradicts the definition of t,+~.Thus, CP is continu-

ous in [t, + e, t), as claimed. By P3, we have CP(t) > ETP(t) – PER > ~+ ~.

Since Cp(t, + e) < ~ + (1 + p)e < ~ + PER s ~+ ~, itfollows from the con-

tinuity of CP that for some point u in the interval (t, + e, t), we have

Dynamic Fault-Tolerant Clock Synchronization 161

cP(u) = ~+1 and hence CP(L1+) = ~+l. But this again contradicts the defini-

tion of t,+,.Thus, we must have ETP(t) s ~+ ~, as desired. This proves part (a)

of CS3(i + 1).

For part (b), first observe that by Lemma 4.2.5 for some processor p that is

correct at t,+ ~ we have Cr(t, +l) > ~+1 - ~” E. By CSl(i) (which holds by the

induction assumption together with Lemmas 4.2.7 and 4.2.9), for every proces-

sor q that is correct at ti+, we have lC’P(tl+l) – C~(tt+l)l < DMZ4X, so Cq(tz+ ~)

>~+1 -f. E- DMXX>~+l – ADJ. Since ADJ < PER by the Separation

Inequality, it follows from P3 that we must have ETq(t,,,) > ~+ ~. In combina-

tion with the previous paragraph, this gives us part (b) of CS3(i + 1). (Since

ETP does not change in the interval [t, + e, ti+ ~), we can in fact show that

ETP(t,, ~) = ~ + PER, and hence that ~+, = ~ + PER. Thus, we could carry

along as an inductive hypothesis that ~ = i . PER if t, is finite, but we do not

need this fact here, nor will it hold for our join algorithm.)

For part (c) of CS3(i + 1),suppose that p is correct at time t = [t, + ~, t, + ~ +

e]. There are four cases to consider: (1) ETP(t) < ~+ ~, (2) ETP(t) = ~+ ~,

(3) ET (t) = ~+ ~ + PER, and (4) ETp(t) > ~+ ~ + PER. We show that only
case (2J or case (3) can hold, and that, in these cases, ~.+, – ADJ < CP(t) <

~+ ~ + (1 + p)e. By Lemma 4.2.6 and the induction assumption applied to part

(a) of CS3(i), we can assume t,+ ~ > t, + e; by Lemma 4.2.9 and the induction

assumption applied to CS3(i), we can assume CS4(i).

Suppose case (1) holds, so ETP(t) < ~+ ~. By assumption and Lemma 4.2.6,

we have t > t,+l > t, + e. By part (e) of CS3(i) and the assumption, we know

that ~ < ETP(t) < ~+ ~. By CS4(i), ETP is defined throughout the interval

[ti + e, t); ETP is defined at t by assumption. It follows that ETP is defined at

t,+~.By part (b) of CS3(i + 1),ETP(t, + ~) = ~+,. Since t > t,+~,this contradicts

P1.

Suppose case (2) holds, so ETP(t) = ~+ ~. By CS4(i), ETP is defined and AP

is constant throughout the interval [ti+*,t).By part (b) of CS3(i + 1), Cp(t, + ~)

– ADJ. By P3, Cp(t) < ETP(t) = ~+l. By P1 and Al, since t =

[~+~,+~+1 + e] we have ~+1 –ADJ < C,(t) < ~+1 + (1 + p)e.

Suppose case (3) holds, so ETP(t) = ~,, + PER. By Pl, there is a first time

u < t such that ETP(u+) = ~+, + PER. By part (a) of CS3(i + 1), u > t,+ ~.

Moreover, by PI, we have C (u+) = ~+l.

(

Finally, by PI and the fact that there

are no changes to ETP in t e interval (u, t),there are no changes to AP, and

CP is continuous in this interval. Since ti+, s u < t < t,. ~ + e, using Al and

Pl, we get ~+1 < CP(t) < ~+1 + (1 + p)e.

Suppose case (4) holds, so ETP(t) > ~+ ~ + PER. Let T = ETP(t). By P2, we

must have T > ~+ ~ + 2PER. By Pl, there is a first time u < t such that some

correct processor q has ETq(u’) = T. There are two subcases: (4a) L~ is a

critical time for q, and (4b) u is not a critical time for q.

Suppose (4a) holds. Then, by P4, C~(u’) = ET~(u’) – PER = ~ for some ~.

Thus t]s u.But ET~(u+) = T > ~+1 + 2PER, so C~(u+) > ~+1 + PER, and

j > i + 1. By Lemma 4.2.6 and part (a) of CS3(i + 1), we have t,s LL < t s

ti+l + e < t,+ ~, contradicting Lemma 4.2.5.

Suppose case (4b) holds, so that u is not a critical time for g. Then ETq(u) is
defined and ET~(u) > ~+ ~ + PER. By PI, there is a first time u < u such that

ETq(L1+) = ETq(u) and Cq(LI+) = ETq(LI+) – PER = T – 2PER > ~+l. Since

ETq(u+) > ~+1 + PER, Itfollows from part (a) of CS3(i + 1) that if w is any

time in (L1, u), then w > t,+,.Thus t,+l s z] < u < t s t,+, + e. Now C~ is

162 D. DOLEV ET AL.

continuous on (u, u], so Cg(u+) < C~(U+) + (1 + p)e < T – PER, by Al and

the fact that (1 + p)e < PER. But, for any w in (u, t), C~(w) > T – PER, by

P3. Thus, C~(u’) > T – PER, contradicting C~(u’) < T – PER. This com-

pletes the proof of part (c) of CS3(i + 1).

For part (d), suppose that q is correct at t,+ ~ + e and ET~(tl+ ~ + e) # ~+ ~

+ PER. By part (c) of CS3(i + 1), we must have ET’’(t, + ~ + e) = ~+ ~. Let p

be a processor correct at t,,~ such that CP(t~+ ~) = ~+ ~. We have assumed that

all processors are initialized before tO + e. By Lemma 4.2.6, t,+ 1 > to + e.

Thus, it follows from the definition of correct that q must be correct through-

out the interval [t, + ~, ti+ ~ + e) and that CP(tl + ~) and EP(tl + 1) are both defined.

By part (b) of CS3(i + 1), EP(t, +l) = ~+l. We claim that p sends synchroniza-

tion value ~+ ~ at time t,+~.If Cp(t, + ~) = ~+ ~, this follows by inspection of

task TM. Otherwise Cp(tl + ~) # Cp(tC~ ~), so that p must invoke task MSG at

time t,+~,and at that time p sends synchronization value ~+ ~.

We now apply A2 with t = ti+l. Let po, p~ be the sequence of processors

guaranteed to exist by A2, with p = po, q = p~, and k “ tdel < d. Note that

for all times u = [t,+~,t,+~ + d], each correct processor p] has ETPJu) G

{~+1, ~+1 + PER} by part (c) of CS3(i + 1) and, if ET,< = ETP,, = ~+1, then

ICPJU) – CP,(U)I < DiWIX by CSl(i). We show by induction on j that p, sends

the synchronization value ~+ ~ at some time in the interval [t, + ~, t, + ~ + j” tddl.

The base case holds by assumption. Suppose p, sends the synchronization value

.y+l in the interval [t, + ~, t,+ ~ + js tdel], and j < k. By A2, p]+ ~ receives this

message before t,+ ~ + (j + 1) “ tdel. If p~ + ~ already sent a synchronization

message with value ~+ ~ before this time, then by tasks TM and MSG at the

time that p,+, sent the message it set its clock to ~+ ~. This time must have

been in the interval [t,+ ~, t,+ ~ + (j + l)tdel], as desired. If p, + ~ did not already

send such a message, then it suffices to show that the message it receives from

p] is timely, that is, it passes all the tests of task MSG. Suppose p, sent its

message at time u and the message is received by p]+ 1 at time t.Since the

interval [u, t] is contained in the interval [t, + ~, t,+ 1 + e) and since we have

assumed that pi+ ~ has not sent ~+ ~ by time t,part (c) of CS3(i + 1) implies

that the value of ET for p,+ ~ must be ~+ ~ (the only other choice is

~+ ~ + PER, but by inspection of tasks TM and MSG, a message with synchro-

nization value ~+ ~ is sent out when ET is set to ~+ ~ + PER). Thus,

lCP\u) - CP,+~u)l < DIW4X; since t > u, it follows that C,,+,(t) > C,,(u) -

DMXX. There are now two cases. If p, used task TM to send out its message,

then CPJU) = ~+l. Thus, CP,+jt) > ~+1 – DM21X, so in this case the message

(which arrives with one signature) passes the timeliness test. If pj used task

MSG, pj was responding to a message with s signatures and sending a message
with s + 1 signatures. Since p~ found the message timely, CP,(U) > ~+ ~ — s - E,

(t) > ~+ ~ – (S + 1)-E. Since p,+ ~ receives the message with s + 1and so CP,+,

signatures, again it passes the timeliness test. By task MSG, it now follows that

p~ + ~ sends out a message with synchronization value ~.* sometime in the
interval [t, + ~, t,+, + (j + l)tdel). Since k. tdel < d < e, it follows that q sends

out such a message before time ti+ ~ + e. By P4 when q sends out this message,

it sets ET~ to L(+ ~ + PER. By P1 this contradicts the original conclusion that

ETq(tl, ~ + e) = ~+ ~. The contradiction completes the proof of (d).

Part (e) is immediate from part (d) and P1. ❑

Proof of Theorem 4.2.1. By Lemma 4.2.3 @ satisfies P1–P4 in every run. By

l&tamic Fault-Tolerant Clock Synchronization 163

Lemma 4.2.10 it satisfies CS3(i) for all i >0 in every run. It now follows by

Lemmas 4.2.7, 4.2.8, and 4.2.9 that it also satisfies CSl(i), CS2(i), and CS4(i).

For each synchronization value, each correct processor sends at most n – 1

messages: one synchronization message to each of its neighbors. Thus, fewer

than n2 message are sent for each synchronization value. This completes the

proof of Theorem 4.2.1. ❑

4.3. PERFORMANCE ISSUES. We now consider some typical values for the

parameters of the algorithm. Suppose p = 10-6, tdel = 0.1 second, and the

network is completely connected with n processors. Then, so long as there are

no more than two processor failures and the network remains connected with

diameter at most 2, we can take PER = 1 hour, d = e = 0.2 second, E =

DMAX = 0.21 second, and ADJ = 0.63 second. If we allow only processor

failures (as is the case in Lamport and Melliar–Smith [1985] and Welch and

Lynch [1988], then we can do even better, since we are assured that the

diameter of the network is still 1. We can take PER = 1 hour, E = DMXX =

0.11 second, d = e = 0.1 second, and AD.1 = 0.33 second. Note that D W is

roughly equal to d. As stated in Section 2, we can make d, and hence DM.4X,

smaller by giving the synchronization process high priority in the scheduling of

the operating system of the processor.

Since our algorithm never sets clocks back, if duration timers have fixed

rates of drift from real time (as is often the case) and there are no faults, then

clocks will run at the rate of the fastest correct duration timer. This means that

logical clocks of correct processors will tend to run faster than real time. In the

worst case, we have from Theorem 2.1 that processors run at a rate of

PER/(PER – ADJ). Since ADJ = (f+ l)E, if PER >> ADJ and E = DMAX

= (1 + p)e + 2P” PER (these assumptions will all be typically true in practice),
this worst-case rate is approximately equal to 1 + (ADJ\PER) = 1 + (f+

1)2 p. In Srikanth and Toueg [1987], an algorithm is given that attains optimal

synchronization in the sense that logical clocks are within the same envelope

of real time as duration timers (i.e., (1 + p)-l(u – u) < C(U) – C(u) < (1 +

P)(u – U) for u > u). However, to maintain this optimal synchronization,
Srikanth and Toueg [1987] require that the number of faulty processors f be

less than half the total number of processors, a requirement they prove

necessary, even with authentication. Moreover, the value of DMAX they can

achieve is essentially twice ours in completely connected networks. One way to

still use our algorithm but perhaps decrease the rate of speedup is to measure

the rate at which logical clocks gain time in practice using our algorithm, and

then to set duration timers to run slower by that rate.
In our algorithm, DikMX gives an upper bound on the difference between

clocks of correct processors that have the same value of ET. There may be a

short interval of time (a subinterval of [t,, t, + e]) during which correct proces-

sors have different values of ET. By part (c) of CS3(i), itfollows that even in

this short interval their clocks differ by at most ADJ + (1 + p)e. If we assume

that p = O and E = DJL4X, then (since ADJ = (f+ l)E) this difference is

bounded by approximately (f + 2)e + 2p. PER. Using the estimates for p and
PER given above, we see that the dominant term here is (f+ 2)e. This amount

may be unacceptable in large systems, where f may grow linearly with n. One

way around this problem is to prevent events that require timing from taking

place in this interval, as suggested in Lamport and Melliar-Smith [1985].

164 D. DOLEV ET AL.

However, there is another approach. We can simply continue using the “old”

logical clock (without making any adjustments) to time events that begin before

time t, and continue running after a clock adjustment is made. If dur is the

maximum real-time duration which a clock might be used to time some

distributed process, a virtual clock coinciding with logical time until the process

starts and then undergoing no adjustments will suffice. Unadjusted logical

clocks will differ by at most DMXX + A . dur during this interval, which may be

significantly less than AD] + (1 + p)e.

Yet another approach is to make logical clocks continuous functions of real

time, rather than just being piecewise continuous. We can do this by amortizing

the adjustment we make to clocks over some time interval, rather than doing it

all at once. This idea was suggested in Lamport and Melliar-Smith [1985]. We

present an algorithm for continuous clocks in Section 9.

Since we can take e = d in this algorithm, the bound on synchronization that

we maintain (DiM4X = (1 + p)e + 2 pPER) is essentially within a factor of 2

of the optimal bound of d/2 attainable in systems with no clock drift at all (see

Dolev et al. [1986] and Halpern et al. [1985] for further details). However, the

bounds in question are guaranteed, worst-case bounds, and it may be possible

to synchronize with much tighter precision with high probability (see, e.g.,

Cristian [19891).

5. Initialization and Joining

There are two issues that remain. The first is initializing the system so that

logical clocks are started within less than d time units. The second is integrat-

ing (joining) new or repaired processors so that their logical clocks are

synchronized with those of all the other processors.

The first task can be accomplished quite easily by a simple message diffusion

[Cristian et al. 1986; Dolev et al. 1986]. We assume that each of the processors

initially in the network starts either spontaneously or upon receipt of a

message from another processor. As soon as a processor starts, it sets A =

–DT (thus setting its logical clock to O) and sends a message to all of its

neighbors. By assumption A2, this diffusion requires less than d units of real

time.

We now turn our attention to the problem of joining, to which most of the

remainder of the paper is devoted. We start with some notation: A previously

synchronized group of processors is called a chlster, and a new processor that

wants to join the cluster is called a joiner. We want an algorithm that allows a

processor to join a cluster within a bounded time of requesting to do so. Such
an algorithm is crucial in a dynamic network in which new processors arc being

added to the system. If we have a method of fault detection, such a join

algorithm also allows faulty processors that have been repaired to rejoin a

cluster.

An algorithm achieves bounded joining if for some bound b > 0 a correct

processor that requests to join a cluster is guaranteed to join within real time

b. Unlike the basic clock synchronization algorithm, which does not require

that some minimum number of processors be correct, a necessa~ condition for

a bounded joining algorithm to be guaranteed to succeed is that a majority of

the processors in the cluster be correct.

Dynamic Fault-Tolerant Clock Synchronization 165

THEOREM 5.1. No algorithm can maintain LES and guarantee a bounded join

if a processor tries to join a cluster where one half or more of the processors are

faulty.

PROOF. Assume algorithm ~ maintains LES with parameters A, a, ~, y,

and ~ and bounded joining with bound b. Consider a run r where all n

processors are correct throughout the run and in the same cluster. Choose a

real time t and choose T such that the time on the logical clocks of the

processors in the cluster at real time t is at most T. Now choose T’ such that

T’ – T > b(y(l -t p) – a(l + p)-l) + (8 – ~) + 2A. The LES condition

guarantees that at some time t’ in run r, the logical clocks of all correct

processors show a time greater than T’. (This would not necessarily be true if

&Z’ were not required to maintain LES; for example, r might be a run where all

logical clocks always read O.)

We use r to construct two further runs of ~. Divide the n processors into

groups X and Y, each of size n/2 (we assume for simplicity that n is even). In

the first run, rx, the processors in X are correct and processor p (a new

processor, not in either X or Y) tries to join at time t.All the processors

proceed through run tx until time t just as in run r. At time t,processors in Y

move into the state they had at time t’ in r. In the second run, rY, the

processors in Y are correct and p tries to join at time t’with the same local

state it has when it tries to join in rx at time t.All processors proceed through

run rY until time t’just as in run r. Then just as p tries to join, processors in

X move into the state they had at time t in r. Note that at and after the time p

tries to join, no processor can distinguish the two scenarios. Moreover, at the

time p tries to join, the clock of each processor in X differs from the clock of

each processor in Y by more than T – T’.

By assumption, p joins the network at some point in an interval of length b.

The clock of each processor in X differs from the clock of each processor in Y

by at least T’ – T when p joins. Condition Al, part (2) of the LES condition,

and the choice of T’ guarantee that they differ by at least 2A throughout the

interval of length b after p joins. Thus, p will not be within A of the correct

processors in at least one of the two scenarios. ❑

Theorem 5.1 does not preclude the possibility of eventual joining (i.e., the

existence of an algorithm guaranteeing that a processor that requests to join

will in fact eventually join the network, with no guaranteed upper bound on the

time required). For example, in the situation sketched in the proof, if there

were no bound of the time required to join, the joining processor could tell the

“fast” processors to run slower and the “slow” processors to run faster, each

group still staying within some linear envelope. We conjecture that an algo-

rithm that achieves LES and eventual joining may exist without the assumption

that less than half the processors are faulty. (The following is an idea for such a

possible protocol: A joiner can obtain synchronization values from all partici-

pants (this can be done, for example, using the join protocol we describe in

Section 7). If a processor sees that the synchronization value it sent is above
the average value of the set, then it slows down by an agreed-upon rate;

otherwise, it speeds up by this rate. If this rate is sufficiently large, then joiners

and all other processors can detect and ignore uncooperative processors. The

process is repeated periodically until all synchronization values in the set are

166 D. DOLEV ET AL.

the same or ignorable. Then joiners can join the unanimous set.) However,

since our interest in this paper is in bounded joining, we assume for our join

algorithm that less than half the processors are faulty.

6. A Synchronous Update Seruiee

In this section, we present an algorithm that enables a processor to keep track

of the current list of processors in the cluster, and enables all the processors in

the cluster to essentially agree on which processors are in the cluster. This

algorithm solves the atomic broadcast problem as presented by Cristian et al.

[1986], but only for our special purpose. It is not suggested as a general-pur-

pose atomic broadcast algorithm. We use it to update the list of joining

processors as of the same clock time on all correct, joined processors in the

system.

Again, we start with some definitions. We assume that each processor

maintains a data structure suggestively called a (synchronous) replicated mem-

ory. We say that replicated memory is consistent in a set of processors at clock

time T if the replicated memories on all correct processors in the set are

identical as of clock time T. We provide a ,gwchronous update algorithm that

guarantees that all updates to this structure are made at the same clock time

by each processor in a cluster. (Note the similarity of these informal specifica-

tions to those of Byzantine agreement [Dolev and Strong 1983; Pease et al.

1980].) Thus, by using the algorithm, we can maintain the consistency of

replicate memory. We use the algorithm to ensure that all correct processors

agree on who is currently in the cluster.

The update algorithm is assumed to run concurrently with a clock synchro-

nization algorithm that satisfies P 1–P4 and CS 1–CS4. We now define the

specifications of the update algorithm formally. Again, it is useful to parame-

trize the specification by i. We require that the following two properties are

satisfied for all i >0, and all correct processors p:

SUl(i):

SU2(i):

If p initiates an update UPD to replicated memory at time t such that

~ < ETP(t) < ~+1, then by time t,,~,the replicated memory for all

processors that are correct with ET defined at t,+~ is updated with

UPD.

If p updates its replicated memory with UPD at time t with ~ <

ETP(t) s ~+ ~ and CP(t) = T, then for all processors q correct at time

t1+1 with ETq(t, +,) defined, there exists a time tq< t,+~ such that

Cq(tq) = T and q updates replicated memory with UPD at tq.

Intuitively, SU1 guarantees that if a correct processor initiates an update UPD

to replicated memory, all memories are updated with UPD within a bounded

real time. SU2 guarantees that if any correct processor updates its replicated

memory with UPD, then all correct processors do so, and they do so at the

same time U on their local clocks.
We now provide an update algorithm. The algorithm has a similar flavor to

the clock synchronization algorithm. Just as all the updates to clock values

occur at prearranged times ET (which are all multiples of PER), updates to

replicated memory occur in the update algorithm at prearranged times which,

for technical reasons explained later, we take to be times of the form ET –

Dynamic Fault-Tolerant Clock Synchronization 167

AD.1. We show that in order to ensure that processors hear about this message

in time to do the update, the message must start diffusing through the system

at time ET – 3 “ALU. We have to strengthen the Separation Inequality, which

in earlier sections had the form PER > ADJ, to guarantee that such times

appear on the clocks of all correct processors.

As in the clock synchronization algorithm, information about the update

diffuses throughout the network, and processors apply tests to determine if the

information has arrived at an acceptable time. Processors now maintain two

sets UPDMSG and PENDING, both containing pairs of the form (T, UPD),

where T is a clock time and UPD is an update value to be applied to replicated

memory. UPDMSG consists of messages to be sent out and the times they are

to be sent out, while PENDING consists of values with which replicated

memory is to be updated, and the times that the update is to take place.

Finally, MEM is a variable denoting the current replicated memory. We define

APPLY(MEM, UPD) to be an action that updates the replicated memory with

the value UPD.

The update algorithm consists of three tasks, UPDINIT, DIFFUSE, and

UPDATE. The first task, UPDINIT, is the analogue of task TM in the clock

synchronization algorithm. If CP = ET – 3. ADJ and processor p has a pair

of the form (T, UPD) = UPDMSG, with (T + 2 “ADJ, UPD) not already in

PENDING and T = ET – 3. ADJ, then, using task UPDINIT, processor p

signs and sends a message SYNC(T, UPD) to all its neighbors. We can think of

this message as saying “schedule an update UPD to replicated memory at clock

time T + 2 .ADJ(= ET – ADJ).” This means (T + 2 .ADJ, UPD) must be

added to the PENDING list. On the other hand, (T, UPD) can be removed

from the UPDMSG list once the message is sent. (In our applications, we

guarantee that for all pairs (T, UPD) = UPDMSG, T indeed has the form

k oPER – 3 “ADJ, so there will be no “useless” pairs in UPDMSG.) If (T+

2 “ADJ, UPD) G PENDING, then the update has already been scheduled, so

there is no need to schedule it again.

Task UPDINIT

if {((T, UPD) e UPDMSG) A ((T + 2. ADJ, UPD) @ PENDING) A (c = T)

A(T=ET–3” ADJ)}

then begin

SIGN AND SEND SYNC(T, 17PD);

PENDING e PENDING U {(T+ 2 “ADJ, UPD)};

UPDMSG +- UPDMSG – {(T, UPD)};

end

Task DIFFUSE is the analogue of task MSG in our clock synchronization

algorithm. It guarantees that a SYNC(T, UPD) message will be passed along,

provided the message is “convincing.” In order for the message SYNC(T, UPD)

to reach processor q convincingly, it must pass two tests. The first just checks

that T = ET – 3. ADJ. To show that a message is convincing, we need to show

that when a message sent by a correct processor p reaches q, the value of ETP

when the message was sent is the same as the value of ET~ when the message
is received. This is done in Lemma 6.1 below. The second test verifies that if s

is the number of signatures on the message, then T – s cE < C~ < T + 2s . E.

Unlike the test in task MSG, this test is a two-sided test, and is asymmetric.

Again, the size of the acceptable interval depends on the number of messages,

168 D. DOLEV ET AL.

so that a message considered convincing by p and then forwarded to q will still

be considered convincing by q. The reason for the factor of 2 in the right-hand

side of the inequality is that one multiple of E is needed to allow for the

difference between the clocks of p and q, and another to allow for the time

taken by the message to diffuse from p to q.

Task DIFFUSE

if {(an authentic message M of the form SYNC(T, UPD) is received with s

distinct signatures of other processors) A ((T+ 2 “ADI, UPD) Z PENDING)

A(T– S” E< C< T+2S” E) A(T= ET–3” ADJ)}

then begin

SIGN AND SEND M;

PENDING e PENDING U {(T+ 2 “x4DJ, UPD)};

UPDMSG G UPDMSG – {(T, UPD)};

end

Finally, task UPDATE updates synchronous memory.

Task UPDATE

if {((T, UPD) = PENDING) A (C = T)} then

APPLY(MEM, UPD);

PENDING h PENDING – {(T, UPD)};

end

We now prove that this algorithm provides an update service. The proof, not

surprisingly, has much the same flavor as the proof of correctness for protocol

.&. We assume that all the constants satisfy the same inequalities as before,

except that, as hinted above, we need to strengthen the Separation Inequality

(PER > ADJ) to

● PER > 4. ADJ (Strong Separation Inequality).

To guarantee that this inequality together with the drift inequality (E >

DAL4X) can be satisfied, we need to strengthen assumption A5 by adding the

extra factor of 4:

A5’: 8p(t + 1) <1.

We henceforth assume that we are working in systems that satisfy A1–A4 and

A5’ and that our parameters have been chosen to satisfy all the properties

described in Section 4, together with the Strong Separation Inequality.

We first prove a lemma which guarantees that the values of ET do not

change while update messages are diffusing through the system, provided that

certain conditions are fulfilled. These conditions are all fulfilled by our clock
synchronization algorithm M. In addition, we show that they are also fulfilled

by the join algorithm that we provide in the next section. Thus, this lemma

applies in both contexts.

LEMMA 6.1. In ez,ery run satisjjing P1-P4, CSl(i), CS3(i), CS4(i), t,+ ~ > t,

+ e, and parts (a) and (b) of CS3(i + 1), ifp is correct at time t, ~ < ETP(t) <

v ,+1, and ETP(t) – 4 “ADJ + DiVL4X < CP(t) < ETP(t) – ADJ – 2 .DMAX,

then tl+e <t <tl~l – d. If in addition q is correct with ETq defined at time

LL c [t, t + d], then ETq(u’) is defined and ETq(u’) = ETP(t) for all a’ c [t, u].

PROOF. Suppose r is a run where the hypotheses of the lemma hold. Since

ETP(t) > ~, by part (a) of CS3(i), we must have t > t,.In addition, since

Dynamic Fault-Tolerant Clock Synchronization 169

ETP(t) and ~ must both be multiples of PER, itfollows that ETP(t) > ~ +

PER. Since Cp(t)> ETP(t) – 4. ADJ + DiW4X and, by our constraints PER

>4 “ADJ and DihlAX > (1 + p)e, it follows that CP(t) > ~ + (1 + p)e. So,

by part (c) of CS3(i), we must have t > t, + e. We want to show that in fact

t+d<t, +l. If t,+l is infinite, this is immediate. If not, there is some

processor, say q’, which is correct at t,+ ~. By part (b) of CS3(i + 1), we must

have ETq,(t, +l) = ~+ ~. Let u = rnin{tz+l, t}. Because tl+l > t, + e, Csd(i)

implies that both CP(u) and C~,(v) are defined. Using parts (a) and (b) of

CS3(i + 1), we have that ETP(LI) and ET~(u) are both < ~+ ~. Using part (e)

of CS3(i), we have that ETP(L) and ETq,(u) are both > ~. CSl(i) now implies

that lCP(L~) – C~,(Zl)l < DMAX. Thus, C~(u) < CP(LI) + D&L4X < CP(t) +

DMXik<~+l – ADJ – DA44X. Moreover, C~,(t,. ~) > ~+ ~ – ADJ by part

(b) of CS3(i + 1). It follows that

Cq(ti+l) – Cq(u) > DMAX> (1 + p)e > (1 + p)d.

Thus, t,+~ > u.Since u = min{t, t,+~},itfollows that L) = t and t < t,+~.CM(i)

implies that Aq, is constant in the interval [t, t,+ ~), so, since C~,(t, + ~) – C~l u)

> (1 + p)d, by Al we must have t,+l> t + d.

Suppose that u c [t, t + d],processor q is correct at time u, and ET~(u) is

defined. By CS3(i) and part (a) of CS3(i + 1), we have ~ + PER < ET~(u) <

v [+1. By CS4(i), q is correct and C(I is continuous in the interval [t,u]. In

particular, this means that q does not adjust its clock in this interval. From

CSl(i), it follows that lCP(t) – C~(t)[< DillAX. We have assumed that ETj(t)

– 4 “ ADJ + DikMX < CP(t) < ETP(t) – ADJ – 2. DM.4X. Since PER >

4 “ADJ by the Strong Separation Inequality, we have that

ETP(t) – PER < C~(t) < ETP(t) – ADJ – DMAX.

Since q does not adjust its clock in the interval [t, u], we have, for any

u’ = [t, u],

ETP(t) – PER < C~(u’) < ETP(t).

By P3, we know that

E~l(u’) – PER < C~(L1’) < ET~(u’).

Since ETP(t) and ET~(u’) are both multiples of PER by P2, it follows that

ETP(t) = ET~(u’). ❑

We now prove the correctness of the algorithm.

THEOREM 6.2. If a run of the algorithm above satisfies P2, the?z all updates to

synchronous memoiy are cam”ed out at a time of the form k . PER – ADJ, where k

is a positiue integer. For each i >0, if a run satisfies PI–P4, CS l(i), CS3(i),

CS4(i), parts (a) and (b) of CS3(i + 1),and ft, is finite, then t,+ ~ > t, + e, and

also satisjies SU l(i)and SU2(i). Moreover, each update to synchronous memoty

requires at most n 2 messages.

PROOF. By Task UPDATE, an update to synchronous memory is carried

out by a correct processor p only if Cp(t) = T and (T, UPD) = PENDINGP. By

tasks UPDINIT and DIFFUSE, if (T, UPD) is inserted into PENDINGP at time

t,then T = T’ + 2. ADJ, where T’ = ETP(t) – 3. ADJ. By P2, ETP(t) = PER

for some positive integer k, so that T = k . PER – ADJ. Note that P2 is the

only property used here.

170 D. DOLEV ET AL.

To prove the remainder of the theorem, assume we have a run of the

algorithm that satisfies P1–P4, CSl(i), CS3(i), CS4(i), parts (a) and (b) of

CS3(i + 1), and if t, is finite then t,+ ~ > t, + e. First note that if t, is infinite

then SUl(i) and SU2(i) hold vacuously; so we may assume that t, is finite and

that t,+l > t, + e.

CLAIM

(a) If p is the first correct processor to add (T+ 2” AM, UPD) to PENDING,

and it does so at a time t with ~ < ETP(t) < ~+ ~, then T = ETP(t) –

3 “AD.7 and every correct processor with ET defined throughout the

interval [t,t + d) will have added (T + 2. ADI, UPD) to PENDING at

some time in this interval.

(b) If q is a correct processor With ET defined at t,+ ~, then there will be some
time t~ < t,+* such that Cq(tq) = T + 2 “AD.1 and q will update its repli-

cated memory with UPD at time tq.

For part (a) of the claim, there are two cases to consider: (1) Processor p

initiated the update using task UPDINIT by signing and sending the message

SYNC(T, UPD) at time t and (2) p received a convincing message SYNC(T,

UPD) at time t,and thus added (T + 2. ADJ, UPD) to PENDING using task

DIFFUSE.

In case (l), task UPDINIT guarantees that CP(t) = T = ETP(t) – 3 “AD~.

We now show that the message SYNC(T, UPD) diffuses through the network

of processors that are correct and have ET defined in the interval [t,t + d]

within real time d. It suffices to show that when a correct processor q’ sends a

message SYNC(T, UPD) to its neighbor q, the message reaches q convincingly

if q is correct and has ET defined. Suppose the message reaches q at time t’

with s signatures. By A2, it follows that t’ < t + d, so itfollows from Lemma

6.1 that T = ETP(t) – 3 “AIM = ET~(t’) – 3 “ADJ. Thus, the message passes

the first test. Moreover, Lemma 6.1 guarantees that t’ < t + d < t,+ ~, so no

synchronizations occur in the interval [t,t’1.Thus, Cp(t’)< C (t)+ (1 + P)d.

Since, by CSl(i), we have lC~(t’) – CP(t’)l < DAL4X and CP(t~ = T, itfollows

that T – DTL4X < C~(t’) < T + Dk!XX + (1 + p)d. Our constraints now

guarantee that T – E < C~(t’) < T + 2E, so the message passes the second

test.

In case (2), p must receive a SYNC(T, UPD) which was convincing at time t.

Suppose the message has s signatures. These must be the signatures of faulty

processors (otherwise p would not be the first correct processor to add

(T + 2 “ADJ, UPD) to PENDING), so we must have s s f by’ A4. We must
have T–s. EL CP(t)~T+2s” E and T= ETP(t)–3’ADJ- Since s~f

and ADJ = (f+ l)E, it follows that ETP(t) – 4. ADJ + DW < c’P(t) <

ET (t) – ADJ – 2” DTL4X. Thus, the hypotheses of Lemma 6.1 are satisfied.

Ta~ing q and q’ as in the previous paragraph and using the same reasoning as

above, we can again show that T = ETP(t) – 3 “ADJ = ET~(t’) – 3 “ADJ, so

the first constraint is satisfied. Also, T – (s + 1)“E < C$t’) < T + 2(s + l)E,

so the second constraint is satisfied as well. Since s s f, we have T – ADJ <

C.q(t’) < T + 2” ADJ; we use this fact below. Again, the message successfully

diffuses throughout the network, and part (a) is proven.

For part (b) of the claim, suppose q is correct and has ET defined at t,. ~. By

Lemma 6.1, we have t, + e < t. Therefore, by CS4(i) and CS3(i + l)(b), q is

@tamic Fault-Tolerant Clock Synchronization 171

correct and has ET~ defined in the interval [t, t,+~]. It follows from our

arguments above that q adds (T + 2. All, UPD) to PENDING at some time

t‘ in the interval [t, t + d). Thus, it suffices to show that there is a time

tqG [t,t,+~) such that Cq(tq)= T + 2. AD], since it is clear that using task

UPDATE, replicated memory will be updated at such a time tq.Suppose that

C~(t’) = T’. We have shown that T – AM < C~(t’) < T + 2. ADJ. In particu-

lar, this means that the update is scheduled for a time in the future. From

CS4(i) and CS3(i + l)(b), it follows that A~ is constant in the interval [t’,t,+ ~);

hence, C~ is continuous in this interval. By CS3(i + l)(b), we have C~(t,, ~) >

v – AD] > ET~(t’) – AD.1 = ETP(t) – ADJ = T + 2 .ADJ. By continuity,1+1

there must be a time tq in the interval when C~(t~) = T + 2. AD.1, proving

part (b) and hence the entire claim.

It is easy to see that SUl(i) follows immediately from part (a) of the claim.

For SU2(i), suppose that p updates its replicated memory with UPD at time t

with ~ < ETP(t) s lf+l. Suppose that CP(t) = T + 2. AD.1. Then, by task

UPDATE, it must be the case that (T + 2. ADJ, UPD) = PENDING. By

P3, it follows T + 2” ADJ s ETP(t) < T + 2 “AD.1 + PER. Suppose that q is

the first processor to add (T + 2 “AD.1, UPD) to PENDING, and suppose it

does so at time t’.We now prove that ETq(t’) = ETP(t). As our earlier

arguments showed, we have T – ADJ < Cq(t’) < T + 2 “ADJ. In addition,

tasks UPDINIT and DIFFUSE guarantee that T = ET~(t’) – 3. ADJ. It fol-

lows that lETq(t’) – ETP(t)/ < PER and hence (since ET is always a multiple

of PER), that ET~(t’) = ETP(t). Thus, ~ < ETq(t’) s ~+ ~. By the claim, it

follows that for all processors q’ with ET defined at ti+~,there is some time

t~, < t,+~ such that C~ (tq,)= T + 2. ADJ and that they update replicated

memory with UPD at this time.

The nz message bound is straightforward, since it is clear that for each

update message each processor sends at most one message to each of its

neighbors. H

We can improve the performance of the update algorithm somewhat if we

can get a better estimate on d than E. Recall that E was meant to be an

estimate on DMAX. If we can get an improved estimate D on d, then we can

replace thetwo-sided test T–s. E< C< T+2S. E by T–s. E<C<T

+ s o(D + E). It is easy to see that our proofs go through without change in

this case. We leave details to the reader.

7. A Synchronization Algorithm for Bounded Join

We now modify algorithm M to produce algorithm U? that maintains LES and

allows bounded joining. Like the basic synchronization algorithm M of Section

3, algorithm &7 consists of a number of tasks that run continuously and

independently on each processor. We describe the algorithm and the assump-

tions needed to guarantee its correctness in this section, and analyze it in the

next section.

For the correctness of the join algorithm, we need assumptions A1–A4 and

A5’, the stronger version of A5 introduced in the previous section. In addition,

we need two more assumptions. The first assumption (A6) says the signatures

of correct processors always form a majority of the signatures available dur-

ing a join process. (This is sufficient to overcome the impossibility result of

172 D. DOLEV ET AL.

Theorem 5.1. For simplicity, we require that the assumption holds at all times

t > to+ d; however, it is only required to hold during a join process.)

A6: For all t > to+ d, there are more than ~ processors that are correct and

joined throughout the interval [t, t + d].

The next assumption (A7) says that at all times t a correct processor is

connected to another processor that is joined and correct throughout the

interval [t, t + d + (1 + p)PER]. This assumption will be used to guarantee

that a joining processor has a neighbor that it can rely on to notify the other

processors that it wants to join.

A7: For all processors p and all times t > to, there is a Correct joined

processor q that is a neighbor of p such that q is correct throughout the

interval [t,t + d + (1 + p) PER1.

A7 can be eliminated, although the result would be a more complicated

algorithm. Instead, we assume that PER is small, thus mitigating the strength

of A7. The role of the parameter PER in algorithm .& is now shared by two

parameters, LPER and PER, where LPER should be thought of as a large

multiple of PER. As before, resynchronization values are multiples of PER.

Roughly speaking, if there are no processors trying to join, then a resynchro-

nization will take place once every LPER. If processors are trying to join, then

a resynchronization will take place within PER, thus minimizing the amount of

time joining processors have to wait to join the cluster.

In addition to PER and LPER, the algorithm uses the parameters E, ADJ,

and ~ (so that, informally, processors know an upper bound on the number of

failures). Again, each processor has local variables ET, xl, and C, as well as

local variables CLUSTER (describing which processors are currently in the

cluster), JOINERS (describing which processors want to join), and a number of

other variables we shall describe shortly. Formally, we say that a processor p is

joined at time t if ET’’(t) is defined. We extend the definition of correct

processor to cover processors that join after initialization as follows: a proces-

sor p is correct at time t if it follows its algorithmic specification, and, if it is

joined, its duration timer has been correct (i.e., has satisfied Al) from the time

it joined through time t.

We assume that a joiner knows who its neighbors are. We also assume that

all the processors in the network (including the joiners) know their own

signature functions (the SP of assumption A3) and how to check the signatures

of all processors in the network, as well as the values of the parameters D, ~,

E, PER, and LPER. For simplicity, we assume that the signature function of a

joining processor is distinct from all other signature functions that were ever
used in the network. (In particular, this means that if a processor is rejoining

after being repaired, it must use a new name and signature.)

A8: If at time t some correct processor possesses a signature of processor p

and if p is correct at time t,then p has been correct since it issued the

signature.

At the end of Section 8, we indicate how to remove this assumption, at the

cost of a slight increase in the complexity of the algorithm and an increase to a

worst-case time requirement for all joins. For simplicity, we also assume that

the string representing the name of any processor p is unforgeable. (For

example, we could identify p with Sfl applied to the empty body.)

Dynamic Fault-Tolerant Clock Synchronization 173

We assume that a correct processor that wants to join has a correct duration

timer, but its variables ET, A, C, and CLUSTER are all undefined. We show

how they become defined during the execution of the algorithm. We also

assume an initial cluster RO containing more than ~ correct joined processors,

all initialized (using the initialization algorithm discussed in Section 5) during

the interval [t.,to+ d).The correct members of the initial cluster are initial-

ized with A = – DT, ET = PER, JOINERS = 0, and CLUSTER = RO.

The first task of the algorithm is called RTJ (for request to join). When a

processor wants to join a cluster, it sends out a special “request-to-join”

message of the form RTJ(p) to its neighbors. (We assume some mechanism for

p to decide when it wants to join.)

Task RTJ (Request to Join; for joiner)

if processor p wants to join then begin

SIGN AND SEND RTJ(P);

end

All correct processors must agree on which processors want to join. Thus,

when a processor p in the cluster receives a request-to-join message from q,

processor p schedules an update to replicated memory at the first possible

clock time after it receives the message (by appropriately updating UPDMSG).

Thus, if p receives a message before time ET – 3. ADJ, it schedules the

sending of a SYNC message for time ET – 3. ADJ. If not, then it is too late to

send the message in this synchronization period, and the message is scheduled

to be sent at time ET + PER – 3 “ADJ. It is possible for one correct processor

to receive a request-to-join message from q before time ET – 30 ADJ, while

another does not. Our later tasks will ensure that replicated memory is

updated only once.

The result of the update adds q to JOINERS. Since our update algorithm

ensures that all processors in the cluster perform the update at the same clock

time, this guarantees that all processors in the cluster will agree on JOINERS.

By including q’s signature on the request-to-join message, p is “proving” to all

the other processors that the update message was sent in response to a

request-to-join message. Without this requirement, it would be possible for a

faulty processor to arrange for “phantom” processors to join the network.

Task ADD

if {(joined) A (an authentic message M with body RTJ(q) is received)} then

begin

if C< ET–3SADJ then T~ET–3” ADJ else T~ET+PER–3”

ADJ;

UPDMSG e UPDMSG U ({T, M)};

end

The next task TM’ is the analogue of task TM. Just like TM, the task TM’ is

invoked when a processor’s clock reads ET before the processor has received

any authentic synchronization messages. However, there are some differences

between TM and TM’. The most important is that TM’ must also add new

processors to CLUSTER. Thus, when a processor p invokes TM’, it sends out a

message “J(ET, JOINERS u CLUSTER)” which says (essentially) “The time is

ET; set CLUSTER to JOINERS U CLUSTER.” The message is sent to all of

p’s neighbors in JOINERS U CLUSTER. (This is how we interpret the primi-

tive SEND below.) The second half of the message does not convey any useful

174 D. DOLEV ET AL.

information to the processors currently in the cluster, since, as we shall see,

they all agree on JOINERS and CLUSTER. However, it does convey useful

information to the joiners. By getting copies of this message from a number of

processors, they will learn which processors ought to be in the current cluster.

(In general, we would need to include the complete contents of replicated
memory in this message, so that a joining processor would be able to set its

replicated memory appropriately. For simplicity, we assume there is no other

replicated memory here.)

Another difference between TM and TM’ is the result of optimization. We

would like to take PER to be relatively small in this algorithm, to allow a

processor to join CLUSTER soon after requesting to do so. However, we do

not want to desynchronize every PER time units if there are no requests to

join, since this would result in excessive amounts of message traffic due to

unnecessary synchronizations. Thus, a processor invokes TM’ only if JOINERS

– CLUSTER # 0 (which means it knows of some new processors that want to

join) or if LPER divides ET (where LPER is an appropriately chosen multiple

of PER). Therefore, during intervals in which there are no joins, synchroniza-

tions will occur roughly every LPER.

There is one last minor subtlety in TM’. We mentioned above that it is

possible that a joined processor p receives a request-to-join from q before

time ET – 3 “ADJ on p’s clock. while another joined processor p‘ receives q‘s

request-to-join after ET – 3 “ADJ. Assuming that p remains correct long

enough to initiate an update to replicated memory, q will be in the set

JOINERS for all processors, although p’ will also have scheduled sending a

message telling everyone to add q to the list of JOINERS during the next

synchronization period. Since this would be an unnecessary update, for all

processors q e JOINERS, we remove from the UPDA4SG list all pairs of the

form (T, M), where the body of M is RTJ(q). Let REMOVE(UPDMSG,

JOINERS) be the task which does this.

TM is run only by processors in the cluster (since they are the only ones

with C defined). After the message is sent out, a number of variables are

updated appropriately. Besides the variables mentioned already, algorithm J%’

uses new variables LASTV and LASTJ that record the last synchronization

value sent out and the last value for JOINERS. (Initially, LASTV is undefined

and LASTJ is 0.) After the message is sent, LASTV is set to ET and LASTJ

is set to JOINERS. In addition, ET is updated (by adding PER), CLUSTER is

redefined to JOINERS U CLUSTER, and JOINERS is set to 0.

Task TM

if C = ET then begin
if {(JOINERS – CLUSTER + 0] or (LPER divides ET)} then begin

SIGN AND SEND J(ET, JOINERS U CLUSTER);

LASTV +- ET;

CLUSTER G JOINERS U CLUSTER;

LASTJ G JOINERS;
REMOVE(UPDMSG, JOINERS);

JOINERS b D;

end;
ET G ET + PER;

end

~narnic Fault-Tolerant Clock Synchronization 175

We next describe Task MSG, which is the analogue of Task MSG. In more

detail, task MSG works as follows: If processor p receives a message of the

form J(T, R) signed by the processors in SIG that is tinze~, i.e., T = ET,

ET – ISIGI” E < C, and R = JOINERS U CLUSTER, then, as before, p passes

on the message, adjusts its clock to ET, and increases ET by PER. In addition,

p keeps track of the last values of ET and JOINERS, adds the processors in

JOINERS to CLUSTER, and sets JOINERS to 0. One new feature here

(whose importance will become more apparent when we consider the next task)

is that p records which processors signed the message, using a variable MSIG.

MSIG consists of tuples of the form (T, R, SIG), where SIG is the set of

processors (other than p itself) that are known to have signed a message of the

form J(T, R). Initially MSIG is empty. For each T and R, we ensure that p

always has at most one tuple of the form (T, R, SIG). We define MSIG(T, R)

= SIG if (T, R, SIG) = MSIG; otherwise we take MSIG(T, R) = 0.

Task MSG

if {(an authentic message M of the form J(T, R) with signature set SIG is

received] A (JOINERS – CLUSTER # 0 or LPER divides ET) A (T =

ET)

AR = JOINERS U CLUSTER) A (SIG G CLUSTER) A (ET – ISIGI -E
< c)}
then begin

SIGN AND SEND M;
AGET– DT;

LASTV G ET;

CLUSTER * JOINERS u CLUSTER;

LASTJ G JOINERS;

REMOVE(UPDMSG, JOINERS);

JOINERS G D;
ET +- ET + pER;

MSIG(T, R) +- SIG;

end

A joiner q is able to join the cluster when q gets the support of at least

~ + 1 processors in the cluster. A joiner q gets support from a processor p in

the cluster by getting a message of the form J(T, R) with q = R signed by p.

Task MSG’ alone is not sufficient to guarantee that a joining processor will get

sufficient support to join. The problem is that a processor p in the cluster will

not forward more than one message of the form J(T, R), since after p has

forwarded the first one, p will set ET to ET + PER, so the second such

message can no longer satisfy the requirement T = ET. By using the following

task FORWARD, p may still pass on a message of the form J(T, R) even if

T # ET. In fact, p will do so if all the following conditions are met:

● LASTJ # @ (so that there are some processors waiting to join),

o T = LASTV and R = CLUSTER (so that the message is one that p sent

before it adjusted its clock),
. IMSIG(T, T)l < f (so that p does not know of ~ processors besides itself

who have previously signed this message)
● SIG — MSIG(T, R) # @ (so that there are some new signatures on this

message).

176 D. DOLEV ET AL.

Task FORW~D

if {(an authentic message M of the form Y(T, R) with signature set SIG is

received) A (LASTJ # 0) A (T = LASTV) A (R = CLUSTER) A

(IMSIG(T, R)l <f) A (SIG – MSIG(T, R) # 0)}

then begin

SIGN AND SEND M;

MSIG(T, R) ~ MSIG(T, R) U SIG;

end

The task JOIN describes the steps taken by a joining processor in deciding to

join. A joining processor q collects messages of the form J(T, R). If, for a fixed

T and R, q collects f + 1 signatures on a message of the form J(T, R) (i.e.,

lMSIG(T, R)l > f + 1)) and q = R (so that q is one of the JOINERS), then q

sets C to T, sets ET to T + PER, sets CLUSTER to R, and sets JOINERS

and LASTJ to 0. At that point q has joined the cluster. Recall that if q is

correct, then q is joined if and only if q has ET defined. As we prove formally

in the next section, our assumptions guarantee that q collects f + 1 signatures

on a message of the form J(T, R) within a short time after the first correct

processor sets its clock to T; thus, q’s clock is indeed close to that of all the

other correct processors at this point.

Task JOIN

if {a processor in R with ET undefined receives an authentic message M

of the form J(T, R) with signature set SIG} then begin

if {IMSIG(T, R)[< f + 1} then MSIG(T, R) - MSIG(T, R) u SIG
if {I MSIG(T, R)l > f + 1} then begin

A~T– DT;

ET +- T + PER;

JOINERS G 0;

LASTJ ~ 0;

CLUSTER G R;

end

end

This completes the description of the algorithm.

8. Analysis of the Join Algorithm

In this section, we choose the parameters used in the algorithm of the previous

section and of conditions CS1–CS4 so that they satisfy the following conditions.

Our parameter definitions are similar to those used in algorithm M, but there

are some differences: we use the Strong Separation Inequality, we use LPER
rather than PER in defining DiWIX, and we assume e > 2 d rather than

e > d. This latter choice allows a bigger window to give the joiners time to join

the cluster.

We choose the parameters for Algorithm J2? as follows:

● e>2d,

o LPER is an integer multiple of PER,

● DMAX= (1 + p)e + 2p- LPER,

= ADJ = (f + l)E,

. E > DMXX, and

~ PER > 4. ADJ.

L&mmic Fault-Tolerant Clock Synchronization 17’7

Let ~ be the join synchronization algorithm described in Section 7, with

parameters chosen to satisfy the conditions above.

THEOREM 8.1. Under assumptions A1-A4, A5’, A6, A7, andA8, euery run of

algon”thm ~ satisjies P1–P4 and CSl(i)–CS4(i) for all i > 0. Moreok’er, a

correct processor p that requests to join will do so within (1 + p)(PER + 3. ADJ

+ DAL4X) + 3d of the time the request is sent. In addition, fewer than nz

messages are sent for each synchronization value for which there are no joiners and

n joined processors, and fewer than (k + f + I)nz messages for each synchroniza-

tion ualue for which there are k > 1 joiners and n joined processors.

From Theorem 2.1, we immediately get the following corollary to Theorem

8.1:

COROLLARY 8.2. Algorithm A%’maintains LES and achieves a bounded join

under assumptions A1–A4, A5’, A6, A7, and A8.

The proof of Theorem 8.1 is similar to that of Theorem 4.2.1. We have the

following sequence of lemmas, with proofs that are almost identical to those of

the corresponding lemmas in Section 4 (modulo considering the tasks of ~

rather than the tasks of M and occasionally considering LPER instead of

PER). Thus, we leave the proofs of these lemmas to the reader, indicating only

the major changes required.

LEMMA 8.3. Every run of S satisfies Pl, P2, P3, and P4.

CHANGES FROM THE PROOF OF LEMMA 4.2.3. We must check that these

properties hold for joining processors as well as for processors already in the

cluster. The only difficulty is showing that P2 holds for the joining processors.

If not, consider the first joining processor, say p, for which P2 fails. By

inspection of task JOIN, assumption A4, and our assumptions about initializa-

tion, we can show that p sets ET to T + PER, where T is a synchronization

value that must have been sent by at least one correct joined processor. Since

by hypothesis T must be a multiple of PER, we are done. ❑

LEMMA 8.4. Let t be a critical time for p. Then either (a) CP(t) is undefined

and CP(t+) = O, (b) CP(t) is defined and CP(t) > CP(t+) –f” E, or (c) p

receives a synchronization message with synchronization ualue CP(t +) by time t

signed by some other correct processor.

CHANGES TO THE PROOF OF LEMMA 4.2.4. It is now possible that t could be

a critical value for p because p joined at t.But in this case p must have

received messages with synchronization value CP(t+) signed by ~ + 1 proces-

sors, one of which must be correct by A4. Thus, (c) holds. ❑

LEMMA 8.5. If i >0 and t, is ji%ite, then (1) t, < t,, ~ and (2) there is a

processor that is correct at t, such that CP(ti) > ~ – f. E and ETP(t,) = ~.

LEMMA 8.6. In every run of@ and for all i >0, if part (a) of CS3(i) holds

and t, is finite, then t,+ ~ > t, + e.

LEMMA 8.7. If CS3(i) and CS4(i) hold in a run of 97, then so does CSl(i).

CHANGES TO THE PROOF OF LEMMA 4.2.7. Whereas before we could show

that there could be no point t’in the interval such that CP(t’) = PER, we can

178 D. DOLEV ET AL.

now show that there is no point t’ in the interval such that CP(t’) = LPER.

Thus, we need to replace PER by LPER in the expression for DMAX. ❑

LEMMA 8.8. If CS3(i + 1) holds in a run of 9, then so does CS2(i).

LEMMA 8.9. If CS3(i) holds in a run of@ and if ~ < ETP(t) < ~+ ~ implies

that ETP is defined throughout the interval [t, + e, t], then CS4(i) also holds.

Note that the hypotheses of Lemma 8.9 are stronger than those of the

corresponding Lemma 4.2.9, since we now have the clause “if ~. < ET’(t) s

v1+1 implies that ETP is defined throughout the interval [t, + e, t]”. This

clause is necessa~; since we now allow joining, it is not necessarily the case

that a processor with J(< ETP(t) < ~+ ~ has been joined since time t, + e.

We now prove an analogue of Lemma 4.2.10. In order to do this, we will

need some additional hypotheses. Define:

NEWO(i). If i >1, then no processors can join in the interval [t, _ ~ + e, t,];

moreover, if processor p joins after time ti _ ~ + e, then it must be as a result

of receiving a message of the form 1(~, R) with j > i and p = R.

NEWl(i). If a correct processor signs a message of the form I(Y, R), then it

does so first during the interval [t,,ti+ d] and all the processors in R still

correct at t,+ 2 d have joined prior to that time.

NEW’2(i). If i >1 and ~.l < ETP(t) < ~, then ETP is defined throughout

the interval [t, _, + e, t].

NEW’3(i). If p and q are joined correct processors at time t,, then .lOLV-

ERSP(t,) = Joiners and CLUSTER = Cluster.

NEW’4(i). If p and q are joined correct processors at time t, + e, then

JOINERSP(t, + e) = 0 and CL USTERP(t, + e) = CL USTER~(tl + e).

NE W5(i). If p is correct at time t < t,+ ~ and LASwP(t) is defined, then

LAS~P(t) = ~ for some j 5 i.

LEMMA 8.10. CS3(i), NEWO(i), NEWl(i), NEW2(i), NEW3(i), NEW4(i),

and NEW5(i) hold for all i >0 in every run of 9.

PROOF. We proceed by induction on i. For the case i = O, the proof of

CS3(0) proceeds just as in Lemma 4.2.10, so we omit it. NEWO(0) and

NEW2(0) are vacuously true since O z 1. NEW1(0) holds because VO = O by

definition, and, by P2, no correct processor signs a message of the form J(O, R).

For NEW3(0), note that there are no joined correct processors at time to.For

NEW4(0), suppose that p and q are joined correct processors at time tO + e.

Notice that p and q must have been part of the initial cluster, since no

processor can join until after a synchronization value has been sent out. This

cannot happen before some initially correct processor has executed task TM’

or MSG’, and, by Lemma 8.6, that cannot happen before time tO + e. When p

and q are initialized (which, by assumption, happens at some time in the

interval [tO, tO + e)), then JOINERS is set to 0 and CLUSTER is set to RO.

JOINERS is changed from this initial setting only by using the synchronous

update service. By P2 and Theorem 6.2, an update by the synchronous update

service is performed only at a clock time of the form ET – ADJ, which is at

least PER – ADJ. By Al and Pl, no correct processor’s clock reads PER – ADJ

until after time tO + e. Thus, we must have JOINERSP(tO + e) = JOINERSq(tO

Dynamic Fault-Tolerant Clock Synchronization 179

+ e) = 0. Since CLUSTER is updated only when a new synchronization value

is sent out, it follows that CL USTERP(tO + e) = CL USTER~(to + e) = RO. For

NEW5(0), observe that LASTV is defined only by execution of either task TM’

or task MSG’, so no correct processor has LASTV defined until t;.

For the inductive step, assume that all our hypotheses hold for j s i; we

show they hold for i + 1. We first prove NEWO(i + 1). Suppose correct

processor p joins at time t > t, + e. It must be as a result of receiving

messages of the form J(T, R) with a total of at least ~ + 1 signatures and

p = R. By A4, one of these signatures must be that of a correct processor, say

q. Tasks TM’, MSG’, and FORWARD guarantee that T must be a synchro-

nization value ~ with j > 1. Be definition of t~ we must have t > t].To prove

NEWO(i + 1), it suffices to show that j > i + 1. Suppose j < i + 1 so that we

can apply our induction hypotheses. Thus, by NEWl(j), q must have sent the
message .7(~, R) before t,+ d and p must have joined or failed before

tj+ 2 d. By A8, p cannot correctly request to join twice with the same name.

Thus, p cannot have joined at or after t,+ 2 d s t, + e, contradicting the

original assumption t > ti + e. This proves NEWO(i + 1).

NEW2(i + 1) is immediate from NEWO(i + 1).

Next we show that the hypotheses of Theorem 6.2 hold: we prove CSl(i),

CS4(i), parts (a) and (b) of CS3(i + 1),and if ti is finite then t,+ ~ > t, + e.

From Lemma 8.9 and NEW2(i + 1) we have CS4(i), and by Lemma 8.7, we

have CSl(i). Moreover, the proof that parts (a) and (b) of CS3(i + 1) hold is

now identical to that of Lemma 4.2.10, and is omitted. (Note that this part of

the proof of Lemma 4.2.10 uses the fact that no processor can join in the

interval [t, + e, t,+ ~]. We can use this assumption, since it follows from

NEWO(i + l).) Now, by Lemma 8.6, if t, is finite, then t,, ~ > t, + e. This

completes the hypotheses for Theorem 6.2.

By Theorem 6.2, we know that properties SUl(i) and SU2(i) of the syn-

chronous update algorithm hold.

To prove NEW3(i + 1) we suppose that p and q are joined correct proces-

sors at t,+ ~. Since no processor joins in the interval [t, + e, t,+ ~1, it must be the

case that p and q were joined correct processors at ti + e. By NEW4(i), we

know that JOINERSP(tz + e) = JOINERS~(t, + e) = 0. All the updates to

JOINERS in the interval [ti + e, t, + ~] must happen as a result of using the

synchronous update algorithm. By SU2(i), the updates have all occurred by

time t,+ ~, so JOINERSP(ti + ~) = JOINERS~(ti+ ~). There are no updates to

CL USTERP and CL USTER~ in the interval [t, + e, t,, ~), since updates occur

only when a synchronization value is sent. Thus, the fact that CL USTERP(t, + ~)

= CL USTER~(t,, ~) follows from NEW4(i). (If there is an update to CL US-

TERP or CL USTER~ at t,.~,then we may have CL USTERP(t~~,) + CL US-

TERq(t~+ ~).) This proves NEW3(i + 1).

The proof of part (c) of CS3(i + 1) is the same as that of Lemma 4.2.10.

We next prove NEWl(i + 1). Suppose some p is a correct processor that

signs a message of the form J(V + ~, R). The first time p signs such a message,

it must be the result of executing either task TM’ or task MSG’. By inspection

of the algorithm, only a joined processor with ET set to ~., can correctly sign
a message of the form J(K+ ~, R) using task TM’ or MSG’. By NEWO(i + 1), if

a processor q joins after time t, + e, then q must set its initial value of ET to

at least ~+ ~ + PER so q cannot sign such a message. Thus, p must have been

joined at time t, + e. An additional inspection of the algorithm shows that we

180 D. DOLEV ET AL.

must have R = CL USTERP(t, + ~) U JOINERSP(t, +,). By NEW3(i + 1), for any

other processor q that is joined at time t,+ ~, we must have cLusi%R~(ti+ ~) =

CL USTERP(tl, ~) and JOINERS~(t,, ~) = JOINERSP(t,. ~). Using this observa-

tion, as in the proof of Lemma 4.10, we can show that if q is correct and joined

at t,+,and q is still correct at time t,+~ + d, then q sets ET to ~+ ~ + PER at

some time t G [t,+~,t,+~ + d).At time t~, q signs and sends out a message of

the form J/~+,, R) and sets JOINERS, = 0, CLUSTER, = R, and ET, =
~+ ~ + PER. This proves the first half of NEWl(i + 1).

We still must prove that any processor q ● R that is correct at t,, ~ + 2d has

joined before that time. Without loss of generality, assume that q has not

joined by time t,+,.We now show q has joined before t,.~ + 2d, and in

addition that when q joins, it sets ET~ to ~+ ~ + PER. This will prove part (d)

of CS3(i + 1) in addition to providing NEWl(i + 1). It suffices to show that q

receives a total of ~ + 1 signatures on messages of the form J(~ + ~, R) by time

t,+~ + 2d. By assumption A6, there are at least ~ + 1 processors that are

correct and joined in the interval [t, + ~,t,+~ + d). Let p be a processor that is

correct and joined in this interval. By previous arguments, p sends out a

message J(Z + ~, R) at some time u in the interval [t, + ~,t,+~ + d). Consider the

sequence of processors p], ..., pk with p = pl and q = p~ guaranteed to exist

by A2, with t = u. If p’s message does not diffuse to q, this must be because

there is some p, that earlier sent out messages of this form with a total of

~ + 1 signatures. Thus, either q receives p’s message by time u + 2d < t,+, +

2d, or q has already received messages of the required form with a total of

~ + 1 signatures by time u + 2d. Since there are f + 1 correct joined proces-

sors, q will receive messages of this form with a total of f + 1 signatures by

time t,+~ + 2d. When q gets these messages, it sets ETq appropriately. Hence,

q joins at some time tqG [t,+l,tl+l+ 2d], and at time tq,q sets C~ = ~+1,

ETq = ~,, + PER, JOINERS = 0, and CL US TERSq = R.

Part (e) of CS3(i + 1) follows from part (d) for processors that were already

joined at t,+ ~ + e, as in Lemma 4.2.10. For a processor p that joins after

t
1+1

+ e, NEWO(i + 1) shows that p must have joined as a result of receiving a

message of the form J(V, R), with j > i + 1.Thus, at this point p sets ETP to

~+PER>~+l + PER. The result now follows from P1.

For NEW5(i + 1), observe that for any correct processor p, LASWP is

initially undefined; by inspection of the tasks of %, h is clear that US~P is

reset only at a critical time for p. Moreover, if LASWP is reset at time u, then

LASWP(U+) = ETP(u), ETP(u+) = ETP(u) + PER, and ETP(u) = ~ for some

j. If LASWP(t) is defined, then LASWP(t) < ETP(t) – PER. If t s t,+,,then

ETP(t) s ~+, by parts (a) and (b) of CS3(i + 1). Thus, LASWP(t) < ~+ ~, and

LASWP(t) = ~ for some ~ s i. This proves NEW5(i + 1).
It remains to prove NEW4(i + 1). Suppose that q is a joined correct

processor at time t,+ ~ + e. We want to show that JOINERS~(t,+ ~ + e) = 0

and CLUSTER~(t, h ~ + e) = R,+ ~. If q is already joined at time t,+~,then our

previous arguments show that at some time tqG [t,+~,t,+~ + d), q sets CL US-

TERq = R,, ~ and JOINERS~ = 0. JOINERS~ can become nonempty after tq

only if there is an update to synchronous memory. By Theorem 6.2, there can

be such an update only at time t such that C~(t) = k . PER – ADJ for some

k. By part (c) of CS3(i + 1), there cannot be such a time in the interval

[t,+ ,, t,+, + e]. Thus, JOINERS,(tL+ , + e) = 0. Similarly, an inspection of the

tasks of ~ shows that CL USTERq can change values only at a critical time for

Qynamic Fault-Tolerant Clock Synchronization 181

q. Since ET~(t~) = F(+ ~ + PER, the next critical time for q after tqmust come
at or after t,+~.By Lemma 8.6, t,+ ~ > t,+ ~ + e. Thus, we can conclude that

CLUSTER~(tl+, + e) = R,+l.

Now, suppose that q joins at some time t~ = [t,+ ~, t,, ~ + e]. By NEWO(i + 1),

this must be as a result of receiving a message of the form .J(~, R) with q = R

and j > i + 1. By the same arguments as used in the proof of NEWO(i + 1), q

must receive such a message signed by a correct processor, say q’. By inspec-

tion of the tasks of ~, it is immediate that q’ signs such a message at time t

only if T = ETg (t) or T = LASW~,(t). We have already observed that if

LASW~,(t) is defined, then LAS~~,(t) s ET~,(t) – PER. Since ET~(t) <

~.+l+PERift<ti+l by CS3(i + 1), It follows that T = fi+ ~. By NEWl(i + 1),

it follows that q must have joined by time tqG [t,+~,tj~~ + 2d]. As we

observed above when proving NEWl(i + 1), at time tq,processor q sets

CL USTER~ = R!+ 1 and JOINERS~ = 0. Identical arguments to those used
above show that JOINERS~ and CL USTER~ do not change value in the

interval [t~, t,+ ~ + e], so that JOINERS~(t[+ ~ + e) = 0 and CLUSTER~(t, + ~

+ e) = Ri+l.

Thus, we have shown that if q is a correct joined processor at time ti+ ~ + e,

then JOINERS~(ti+l + e) = 0 and CLUSTER~(t,+ ~ + e) = R,+l. NEW4(i +1)

immediately follows. ❑

Proof of Theorem 8.1. By Lemma 8.3, ~ satisfies P1–P4 in every run. By

Lemma 8.10, ~ satisfies CS3(i), NEWl(i), and NEW2(i) for all i >0 in every

run. It now follows by Lemmas 8.7, 8.8, and 8.9 that ~ also satisfies CSl(i),

CS2(i), and CS4(i). (We need NEW2(i) to satisfy the hypotheses of Lemma

8.9.)

Suppose a correct processor p requests to join at time u, and it is connected

to a joined processor q that remains correct for at least (1 + p) . PER after

receiving p‘s request-to-join message. (Such a processor is guaranteed to exist

by A7.) We now show that p joins within time (1 + p)(PER + 30 ADJ +

DM4X) + 3d of u. The basic idea of the proof is straightforward: q remains

correct sufficiently long to invoke the update algorithm, after which time p is

added to JOINERS. Then NEW2 is invoked to guarantee that p joins the

cluster soon thereafter.

In more detail, suppose that q receives p’s request-to-join message M at

time t,and ~ < ET~(t) < ~+l. By A2, we have t – u < d. There are two cases

to consider: (1) C~(t) < ET~(t) – 3. ADJ and (2) C~(t) > ET~(t) – 3 “ADJ.

For case (l), since C~(t) > ET~(t) – PER by P3 and q remains correct for at

least (1 + p) ~PER after q receives p’s message, it follows that the message

SYNC(ET (t) – 3 “ADJ, M) is signed and sent by q at or before its clock

reads ET~~t) – 3. ADJ. (The message may be sent earlier if another processor

also recewed p‘s request-to-join message and started an update.) By Theorem

6.1, all processors still correct at time t,+~ will have added q to JOINERS at

time ET~(t) – ADJ on their local clocks. It follows that JOINERS – CLUSTER

will be nonempty at local clock time ET~(t) – ADJ, from which we get that a

synchronization attempt will take place with value ETq(t). Thus, ~., == ETq(t),
and t,+~ is the first time a correct processor sends a message with synchroniza-

tion value ET~(t). Since we have assumed that q remains correct for at least

time (1 + p)PER, it is easy to show that q is still correct at time ti+~,and this

time is no more than (1 + p) PER after q receives p’s message. From NEWl(i

182 D. DOLEV ET AL.

+ 1), it follows that if p is still correct at time t,+* + 2d, p will have joined by

then. Thus, p joins within (1 + p) . PER + 3d of when p sends its request-to-

join message<

For case (2), since by assumption q remains correct for at least time

(1 + p) “ PER after q receives p’s message, q is correct when its clock reads

ET~(t) + PER – 3 “ADJ, by which time q sends the message SYNC(ET~(t) –

3 “ADJ, M) unless p has already joined the cluster. (This may happen if some

joined processor received p’s message no later than ET – 3. ADJ on its clock.

If this happens, we are back in case (l).) As in case (1), it now follows that a

synchronization attempt will take place with value ETq(t) + PER, so that

ET~(t) + PER is ~, with j = i + 1 or j = i + 2. If q is stall correct at time t,,

then t,occurs at most (1 + p)(PER + 3. ADJ) after q receives p’s request-

to-join message. If q is not correct at time t,,suppose q’ is a correct joined

processor at time t,.We must have Cq(t~) s ETq(t) + PER by CS3(j)(b) and

P3. We know that q is correct at the time t’such that C (t’) = ETq(t) + PER
— 3 “ADJ, and this time is at most (1 + p) PER after t &ince C~(t) > ET~(t)

– 3 “ADJ by assumption). By the Strong Separation Inequality (PER >

4 sADJ), we know that C~(t’) > ET~(t) + ADJ. Since ETq(t) > ~. ~, we have

C~(t’) > ~_* + ADJ. By P2 and P3 it follows that ET~(t’) > ~. ~ + PER.

Thus, from part (a) of CS3(j – 1), we have t’> t,_~.From part (c)of CS3(j – 1)

and the fact that Cq(t’) > ~_ ~ + ADJ, it follows that t’ > t,_ ~ + e. By

NEW2(j) we get that q’ must be correct and joined at t’,and from CSl(j – 1),

it follows that C~ (t’) > ET~(t) – 3. ADJ – DkMX. From this it follows that

t,s t’+ (1 + p)(3 “ADJ + DMXX), so that t,s t + (1 + p)(PER + 3 “ADJ

+ DM4X). Since by NEWl(j) we have that p joins by time t]+ 2 d (if it is still

correct then), and p sends its request-to-join message at most d before t, we

get the desired bounds.

At most nz messages are sent if no processor requests to join, just as in the

case of Algorithm J% If k processors request to join, each request-to-join

causes one update to replicated memory, resulting in k . nz messages. In

addition, if there are joining processors, each joined processor may send up to

~ + 1 messages (using task FORWARD), giving a further (~+ l)nz messages,

or (k + f + l)nz in all. ❑

In general, the (1 + p)e term is the dominant term in DMAX. In this

algorithm, e = 2 d, whereas in the basic resynchronization algorithm, we have

e = d. This factor of 2 is introduced by the late signature gathering process. It

can be eliminated by having yet another synchronization after all the proces-

sors have joined. This is essentially the technique used in an earlier version of

this paper [Halpern et al. 1984].
We now discuss how to relax assumption A8, which states that rejoining

processors must use new signatures. If the JOIN task is modified so that a

processor will continue to advance its clock according to JOIN (i.e., continue to

execute JOIN) until an interval of length (1 + p)(PER + 3. ADJ + DMAX) +

3d has elapsed from the time it requested to join, then we no longer need the

assumption that a rejoining processor must use a new signature. A processor

may be convinced to set its clock using messages left over from a previous

attempt to join; but provided our other assumptions hold, it will have advanced

to the correct time within the prescribed time bound. Of course, it may not

actually send any synchronization messages or be considered to have a defined

Dynamic Fault-Tolerant Clock Synchronization 183

ET until the time bound has elapsed on its duration timer. The details are left

to the reader.

We have assumed that a cluster grows forever and that no name is ever

removed from CLUSTER. From time to time it may be convenient to remove

names of processors that no longer participate. The method of detecting such

processors or deciding that they should be removed is outside the scope of this

paper, One mechanism for accomplishing the removal is by an update of

synchronous replicated memory using a task analogous to ADD. Again, details

are left to the reader.

9. A Continuous Clock Solution

The logical clock defined by processor p’s current clock in the previous

algorithm is not continuous, since it may be set forward by any amount smaller

than Alll. It is clearly piecewise continuous. There are some applications for

which it may be advantageous to have a continuous clock. As already noted by

Lamport and Melliar-Smith [1985], we can eliminate these discontinuities by

amortizing clock adjustments over time. We briefly sketch how the algorithm

presented in Section 3 can be modified in order to do this. A similar construc-

tion also works for the join algorithm of Section 7.

The modifications required are minimal. To simplify matters, we first add a

continuous clock C’, while keeping the piecewise continuous clock C. We

introduce two new variables, OLDA and SAKE. We set OLDA = A and

SAVE = DT at initialization, and add the following lines to the pseudocode of

Task MSG, before the line A +- ET – DT:

. SAVE G DT;

● OLDA e A;

Let INT be a constant chosen such that O < INT s PER – ADJ. (By the

Strong Separation Inequality, such a choice is possible.) We introduce A’, a

continuous approximation to A. Suppose that A(t) # A(t+). We set

OLDA(t+) +- A(t), thereby saving the old value of A before updating it. Then,

instead of increasing the value of A’ immediately to A(t +), we amortize this

increase over an interval of length INT. Thus, we have the following definition

of A:

if DT s SAVE + INT then A ~ OLDA + (A – OLDA)(DT – SAVE)/INT

else A’ +A.

Define C’(t) = DT(t) + A’(t). It is easy to check that A’ is a continuous

function of time, and hence so is C’. Moreover, at any time t we have

A’(t) s A(t), and if either OLDA(t) = A(t) or DT(t) > SAVE(t) + INT, then

A(t) = xl’(t). Our revised algorithm guarantees that if DT(t) = SAVE(t+),

then C(t+) = ET – PER, since SAVE is set to DT at exactly the time t that A

is adjusted. It follows that if C(t) > ET – ADJ, then DT(t) > SAVE(t) +

PER – AD], and hence that C(t) = C’(t). With this observation, it is easY to

check that we could have replaced C by C’ in algorithm & and obtained the

same result for every test where C was used. We leave details to the reader.

10. Conclusion

We have described an algorithm that periodically desynchronizes clocks. The

algorithm can tolerate arbitrary link and processor failures as long as messages

184 D. DOLEV ET AL.

can diffuse through the network within some preassigned time bound. We also

have provided a technique for initializing clocks, and have shown how our

algorithm could be extended to allow new processors to join the network.

The constants in our algorithm are reasonable for many practical appli-

cations. We have suggested a number of ways throughout the paper that

performance of the algorithm could be improved. We suspect that further

improvements are possible. A variant of this algorithm, for which the join is not

so fault-tolerant, has been implemented for a prototype highly available system

at the IBM Almaden Research Center [Griefer and Strong 1988].

The join algorithm provided in this paper represents a compromise between

the simplicity of allowing joining only when resynchronization is scheduled and

the complexity of providing join on demand, The algorithm depends on

logically synchronous updates to a data structure we call synchronous repli-

cated memory. We have chosen to simplify the process of joining and maintain-

ing synchronous replicated memory by allowing these processes to run only at

periodic scheduled times. We provide fast response time by making this period

very small. Then, we provide minimal overhead by desynchronizing only with a

much larger period, unless there is a processor waiting to join. Our use of

synchronous replicated memory is in the spirit of the state-machine approach,

pioneered by Lamport [1978a, 1978b, 1984]. Moreover, our basic resynchro-

nization algorithm without its timeliness tests is a minor variant of a scheme

proposed by Lamport [1978a]. The advantage and main contribution of

our approach lies in the simplicity of our algorithms together with their

fault-tolerance properties (not shared by the original Lamport scheme).

ACKNOWLEDGMENTS. The authors would like to thank the referees for under-

taking to read the entire paper carefully and for many helpful suggestions.

REFERENCES

CRISTIAN,F. 1989. Probabilistic clock synchronization. Drst. Cm-nput. 3, 3 (July), 146-158.
CRMTIAN,F., AGHIL1,H., STRONG,H. R., ANDDOLEV, D. 1986. Atomic broadcast: from simple

message diffusion to Byzantine agreement. IBM Tech. Rep. RJ 5244. IBM. San Jose, Calif.
DOLEV, D., H.ALPERN,J. Y., SIMONS,B. B., AND STRONG, H. R. 1987. A new look at fault

tolerant network routing. Zrzf. Comput. 72, 180-196.
DOLEV, D., HALPERN, J. Y., AND STRONG, H. R. 1986. On the possibility and impossibility of

achieving clock synchronization. J. Corn@. Syst. ,SCL.32, 2 (Apr.), 230–250.
DOLEV, D. AND STRONG, H. R. 1983. Authenticated algorithms for Byzantine agreement.

SLAM J. Cot?zput, 12>4 (Nov.), 656-666.
GRIEFER, A. D., AND STRONG, H. R. 1988. DCF: Distributed communication with fault toler-

ance. In Proceedings of the 7th A nrzzlal A CM Symposizwn on Principles of Dist?ibufed Computing

(Toronto, Ont., Canada, Aug. 15-17). ACM, New York, pp. 18-27.
HALPERN. J. Y.. MEGIDDO, N., AND MUNSHI, A. 1985. Optimal preckion in the presence of

uncertainty. J. Complexity 1, 2 (June), 170–196.
HALPERN, J. Y., SIMONS, B. B., STRONG, H. R., AND DOLEV, D. 1984. Fault-tolerant clock

synchronization. In Proceedings of the 3rd Annual A CM Symposium on Pri>zciples of Distributed
Corrzputiizg (Vancouver, B. C., Canada, Aug. 27–29). ACM, New York, pp. 89-10?.

KRISHNA, C. M., SHIN, K. G., AND BUTLER, R. W. 1985. Ensuring fault tolerance of phase-locked
clocks. lEEE Tirozs. Comput. C-34. 8, 752–756.

LAMPORT, L. 1978a. Time, clocks and the ordering of events in a distributed system. Commun.

ACM 21, 7, (July), 558-565.
LAMPORT, L. 1978b. The implementation of reliable distributed multiprocess systems. Corrzput.

Netw. 2, 2 (May), 95-114.

L.WPORT, L. 1984, Using time instead of timeout for fault-tolerant distributed systems. ACM
Trans. Prog. Lang. Syst. 6, 2 (Apr.) 254-280.

Dynamic Fault-Tolerant Clock Synchronization 185

LAMPORT. L., AND MELLIAR-SMITH, P. M. 1985. Synchronizing clocks in the presence of fwlts.

J. ACM 32, 1 (Jan.), 52-78.
LUNDELIUS,J., ANDLYNCH,N. 1984. Anupper andlower bound forelock synchronization. Znf.

Control 62, 21 (Aug. /Sept.), 190-204.

MARZULLO, K. 1983. Loosely-coupled distributed services: A distributed time system. Ph.D.

dissertation. Stanford Univ., Stanford, Calif.
PEASE, M., SHOSTAK, R., AND LAMPORT, L. 1980. Reaching agreement inthepresence of faults.

J. ACM27,2, (Apr.), 228-234.
RWEST,R. L., SHAMIR, A., AND ADELMAN, L. 1978. Amethod for obtaining digital signatures

andpublic-key cryptosystems. Communication so ftheACM21, 2 (Feb.), 120–126.
RAMANATHAN,P., SHIN,K. G., AND BUTLER,R. W. 1990. Fault-tolerant clock synchronization

in distributed systems. LZEEComput.(Ott.),33-42.
SCHNEIDER, F. B. 1987. Understanding protocols for byzantine clock synchronization. Tech.

Rep. Dept. Computer Science, Cornell University, Ithaca, N.Y.

SRIKANTH, T. K., AND TOUEG, S. 1987. Optimal clock synchronization. J. ACM34, 3 (July),

626-645.

WELCH, J. LUNDELIUS, AND LYNCH, N. 1988. Anew fault-tolerant algorithm forclocksynchro-

nization. Inf. Comput. 77, 1,1–36.

RECEIVED MARCH 1989; REVISED JULY 1989; ACCEPTED FEBRUARY 1994.

Journdof the AssocMlonforCumputNgMachuuzry.Vol 4?, N0 l. Jdnu.%~1995

